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ABSTRACT

The equatorward flow of source-driven grounded deep western boundary currents within a stratified
basin with variable topography is examined. The model is the two-layer quasigeostrophic (QG) equations,
describing the overlying ocean, coupled to the finite-amplitude planetary geostrophic (PG) equations,
describing the abyssal layer, on a midlatitude � plane. The model retains subapproximations such as
classical Stommel–Arons theory, the Nof abyssal dynamical balance, the so-called planetary shock wave
balance (describing the finite-amplitude �-induced westward propagation of abyssal anomalies), and baro-
clinic instability. The abyssal height field can possess groundings. In the reduced gravity limit, a new
nonlinear steady-state balance is identified that connects source-driven equatorward abyssal flow (as pre-
dicted by Stommel–Arons theory) and the inertial topographically steered deep flow described by Nof
dynamics. This model is solved explicitly, and the meridional structure of the predicted grounded abyssal
flow is described. In the fully baroclinic limit, a variational principle is established and is exploited to obtain
general stability conditions for meridional abyssal flow over variable topography on a � plane. The baro-
clinic coupling of the PG abyssal layer with the QG overlying ocean eliminates the ultraviolet catastrophe
known to occur in inviscid PG reduced gravity models. The baroclinic instability problem for a constant-
velocity meridional abyssal current flowing over sloping topography with � present is solved and the
stability characteristics are described.

1. Introduction

In a source region of deep water formation, the Sver-
drup vorticity balance predicts equatorward abyssal
flow (Stommel and Arons 1960). Away from the source
region, Stommel–Arons theory cannot infer the flow
direction of abyssal currents. However, many abyssal
currents are characterized by the isopycnal field being
grounded against sloping topography [e.g., the deep
western boundary undercurrent in the North Atlantic
(Richardson 1977) and the deep water replacement cur-
rent in the Strait of Georgia (LeBlond et al. 1991; Mas-
son 2002)] and the flow being in geostrophic balance.
As shown by Nof (1983), a fully grounded abyssal water
mass lying over sloping topography flows, in the fully
nonlinear but reduced gravity dynamical limit, nondis-

persively and steadily in the along-slope direction, irre-
spective of the specific height or vorticity field within
the abyssal water mass.

These two results provide a dynamical scenario for
the initiation and maintenance of source-driven
grounded abyssal flow. That is, in high latitude regions
where deep water is produced (often over sloping to-
pography), the Sverdrup vorticity balance initiates
equatorward flow. Once produced, this water mass can
become grounded and geostrophically adjusted, main-
taining a Nof balance that permits sustained basin-scale
meridional quasi-steady and coherent abyssal flow. Of
course, this picture leaves out important dynamics such
as diabatic and planetary effects, baroclinicity, instabil-
ity, topographic separation and mixing. In addition,
such a scenario cannot explain cross-equatorial abyssal
currents where the assumptions of geostrophically bal-
anced flow must break down (see, e.g., Nof and Borisov
1998; Edwards and Pedlosky 1998a,b; Stephens and
Marshall 2000; Choboter and Swaters 2003, 2004), the
superinertial instability associated with frictional super-

Corresponding author address: Gordon E. Swaters, Department
of Mathematical and Statistical Sciences, University of Alberta,
Edmonton, AB, T6G 2G1, Canada.
E-mail: gordon.swaters@ualberta.ca

MARCH 2006 S W A T E R S 335

© 2006 American Meteorological Society

JPO2855



critical abyssal overflows (Swaters 2003) or the rela-
tively rapid barotropic instability that can occur in the
overlying water column as a result of spinup associated
with baroclinic stretching (Sutherland et al. 2004).

The principal purpose of the present contribution is
to present a baroclinic model that describes the forma-
tion and development of grounded abyssal currents as a
process that begins as a source-driven Stommel–Arons
flow and then transitions to a Nof flow as the abyssal
water mass flows equatorward. In particular, the sub-
inertial evolution and equatorward flow of source-
driven grounded abyssal currents over sloping topogra-
phy and their baroclinic interaction with the overlying
ocean on a midlatitude � plane is described. The im-
portance of this process in understanding the planetary-
scale overturning of the oceans, and hence climate dy-
namics, is obvious. However, this paper is oriented
more toward describing the mesoscale dynamics, kine-
matic features, and baroclinic development, and the
basin-scale characteristics of deep grounded abyssal
currents, that these processes imply.

The plan of this paper is as follows. In section 2, the
model is introduced and estimates of the magnitude of
the many physical parameters are given. In the appen-
dix, it is shown how the model can be obtained via a
subinertial small-slope asymptotic reduction of the
three-layer shallow water equations.

Section 3 describes various dynamical sublimits that
exist within the abyssal layer equation. It is shown that
the model recovers the Stommel–Arons theory for the
equatorward flow of a source-driven abyssal water mass
(Stommel and Arons 1960), the nondispersive topo-
graphically steered inertial flow of a grounded abyssal
water mass (Nof 1983), and the finite-amplitude �-in-
duced westward propagation of abyssal water masses
associated with the so-called planetary shock wave bal-
ance introduced by Anderson and Killworth (1979) and
examined later by Johnson and Willmott (1981), in the
continuously stratified context, and by Dewar (1987a)
and Wright and Willmott (1992), in the layered context.

In addition, in section 3, new hybrid nonlinear re-
duced-gravity steady-state balance is introduced that
bridges both Stommel–Arons and Nof dynamics. This
model is explicitly solved to determine the meridional
structure of an abyssal current that possesses cross-
slope groundings (like that shown in Fig. 1). The theory
predicts the equatorward thinning of the abyssal layer
height (although the meridional transport is constant,
i.e., the equatorward speed of the abyssal current in-
creases in the equatorward direction) because of the
conservation of PG potential vorticity. The influence of
� is to (slightly) orient the pathlines in the northeast to
southwest direction, that is, there is a cross-slope com-

ponent in the abyssal velocity field. The solution does
not correspond to a simple parallel shear flow.

In section 4, the baroclinic instability characteristics
of the model are examined. A variational principle is
introduced for the baroclinic extension of all inertial
solutions to the hybrid Stommel–Arons–Nof model.
This variational principle is exploited to establish
(modal and nonmodal) sufficient stability and neces-
sary instability conditions. The linear baroclinic insta-
bility problem is solved for a constant-velocity abyssal
current with � and sloping topography present. The
most unstable mode, for typical parameter values, cor-
responds to an equatorward (or along-slope) propagat-
ing topographic Rossby wave with a wavelength on the
order of 90 km, a period of about 38 days (the phase
speed is about 3 cm s�1) and an e-folding amplification
time of about 6 days. In section 5 a summary is given, as
well a brief description of future work.

2. Model equations

The model is an amalgamation, with the inclusion of
variable topography and mass conserving up and down-
welling, of the two-layer quasigeostrophic (QG) (i.e.,
Phillips) model used, for example, by Holland (1978) to
investigate the baroclinic evolution of the wind driven
circulation and the QG/planetary geostrophic (PG)
abyssal current model of Swaters (1991) describing the
baroclinic instability of grounded abyssal flow on slop-
ing topography. A continuously stratified version of the
model is described by Poulin and Swaters (1999) and
Reszka et al. (2002).

Assuming a Boussinesq, rigid-lid approximation with
wind stress, horizontal and bottom friction, variable to-
pography, and mass conserving up- or downwelling, the

FIG. 1. Model geometry used in this paper.
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nondimensional model, in standard notation (see, e.g.,
Pedlosky 1987), can be written in the form

��t � J��1, ·�����1 � F1��1 � �2� � �y� �

ϒ� 	 � �
F1Q

F1 � F2
�

�2�1

Re
, �2.1�

��t � J��2, ·�����2 � F2��2 � �1� � h � hB � �y� �

�r2��2 �
F1Q

F1 � F2
�

�2�2

Re
, and �2.2�

ht � J�h � �2 � hB,
h

1 � s�y� �

Q � r3���2 � hB � h�, �2.3�

with the auxiliary diagnostic relations

u1,2 � e3 	 ��1,2, u3 �
e3 	 ���2 � hB � h�

1 � s�y
,

p � �2 � hB � h, and � � �2 � �1, �2.4�

with J(A, B) � AxBy � AyBx, and where the 1, 2, or 3
subscript on a physical variable refers to the upper,
middle, and abyssal layer, respectively; alphabetical
subscripts (unless otherwise noted) indicate partial dif-
ferentiation, u1,2,3 � (u1,2,3, 
1,2,3), � � (�x, �y), 
 �
� · �, hB is the height of the topography, h is the height
of the abyssal layer relative to hB, � is the deflection
(measured positively upward) of the interface between
the two QG layers from its equilibrium position, � is the
wind stress, and Q is the down- or upwelling term, re-
spectively. The dynamic pressures in the upper two lay-
ers is given by �1,2, and in the abyssal layer by p, re-
spectively. The model geometry is shown in Fig. 1.
Equations (2.4c) and (2.4d) express the continuity of
total pressure across the deforming interfaces between
the middle and abyssal layers and the upper and middle
layers, respectively.

