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Abstract

In the immediate vicinity of a deep sill, abyssal ocean overflows can possess cur-
rent speeds greater the local long internal gravity wave speed with bottom friction
and down slope gravitational acceleration playing a dominant role in the dynamics.
The parameter regime for the finite amplitude transition to instability is described
for marginally unstable super critical frictional abyssal overflows where there is
weak coupling between the overflow and gravest-mode internal gravity waves in
the overlying water column.

1 Introduction

The flow of dense water over deep sills is a source point for abyssal ocean currents.
These flows, such as, for example, the Denmark Strait Overflow (hereafter DSO,
e.g., [1-6]), make an important global-scale contribution to the convective overtur-
ing of the oceans. Abyssal currents of this kind are responsible, as well, for deep
water replacement in marginal seas (e.g., [7]) and the along slope propagation of
cold bottom intensified anomalies (e.g., [8]).

Swaters [9,10] has shown that in the near-inertial regime, super critical over-
flows can be destabilized by bottom friction. Within the overflow, the instabili-
ties take the form of propagating, growing periodic bores or pulses (and are the
rotational analogues of classical roll waves). In the overlying water column the
instabilities take the form of amplifying internal gravity waves. For typical DSO
parameter values [9], the most unstable mode has a wave length about 45 km,
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propagates prograde with respect to the overflow, has a period about 6 hours, and
an e−folding growth time about 45 hours.

2 Governing equations

The density profile associated with, for example, the Denmark Strait Overflow (see
Fig. 5 in [4] and the discussion in [10]) suggests that it is appropriate to consider
a 2 1

2 -layer stably stratified abyssal model with variable bottom topography (see
Fig. 1). The uppermost layer, which is passive and infinitely deep, is denoted as
layer one. The middle, or active upper layer is of finite thickness and is denoted as
layer two. The abyssal layer, i.e., the layer immediately above the bottom topogra-
phy, is denoted as layer 3. The nondimensional equations of motion for the upper
layer are given by [10]

(
∂t + εγ2u2∂x

)
u2 = −ηx +

1
Re

∂xxu2, (1)

(η − h)t + γ2 {u2 [1 + ε (η − h − hB)]}x = 0, (2)

and, for the abyssal layer,

(∂t + u3∂x)u3 = −px +
∂x (h ∂xu3)

Re h
− cD |u3|u3

h
, (3)

ht + (u3h)x = 0, p = h + hB + εγ2η, (4)

where u2, η, u3, p and h are, respectively, the active upper layer horizontal velocity,
the reduced upper layer pressure, the abyssal layer velocity, the reduced abyssal
layer pressure and the abyssal layer thickness relative to the height of the bottom
topography hB .

The Reynolds number Re, scaled bottom drag coefficient cD, and the parameters
ε and γ are given by, respectively,

Re ≡ L
√

g′h∗
AH

, cD ≡ c∗D
s∗

, ε ≡ h∗
H

, γ2 ≡ g̃H

g′h∗
, (5)

where s∗ a representative value for the slope of the bottom topography, h∗ is a
representative value for the thickness of the abyssal layer,

L ≡ h∗
s∗

,

the reduced gravities are

g′ =
g (ρ3 − ρ2)

ρ2
> 0,

g̃ =
g (ρ2 − ρ1)

ρ2
> 0,
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where
0 < ρ1 < ρ2 < ρ3,

and where the horizontal eddy coefficient is AH and the bottom drag coefficient is
c∗D.

Figure 1: Model geometry used in this paper.

The parameter ε, which is the ratio of the abyssal scale thickness to the overall
reference mean depth (and must be less than one), is a measure of the magnitude
of the dynamical feedback of the upper layer pressure field back onto the lower
layer, and is also a measure of the nonlinearity in the upper layer dynamics. The
parameter γ is the ratio of the scale long internal gravity wave speeds associated
with the dynamically active upper layer to the abyssal layer, respectively.

Oceanographic estimates for the dimensional parameters suggest that (see, e.g.,
[5,10-13])

√
g′h∗ ≈ 46 cm/s, L ≈ 15 km, T ≈ 9 hours,

cD ≈ 0.25, ε ≈ 0.38, γ ≈ 2.56, Re ≈ 279.

}
(6)

It is assumed that 0 < ε � 1, which is the expansion parameter, and that cD, γ
and Re are formally O (1).

