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ABSTRACT

The theory of resonant interactions between continental shelf waves developed by Hsieh and Mysak to explain
aspects of the shelf wave spectra observed on the Oregon shelf by Cutchin and Smith and Huyer et al. is extended
to include the effect of bottom friction and alongshore topographic variation. The model equations are derived
via a multiple-scale asymptotic expansion in which it is assumed that the alongshore topography varies over a
length scale over which the nonlinear interactions make an order-one contribution to the dynamics. It is shown
that alongshore topographic variability leads to a wavenumber mismatch in the wave resonance conditions. It
is possible to identify a purely linear and nonlinear component to the wavenumber mismatch. The linear
component can be identified simply as the topographic modulation in a WKB sense of the alongshore wavenumber.
The nonlinear component of the wavenumber mismatch is a cumulative effect associated with the dynamic
interactions between the waves occurring over regions of alongshore topographic variability. It is shown that
even after a triad of initially maximally interacting shelf waves has traversed a topographic anomaly of finite
alongshore extent, the energy exchange remains permanently suppressed and does not recover to its pretopographic
efficiency. For some specialized alongshore topographic variations, the interaction equations can be solved
exactly. An illustrative solution is presented for an isolated topographic feature superimposed on an Adams—
Buchwald exponential shelf profile. Numerical solutions are presented for the purely dissipative wave interaction
problem. For realistic values of the bottom friction parameter it is possible to almost completely damp out any
interaction. It is suggested that the geographically localized nature of observed interacting shelf waves may in
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part be due to alongshore topographic detuning of the resonance conditions or strong frictional effects.

1. Introduction

Motivated by the appearance of three distinct
peaks in the coherence spectra of sea level observed
on the Oregon shelf by Cutchin and Smith (1973),
Hsieh and Mysak (1980) developed a model for the
resonant interaction of continental shelf waves. It is
well known that wave~-wave interactions can occur
in dispersive wave systems provided the dispersion
relationship admits certain resonance conditions.
Hsieh and Mysak showed that an exponential profile
model for the Oregon shelf allowed for the resonant
interaction of a triad of shelf waves. In particular, it
could be shown that the shelf wave spectra observed
by Cutchin and Smith, and as well as by Huyer et
al. (1975), satisfied the derived resonance conditions.
Hsieh and Mysak suggested that the Oregon spectra
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corresponded to the resonant interaction of a large-
scale atmospherically forced shelf wave with two
smaller-scale shelf waves.

This was an important and interesting conclusion if
for no other reason than the fact that if it is true, the
Cutchin and Smith spectra are one of the very few in
situ oceanographic observations of large-scale nonlin-
early interacting waves. In some respects this conclu-
sion is surprising because of the delicate nature of the
required resonance conditions on the frequencies and
wavenumbers for interaction. Since the dispersion re-
lationship for freely propagating shelf waves is deter-
mined by the shelf profile and this profile varies along
the coast it is reasonable to conclude, that as a reso-
nantly interacting packet of continental shelf waves
propagates along a shelf, topographically induced phase
modulation will lead to a violation of the resonance
conditions and consequently a cessation of wave-wave
energy exchange. A variety of external forces can be
responsible for the modulation of the energy exchange
such as topographic irregularities, bottom friction,
density stratification and atmospheric forcing. The
principal purpose of this paper is to extend the Hsieh
and Mysak wave-wave interaction model to include
alongshore topographic variations and bottom friction
and to describe the role these forces play in modulating
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the energy exchange in a trio of interacting continental
shelf waves.

The wave—wave interaction equations will be derived
using the multiple-scale asymptotic expansion proce-
dure introduced by Hsieh and Mysak.appropriately
modified to take into account alongshore topographic
variability and bottom friction. Implicit in the model
we derive is that the alongshore topographic variability
will correspond to small but finite amplitude irregu-
larities that vary over the same length scale for which
the nonlinear terms make an order-one contribution
to the dynamics. In addition, it will be assumed that
bottom friction makes a significant contribution to the
dynamics over the same length scale. These approxi-
mations will unfortunately reduce the general appli-
cability of the model but are necessary if, to leading
order, the solutions to the governing equations are to
correspond to undamped, freely propagating conti-
nental shelf waves that are not being continuously and
rapidly scattered and damped as the energy propagates
along the coast.

The interaction equations will be identical to those
presented in Hsieh and Mysak except for two additional
terms in each amplitude evolution equation corre-
sponding to the effects alongshore topographic varia-
tion and bottom friction. We will show that, roughly
speaking, it is possible to identify a linear phase and
amplitude modulation and an inherently nonlinear
phase and amplitude modulation associated with these
external forcings. The linear response is exactly what
one would expect in that the alongshore topographic
variability induces a slowly varying modulation of the
alongshore wavenumbers in the fast phases associated
with each wave packet.

The linear response associated with the damping is
also exactly what one would expect in that friction acts
to induce a slow exponential decay in each of the wave
amplitudes. The nonlinearity in the interaction equa-
tions acts to accelerate the decay process. It turns out
that the friction coefficients in the nonlinear interaction
equations have an inverse dependence on the packet
phase speeds. This in turn will imply that short shelf
waves will damp out at a faster rate than comparatively
longer shelf waves. This fact may be important in the
evolution of the triad observed on the Oregon shelf
because this ensemble of waves corresponded to the
interaction of one long shelf wave with two short shelf
waves. Depending on the actual value of the local bot-
tom friction parameter, the decay time scale of the ob-
served triad could range from 0.5 days to 16.4 days.
The decay time scale of 0.5 days is far too fast to allow
for any substantial energy exchange between the waves,
which based on our calculations is about 9 days. The
slower decay time scale of about 16.4 days does allow
for about two complete cycles of energy exchange.
These points are illustrated with a numerical solution
of the frictional interaction equations.
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The nonlinear response associated with the variable
orography is, however, somewhat qualitatively differ-
ent. To make our description concrete consider the
situation in which no friction is present and an oro-
graphic irregularity occurs only over a finite alongshore
distance. In the linear situation (for which no energy
exchange is occurring), there will be a phase modu-
lation of each wave packet only over the region of
alongshore topographic variability. Thus, once the wave
packets have traversed the region of topographic vari-
ability (in the sense of following the group velocities),
the linear theory would necessarily predict that the
spectral characteristics of each wave packet (i.e., the
frequencies and wavenumbers) would be identical to
those observed prior to encountering the finite region
of topographic variability. Consequently, the linear
theory would suggest that if a group of continental shelf
waves encountered a region of finite alongshore to-
pographic variability, the underlying phases would be
modulated only over this region, and in the “down-
stream” (in the sense of the group velocity) region the
spectral characteristics of the wave group would be
identical to the “upstream” phases. We will show,
however, that the nonlinear interactions between the
waves over a region of alongshore topographic vari-
ability will induce a permanent phase modulation in
each wave that will result in a permanent reduction in
the efficiency of the energy exchange cycle between the
waves. Consequently, if a-group of maximally inter-
acting continental shelf waves encounters a region of
topographic variability, the nonlinear interactions over
this region will induce a permanent phase shift in the
waves, so that even in the downstream region the wave
resonance conditions are detuned to the degree that
the energy exchange is permanently suppressed but not
necessarily completely eliminated. The degree of
suppression is a function of the amplitude of the to-
pographic irregularity and the underlying spectral
characteristics of the individual wave packets. These
points are illustrated with an exact solution that we
can obtain to the inviscid, topographically forced in-
teraction equations for a “top hat” orographic anomaly.