The dynamical parameters in the model are defined by

s�
s*L

H2
, ��

�*L2

U*
, Re �

U*L

AH
, ϒ�

ϒ*L

�*H1U
2

*
,

F1 �
g�H2

g̃H1
, F2 �

g�

g̃
, and r2,3 �

r*2,3

sH2
, �2.5�

where H1,2 are the constant reference layer thicknesses
in the upper two layers, �* is the reference Boussinesq
density and g� � (�3 � �2)g/�* � 0 and g̃ � (�2 � �1)g/�*
� 0 where �1,2,3 correspond to the constant density in
each individual layer with 0 � �1 � �2 � �3, L �
�g�H2/f0 (the internal deformation radius for the mid-
dle layer based on the density difference with the abys-

sal layer), U* � s*g�/f0 (the Nof speed), s* � O(�*h*B)
(a representative value for the topographic slope), f0 is
the reference Coriolis parameter, �* is the northward
gradient of the Coriolis parameter, and ϒ* is a typical
value for the wind stress, respectively.

In addition, AH is the upper layers’ horizontal eddy
coefficient and r*2,3 are bottom friction coefficients for
the middle and abyssal layers, respectively. Ekman
boundary layer theory (Pedlosky 1987) suggests that
r*2,3 � H2,3�EV

2,3, where H2,3 are the vertical thickness
scales and EV

2,3 are the vertical Ekman numbers for the
middle and abyssal layers, respectively. Accordingly,
r*2,3 are the scale vertical thicknesses of the Ekman bot-
tom boundary layer in the middle and abyssal layers,
respectively.

The wind stress is explicitly distributed only over the
upper layer and the upper layer does not have surface
Ekman friction. The upper two layers have horizontal
friction, but this has been neglected in the abyssal layer.
The abyssal layer includes bottom friction. Though in
geostrophic balance, the leading-order abyssal layer
equations are not geostrophically degenerate and allow
for finite-amplitude dynamic deflections in the abyssal
layer height.

The upwelling/downwelling parameterization (the Q
terms) is an adaptation of the interfacial mass flux
model introduced by Dewar (1987b, 1988a,b) for warm
rings and, subsequently, by Swaters and Flierl (1991)
for abyssal cold domes. Physically, this parameteriza-
tion models the upwelling or downwelling as an con-
tinuous conversion of abyssal layer water into (or from)
overlying ocean water in such a way as to ensure that in
the unforced, inviscid limit, the horizontal divergence
of the barotropic mass flux is zero [see the appendix
and Swaters and Flierl (1991)]. That is, whatever mass
is accumulated into (or lost from) the abyssal layer is
assumed to have been instantaneously gained from (or
lost into) the upper two layers in proportion to the
individual upper layer volume fractions. The net hori-
zontal divergence of the barotropic mass transport is
forced only by wind stress and bottom friction. In the
unforced and inviscid limit, total volume is conserved
with this upwelling/downwelling parameterization.

Although there is no thermodynamics in the model
per se (so that there is no genuine heat or salinity trans-
port), Q � 0 can be heuristically interpreted as a cool-
ing of the overlying water column that leads to a down-
ward mass flux resulting in the depletion of the overly-
ing water mass and a corresponding increase in the
volume of abyssal water. Similarly, Q � 0 can be heu-
ristically interpreted as warming or freshening of the
abyssal water mass that leads to an upward mass flux
resulting in the depletion of the abyssal water mass and
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a corresponding increase in the volume of upper ocean
water.

The unforced, inviscid dynamics of the model is
purely baroclinic. It is important to point out that the
Dewar parameterization implies that the only densities
allowed are the densities of the three layers in the
model and that no intermediate density layer can be
created and is dynamically appropriate for the discrete
three-layer shallow-water-based model considered
here. Similar parameterizations for the source terms for
buoyancy-driven abyssal circulation in layered models
(particularly in the reduced gravity approximation)
have been introduced by, for example, Kawase (1987),
Kawase and Straub (1991), Wright and Willmott
(1992), Straub et al. (1993), and Willmott et al. (1996).

The model (2.1), (2.2), and (2.3) can be formally de-
rived in a small Rossby number limit (i.e., s → 0; see the
appendix) of the three-layer shallow-water equations
using the scaling arguments of Swaters and Flierl
(1991), Swaters (1991), Poulin and Swaters (1999), and
Reszka et al. (2002). Briefly, the abyssal-layer equa-
tions are scaled assuming that the dynamics is princi-
pally governed by a geostrophic balance between the
down slope gravitational acceleration of the abyssal wa-
ter mass and the Coriolis term. The upper layers are
scaled assuming that the baroclinic stretching associ-
ated with deformations associated with the interface
between the abyssal and middle layers is the same order
of magnitude as the velocity field. This will imply that
the appropriate length scale is the internal deformation
radius associated with the middle layer and that time
will be scaled advectively. All other variables are scaled
assuming an underlying geostrophic balance to leading
order.

From the point of view of the abyssal layer, this is an
intermediate, or PG, dynamical limit [i.e., a subinertial
regime in which the length scale is longer than the local

internal deformation radius but shorter than the basin
width, see Charney and Flierl (1981), Flierl (1984), Ped-
losky (1984)]. The dominant nonlinearity is associated
not with the flow acceleration but, rather with isopycnal
steepening. This attribute allows the model to describe
fully grounded finite-amplitude abyssal flow, in which
the isopycnal field intersects the bottom, which is some-
thing QG theory cannot do. This scaling allows for
strong baroclinic interaction between the abyssal cur-
rent and overlying water column.

Since the ratio of the scale thickness of the abyssal
layer (on the order of 100 m) to the scale thickness of
the overlying ocean (on the order of 4000 m) is identical
to the scaled slope parameter s [i.e., they are the same
order of magnitude; see (2.5), (2.7), and (A.6)], the
overlying ocean will have a finite deformation radius
and, thus, baroclinic stretching associated with the in-
terface between the upper two layers is retained in the
QG potential vorticity. This fact has a very important
implication in relation to the stability properties of the
model. It is known that, in the purely inertial limit, the
PG approximation exhibits an ultraviolet catastrophe in
the linear instability problem [i.e., the most unstable
wave mode occurs for an infinite wavenumber; see de
Verdiere (1986)]. While the inclusion of Rayleigh
damping can remove the ultraviolet catastrophe
(Samelson and Vallis 1997), Swaters (1991) has shown
that an inviscid baroclinic model, that couples an abys-
sal PG layer to an overlying QG layer (with its implicit
finite deformation radius), also ensures that the most
unstable mode occurs at a finite wavenumber. This
property continues, of course, to hold if the overlying
QG fluid is multilayered (as occurs here) or is continu-
ously stratified (Poulin and Swaters 1999; Reszka et al.
2002).

Although there is considerable variability, typical ba-
sin-scale values of the physical parameters are

g̃ � 9.5 	 10�3 m s–2, g� � 4.8 	 10�4 m s–2, s* � 5.6 	 10�3,

ϒ* � 10�1 N m–2, H1 � 1 km, AH � 1.6 	 104 m2 s–1,

H2 � 4 km, f0 � 9.35 	 10�5 s�1, and �* � 1.6 	 10�11 �ms��1, �2.6�

which implies that

L � 15 km, U* � 3cm s–1, T �
Lf0

s*g�
� 6 days,

�H3, h*B� � s*L � 84 m, and Q* � s*2g��f0 � 1.6 	 10�2 cm s–1, �2.7�

where T, Q*, H3, and h*B are the formal scalings for the
time, upwelling/downwelling mass exchange between

the abyssal and the overlying ocean, abyssal layer thick-
ness, and topographic height used in the derivation of
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(2.1), (2.2), and (2.3), respectively. The rotational pa-
rameters f0 and �* have been evaluated at 40°N (the
origin of the domain).

These scalings imply that the nondimensional param-
eters are about

s � 0.02, F1 � 0.2, F2 � 0.05, r2 � 0.08,

� � 0.12, Re � 1�35, ϒ � 1.62, and r3 � 0.001.

�2.8�

In this paper, the limit ϒ � r2,3 � 0 and Re → � is
examined (inviscid flow with no wind stress). In forth-
coming contributions, which will focus on numerical
simulations, ϒ, Q, r2,3, and Re will be chosen so that the
wind driven northward barotropic QG mass transport
and zonal width of the western boundary current (i.e.,
the Gulf Stream), and the equatorward transport of the
source-driven abyssal (i.e., deep western boundary)
current is consistent with observations of the north-
western Atlantic Ocean.