3 Parameter regime for marginal instability

The steady abyssal flow solutions which have relevance [5] in the near sill region,
and upon which the theory of classical roll waves has been developed, are the
“slab” solutions on a linearly sloping bottom (see, e.g., [14-16]) given by

u2 = η = 0, u3 = U =
1√
cD

, h = 1, hB = −x. (7)
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These uniform flows are equivalent to the “stream tube” solutions, without along-
stream variation, which have been used to examine aspects of the dynamics of
turbidity and abyssal currents (e.g., [17-20]).

Substitution of the perturbed solution

(u2, η, u3, h) �
(

0, 0,
1√
cD

, 1
)

+
(
ũ2, η̃, ũ3, h̃

)
, (8)

into (1) - (4), leads to the linear stability problem, after dropping the tildes and a
little algebra, (

∂t − ∂xx

Re

)
(η − h)t − γ2ηxx = 0, (9)[(

∂t +
∂x√
cD

)2

− ∂xx + ∂x + (2
√

cD − ∂xx)
(

∂t +
∂x√
cD

)]
h = 0. (10)

Assuming a normal mode solution of the form

(h, η) =
(
ĥ, η̂

)
exp (ikx + σt) + c.c., (11)

where c.c. means the complex conjugate of the preceding term, leads to the alge-
braic system, after dropping the carets,

η = δh, (σ − σ+) (σ − σ−)h = 0, (12)

with

δ ≡ σ
(
σ + k2/Re

)
σ (σ + k2/Re) + k2γ2

, (13)

σ± ≡ −
(

ik√
cD

+
√

cD +
k2

2Re

)
±

√(√
cD +

k2

2Re

)2

− (ik + k2), (14)

where the branch cut is taken along the negative real axis. For a nontrivial solution
to (12) it follows that σ = σ±.

A mode with a given wave number k will be stable provided

Re (σ+) ≤ 0,

i.e.,

Re

√(√
cD +

k2

2Re

)2

− (ik + k2)

 ≤ √
cD +

k2

2Re
.

This can be considerably simplified by introducing the Euler decomposition

α exp (iβ) =
(√

cD +
k2

2Re

)2

− k2 − ik,
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(which serves to define the real numbers α and β) allowing the above stability
condition to be re-written in the form

α [1 + cos (β)] ≤ 2
(√

cD +
k2

2Re

)2

,

or, equivalently, after substituting in for α and β[(√
cD +

k2

2Re

)2

− k2

]2

+ k2 ≤
[(√

cD +
k2

2Re

)2

+ k2

]2

,

from which it follows that stability occurs if and only if (for k �= 0, the flow is
unconditionally stable for k = 0)

√
cD +

k2

2Re
≥ 1

2
. (15)

In the Re → ∞ limit, (15) reduces to the classical roll wave stability result

cD ≥ 1
4
,

(see, e.g., [14-16]).
Note that (15) implies the existence of a high wave number cutoff if Re is finite.

If Re is infinite, the instability problem has an ultraviolet catastrophe, which vio-
lates the a priori assumptions for shallow water modelling.

The marginal modes are described by

√
cD +

k2

2Re
=

1
2
− εµ

=⇒ cD = c̃D − 2εµ
√

c̃D + ε2µ2, (16)

where

c̃D ≡
(
1 − k2/Re

)2

4
,

is the critical value for cD as a function of k and Re. The parameter µ � O (1)
measures the super or subcriticality. Substitution of (16) into (14) implies

σ+ = −1
2

+ εµ − ik√
cD

+

√
(1 − 2ik)2

4
− εµ + ε2µ2 � 4εµk2

(1 + 4k2)

−ik

 3 − k2/Re

(1 − k2/Re)
+

2εµ
[(

1 − k2/Re

)2 + 2
(
1 + 4k2

)]
(1 + 4k2) (1 − k2/Re)

2

 + O
(
ε2

)
, (17)

so that the growth rate of the marginal mode will be O (ε). Marginally unstable
(stable) modes correspond to µ > (<) 0, respectively. A detailed description of the
nonlinear evolution of the amplitudes of the marginally unstable modes, assuming
0 < ε << 1 in (17), will be described elsewhere.
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4 Conclusions

The parameter regime for the weakly nonlinear marginal destabilization of fric-
tional supercritical abyssal overflows with weak coupling between the overflow
and gravest-mode internal gravity waves in the overlying water column has been
described. Necessary and sufficient stability conditions have been derived. It has
been shown that in the limit of infinite Reynolds number the stability conditions
reduce the known classical results. The inclusion of a finite Reynolds number
removes the ultraviolet catastrophe known to exist in the stability problem when
turbulent horizontal mixing is not present, violating the a priori assumptions for
modelling with the shallow water equations.

Preparation of this extended abstract was supported in part by the Natural Sciences
and Engineering Research Council of Canada.
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