The plan of this paper is as follows. In section 2 the
perturbed wave-wave interaction equations are de-
rived. In section 3 we discuss the conservation of energy
associated with the interaction equations. In section 4
the various parameters needed in the model are com-
puted using the shelf model introduced by Hsieh and
Mysak (1980). In section 5 we present our solutions
to the dissipative and topographically forced interaction
equations and discuss the implications for shelf wave
interactions. Section 6 summarizes the paper and
points out some shortcomings in our model and further
issues that need to be resolved.

2. Derivation of the governing equations

Hsieh and Mysak (1980) derived the unforced triad
equations using the method of multiple scales. Since
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this method is well known, and since our method of
derivation will closely follow that given by Hsieh and
Mysak (except to point out explicitly the modifications
brought about by including bottom friction and also
alongshore topographic variation), our presentation
will be relatively brief. To focus directly on the effects
of alongshore topographic variation and bottom fric-
tion on the nonlinear wave-wave interactions, we will
work with the shallow-water equations on an f plane
with Rayleigh bottom friction.

The nondimensional nonlinear barotropic long-wave
equations for a rigid-lid rotating system with Rayleigh
bottom friction are

U+ e(uu, + vu,) —v=—n—eru, (2.1)
v, +e(uv,+oo)tu=—n—ev, (22)
(hu)x + (hv), =0, (2.3)

where ¢ is time, x and y are, respectively, the offshore
and alongshore coordinates; (u, v) are the horizontal
velocity components in the (x, y) direction, respec-
tively, n the sea surface displacement from equilib-
rium (or equivalently the dynamic pressure), and A
the water depth. The reader is referred to Hsieh and
Mysak (1980) for a complete discussion of the scal-
ings assumed. The dimensionless parameters ap-
pearing in (2.1) and (2.2) are the Rossby number
given by

e=U/(LS), (2.4)

where U, L, and fare the horizontal velocity scale,
horizontal length scale, and constant Coriolis pa-
rameter, respectively, and the bottom friction pa-
rameter

r=Lr /U, (2.5)

where 7 is the dimensional e-folding time associated
with the Rayleigh drag.

Hsieh and Mysak (1980) estimated that the Rossby
number, which plays the role of a nondimensional am-
plitude parameter in (2.1) and (2.2) has magnitude
approximately given by ¢ ~ 1072 associated with the
Oregon data. The nondivergence approximation used
in the continuity equation (2.3 ) will filter out the Poin-
caré and Kelvin wave modes in the model focusing
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FIiG. 1. Geometry of the shallow-water model used in this paper.

attention on the relatively lower frequency continental
shelf wave solutions. There is a degree of variability in
estimating the magnitude of the nondimensional
damping coefficient r in (2.1) and (2.2). Assuming
Ekman layer dynamics, it follows that r can be esti-
mated from 7 ~ Hy/(2A4,f)'/?, where Hy is the mean
depth of the shelf and A, is a representative vertical
turbulent eddy viscosity. Assuming typical values
(Hsieh and Mysak 1980) of L =~ 100 km, Hy ~ 200
m, U~ 10cm s~ and f~ 107 s~ leads to a range
of values for r of approximately 0.7 to 25.0 corre-
sponding to a range of values of 4, of 103 cm?s™! to
1 cm? s~! (Pedlosky 1987, Section 4.2). In what follows
we formally assume 0 < ¢ < 1 and r =~ O(1) corre-
sponding to weakly nonlinear and dissipative
dynamics.
The vorticity equation for (2.1) and (2.2) is given
by
(u, — vy), + e[(uv, + uv,)y, — (uv, + vv,),]
—(vy + uy) = —er(u, —vy). (2.6)

Introduction of the transport streamfunction ¢ defined
by

hy, 3hh
h[‘//xxt + ¢ny] - hx[\bxt - lAbx] - hy[wyt + ¢] + c{r(h"//xx + hlpyy h hx‘bx B hy‘kv) * (_Z - y)‘p’zf

+(3(hi—h;2;)_(hxx+hyy))¢ _(@_M
xVy

h? h h

hy 3h, 24,
+ _E wx‘//xy - _h_ ‘//y'ﬁbxx + T ‘px\bxx + \by‘pxyy - ‘Px'ﬁyyy - ¢x¢yxx + tpy‘»bxxx} = 0’

hu =y, ho=—y, (2.7)
into (2.6) leads to, after a little algebra,
h h?
2h 3h h
h2 )‘l/.‘% - Ty ‘pyll/,v)’ + _h.l’ ¢x‘//yy - _;,V "Py‘pxy
(2.8)
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to which we impose the usual boundary conditions for
continental shelf waves: namely, that the waves be
trapped near the coast, ¥ — 0 as x = oo, and the
condition of no mass flux through the coast, hu = 0 at
x = 0, which translates to ¢, = 0 at x = 0 on account
of (2.7).

The presence of the O(e) nonlinear and dissipation
terms in (2.8) will lead to a modulation of the leading-
order continental shelf wave solutions over an O(¢™!)
time and length scale. Accordingly, we introduce the
slow space and time variables

Y=¢y

T=et|
Consequently, (y, t) derivatives in (2.8) will be re-
written

(2.9)

39, = 0, + ¢d
y % ”} (2.10)

3, —> 8, + edr|

We shall assume the shelf profile can be expressed in
the form '

h(x,y, Y)= ho(x)+ eh(x,Y). (2.11)

The term Ao(x) in (2.11) corresponds to a cross-shelf
depth profile that is uniform in the alongshore direc-
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tion. The term ¢h,(x, Y) in (2.11) will correspond to
a small-but-finite amplitude variation in the shelf pro-
file. The dependence of /,(x, Y) on the slow space
variable Y implies that the alongshore variation occurs
over the same long space scale as the nonlinear energy
exchanges. This representation for 2(x, y, Y') is forced
on us if we wish to examine a dynamical balance be-
tween orographic forcing and the wave-wave interac-
tions.