The inclusion of the O(s�) terms in (2.3) is, formally,
an ad hoc approximation. Although the internal defor-
mation associated with the middle layer is the length
scale, which is the appropriate scaling for the O(1)
baroclinic coupling of interest here, the numerical
simulations (which are described in Part II; see Swaters
2006) will be done in an 40° 	 40°, or equivalently, an
approximately 3660 km 	 3660 km (or, nondimension-
ally, a 244 	 244) basin, that is, a domain that extends
from 20° to 60°N. Over a meridional range this large,
the O(s�) terms in (2.3) make a not insignificant cu-
mulative contribution and thus they will be retained
even if, formally at least, the scaling suggests they can
be ignored to leading order with respect to s. It is pos-
sible that a complete multiple scale asymptotic theory,
similar to that described by Pedlosky (1984) for geo-
strophic flow, could be developed to make this ad hoc
approximation rational.

Additionally, and perhaps most importantly, the in-
clusion of the O(s�) terms allows that, in a steady,
reduced gravity and flat bottom approximation, (2.3)
reduces to the (vertically integrated) Sverdrup vorticity
equation with a source term, which forms the basis of
the Stommel and Arons (1960) theory for the equator-
ward flow of abyssal water. Thus, the classical Stom-
mel–Arons theory is retained in a subapproximation of
the model.

There are a variety of dynamical balances possible in
models of this sort. Karsten and Swaters (1999, 2000)
have given a general description of the differing dy-
namical balances possible as function of the underlying
parameter space. It has been suggested by, for example,
Jiang and Garwood (1996), Etling et al. (2000), and

Jungclaus et al. (2001), that the instability seen in nu-
merical simulations of abyssal overflows resembles the
transition characteristics described by Swaters (1991,
1998). Choboter and Swaters (2000) have shown that
aspects of the destabilization of dense flows on a slop-
ing bottom observed in laboratory experiments (e.g.,
Lane-Serff and Baines 1998) can be described by the
Swaters (1991) baroclinic instability theory.

Individual subapproximations of (2.1), (2.2), and
(2.3) are very well known explicitly or in closely related
form. The upper-layer equations in (2.1) and (2.2) are
simply, of course, the Phillips two-layer model, with
topography, friction, diabatic forcing, and wind stress
present, which has been used extensively to examine
various aspects of baroclinic instability on a � plane
(see, e.g., Pedlosky 1987), the spinup of a stratified ba-
sin (Holland 1978) and the interaction of deep western
boundary currents with the wind driven circulation
(Katsman et al. 2001).

The abyssal equation in (2.3) is simply the planetary
geostrophic equation for a single layer, with baroclinic
coupling, topography, friction, and a mass source term,
on a � plane (Pedlosky 1984). The PG approximation
has been used widely to investigate aspects of abyssal
and other long length scale flow (e.g., Stommel and
Arons 1960; Anderson and Killworth 1979; Dewar
1987a; Kawase 1987; Kawase and Straub 1991; Straub
et al. 1993; Wright and Willmott 1992; Rhines 1989;
Speer et al. 1993; Stephens and Marshall 2000; among
many others) and the thermohaline circulation (e.g.,
Edwards et al. 1998; Samelson and Vallis 1997; Samel-
son 1998, among many others). In particular, (2.3) can
describe an abyssal current that possesses distinct in-
croppings or groundings (Speer and McCartney 1992)
in its thickness or height, that is, h � 0 along a curve
�(x, y, t) � 0. This is an important kinematic property
of the cross-slope structure in deep western boundary
undercurrents (that QG theory cannot reproduce; see,
e.g., Katsman et al. 2001).

3. Theoretical properties

There are a number of subdynamical, or distin-
guished, limits in (2.3) such as the Nof balance describ-
ing topographically steered abyssal flow (Nof 1983), the
Stommel–Arons Sverdrup vorticity balance describing
the equatorward flow of an abyssal water mass created
by a source (Stommel and Arons 1960), the planetary
shock wave balance (Anderson and Killworth 1979;
Johnson and Willmott 1981; Dewar 1987a; Wright and
Willmott 1992; among others) describing the ampli-
tude-� induced isopycnal steepening associated with
the frontal geostrophic dynamical regime (Karsten and
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Swaters 1999, 2000) and, finally, the coupling between
the abyssal layer and the overlying ocean that can lead
to baroclinic instability and mixing (Swaters 1991,
1998). Each of these processes plays an important role
in determining aspects of the spatial and temporal

structure of the abyssal currents modeled here. It is
useful to briefly review these approximations, and a few
other properties of the model, and their dynamical im-
plications. The area-integrated energy for the model is
given by

E �
1
2 ��

	

{F2��1 · ��1 � F1���2 · ��2 � �h � hB�
2 � hB

2 � � F1F2��1 � �2�
2} dx dy, �3.1�

where � is the fixed spatial horizontal domain. In the
absence of wind forcing, interlayer mass exchange and
dissipation (i.e., ϒ � Q � r2,3 � 0, Re → �), it follows
that dE/dt � 0. In the unforced situation, (2.1), (2.2),
and (2.3) is an infinite-dimensional Hamiltonian dy-
namical system (see, e.g., Swaters 1993, 2000), in which
E will be the Hamiltonian functional, and it is possible
to establish a variational principle for steady solutions
for the model and use these to examine general stability
criterion (see section 4).

Dynamical subapproximations

The major objective of the present study is to exam-
ine the baroclinic evolution of meridionally flowing
source-driven grounded abyssal currents. However,
much (but not all) of the previous work on this subject
has examined the problem using a reduced gravity ap-
proximation. It is therefore important to show how, in
the reduced gravity limit, the model examined here re-
covers previously described balances. These subbal-
ances are very important in properly interpreting the
results of the numerical simulation to be described in
Part II (Swaters 2006).

In the inviscid and dynamically uncoupled, or re-
duced gravity, limit, the abyssal equation in (2.3) re-
duces to

ht �
h�Bhy

1 � �̃y
�

�̃h�h�B � hx�

�1 � �̃y�2
� Q, �3.2�

where it has been assumed, for convenience, that �̃ �
s�, hB � hB(x), and h�B � dhB(x)/dx, that is, the topog-
raphy varies only zonally. As is well known, the re-
duced gravity limit corresponds, formally, to assuming
that the overlying ocean (layers 1 and 2) are infinitely
deep and motionless so that the upper layers dynamic
pressures are identically zero, that is, the limit F1 � F2

� �1 � �2 � 0 in (2.1), (2.2), and (2.3). Although it is
straightforward to explicitly solve (3.2) using the
method of characteristics, the highly implicit form of
the solution suggests that it is more valuable to high-

light various important subapproximations and to de-
scribe these in terms of the existing literature.

1) STOMMEL–ARONS BALANCE

The first subapproximation of interest is the Stom-
mel–Arons balance (Stommel and Arons 1960; Ped-
losky 1996, section 7.3) for abyssal flow with a source, in
which topography and time dependence is neglected in
(3.2), given by


h � �
�1 � �̃y�Q

�̃
⇔ �*
* � �

fQ*
h*

, �3.3�

where 
 � hx/(1 � �̃y) [assuming flat topography and
no baroclinic coupling; see (2.18)]. Thus, for a source
Q � 0, there is an equatorward (in either hemisphere)
abyssal mass transport induced by the � effect.

2) NOF BALANCE

The next subapproximation of interest is the Nof bal-
ance (Nof 1983) for abyssal flow with a source, in which
the � effect is neglected in (3.2), given by

ht � h�B�x�hy � Q�x, y�. �3.4�

In fact, in the homogeneous and constant slope limit,
(3.4) should be considered only a parsimonious reflec-
tion (because the result here assumes a geostrophic bal-
ance) of the full Nof (1983) result that showed, for the
fully nonlinear reduced gravity shallow water equa-
tions, that any isolated (i.e., compactly supported or,
equivalently, fully grounded) steadily traveling abyssal
water mass, moves with the Nof velocity (cx, cy) � (0,
�h�B) (or, dimensionally, c*y* � �g�h�B/f0; the x and y
subscripts indicate components here and it is assumed
that h�B is a constant) irrespective of the particular
height and vorticity distribution within the abyssal wa-
ter mass.

That is, importantly and perhaps even surprisingly,
even in the fully nonlinear regime (but dynamically un-
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coupled from the overlying ocean), Nof showed that a
grounded abyssal water mass travels nondispersively in
the along-slope direction. The Nof (1983) balance pro-
vides a dynamical process that can sustain the coherent
equatorward movement of grounded deep western
abyssal water masses along a continental slope even
when far removed from a source region where, presum-
ably, the Stommel–Arons balance initiates equator-
ward movement.

The solution to the Cauchy problem for (3.4), with an
initial condition given by h(x, y, 0) � h̃(x, y), can be
written in the form

h�x, y, t� � h̃�x, y � h�B�x�t� �
1

h�B�x�
�

y

y�h�B�x�t

Q�x, �� d�.

�3.5�

The solution is composed of two contributions. The
first term on the right-hand side of (3.5) is simply the
along-slope (geostrophically balanced) motion of the
initial abyssal water mass distribution and the second
term is the source/sink-created contribution. When
h�B(x) � 0 (as occurs, on average, on the western side of
a basin), the motion always equatorward (in either
hemisphere) since y � h�B(x)t ⇔ (y* � g�h�Bt*/f0)/L.