With the introduction of the above variables and
shelf profile a uniformly valid asymptotic solution to
(2.8) can be obtained in the form

wx, y, )~y Ox,p, Y, 1, T)

+ ey D(x,y,Y,t, T)+O(e2). (2.12)

Substitution of (2.9) through to (2.15) into (2.8)
yields the O(1) and O(e) problems given by

ho(¥R + i) + ho(¥i” — ) = 0,
VO >0 as x— oo,
YO =0 at x=0,

O(1):

(2.13a, b, ¢)

and

( holyiad + i1 + Aol — 501 = r(hod R + hod i) — hoy V) — hol 5 + ¥ 0k + 24§91

et - 901+ [ - () e+ 300 - S uo v - ymy 4 i
O(e): § 20!
VR = PR+ O — i) — 8 -l — v,
0

0
Ly >0 as x>0, Y¥Y +¢i=0

where for convenience prime denotes d/dx.

The O(1) equations, being linear and not in-
cluding any topographic forcing or any damping,
permit a solution consisting of the superposition of
three freely propagating continental shelf waves in
the form

3
YO =3 4(Y, T)¢(x) exp(i6) + c.c., (2.15)

j=1

where the amplitudes 4;(Y, T) are slowly varying
functions of alongshore position and time, the fast
phases are §; = k;y — w;t, i = —1 and c.c. denotes

at x=0,
(2.14a, b, ¢)

complex conjugate. Substitution of (2.15) into (2.13)
leads to the Sturm-Liouville problem

B el PP O o) B Y 1 A D
(ho ¢})+ hO d)] (l’l% d)} 0

¢

¢(x)—>0 as x—>

#(0)=0
(2.16a, b, )

where the reciprocal of the phase speed ¢;' = kj/w; is
the eigenvalue.

Substitution of (2.15) into (2.14a) allows the O(e)
problem to be expressed in the form
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holy s + ¥ + holys" — v’

-3 (Hh

Jj=1

2hy
ho

3
+ iwjhy ¢))4; ) exp(if)) + 2 Z [

=1 m=1
ho ., ,
ho ¢1¢m

where (2.16) has been used and where the asterisk de-
notes complex conjugation.

The required wave-wave interaction equations are
obtained by exploiting certain solvability conditions
associated with (2.17). We begin by observing that the
frequencies and wavenumbers on the left-hand side
must match those on the right-hand side. Thus the
contribution of the particular solution to ¢ (!’ must be
of the form

YW =3 ALY, T)dox)exp(if,) + cc. (2.18)

We shall assume that the three waves in (2.15) from
a resonant triad satisfying the well-known resonance
conditions (without loss of generality)

k1+k2+k3=0
0 .

(2.19a, b)
wtw+ws=

Hsieh and Mysak (1980) have shown that for a Buch-
wald and Adams (1968) and Adams and Buchwald
(1969) exponential shelf profile, the Sturm-Liouville
problem (2.16) admits dispersion relationships for
which such resonant triads can in fact exist. In Fig. 2
we show the triad used by Hsieh and Mysak to model
the Cutchin and Smith spectra. Under the resonance
conditions (2.19), it follows that the fast phase in the
explicitly written out quadratic interaction term in
(2.17) has the form 6, = §; + 6,,, where p is an integer
from the set {1, 2, 3} different from / and m. Thus,
the phase 6, in (2.18) must necessarily be of the form

{6, ={6;1j=1,2,3}U{6,%=6,|!
=1,2,3andm=1,2,3}. (2.20)

Substituting (2.18) into the left-hand side of (2.17)
we find that for each j, ¢ j M must satisfy an inhomo-
geneous equation of the form

(o) e - L ()= o

where f; denotes the forcing at frequency w; and wave-
number k; from the right-hand side of (2.17). The
Fredholm alternate theorem from Sturm-Liouville
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hod; = i + ihes] = ik, &,

hy hy\? 3h!
k}didm + (— 3( ) + kP - k%n)qswm +== 0/ bm

ho ho hO

- ¢/”¢m][ikmA1Am exp(i0; + ib,,) — ik A A% exp(i0; — iam)] +cc., (2.17)

theory (see, e.g., Boyce and Diprima 1969, p. 506)
states that the inhomogeneous problem (2.21) has a
solution ¢§-” only if the forcing term f; is orthogonal
to the homogeneous solutions ¢;; that is,

J:O Sioidx =0, (2.22)

for each j = 1, 2, 3. Consequently, the solvability con-
dition (2.22) requires that

(87 + o, 0y) Ay = ~iK AT AT — ri Ay — ip (V) Ay,

(07 + ¢, 0y)A2 = —iK, A3 AT — rads — iup(Y) Ay,

(Or + ¢4, 9y) A3 = —iK3 AT AT — r3As — ipy(Y)As,
(2.23a,b,¢)

corresponding toj = 1, 2, 3, respectively, in (2.22) and
where we have normalized the ¢; so that

-0.05
-0.10
-0.15
-0.20
-0.25
-0.30

-0.35

Frequency (o)

-0.40

-0.45

-0.50

-0.55 1 1 ) 1 1 1 1 L 1
0 3 4 5 6 7 8 9 10

Wave number (k)

FIG. 2. The resonant triad used by Hsich and Mysak (1980) to
model the Cutchin and Smith shelf wave spectra. The curves labeled
I II, IIL, and IV correspond to the four lowest modes associated with
the Buchwald—~Adams shelf profile used by Hsieh and Mysak.
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“ho 4. _
| J; 12 ¢7dx =1, (2.24)
foreachj =1, 2, 3 and where
K= ¢( Kjim + Kjm1), (2.25)
is the interaction coefficient where
* k —3h6 ! 1 ! ”
1<j1mEJ; Z%[ 7o $id1bm + 200! dm
2ho . , 2 2 :
- —}; kl ¢j¢1¢m + (kl - km)¢’j¢l¢m dx, (2~26)
and where
Cg = Cj(l + ‘chjka)z (227)
is the group velocity with
® ]
v=| el (2.28)
0
and the friction parameters given by
r=—_, (2.29)
]

and where

00 h A
0 0 5

Ms 93— M2 g1, (230)
0 0

is the topography coefficient. For complete details of
the derivation see Primeau (1992).

For our subsequent discussion it will be convenient
to recast the interaction equations into “standard”
form. To this end we define the new amplitude func-
tions o;(Y, T) given by

+h

oY, T) = A(Y, T) expl—ia{(¥)/cyl,

where

(2.31)

eY
o= [ wias,

forj =1, 2, 3. Substitution of (2.31) into (2.23) yields
the interaction equations in the form

(2.32)