Suppose that Q is nonzero only in a localized region,
which will be called the source region. In the large time
limit, after the transients have propagated away, the
Nof balance will be approximately steady near the
source region, and governed by

uh�B � �Q ⇔ u* � �
Q*

�h*B��
, �3.6�

where u � �hy [assuming hB � hB (x), �̃ � 0, and no
baroclinic coupling; see (2.18)]. Thus, in a source region
Q � 0, there is an eastward (in either hemisphere)
abyssal mass transport when h�B(x) � 0. Indeed, this is
really a Stommel–Arons-like Sverdrup vorticity bal-
ance [see (3.3)] for source-driven abyssal flow in which
sloping topography replaces the planetary vorticity gra-
dient.

3) PLANETARY SHOCK WAVE BALANCE

A third subapproximation of interest is the planetary
shock wave balance for abyssal flow with a source
(Anderson and Killworth 1979; Johnson and Willmott
1981; Dewar 1987a; Wright and Willmott 1992; Will-
mott et al. 1996), in which topography is neglected in
(3.2), given by

ht �
�̃hhx

�1 � �̃y�2
� Q�x, y�. �3.7�

The steady-state limit of the planetary shock wave bal-
ance (3.7) is the Stommel–Arons Eq. (3.4). Here, again,

it is important to emphasize that (3.7) is applicable to
grounded abyssal flow. Unfortunately, the name asso-
ciated with this balance obscures its importance for me-
ridionally flowing abyssal currents. Rather than invent
new jargon, the existing terminology is retained.

The solution to (3.7) corresponds to westward propa-
gating (in either hemisphere) abyssal anomalies in
which the speed of propagation is proportional to h
itself. Thus, as time proceeds, the height profile will
tend to steepen on the western side and it is possible for
a shock to form, that is, it is possible that |hx| → � in
finite time at a discrete location(s). Wright and Will-
mott (1992) and Willmott et al. (1996) have analytically
and numerically solved (3.7) with steady and periodic Q
in a periodic zonal channel.

For example, in the absence of any sources (i.e., Q �
0), the solution to the Cauchy problem for (3.7), with
initial condition given by h(x, y, 0) � h̃(x, y), can be
written in the form

h�x, y, t� � h̃���x, y, t�, y� and

� � x � t�̃h̃��, y�, �3.8�

and a shock will first occur the first time |hx| → �, which
is given by

tshock � min
�,y � 1

�̃h̃���, y�
|h̃���, y� 
 0�. �3.9�

If (�min, ymin) is the minimizer associated with (3.9),
then the x coordinate of the shock, given by xshock, is
determined from

�min � xshock � tshock�̃h̃��min, ymin�.

Dewar (1987a) has fully explored a number of dynami-
cal properties, and given an oceanographically relevant
description of the development and subsequent evolu-
tion, of the shocks. Here, it is sufficient to simply re-
mark that the formation of these shocks will correspond
to the height or isopycnal field on the upslope or west-
ern flank of the abyssal current steepening asymmetri-
cally as compared with the height field on the down-
slope or eastern flank, as the abyssal water mass flows
equatorward.

In addition, the �-induced westward drift associated
with (3.7) will tend to counteract the downslope (east-
ward) motion of perturbation plumes that form on the
downslope side of the abyssal current during baroclinic
destabilization (Swaters 1991, 1998). That is, the plan-
etary shock wave balance helps to maintain westward
intensification and inhibits deep ocean mixing of these
equatorward flowing abyssal currents. A more system-
atic examination of the stability properties is given in
section 4.
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4) STOMMEL–ARONS–NOF BALANCE

Of particular interest is the structure of the solutions
to (3.2) in the full time independent limit, given by

�1 � �̃y�

�̃
hy �

h

h�B
hx � h �

�1 � �̃y�2Q�x, y�

�̃h�B
.

�3.10�

This balance can be identified as a combined approxi-
mation that includes both Stommel–Arons source-
driven flow and steady or long-time Nof flow over slop-
ing topography, which is valid for grounded abyssal cur-
rents on a midlatitude � plane. Apparently, this limit
has not been examined previously in the literature.

Equation (3.10) can be solved using the method of
characteristics. The northeast to southwest orientation
of the abyssal flow when h�B � 0 (as occurs, on average,
on the western side of a basin) is easily seen from the
equation defining the characteristics, given by

dy

dx�characteristic curves
� �

�1 � �̃y�h�B

�̃h

 0.

From the point of view of constructing solutions to
(3.10) for meridional flow, it is convenient to think of y
and x as the timelike and spacelike variables, respec-
tively. The predominate spatial structure of the steady
flow predicted by (3.10) can be seen from the unforced
problem in which Q � 0 and h � h0(x) along y � y0 is
assumed. In this limit, the solution is given by

h�x, y� � h0���x, y���1 � �̃y���1 � �̃y0� and

hB�x� � hB��� � �̃h0����y0 � y���1 � �̃y0�.

�3.11�

In section 4, a variational principle is established for
solutions of the form (3.11) in the context of the baro-
clinic problem and this principle is used to derive gen-
eral linear baroclinic stability conditions. In addition,
the spatial and temporal baroclinic instability charac-
teristics are described for a specific solution.

It follows from (3.11) that there is a linear thinning of
the thickness of the abyssal layer as y decreases (i.e., in
the equatorward direction) along the characteristic
curves. This follows because the potential vorticity for
the abyssal layer, given by (1 � �̃y)/h in the reduced-
gravity PG approximation, is invariant following the
steady abyssal flow. Since the Coriolis parameter de-
creases linearly in the equatorward direction on a mid-
latitude � plane, so too, must the abyssal layer height.

Although it may not seem immediately apparent,
(2.3) and hence (3.2) and (3.10), is the potential vortic-
ity equation for the abyssal layer. To see this, (2.3) is

first rewritten [see, also, (A.9)], in the reduced gravity
limit, in the (usual mass equation) form

ht � � · �e3 	 ��hB � h�h��1 � �̃y�� � Q � r3��hB � h�,

which, when multiplied through by �(1 � �̃y)/h2, can
be rewritten as

� f

h�t
� u · �� f

h� � �f �Q � r3��hB � h���h2,

�3.12�

where f � 1 � �̃y and u � e3 	 � (hB � h)/f. Thus, if
Q � r3 � 0, then f/h is conserved following the motion
[which, in addition to time independence, are the as-
sumptions upon which the solution (3.11) has been de-
rived].

In the notation of (3.12), (3.10) can be rewritten in
the form

u · �� f

h� � �fQ�h2. �3.13�

The relative simplicity of (3.13) masks the fact that it
models, within the most simple assumptions, equator-
ward source-driven grounded abyssal flow as process
initiated as Stommel–Arons source-driven abyssal flow
that transitions to an inertial Nof balance abyssal flow.
The role of �̃ is to inhibit baroclinic instability and helps
to maintain westward intensification. This is further dis-
cussed in section 4.

It is possible that |hx| → � at a particular (x, y) loca-
tion for the solution (3.11). Assuming h�B � 0, these
“shocks” will first occur on the upslope side of the abys-
sal current at the y value given by

yshock � y0 � min
�
�� h�B����1 � �̃y0�

�̃h�0���
|h�0��� 
 0�� y0.

�3.14�

If this situation arises, the solution will no longer be
valid in the region y � yshock. However, this is not a
physically relevant result since there are, in the full
model, many other physical processes occurring to pre-
vent this mathematical singularity from developing. If
�min is the minimizer associated with (3.14), then the x
coordinate of the shock, given by xshock, is determined
from

hB�xshock� � hB��min� � �̃h0��min��y0 � yshock���1 � �̃y0�.

To provide a specific illustration of the meridional
structure associated with the Stommel–Arons–Nof in-
ertial solution (3.11), consider the example where hB �
�x � 12 (the constant �12 has been added for graphi-
cal convenience only, see Fig. 2b) and
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h0�x� � �h̃�1 � �x�a�2�, for � a � x � a,

0, otherwise,
�3.15�

along y � y0, which corresponds to an along-slope abys-
sal flow that is transversely grounded in both the up-
and downslope directions, that is, h0(�a) � 0 with
maximum (nondimensional) height given by h̃ located
at x � 0 (similar to that depicted in Fig. 1). Note that
since both the abyssal layer height and the bottom to-
pography have been scaled using the bottom slope [see
(2.7d)], it is appropriate to introduce a free height pa-
rameter for (i.e., h̃) and set the absolute value of the
constant bottom slope to be 1.0.

The choice of a linearly sloping bottom is motivated
by the fact that the equations can be solved exactly
(although the solution does not have a simple height
field and does not correspond to a parallel shear flow).
Ideally, the topographic profile should vary more or
less linearly with respect to the zonal coordinate near a
coast and then transition to a flat bottom in the mid-
ocean. In Part II (Swaters 2006), which presents the
numerical simulation, zonally varying topography that
is derived from North Atlantic bathymetry is intro-
duced, which has exactly this property. The goal in this
subsection is to identify the salient dynamical charac-
teristics of the model in as simple a configuration as
possible in order to provide guideposts for the substan-
tially more complex solution contained in Part II.