(87 + ¢g,0y)an = —iK a3 & exp[—ioo(Y)] — neu,

(37 + Cudy)ay = —iKray o} exp[—ioo(Y)] — ras,

I

(37 + ¢,dy)as = —iKsaf & exp[—iog(Y)] — ras,
(2.33a,b,¢)

where

oY), a¥) , o(¥)

oo(Y) =
& Ce, 2

(2.34)
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It is now possible to. heuristically see the “linear”
and “nonlinear” influence the alongshore variation in
the shelf profile will have on the waves. The additional
phase factored out in (2.31) corresponds to an O(¢)
slowly varying correction to the alongshelf wavenumber
given by d,[ —aj(Y)/cg] = —en(Y)/ g This response
is entirely linear. The nonlinear response on the indi-
vidual packet amplitudes will be determined by the
solutions to (2.33). Notice how the topographic in-
homogeneities in (2.33) can be interpreted as taking
the form of a spatially varying interaction coefficient.
As the interacting wave packets enter regions where
ao(Y) # 0, the spatial dependence of the interaction
coeflicient will lead to a loss of efficiency of the energy
exchange. This effect will lead to both an amplitude
and phase modulation that can be identified as purely
nonlinear on account of the fact that the linearized
form of (2.33) has no topographic inhomogeneities at
all. Another point to bring out is that because the spatial
dependence in each of the interaction coefficients is
identical in (2.33a,b,c), it will be possible to obtain
exact topographically forced solutions for some special
cases. These are discussed in section 5. Finally, we re-
mark that a similar transformation to (2.31) can be
introduced in order to factor out the linearized expo-
nential decay associated with the friction and to intro-
duce an interaction coefficient that will depend on the
slow time. However, no further analytical progress can
be made with that set of equations since the dependence
of the interaction coefficients on the slow time will not
be identical in each wave packet and thus it is simply
more convenient for our subsequent discussion to work
with either (2.23) or (2.33). :

3. Conservation of energy

Hsieh and Mysak presented an argument for show-
ing that the wave-wave interactions conserved energy
in the absence of topographic forcing and dissipation.
We now show that inviscid limit of our interaction
equations also possess this property. Of course this is
to be expected since the topographic variability should
be considered as a conservative force. The argument
we present here is somewhat different than that de-
scribed by Hsieh and Mysak in that we proceed axi-
omatically from a phase-averaged conservation law
approach.

The vorticity equation (2.8) in the inviscid limit can
be rewritten in the form

1 € 1 1
7)) e i () oo o

where J(A4, B) = A, B, — A,B,. The energy equation
is obtained by multiplying (3.1) by ¥ and rearranging
terms to yield
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—Vy-VyYi +V:[-=V
AR AL
+exvoSv(ive)-Hl=0 32
é PRV Rl 7%
The energy equation can be expressed as a conservation
law (Pedlosky 1979, section 3.27) in the form
E,+V-F=0, (3.3)
with

1
E—-z-il-Vy%Vv,(/, (3.4)

__¥ 5 eofl _1
F= hw,+e3><vw(hv(hv¢) h),(3.5)

as the energy density and flux, respectively. When the
perturbation expansion (2.9) through (2.12) is substi-
tuted into (3.3), an expression of the form

(E@Q+FO+ FO))+ (EP + EM
+ P+ Py + Fi))+ --- =0, (3.6)

is obtained. The leading-order energy density and en-
ergy flux components are given by

EO = ﬁwm.ww), (3.7)
0
(0) ,1,(0) (0),1,(0)
Fﬁo) _ ¥y h‘f — 4 h:’)[/x’ , (3.8)
(0) 4, (0) (0),4,(0)
FO = — ¥x hf _¥ h‘:y’ . (3.9)

We now introduce the averaging operator

1 [+3) 27 27 27
<(*)> _2—2_1:)'3'1; J; J; b (*)d01d02d03dx,
‘ (3.10)

where §; = k;y — w;t, j = 1, 2, 3 are the phase variables.
Note that, if {(*)) operates on a function that is pe-
riodic with period 27 in any of the phase variables, the
average will vanish. If the averaging operator is applied
to (3.6) it follows to O(e¢) that

(EOYr+ (F)y =0, (3.11)

This expression will be the appropriate energy conser-
vation law that the interacting shelf waves need to sat-
isfy. Note that all the other O(1) and O(¢) terms in
the averaged (3.6) will be identically zero because of
the following reasons: (E{”) = (F5 ) = 0 because
of the periodicity of the O(1) solutions; (F §0,2>
= (F f?} = 0 on account of the boundary condi-
tions at x = 0 and x = co. It also follows that ( E{")
= (F é'y)> = 0 because of the periodicity of the O(1)
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and O(e¢) solutions provided the latter are solely de-
termined by the particular solutions to (2.17), that is,
we do not allow any freely propagating shelf wave so-
lutions to the O(e) problem. Finally, we note that dif-
ferentiation with respect to the slow variables com-
mutes with the averaging operator since the integration
limits are independent of these arguments. Substitution
of the O( 1) solution given by (2.15) into (3.7), (3.8),
and (3.9) yields, after a little algebra:

E© = hi(qs'f + kioh)| 4,12
0

1 1
+h—(¢'22+k%¢%)|Az|2+h—(¢s’+k%¢§)|A3|2
0 0
+ {terms that will average to zero}, (3.12)
o _ 1 2, 2,
F, '—'h—o(2|A1| d1¢1 + 2| 42|%02¢2

+ 2| A3|%¢5 03 — 2kiw, |4, %03
— 2kowy | A2 1703 — 2ksws | A3]%$3)

+ {terms that will phase average to zero}.

(3.13)
If (3.12) is averaged, it follows that
(EOY = [ a7 ? + koD
+ [ 4217 (07 + k303)
+ | A:12(97 + ki¢D)ldx. (3.14)

Integrating the hg'¢/?,j = 1, 2, 3 terms in (3.14) by
parts, exploiting (2.16) and the normalization condi-
tion (2.24), we obtain

1 1 1
EOy === 14,|> - = | 4> — = | 4:]2, (3.15
(EO) ==~ 14112 =~ 14> = | 4%, (3.15)

which is identical to the result presented in Hsieh and
Mysak. Similar arguments show

0 < C C,
(F7) = = 2 [ 4)]? = 2 | 4] = 2 | 452,
C (&) C3

(3.16)

which is also the result presented in Hsich and Mysak.
Thus, the three waves interaction equations will con-
serve energy provided that

[ Ai]?/c + | 4217 /e + |A5]?/eslr + [ | A1) P e
+ | A2l 2 + ¢ | A3]% /31y = 0 (3.17)

holds.
To show that energy is in fact conserved in the in-

viscid, topographically forced interaction equations, we
go back to the form (2.23)
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(Or + ¢, 0y) A, = —iK AT AT — iny(Y)A4,
(31 + o, dy) Ay = —iK2 AT AY — inx(Y )4, } . (3.18)
(31 + Cody) A3 = —iK3 AT AT — ins(Y)As

If we multiply the jth equation in (3.18) by — A4} /c;,
we obtain the following system

._A* ]
5 L (31 + ¢, 0y) A4 W

K Y
=K g aray D)

| 4,]?
Cy ¢

*
2 (37 + cgy0y) s

C [ .

iK: Y

———ZA ArAY + lﬂz( )IA 2
() C

3
(01 + ¢g0y) A3

iK; ius(Y

=24t a34% + ‘“3( ) 42
C3 J

(3.l9a, b, c)

If the sum (3.192) + (3.19b) + (3.19¢) + c.c. is formed,
it follows that

1 1 1
67(—IA1|2+—|A2|2+—|A3|2)

Cy C C3

+o (g'nA|2+“|A|2+ |A|2)

Ky 53) (3.20)

K
=2Re{iA1A2A3}( —+= ot
2 3

Note that the topographic terms in this sum will add
up to identically zero since the topographic terms in
(3.19a,b,c) are purely imaginary. It follows from (3.20)
and (3.17) that the three wave interactions will con-
serve energy if and only if

K, K
KoK Ky
Cy () C3
Hsieh and Mysak showed that (3.21) holds for reso-
nantly interacting shelf waves.

(3.21)

4. The theory applied to an exponential shelf
To proceed further in our study of the topographi-

cally forced resonant triad, it is necessary to specify .

explicitly the cross-shelf profile /,(x). Hsieh and Mysak
(1980) originally developed their wave-wave interac-
tion theory for the Oregon shelf, which they modeled
with a Buchwald and Adams (1968) and Adams and
Buchwald ( 1969) exponential shelf profile of the form
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Hl e2bx

2, l <x< o0,

0<sx<x<1

ho(x) = [ (4.1)

where b H,, and H, are constant parameters with H,
= H,e". We shall also use this cross-shelf profile.

With the above choice for Ay, the Sturm-Liouville
problem (2.16) yields the following dispersion relation
for the nth offshore mode (see Buchwald and Adams
1968),

wi” = —2bk;/ (&) + K + b2),
n=1,2,3---, (4.2)
is the nth root of the transcendental equation
tan(”) = —£"/(b + K1), &7>0. (4.3)
The cross-shelf eigenmode 3 j )(x) is given by
Ny sin(¢]"x) exp[b(x ~ 1)],
O0<sx<1
N;" sin(¢]") exp[~ K] (x — D)],
l <x< oo,
(4.4)

where £"

¢ (x) =

where the constant N}") is evaluated via the normal-
ization condition (2.24) and is found to be given by

N;” = [26" Hy/b(2£" — sin2€,")] 2. (4.5)

Having obtained explicit expressions for the ¢;, we
can obtain analytical expressions for the coefficients
appearing in the interaction equations (2.23). Substi-
tution of (4.4) into (2.28) yields the following expres-

sion for «v;:
_NP[(1_sin(2)
YVEm 2T 4

which can then be substituted into (2.27) to obtain the
group velocities, c,,. Also, as shown by Hsieh and My-
sak (1980), substitution of (4.4) into (2.26) ylelds the
following expressions for the Kjj,:

+ sin®(¢)

4.6
20k ], (4.6)

Kim = N;N:N,y =5 km

H

X [b<—3b2 - 287 - 3K2 - 3K - K31,

B0 — £+ KD — K2,
oy sin(g) sin(&) sin(Em)
20T EDL T AT T

X k3 (=21k;| ~ [ka]) + |k,|(k%,,—k})1},
4.7)
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where
I, = :;' [(b4, + b, B, — b,C,)

= (bA; + by B, — b,C5) — (bAs + b3 Bs — b3C3)
+ (bAs + byBy — baCy)], (4.8)

IZE=

[(b1A4; — bB, + b,C))

-

~ (bsAs — bBs + bsCy), (4.9)
13 b i [_(b]Al - bB] + bC])
+ (byA42 — bB; + bC,) + (b3As — bBs + bC3)
— (byAdys — B4 + bCy)], (4.10)
by=¢§— &~ &m, bz'=”fj—51+5m}
by=t+&—tm, ba=&+E+En)

and

(4.11)

1 .
[4, B;, Ci] = ml{ [sind;, cosb;, eb],

i=1,2,34. (4.12)

The Kj;, can then be combined via (2.25) to form
the interaction coefficients, that is, the K appearing
in (2.23).

Finally for the special case where 4, is assumed to
be a function of Y only, the integration in the definition
of the topography coefficient (2.33) can be explicitly
performed to give

u(Y) = hl(Y)ﬂjo> (4.13)
where

N},
4H?2

+ e?2(—b2 + k> — z2)/b

+ {be®(b? — k7 — 3£7) + b(—b* + Kk} + 3£2)

X cos(2&) + E(3b* — k} — £7)
Xsin(2£)}/(b> + £D)].  (4.14)

Hjo =

(6% — Kk} — &})/b

5. Solutions of the interaction equations
a. Some general remarks

For sufficiently smooth ¢o(Y), it is known (Craik
1985) that a solution to the initial-value problem for
(2.33) uniquely exists for all time provided not all the
interaction coefficients K; are of the same sign. Note
that the K in the shelf wave theory do possess this
property on account of the energy conservation con-
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dition (3.21) and the fact that for our model geometry
the phase velocities are strictly negative. Not all prob-
lems of geophysical interest necessarily have this prop-
erty. For example, Meacham (1988 ) has shown that it
is possible that the interaction coefficients for baroclinic
Rossby waves can be all of the same sign. When this
occurs, the initial-value solutions to the interaction
equations necessarily become singular in finite time.
This solution corresponds to a finite-amplitude, non-
modal instability. '

Even though the existence and uniqueness of solu-
tions to our model have been established, there are no
known exact solutions for a general topographic func-
tion oo (Y') to either the steady-state or time-dependent
interaction equations, even in the absence of damping.
Cree and Swaters (1991) examined a topographically
forced triad of Rossby wave packets. They showed that
when oo(Y') is a quadratic function with respect to Y
it is always possible to transform the interaction equa-
tions into a form formally solved using an inverse scat-
tering transform (IST). They also showed how similar
transformations could be introduced into the linearized
“pump-wave” approximation to the interaction equa-
tions. Both of these techniques allow one to examine
special initial-value solutions to the wave-wave inter-
action equations. These methods can be modified in
an obvious fashion to apply to the model presented
here.

A third method developed by Cree and Swaters can
be used to obtain exact nonlinear steady-state solutions
when ¢¢(Y') is a linear function. This solution will be
briefly described in section 5.c. In section 5.d we will
show how to construct a nonlinear steady-state solution
for the interacting waves assuming a top-hat topo-
graphic anomaly, which has a finite extent in the
alongshore direction. Although this is a crude topo-
graphic configuration, the simplicity of the analytic so-
lution serves well in elucidating how alongshore to-
pography acts to ““dephase” the resonant interaction.