Substitution of (3.15) into the second equation of
(3.11) implies

��x, y� �

2�x �
�̃h̃�y0 � y�

�1 � �y0�
�

1 �	1 �
4�̃h̃�y0 � y�

a2�1 � �̃y0�
�x �

�̃h̃�y0 � y�

�1 � �̃y0�
�

,

�3.16�

when �a � � � a. If |�| � a, then h(x, y) � 0, and note
that �(x, y0) � x. It follows from (3.14) that

yshock � y0 �
a�1 � �̃y0�

2�̃h̃
. �3.17�

For this example, the initial abyssal meridional transport
through the section y � y0, denoted by T0, is given by

T0 � �
�a

a

�
h�y�y0
dx � �

�a

a �h0 � hB�xh0

�1 � �̃y0�
dx

� �
4h̃a

3�1 � �̃y0�
.

Further discussion of the solution is facilitated by se-
lecting specific values for the parameters. Suppose a �
h̃ � 6 and y0 � 122 is chosen. Based on the scalings in
section 2, these values imply that h0(x) corresponds
to a grounded parabolically shaped abyssal current lo-
cated at 60°N with maximum height or thickness of
500 m and width of 180 km with a southward transport
of about T0 � 37.13 that, dimensionally, is about 1.4 Sv
(Sv � 106 m3 s�1).

It follows from (3.17) that a shock will form at y0 �
yshock � 269.33, which is equivalent to a location 4040
km southward of the latitude of initialization. The large
distances from the point of flow initialization associated
with the shock formation almost certainly implies that
in the real ocean, with its vast array of additional phys-
ics, this singularity never actually develops.

FIG. 2. (a) Contour plot of h(x, y) as determined by (3.11) and
(3.15). The contour interval is 0.6. (b) The meridionally averaged
total abyssal height h(x, y) � hB(x), as determined by (3.11) and
(3.15) with hB(x) � �x �12. A nondimensional height of 1.0
corresponds to about 84 m.
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In Fig. 2a, a contour plot of the nondimensional
height h(x, y), as determined by (3.11) and (3.15) with
the above parameter values is shown. The contour in-
terval is 0.6 and a nondimensional height of 1.0 corre-
sponds to 84 m. The meridional extent of the domain is
given by �122 � y � 122 (about 40° of latitude, or 3660
km centered at 40°N) and, for convenience, the zonal
extent is restricted to the region �12 � x � 12.

Two properties are seen in Fig. 2a. First, there is a
gradual decrease in the maximum height of the abyssal
current in the equatorward direction. This occurs be-
cause the flow is conserving PG potential vorticity [re-
call Q � 0 in this example; see (3.13)]. Second, there is
a westward displacement of the point of maximum
height as the current flows southward. This is also due
to �̃ and is the result of the planetary shock wave–like
balance in (3.10) where time dependence has been re-
placed by the gradient associated a sloping bottom [cf.
(3.7) and (3.10)].

Figure 2b is a plot of the along-slope or meridionally
averaged total abyssal height h(x, y) � hB(x), given by

hB�x� �
1

244 ��122

122

h�x, y� dy,

where h(x, y) is determined by (3.11) and (3.15). Thus,
notwithstanding the westward displacement just de-
scribed, in an averaged sense, the parabolically shaped
cross-slope structure of the initial abyssal current is
maintained meridionally with clearly defined up- and
downslope groundings (like those idealized in Fig. 1).
These features are characteristic of the deep western
boundary undercurrent in the North Atlantic (see e.g.,
Richardson 1977).

The northward velocity is given by 
 � (h � hB)x/
(1 � �̃y), so that the cross-slope-averaged 
 associated
with Fig. 2b would be given by

1
244 ��122

122 ��
�12

12

�h
 dx��
�12

12

�h dx� dy �

�
1

244�̃
ln�1 � 122�̃

1 � 122�̃
� � �1.03,

where �h is the characteristic function for h; that is, �h

� 1 if h � 0 and �h � 0 if h � 0 [�̃ � 0.0024 has been
used; see (2.5)]. Because the scaling for the abyssal ve-
locity field is the Nof speed [see the discussion follow-
ing (2.5)], it follows that the abyssal current depicted in
Fig. 2b flows out of the page with an average speed of
about 3 cm s�1. This is consistent with observations of
the deep western boundary undercurrent in the North
Atlantic (see, e.g., Richardson 1977).

Since the solution is unforced, (3.13) implies that the
potential vorticity is constant along the pathlines (there
is no streamfunction for the velocity field). That is, the
Lagrangian trajectories are along the isolines of the PG
potential vorticity. In Fig. 3a contour plot of the PG
potential vorticity (1 � �̃y)/h is shown. Because, in the
PG approximation, the potential vorticity becomes in-
finite on the zero-height contour, potential vorticity
values greater than 1.0 in value are not shown. Al-
though it cannot be inferred from Fig. 3, the flow is
generally oriented in the northeast to southwest direc-
tion.

In Fig. 4a the zonally averaged abyssal height �h�,
defined by

�h��y� � �
�12

12

h�x, y� dx��
�12

12

�h dx, �3.18�

is shown. The linear decrease in �h�, associated with
potential vorticity conservation as y decreases, is clear.

In Fig. 4b the meridional transport, denoted by T (y),
and given by

T �y� � �
�12

12


h dx � �
�12

12 �h � hB�xh

�1 � �̃y�
dx

� ��
�12

12 h

�1 � �̃y�
dx, �3.19�

is shown. The linear decrease in h as the current flows
equatorward is, of course, in this adiabatic solution,
exactly offset by the linearly decreasing Coriolis param-
eter in the denominator of (3.19) (i.e., the equatorward
abyssal speed increases in the equatorward direction)

FIG. 3. Contour plot of the potential vorticity field (1 � �̃y)/h(x,
y), as determined by (3.11) and (3.15), for selected contours. The
abyssal current pathlines are parallel to the isolines of potential
vorticity.
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to yield a constant transport of about T (y) � 37.13 that,
dimensionally, is equivalent to about 1.4 Sv.

4. Baroclinic instability characteristics

The general theoretical baroclinic instability charac-
teristics for inertial grounded abyssal flow over sloping
topography on an f plane, in the two-layer and continu-

ously stratified versions of the model, have been de-
scribed by Swaters (1991, 1993, 1998), Mooney and
Swaters (1996), Poulin and Swaters (1999), Reszka et
al. (2002), Pavec et al. (2005), and Ha and Swaters
(2006). Karsten et al. (1995) and Choboter and Swaters
(2000) used the two-layer f-plane model to describe the
stability characteristics of deep water replacement in
the Strait of Georgia and rotating tank experiments,
respectively. Reszka et al. (2002) used a continuously
stratified version of the f-plane model to describe the
stability characteristics of the Denmark Strait Over-
flow. The purpose of this section is to describe the lin-
ear instability characteristics when � is present.

In summary, the instability mechanism is the release
of the available gravitational potential energy associ-
ated with grounded dense water sitting directly on a
sloping bottom surrounded by relatively lighter water.
As the center of mass of the perturbed grounded abys-
sal water mass slides down the sloping bottom, its gravi-
tational potential energy is released as perturbation ki-
netic energy in the overlying ocean, through the action
of vortex stretching. That is, associated with the desta-
bilization, cold dense abyssal water moves in the
downslope direction, while warm lighter overlying wa-
ter moves in the up slope direction. Since the sloping
bottom is a topographic � plane for the upper QG lay-
er(s) [see (2.2)], this is exactly identical to the process of
midlatitude baroclinic instability for zonal flow, in
which available potential energy is released as warm
equatorial fluid moves poleward and a cold polar fluid
moves equatorward. From a modal point of view, the
instability is a consequence of the coalescence of two
topographic vorticity waves that have been excited in
the overlying water column.

For an unstable abyssal current that has a transverse
thickness profile shaped parabolically like a coupled
front [such as (3.15); see Figs. 1 and 2b], the instability
theory predicts that the perturbations in the abyssal
layer take the form of along-slope traveling waves that
preferentially amplify on the downslope side of the
abyssal current, which subsequently develop into
downslope propagating plumes. The downslope pertur-
bation plumes do not, however, continue to move into
the deeper ocean unabated. In the nonlinear regime,
the downslope plumes geostrophically adjust and can
develop into coherent abyssal domes that propagate in
the along-slope direction. The amplifying perturbations
on the upslope and downslope groundings are asym-
metric (i.e., neither sinuous nor varicose in structure) in
contrast to that predicted by barotropic (i.e., horizontal
shear based) instability theory (see Fig. 9 in Swaters
1991; Fig. 7 in Karsten et al. 1995; Plate 1 in Swaters
1998; or Figs. 7 and 13 in Reszka et al. 2002). This

FIG. 4. (a) The zonally averaged abyssal height �h� vs y for the
solution determined by (3.11) and (3.15). The linear decrease in
�h� as y decreases is a consequence of PG PV conservation. Di-
mensionally, �h� � 1 corresponds to about 84 m. (b) The meridi-
onal abyssal transport T vs y for the solution determined by (3.11)
and (3.15). The transport is constant as a consequence of the
fact that the linear decrease in h is canceled by the decrease in
the Coriolis parameter in the denominator of (3.19) as the flow
moves southward. Dimensionally, T � 1 corresponds to about
3.8 	 10�2 Sv.
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asymmetry is a unique signature of the baroclinic de-
stabilization of these grounded abyssal currents.

To examine the baroclinic instability problem in its
simplest form, but still retaining the most important
features, the inviscid, stress-free, rigid-lid, and 2½-layer
approximation

F1,2 � �1 � ϒ � r2,3 � 0, Re → �,

is introduced into (2.1), (2.2), and (2.3), yielding

��� � h�t � J��, �� � h � hB � �y� � 0 �4.1�

and

ht � J�h � � � hB,
h

1 � s�y� � Q,

�4.2�

where, for convenience, � � �2. The reason that there
is no up/downwelling Q term in (4.1) is because the
upper QG layer (i.e., layer 1) is assumed infinitely deep
and quiescent. Equations (4.1) and (4.2) are the same as
the Swaters (1991) model with � and Q included.

The area integrated energy for (4.1) and (4.2) is given by

E��, h� �
1
2 ��

	

�� · �� � �h � hB�
2 � hB

2 dx dy,

�4.3�

which will be invariant, that is, dE /dt � 0, in the inertial
limit Q � 0. If Q � 0, (4.1) and (4.2) is a 2 	 2 infinite
dimensional Hamiltonian dynamical system (see, e.g.,
Swaters 1993, 2000), in which E will be the Hamiltonian
functional and the Hamiltonian variables are given by

� � h and h, respectively. The Casimirs (i.e., the set of
invariant functionals that span the Kernel of the Pois-
son bracket; see Swaters 2000), which are needed in the
variational principle, may be written in the form

C1 � ��
	

��
hB��y

���h�hB��y

F1��� d�� dx dy �4.4�

and

C2 � ��
	

�1 � s�y���
0

h��1�s�y�

F2��� d�� dx dy,

�4.5�

where F1,2 are arbitrary functions of their arguments.

a. Steady solutions, variational principle, and
stability conditions

General inertial steady abyssal solutions to (4.1) and
(4.2) of the form

� � �̃ � 0, h � h̃�x, y�, hB � hB�x, y�, and Q � 0

�4.6�

must satisfy

J� h̃ � hB,
h̃

1 � s�y
� � 0, �4.7�

which implies that

h̃ � hB � F� h̃

1 � s�y
�, �4.8�

for some function F. The reason that �̃ � 0 has been
chosen is to focus attention on the baroclinic destabili-
zation of abyssal currents in the absence of any mean
flow in the overlying layer. Sutherland et al. (2004)
have described rotating-tank experiments investigating
the role of barotropic instability in the upper layer as-
sociated with source-driven abyssal currents.

As an example, in the case where hB � hB(x), (4.7) is
identical to (3.10) (with Q � 0) and thus (3.11) solves
(4.7). It follows for (3.11) that

F ��� � �1 � s�y0�� � hB{h0
�1��1 � s�y0���},

�4.9�

where h�1
0 is the inverse function associated with h0.

Although the introduction of the function F may seem
abstract, its use is the most economical way to derive
the stability conditions. Note that if � � 0, all steady
inertial solutions for h̃ must depend on both x and y and
the solution does not correspond to a parallel shear
flow.

The solution (4.8) (with �̃ � 0 understood) satisfies
the first-order conditions for an extremal of the invari-
ant functional

I � E � C1 � C2

� E � ��
	

�1 � s�y���
0

h��1�s�y�

F ��� d�
 dx dy,

�4.10�

where F1 � 0 and F2 � �F. It follows (assuming � � 0
on the boundary of �) that

�I��, h�� ��
	

�������h� hB � F� h

1� s�y���h dx dy

� ��
	

������� �h�

��h��� hB � F� h

1� s�y���h dx dy, �4.11�

so that  I(�̃, h̃) � 0.
The second variation of I evaluated at the steady

solution (�̃, h̃) is given by
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�2I ��̃, h̃� � ��
	

��� · ��� � �1 �

F �� h̃

1 � s�y
�

�1 � s�y�
���h�2 dx dy � ��

	

��� · ��� �
hBx

�x, y�

h̃x�x, y�
��h�2 dx dy,

�4.12�

where the prime means differentiation with respect to
the argument and (4.8) has been used. It is always the
case that  2I(�̃, h̃) is an invariant of the linear stability
equations [see (4.17) and (4.18)] where the perturba-
tions are ( �,  h)(x, y, t) (Swaters 2000). Since the
integrand of the functional  2I(�̃, h̃) is a diagonalized
quadratic form with respect to ( �,  h) if  2I(�̃, h̃) is
definite in sign for all perturbations, then (�̃, h̃) is lin-
early stable {in the sense of Liapunov with respect to
the norm [| 2I(�̃, h̃)|]1/2}.

The case in which  2I(�̃, h̃) � 0 is not considered. It
requires certain mathematical properties to hold on the
domain �, and while these can occur this analysis is not
pursued [see Swaters (1993) for the f-plane Hamilto-
nian-based analysis]. The case in which  2I(�̃, h̃) � 0 is
precisely analogous to Fjørtoft’s stability theorem
(Swaters 2000) and reduces to the f-plane results of
Swaters (1991, 1993).

It follows from (4.12) that  2I(�̃, h̃) � 0 when

hBx
�x, y�

h̃x�x, y�
� 0. �4.13�

This is a sufficient condition for stability. A necessary
condition for instability is, therefore, that there exists at
least one point (x, y) ∈ � for which

hBx
�x, y�

h̃x�x, y�

 0. �4.14�

Even though � has been fully retained, this stability
condition is identical in form to that obtained by Swa-
ters (1991).

Consider the case in which hBx
(x, y) � 0 as would occur,

on average, along the western shelf–slope region of an
ocean basin. The necessary condition for instability is
that there exists at least one point for which h̃x(x, y)
� 0. For a parabolically shaped abyssal current with
upslope and downslope groundings (like that depicted
in Figs. 1 and 2b), this condition holds on the downs-
lope flank but not on the upslope flank. This is why the
instability preferentially amplifies on the downslope
flank and the amplitude of the perturbations along the
downslope grounding are much larger relative to those
on the upslope grounding (see Swaters 1991, 1998).
Physically, energy is required to move grounded abys-

sal fluid parcels located adjacent to the upslope ground-
ing up the sloping bottom (against the force of gravity),
while energy is released by the downslope movement of
grounded abyssal fluid parcels located along the down-
slope grounding. The result is that there is a spatial
asymmetry (even on an f plane) in the process of de-
stabilization of these grounded abyssal currents. This
asymmetry is clearly seen in numerical simulations
(e.g., Jiang and Garwood 1996; Swaters 1998) and labo-
ratory experiments (Etling et al. 2000) and has been
attributed to the Swaters’s instability mechanism (Jung-
claus et al. 2001). This is in sharp contrast to the sym-
metry (i.e., varicose or sinuous) in destabilized surface
intensified buoyancy driven currents. This is the reason
why results from the laboratory modeling of grounded
abyssal currents on a sloping bottom as surface-
intensified buoyancy-driven currents do not agree with
theory (e.g., Griffiths et al. 1982) as discussed by Swa-
ters (1991) and Karsten et al. (1995).

There are no unforced steady solutions to (4.1) and
(4.2) that are independent of y. The steady meridional
abyssal flow over zonally varying topography given by

� � 0, h � h0�x�, and hB � hB�x� �4.15�

is an exact solution to (4.1) and (4.2) provided

Q�x, y� � �s�h0�h�B � h�0���1 � s�y�2. �4.16�

If the s�y term is neglected in (4.2) [but � is still re-
tained in (4.1)], Q is not required to balance this steady
flow.

b. Baroclinic instability characteristics for a
constant abyssal current

The general linear baroclinic stability equations
(valid for either the inertial or forced situations) are
obtained by substituting

�� �̂�x, y, t�, h� h0�x, y�� ĥ�x, y, t�, and hB � hB�x, y�

into (4.1) and (4.2) and linearizing, yielding

��� � h�t � J��, h0 � hB � �y� � 0

�4.17�

and

ht � J�h � �,
h0

1 � s�y� � J�h0 � hB,
h

1 � s�y� � 0,

�4.18�
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where the caret has been dropped, and it is assumed
that

Q � J�h0 � hB,
h0

1 � s�y�. �4.19�

The forcing Q � 0 if (4.7) holds (i.e., the abyssal flow is
an inertial solution in the reduced gravity approxima-
tion), otherwise, in general, it is nonzero, for example,
for a parallel shear flow of the form (4.15).