Finally we note that because the damping coefficients
r; are mutually different, exact solutions cannot, in
general, be obtained for the damped problem even for
the purely temporal problem in the absence of along-
shore topography. Because of this we will present, in
the next section, numerical solutions for the purely
temporal problem in order to illustrate the balance be-
tween energy dissipation and nonlinear energy ex-
change in the evolution of the packet amplitudes.

b. The purely temporal problem

To focus on the effects of bottom friction and energy
exchange, we will look, in this section, at the purely
temporal problem with no alongshore topography
variation. In the next section, we will study the steady-
state problem in which we retain the alongshore to-
pographic variation but neglect the bottom friction.
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To study the purely temporal dissipation problem
we start with (2.26) and set 9y = 0 and oo(Y) = 0.
With the above simplifications, (2.23) reduces to

dA,
— = —‘1K1A2A3

ar rA

" dA,
—_ = —1K2A3A1 - rzAz

5.2.1) -
aT (5.2.1)
dA .
71'7__? = —lKgATA;( - r3A3
If we introduce the transformation
A(T) = a(T)exp[i8(T)],  (522)

where a; and 6, are real functions, into (5.2.1), we ob-
tain the system of real-valued ordinary differential
equations

9 _ _ Ky sind —
4T 1a243 SIN na;
9% _ Kty sind — 1 (5.2.3)
dT 2a>A3 SN ras 5 L.
da
d; —Ksaya; sinf — ras
de,
a —d_T = — K ayas cosf
b,
a -E? = —Khaza, cosf } , (5.2.4)
a6
as 2?3 = — Ksa,a; cosf

where 6 = 0, + 0, + 6.

To obtain numerical values for the interaction coef-
ficients in the above equations, we will use the Buch-
wald and Adams exponential shelf profile (4.1) with
parameters chosen by Hsieh and Mysak to model the
Oregon shelf given by

b= 165
=0.524 ), (5.2.5)
H, = 142

(the horizontal length scale is L = 112 km and the
shelf depth scale is Hy = 200 m) and the triad used by
Hsieh and Mysak given by

(ky, w;) = (0.382, —0.155)
(ky, w2) = (5.362, —0.281)  ,
(k3, w3) = ("“5745, 0436)

(5.2.6)

(see Fig. 2). With these values for the shelf parameters
and the resonant triad substituted into (4.7)-(4.11)
and (2.25), we obtain the following numerical values
for the interaction coeflicients
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K, = -8.757
K, = —2.054 (5.2.7)
K; = 4,613

The nondimensional damping parameter 7 is given
by (2.5). If we choose the horizontal velocity scale to
be U= 10"' m s™!, and the horizontal length scale to
be L = 112 km, the numerical values for r range from
approximately 0.79 to 25.04 depending on the mag-
nitude of 4, used. Using the upper estimate for r we
obtain the following damping coeflicients

r, = 6.90
r,=>5342¢, (5.2.8)
r3 = 36.90
while using the lower estimate for r we obtain
= 0.01
r, = 0.05342 (5.2.9)
= 0.04

Note that there is quite a range in the magnitude of
physically realistic damping parameters for this triad.
Since the damping coefficients are mutually different,
analytical solutions to (5.2.3) and (5.2.4) cannot be
obtained (see Weiland and Wilhelmsson 1977). We
note that if § = w/2 or 3w /2 (the case where energy
exchange is maximized), (5.2.4) is trivially satisfied
for all 7', and consequently 8 remains constant so that
(5.2.3) becomes uncoupled from (5.2.4). In Figs. 3
and 4 we show the decay of the amplitude functions
ai(T) for a maximally interacting triad with 6, = 6,
= §; = v /2 with the damping parameters given by
(5.2.8) and (5.2.9).

While resonant interactions are a possible mecha-
nism for energy exchange when Ekman friction is weak,
we can see that strong bottom friction causes an e-
folding decay time much smaller than the period of
oscillation of the amplitudes, and we can see that unless
energy is being pumped into the system by external
forcing, such as wind stress, for example, the energy
exchange due to nonlinear interactions will be negli-
gible.

- To obtain numerical values for the period of oscil-
lation of the amplitudes, we neglect friction in (5.2.3)
so that the equations can be solved analytically. Setting
r;=0,(j=1,2,3)and taking § = «/2, the solution
to (5.2.3) is, as shown by Hsiech and Mysak (1980),
given by Jacobi elliptic functions. Without loss of gen-
erality we can choose 7" = 0 to be the instant when q,
> 0, a; > 0, and a; = 0. With this choice of initial
conditions the solutions are

a,(T) = a,odn(a'T/M)
a(T) = ayen(eT/M) ¢,
as(T) = a,,(—K3/Kz) " *sn(aT/ M)

(5.2.11)
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FI1G. 3. The effect of bottom friction on a maximally interacting
resonant triad of shelf waves for the relatively large damping coeffi-
cients given by (5.2.8). The triad corresponds to the Cutchin and
Smith data. The solid, dashed, and dotted curves correspond to a,
a,, and a;, respectively.

where
o= a10(~K2K3)1/25
M= Kla%o(Kza%o)ﬁ

(5.2.12)
(5.2.13)

and dn, dn, sn are the Jacobi elliptic functions (Abra-
mowitz and Stegun 1965, chapter 16). Without loss
of generality we may assume 0 < M < 1. The period
of energy transfer is given by the period 7, of the
elliptic function dn(eT/M), given by

T,=2K(M)/o = 2K(M)ai (- K:K3)™"2, (5.2.14)

where K(M) is a complete elliptic integral of the first
kind. Using the same parameters and initial conditions
(ai, = 1, ap, = 0.4, a3, = 0) used in the numerical
solutions, we find T, ~ 1.33. Remembering that ¢ has
been nondimensionalized with respect to 1/f, (f
~ 107*s!) and that T = ¢f, where ¢ is the Rossby
number (e ~ 1072), it follows that T, ~ 17 days.
Hence for the given initial conditions, the time scale
of energy transfer (~ 1 T;) is about 9 days. The e-fold-
ing time due to Ekman friction range from 0.5 days to
16.4 days. For the lower estimate of friction, the e-
folding time is longer than the period of energy ex-
change so that some energy can be transferred to the
other members of the triad before the waves are
damped out. On the other hand, for the upper estimate
of friction, the e-folding time is much shorter than the
period of energy exchange, and resonant interactions
cannot be expected to provide a mechanism for energy
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exchange between the three wave components. In fact
for the upper estimate of friction our perturbation ex-
pansion may not be valid and friction may need to be
included at first order.

Because the range of estimates in the Ekman number
is so large, the theory developed in this paper is incon-
clusive as to whether resonant interactions are a viable
mechanism for resonant energy exchange in the pres-
ence of bottom friction. It is quite likely that the mag-
nitude of the Ekman number varies with time and lo-
cation, and this fact may explain in part why there are
so few observations of shelf wave interactions.

¢. Steady-state solution with alongshore topographic
variation

In this section we focus on the effect of alongshore
topographic variation on a resonant triad of shelf waves
in the inviscid limit in which r; = r, = r; =01in (2.33).
The first point that should be made is that there exist
no known exact solutions to the topographically forced
interaction equations for an arbitrary topographic pro-
file. In the case with no topographic anomaly, corre-
sponding to g9 = 0, the initial-value problem for the
interaction equations has a unique solution, which can
be formally obtained using an IST (Kaup et al. 1979).
Cree and Swaters (1991) showed how it was possible
to transform the topographically forced interaction
equations in the special case where oo(Y ) was a qua-
dratic function in the variable Y, back into the form
of the unforced interaction equations. The situation

1.0

09k -

0.8 E

0.6 -

0.5

T
A

0.4

T =T

0.3
0.2 \ -
0.1} AN .