The linear stability problem is, as written, analytically
intractable. However, much can be learned from the
constant-velocity abyssal flow on the linearly sloping
bottom, given by

h0 � h̃ � �x � 0, and hB � �x, �4.20�

where h̃ � 0 is constant, and neglecting terms of O(s�)
in (4.18) but retaining � in (4.17). The abyssal height
(4.20) is the simplest profile for h0 that satisfies the
necessary condition for instability (4.14) and for which
the stability problem can be solved explicitly. It is noted
that the linear stability equations can be solved exactly
for a quadratically shaped abyssal height profile [e.g.,
such as (3.15)] with groundings, by extending the solu-
tion procedure developed by Swaters (1991). However,
the most important stability characteristics can be de-
scribed using the simple constant flow (4.20) (in much
the same way as the Phillips model reveals important
properties of baroclinic instability on the � plane).

In Part II (Swaters 2006), a numerical simulation will
be described with Q � 0 (the support of Q is restricted
to a localized region in the northwest corner of the
domain), and with zonally varying topography (as de-
rived from North Atlantic bathymetry) that varies lin-
early near the western side of the basin and transitions
to a flat bottom in the midocean. The source-driven
meridionally flowing abyssal current that is produced
will possess both up- and downslope groundings. Again,
the goal in this subsection is to identify the most im-
portant baroclinic instability characteristics of the
model in as simple a configuration as possible in order
to provide guideposts for the substantially more com-
plex solution contained in Part II.

Neglecting terms of O(s�) in (4.18) is physically rea-
sonable in the context of the baroclinic instability prob-
lem since s� � 10�3 [see (2.5)] and the most unstable
modes will, it can be expected, have along-slope wave-
lengths on the order of the internal deformation radius,
which is the horizontal length scale; that is, the wave-
lengths will be O(1) as shown below. This approxima-
tion implies that � � 0 and h � h0(x) is a nonlinear
inertial steady solution to (4.1) and (4.2) (i.e., Q � 0) so
that the stability theory developed in section 4a is ap-

plicable. In this limit, the steady abyssal velocity is
given by uabyssal0 � �(0, 1 � !) and the necessary con-
dition for instability is ! � 0.

Substitution of (4.20) into (4.17) and (4.18) implies
that the linear stability equations can be written in the
form

��t � ��x � �h � ��y � 0 and ht � hy � ��y � 0.

�4.21�

These equations will be solved in the meridional chan-
nel domain x ∈ (0, L) so that the appropriate boundary
condition is � � 0 on x � 0, L. It is convenient to write
the normal mode solution using the “carrier-wave
transformation” (Longuet-Higgins 1965), in the form

�h, �� � A����1 � c�, 1� sin�n�x�L� exp�ik�y � ct�

� i�x��2ck�� � c.c., �4.22�

where n ∈ ��, c.c. means the complex conjugate of the
preceding term, k is the meridional, or along-slope,
wavenumber, A is a free-amplitude constant, and c is
the complex-valued phase velocity that must satisfy the
dispersion relationship

K2c3 � �1 � K2�c2 � �1 � � � � �

2k�2�c � � �

2k�2

� 0,

�4.23�

where K � �k2 � l2 is the wavenumber modulus and
l � n"/L.

The three roots to the cubic dispersion relation (4.23)
correspond to a barotropic and baroclinic topographic
Rossby wave and to a planetary Rossby wave, respec-
tively. The onset of instability corresponds to the co-
alescence of the barotropic and baroclinic topographic
Rossby modes. Mathematically, this coalescence occurs
when the discriminate for the cubic is zero and this
condition defines the marginal stability boundary.
Thus, the marginal stability boundary is given by

�1
3 � ��2�1

2 �2

�
9�1�2�3

2
�

27�3
2

4
� �2

3�3 � 0,

�4.24�

where

�1 �

1 � � � � �

2k�2

K2 , �2 � 1 � K�2, and

�3 ��� �

2kK�2

. �4.25�

Equation (4.24) is itself a cubic with respect to #1 (i.e.,
!). It can be shown that the discriminate for (4.24) is
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strictly positive since #2 � 0 and #3 � 0 (� � 0) and is
zero only if � � 0. Thus, there is only one real solution
for !, denoted as !c(k, l, �), and this is the marginal
stability boundary (or, equivalently, the critical abyssal
slope or equatorward velocity). That is, for a given k, l,
and �, instability only occurs if ! � !c, (neutral) stabil-
ity occurs if ! � !c and the marginal stability boundary
is given by ! � !c(k, l, �). The point of marginal
stability will be the minimum !c � 0, with respect to k
and l, for fixed �. In the limit � � 0, (4.24) reduces to
!c � (K2 � 1)2/(4K2), which is the f-plane result of
Mooney and Swaters (1996).

Figure 5a shows a contour plot of !c in the (k, �)
plane for the gravest cross channel mode n � 1 with a
cross-channel width of 10 (deformation radii); that is, l
� "/10. The marginal stability is concave up with re-
spect to k with a modest, but positive monotonic, de-

pendence on �. It is seen that !c increases monotoni-
cally as k → 0 or � (actually !c → � as K → 0 or �)
irrespective of � with the minimum !c (the point of
marginal stability) located near K � 1.

Figure 5b shows a section from Fig. 5a for !c versus
K along � � 0.12 (that is a characteristics value for �
based on the scalings introduced section 2). The ab-
scissa has been chosen as K to facilitate comparison
with the f-plane marginal stability curve shown in Fig. 2
from Mooney and Swaters (1996). The point of mar-
ginal stability is located at ! � 0 and K � 1.0 (K is
actually very slightly larger than 1.0).

Figure 5b is to be compared, for example, with the
marginal stability curve for the baroclinic instability of
a zonal flow on a � plane in the Phillips model (see Fig.
7.11.1a in Pedlosky 1987). The principal difference is
that in the Phillips model, instability only occurs for a

FIG. 5. (a) Contour plot of the marginal stability surface !c (k,
l, �), as determined by (4.24), with n � 1 and L � 10, for
selected contours. The crowding of the contours near the � axis
is a consequence of the fact that !c → � as k → 0. (b) The
marginal stability curve !c vs K, as determined by (4.24), with l
� "/10 and � � 0.12. This curve corresponds to the section in
Fig. 5a along � � 0.12 plotted against K. (c) The marginal sta-
bility curve !c vs �, as determined by (4.24), with l � "/10 and
K � 1.0. This curve corresponds to the section in Fig. 5a along
k � �1 � ("/10)2 � 0.95.
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finite band of wavenumbers irrespective of the critical
shear (i.e., !), which results in the marginal stability
curve becoming unbounded at a finite nonzero wave-
number, whereas in the abyssal model considered here,
the high wavenumber cutoff is an increasing function of
the shear (see Mooney and Swaters 1996) so that !c

exists for all nonzero K. This difference is a conse-
quence of the fact that the PG approximation in the
abyssal layer is equivalent to an infinite deformation
assumption (within the abyssal layer only), which leads
to the abyssal rotational Froude number being zero.

Figure 5c shows a section from Fig. 5a for !c versus �
along K � 1.0 (the wavenumber of the marginally un-
stable mode for � � 0). The gradual monotonic in-
crease in !c as � increases is clearly seen. This illustrates
the (slightly) stabilizing influence of �.

The coalescence of the topographic wave modes for
the instability to occur is seen in Figs. 6a,b. In Figs. 6a,b
the frequencies [$ � kRe(c)] and growth rates [% �
kIm(c)], respectively, versus k for the three solutions
for c as determined by (4.23), for the parameter values
� � 0.12, ! � 1.0, and l � "/10, is shown. As follows
from Fig. 5b, there is only a finite interval of wavenum-
bers that are unstable for these parameter values (i.e.,
there is a low and high wavenumber cutoff; see, also,
Mooney and Swaters 1996). Accordingly, in Fig. 6a,
there are three real roots to (4.23) for a small interval of
wavenumbers adjacent to k � 0. At the onset of insta-
bility, the two neutral topographic modes coalesce, and
as seen in Fig. 6b, of course, an exponentially growing
and decaying pair of topographic waves develop. Even-
tually as k increases, the high wavenumber cutoff is
reached and a pair of neutral topographic waves re-
emerges. For no parameter values did the planetary
wave coalesce with a topographic wave to produce in-
stability.

The most unstable mode occurs at the meridional, or
along-slope, wavenumber kmax, satisfying

��

�k�k�kmax

� 0 and �max � max
�

���kmax��,

�4.26�

for fixed l, �, and !. The corresponding real phase ve-
locity is denoted cRmax

� Re (cmax) and the frequency is
denoted $max � kmax|cRmax

| . Figs. 7a,b,c,d are contour
plots of kmax, cRmax

, $max, and %max, respectively, in the
(!, �) plane for l � "/10. These figures show that, for
fixed !, the most unstable mode has an increasing wave-
number, decreasing phase speed (but always south-
ward, of course), increasing frequency and decreasing
growth rate, for increasing �. There is no value of �
such that, for all larger values, the instability does not

occur. Thus, while � has a stabilizing effect, it does not,
for a sufficiently high value, eliminate the instability of
an otherwise unstable mode. The variations that occur
with respect to increasing �, for fixed !, are relatively
modest. Based on the nondimensionalizations intro-
duced in section 2, it is possible to characterize the most
unstable mode as having an along-slope wavelength on
the order of 94 km, an equatorward phase velocity on
the order of 3 cm s�1 a modal period on the order of 38
days and an e-folding amplification time on the order of
6 days.