Or

T (days)

FIG. 4. The effect of bottom friction on a maximally interacting
triad of shelf waves for the relatively small damping coefficients given
by (5.2.9). The triad corresponds to the Cutchin and Smith data.
The solid, dashed, and dotted curves are as described in Fig. 3.
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were oo(Y) is a quadratic function corresponds to a
topographic anomaly which is a /inear function of Y,
see (2.32). Thus, at least formally, the complete so-
lution to the initial-value associated with shelf wave
interactions over a topographic anomaly which varies
linearly in the along-shelf direction can be analytically
determined. However, the solution procedure is very
complicated and all of the conclusions that we wish to
draw can be made by examining the solutions to a
simpler but still nontrivial problem. In what follows
we describe the exact, nonlinear steady-state solutions
that can be obtained assuming that the topographic
coefficient go(Y") is a /inear function of the alongshore
coordinate Y. This solution can be interpreted as the
topographically forced analogs of the solutions pre-
sented in Hsieh and Mysak. In section 5.d we show
how to use the solution constructed here to describe
the alongshore spatial structure of interacting shelf
waves for a simple topographic anomaly of finite
alongshore extent. :

For the steady-state ansatz adopted in this section
to be physically relevant, we restrict attention to a wave
triad in which the individual group velocities are all of
the same sign. For such a situation, the direction of
energy propagation will be the same for each wave and
it will be meaningful to speak of a quasi-steady inter-
action that “begins” on one side of a region of topo-
graphic variability and “proceeds,” in the sense of fol-
lowing the group velocities, over the orographic irreg-
ularity. If the group velocities are not all of the same
sign, the energy associated with the wave packets begins
to separate rapidly and the interaction process becomes
time-dependent on a O(1) time scale. To make our
description concrete we will work with a triad in which
the group velocities are all negative; see (5.4.3). It will
be obvious how to modify our procedures to handle
the situation in which the group velocities are all pos-
itive. These points are important because it means that,
anfortunately, we are not able to directly apply our
topographic results to the specific wave triad modeled
by Hsieh and Mysak since that triad was composed of
shelf waves which did not all have the same sign for
the group velocities (see Fig. 2).

Suppose that the topographic coefficient o¢(Y) in
(2.33) has the simple linear form

oo(Y)=cH(Y - Y)), ©(5.3.1)

where

0= pio/Cq + M20/C + M30/Cqy»  (5.3.2)

with the u;, determined by (4.14) and the ¢, are the
respective group velocities. The constant parameters
H and Y, correspond, respectively, to the maximum
height of the topographic anomaly and to the along-
shore position of zero topographic anomaly. If (5.3.1)
is substituted into the interaction equations (2.33), the
steady inviscid equations can be written in the form
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ap = —iK a3 a3 exp(—icHE), (5.3.3a)
s, = ~iKnat o} exp(—icHE), (5.3.3b)
az, = —iK3a) o exp(—icHE), (5.3.3c)

where Kj, = Kj/cg forj=(1,2,3)and (=Y - Y,.
The solution to (5.3.3) can be found in the form

a(§) = b(§) exp[i®;(§)], (5.3.4)

for j = (1, 2, 3), where the b,(£) and ®(£) are real-
valued functions. The b;(£) and ®;(£) will determine
the amplitude and phase modulations, respectively,
induced by the nonlinear interactions in the presence
of variable orography. We remind the reader that the
linear phase modulation associated with the topo-
graphic variation has already been factored out on ac-
count of the transformation (2.31). Substitution of
(5.3.4) into (5.3.3) yields, after separating real and
imaginary parts, the coupled system

by, = Kiobsbs sin(P), (5.3.5a)
by, = Kyobsb, sin(®), (5.3.5b)
b3s = Ks3ob\b, sin(®), (5.3.5¢)
@, = —Kjo(bod3/by) cos(®), (5.3.6a)
@), = —Ky(b1b3/by) cos(®), (5.3.6b)
@3, = —K30(b1b2/ b3) cos(®),  (5.3.6¢)
where
&=-% — &, — $; — gHE. (5.3.7)
It follows from (5.3.6) and (5.3.7) that
&, = —H + byb,bs(Kio/ b} + Koo/ b3
+ K30/ b3) cos(®). (5.3.8)

The solutions are most easily obtained by simulta-
neously solving (5.3.5) and (5.3.8) and then deter-
mining the individual ®;’s by substituting the b;’s and
® into (5.3.6) and integrating.

It is possible to see qualitatively how topography
acts to dephase the wave-wave interactions based on
(5.3.5), (5.3.6), and (5.3.7). It follows from (5.3.5)
that maximum energy exchange occurs for sin(®)
= #+1 or equivalently ® = +(2n + 1) /2 [consequently
cos(®) = 0], where n is a nonnegative integer. We
may assume, without loss of generality, that initially
®, = , = &; = /2 corresponding to a maximally
interacting triad. In the absence of any alongshore to-
pographic variation (i.e., H = 0), it will follow from
(5.3.8) that ® remains equal to —37 /2 thereafter and
thus from (5.3.6) it follows that &, = &, = &; = 7 /2
for all £. In addition, from (5.3.5) it follows that the
energy exchange will remain maximized because
sin(®) = —1. On the other hand if ¢H # 0 in (5.3.8),
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then &, # 0 initially and the change in water depth will
act to induce a nonzero ® and thus, on account of
(5.3.6), the envelope phases will have magnitudes that
will diverge from their initial values. Also, as & moves
away from —3w/2, the interaction coeflicients in
(5.3.5) will reduce in magnitude and the energy ex-
change will no longer be maximized.

To obtain the solution to (5.3.5) and (5.3.8) for ¢
# 0 we proceed as follows. First, we introduce the nor-
malizations

by = | KyoK30|™/%b,, (5.3.9a)
by = | K3oKio] 7'/%bs, (5.3.9b)
by = | KoKy | ~/?b;. (5.3.9¢)

Substitution of (5.3.9) into (5.3.5) and (5.3.7) yields

by = 51b2bs sin(®), (5.3.10a)
by = $,b3b, sin(®), (5.3.10b)
by = s53b,b, sin(®), (5.3.10c)

q’ = —gH + b]bzbg,(sl/bz + Sz/bz + S3/b )COS(‘I’),
(5.3.11)

where 5; = sgn(Kj) with j = 1, 2, 3. It follows imme-
diately from energy conservation and the fact that the
group velocities are all assumed to be negative, that
two of the K, are of one sign and the other differs in
sign, and because of this, two of the s; are of one sign
while the other differs in sign. Without loss of generality
we can choose s, = s3 = 1 and 5, = —1.