FIG. 6. (a) The modal frequencies $ � kRe(c) vs k and (b) the
model growth rates % � kIm(c) vs k, as determined by (4.23), with
l � "/10, ! � 1.0, and � � 0.12.
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5. Conclusions

The meridional flow of abyssal currents in a stratified
basin with topography and � has been examined. Con-
ceptually, the model examined here describes grounded
source-driven meridional abyssal flow over sloping to-
pography as a process that initiates as a Stommel–
Arons flow (satisfying a Sverdrup vorticity balance)

that then transitions to an inertial topographically
steered Nof flow (which is geostrophically balanced)
away from the source region, all the while baroclinically
interacting with the overlying ocean. The model equa-
tions correspond to a three-layer QG–PG model with
interlayer mass exchange that conserves the horizontal
divergence of the barotropic mass flux (i.e., the un-
forced, inviscid dynamics is purely baroclinic). The

FIG. 7. (a) Contour plot of the meridional, or along-slope, wavenumber of the most unstable mode, kmax, in the (!, �) plane, as
determined by (4.23), with l � "/10. Dimensionally, kmax � 1.0 implies a wavelength of about 94 km. (b) Contour plot of the meridional,
or along-slope, phase velocity of the most unstable mode, cRmax

, in the (!, �) plane, as determined by (4.23), with l � "/10. Dimen-
sionally, |cRmax

| � 1.0 implies a phase speed of about 3 cm s�1. (c) Contour plot of the frequency of the most unstable mode, $max,
in the (!, �) plane, as determined by (4.23), with l � "/10. Dimensionally, $max � 1.0 implies a period of about 38 days. (d) Con-
tour plot of the growth rate of the most unstable mode, %max, in the (!, �) plane, as determined by (4.23), with l � "/10. Dimensionally,
%max � 1.0 implies an e-folding time of about 6 days.
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abyssal-layer PG equations allow for groundings in the
height field.

The model has a number of important subdynamical
limits within it such as the Nof balance describing to-
pographically steered abyssal flow (Nof 1983), the
Stommel–Arons Sverdrup vorticity balance describing
the equatorward flow of an abyssal water mass created
by a source (Stommel and Arons 1960), the planetary
shock wave balance (Anderson and Killworth 1979;
Johnson and Willmott 1981; Dewar 1987a; Wright and
Willmott 1992; among others) describing the ampli-
tude-� induced isopycnal steepening and westward
propagation of abyssal anomalies and, finally, the cou-
pling between the abyssal layer and the overlying ocean
that will lead to baroclinic instability (Swaters 1991,
1998).

In the reduced gravity approximation, a new nonlin-
ear steady-state balance was identified that is a com-
bined approximation including both Stommel–Arons
source-driven flow and steady or long-time Nof flow
over sloping topography, valid for grounded abyssal
currents on a midlatitude � plane. It was possible to
explicitly solve this model for an abyssal current with
upslope and downslope groundings. The thickness of
the abyssal current decreases equatorward (although
the meridional transport remains constant, i.e., the
equatorward speed of the current increases in the equa-
torward direction) as result of the conservation (away
from the source region) of planetary geostrophic po-
tential vorticity.

The baroclinic instability characteristics that the
model predicts were examined. In particular, a varia-
tional principle is introduced for the baroclinic exten-
sion of the hybrid (inertial) Stommel–Arons–Nof solu-

tion. This variational principle was exploited to suffi-
cient stability and necessary instability conditions that
generalize previous f-plane results. The linear baro-
clinic instability problem was solved for a constant
abyssal current with � and sloping topography present.

This paper presents a theoretical discussion of the
baroclinic dynamics of abyssal ocean currents. In a sub-
sequent contribution, a full numerical simulation will
be presented for the basin-scale development of source-
driven grounded abyssal currents with topography, �,
forcing and dissipation parameter values characteristic
of the deep western boundary undercurrent in the
North Atlantic (in the absence of wind stress). In a
further contribution, the interaction of source-driven
grounded abyssal currents with the surface-intensified
wind-driven circulation (in particular the Gulf Stream)
will be described.
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APPENDIX

Model Derivation as an Asymptotic Reduction
of the Shallow Water Equations

The purpose of this appendix is to briefly summarize
the derivation of the nondimensional model as an as-
ymptotic reduction of the three-layer shallow water
equations. The underlying dimensional three-layer
shallow water equations, in standard notation, from
which the model (2.1), (2.2), and (2.3) is derived, are
given by

��t* � u*1 · �*�u*1 � fe3 	 u*1 � �
�*�*1

�*
� AH�*u*1,

H1�* · u*1 � �*t* � �* · �u*1�*� �
�* 	 �*

�* f0
� � H1 � �*

H1 � H2 � h* � h*B
�Q*, �A.1�

��t* � u*2 · �*�u*2 � fe3 	 u*2 � �
�*�*2

�*
� AH�*u*2,

H2�* · u*2 � �h* � �*�t* � �* · �u*2�h* � h*B � �*��

� r*2�* 	 u*2 � �H2 � �* � h* � h*B
H1 � H2 � h* � h*B

�Q*, �A.2�

��t* � u*3 · �*�u*3 � fe3 	 u*3 � �
�*p*

�*
,

h*t* � �* · �u*3h*� � Q* � r*3�* 	 u*3 , and �A.3�
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�*g̃�* � �*2 � �*1, p* � �*2 � �*g��h* � h*B�.

�A.4�

The horizontal divergence of the barotropic mass flux is
obtained by forming the sum (A.1) � (A.2) � (A.3)
(second equation of each) and is given by

�* · �u*1�H1 � �*� � u*2 �H2 � �* � h* � h*B� � u*3h*� �

�
�* 	 �*

�* f
� r*2�* 	 u*2 � r*3�* 	 u*3. �A.5�

It is important to appreciate that in the unforced, in-
viscid limit, the horizontal divergence of the barotro-

pic mass flux is zero (and consequently that total vol-
ume is conserved with this upwelling/downwelling
parameterization). The mass exchange between the
abyssal layer and the QG layers is assumed to be in-
stantaneous and distributed in proportion to the indi-
vidual upper layer volume fractions in such a manner
that there is no net mass gain or loss. The horizontal
divergence of the barotropic mass transport is forced
only by wind stress and bottom friction. The unforced,
inviscid dynamics of the model is, therefore, purely
baroclinic.

The nondimensional equations are obtained by sub-
stituting the scalings, given by

�x*, y*� � L�x, y�, t* �
Lf0

s*g�
t, h* � s*Lh,

u*1,2,3 � U*u1,2,3, p* � �*Lg�s*p,

�*1,2 � �*Lf0U*�1,2, �* �

f0U*L

g̃
�,

Q* �
�s*�2g�

f0
Q, �* � ϒ*�, and h*B � s*LhB, �A.6�

into (A.1), (A.2), (A.3), and (A.4), yielding

s��t � u1 · ��u1 � �1 � s�y�e3 	 u1 � ���1 �
s

Re
�u1,

� · u1 � s�F1��t � � · �u1��� � ϒ� 	 � �
F1

F1 � F2
Q
 � O�s2�, �A.7�

s��t � u2 · ��u2 � �1 � s�y�e3 	 u2 � ���2 �
s

Re
�u2,

� · u2 � s��h � F2��t � � · �u2�h � hB � F2��� � r2� 	 u2 �
F1

F1 � F2
Q
 � O�s2�,

�A.8�

s��t � u3 · ��u3 � �1 � s�y�e3 	 u3 � ��p, ht � � · �u3h� � Q � r3� 	 u3, �A.9�

� � �2 � �1, and p � h � hB � �2. �A.10�

The models (2.1), (2.2), (2.3), and (2.4) are obtained
as the 0 � s � 1 limit of (A.7), (A.8), (A.9), and
(A.10).

Some of the scalings in may seem a little odd at first.
For example, the upper and middle layers’ velocities
have been scaled by the Nof velocity. This is the correct
dynamical scaling assuming a balance between relative
vorticity and baroclinic stretching induced by the abys-
sal layer, that is,

�* 	 u*2 � O�f0h*
H2

� ⇒ u*2 � O�f0s*L2

H2
� � O�s*g�

f0
�.

�A.11�

The same scaling has been chosen for u*1 since it is
assumed that �*1 and �*2 scale similarly, and �*2 is geo-
strophically scaled. The scaling of the abyssal layer
height by s*L (which is the rise of the topography over
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a deformation radius) is a convenience that eliminates
the nondimensional interaction parameter introduced
by Swaters (1991). The scaling for the up/downwelling
parameter has been chosen so that Q* � O(h*t*) �
s*2g�/f0 and has units of (vertical) velocity.
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