There are several constants of motion associated
with (5.3.10) and (5.3.11). If the products b,
X (5.3.10a), b, X (5.3.10b) and b3 X (5.3.10c) are
formed and the results integrated with respect to £ over
the interval (&, £) it follows that

[63(£) — bi(%)]1 = —[B3(£) — b3(%)]
= —[b3(§) - Bi(&)], (5.3.12)

for all £ and £, assuming our choice for the s;. These
are the Manley-Rowe relations (Craik 1985) for
(5.3.10). It will be convenient for our future work to
introduce the auxiliary dependent variable

P& =-1b1(H) - bi(&)],  (5.3.13)

which on account of the Manley-Rowe relations will
imply y(£) = b} (£) — b} (%) forj = 2, 3.

Another quantlty that will be convenient for our
subsequent work is the constant of motion given by

I' = bibyb; cos(®) + aHD}/2.  (5.3.14)

To show that T is a constant of the motion it is sufficient
to show I'; = 0. This can be done by taking the deriv-
ative of the left- and right-hand sides of (5.3.14) with
respect to £ eliminating the b;; and ®; using (5.3.10)
and (5.3.11), respectively.
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To proceed further we derive an ordinary differential
equation for $(£). If (5.3.9b) is multiplied by b,(£),
it follows that

(%), = +2{B3B3BI[1 — cos*(®)]}V2.  (5.3.15)

Now, if (5.3.13) and the Manley-Rowe relations are
used to eliminate the b2 terms and (5.3.14) is used to
eliminate the cos?(®) term it follows that

1{dy a
5(-—) + p(y) =

T (5.3.16)

where
() = —2[[b (&) ~ PIBAE) + PIBI(E) + 9]
o R 2
- [r - 2L (B *y‘)] ] . (5.3.17)

The polynomial p(¥) is cubic in the dependent variable
Y(£). Equation (5.3.16) can be thought of as describing
the motion of a particle in a nonlinear potential well
determined by p(). In this viewpoint, the “coordi-
nate” y, giving the position of the particle, is propor-
tional to the deviation of the squared values of the
wave amplitudes from their initial values. We also note
that only the range of ¥ for which p(¥) < 0 has any
physical significance, and 3y/9¢ = 0 when p(y) = 0.
It is possible to show ( Weiland and Wilhelmsson 1977,
Craik 1985) that because not all the s; coefficients in
(3.1.8) have the same sign (which followed from energy
conservation), p(7) will have three real roots denoted
1, P2, and J; satisfying, without loss of generality, the
ordering y, > ¥, > 7. The solution y(£) will, in general,
oscillate between the two largest roots of p(¥).

In terms of these roots, (5.3.16) can be rewritten in
the form

(Je)? =

The solution of (5.3.18) is given by the cnoidal function
sn(*| %) (Abramowitz and Stegun 1964, chapter 17 in
the form

P = (9, = ) sn’[£(5 —P5)' (£ — £o)

=47~ PP =)~ F5). (5.3.18)

+01k1+ 51, (53.19a)

where
E[(J/R $2)/ (1 — P12, (5.3.19b)
=sn”' {[}/($ — $)]'?}, (5.3.19¢)

are the modulus and shift parameters, respectively. The
solution (5.3.19a) is periodic with respect to £ with a
wavelength, denoted A;, given by

27

A =2 A [1 — ksin?(£)]7/2d¢.
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The parameter A; determines the alongshore distance
over which the energy exchange undergoes one com-
plete cycle.

With the solution for y(£) determmed the modulated
amplitudes are given by

bi(§) = £[b}(%0) — H(£)]'?, (5.3.20a)
by(£) = £[b3(&) — $(£)1'?,  (5.3.20b)
by(£) = £[b3(&) — P(£)]'*.  (5.3.20c)

The solution for <I>(£) may be obtained by elimi-
nating b,b,b; cos(®) in (5.3.11) using (5.3.14) and
integrating to yield

é B
() = 0~ oH(E ~ ) + f [T = aHB(n)/2]

X [~bi2%(n) + b3%(m) + b3 (m)ldn. (5.3.21)

Similarly, the individual envelope phases are deter-
mined by

2T — oHb? :
1(8) = @1 (k) - f[ e )(")] dn, (5.3.32a)
2T Hb
<1>2(s>=<1>2(£o>—£[ T )(”” n (5.3.22b)
¢ 12T — cHb?
2:(0) = #u(0) - [ S g, (532200

d. Interactions over a topographic anomaly of finite
alongshore extent

The solution obtained in section 5.c can be used as
a “building block” in understanding orographically
modulated shelf wave interactions that occur over to-
pographic anomalies of finite alongshore extent. The
topographic perturbation that we examine is given by

0, Yo<Y<O
E, Y <Y< Yo
0, —-wo<Y<Y,.

h = (5.4.1)

This topographic perturbation corresponds to a top-
hat anomaly extending over a distance | Y, —.Y;]| in
the alongshore direction (see Fig. 5). Although this
top-hat configuration is extremely crude, it will rather
nicely allow us to draw out the main conclusion we
can make about the model.

There are a couple of remarks we should make about
the anomaly model (5.4.1) before moving on to pre-
senting the solution. Clearly, A4, corresponds to a to-
pographic anomaly possessing an O(¢) amplitude finite
step discontinuity at Y =Y, and Y = Y,, respectively;
see (2.11). Thus, strictly speaking, the topographic
slowly varying ansatz implicit in (2.11) is violated at
these two locations. Formally, therefore, the modulated
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hy(Y)
4&

—]

Lo Y
Y, Yo 0

FIG. 5. The top-hat alongshore topographic
anomaly assumed in section 5.d.

O(1) solutions we present here will correspond to
“outer solutions,” which correctly describe the leading-
order streamfunction everywhere except possibly in two
relatively narrow regions centered at Y = Y, and Y
= Y,, respectively. Because, as it turns out, we can
determine these “outer solutions” in such a manner
so as to satisfy all boundary conditions and the con-
tinuity of pressure and normal mass flux across Y = Y,
and Y = Y,, respectively, the solutions we obtain will
be the correct leading-order asymptotic solutions as ¢
—> 0. However, if one were interested in determining
the complete O(e) streamfunction field, the details of
the transmission of the wave groups across these dis-
continuities plays an important-role in the analysis.
Roughly speaking, the O(¢) problem (2.14) should be
viewed as an inhomogeneous shelf-wave scattering
problem in which it is to be expected that a full spec-
trum of coastally trapped waves will be required in
order to correctly describe the complete scattering and
transmission of energy across.Y = Y, and Y = Y,,
respectively. These additional modes would introduce
small amplitude O(¢) corrections inte the solution.
It is also important to emphasize again that the spe-
cific shelf wave triad and topographic anomaly config-
uration we examine here obviously corresponds to a
rather special set of initial conditions. From the point
of view of wanting to realistically simulate all aspects
of topographically modulated shelf-wave interactions,
one would want to numerically solve the full initial-
value problem for the wave-wave interaction equa-
tions. Clearly, there will be a relatively large number
of possible solutions determined, in part, by the initial
envelope shapes and specific orographic forcing. For
example, in the situation where the initial envelope
shapes have smooth compact support, it is well known
(e.g., Kaupetal. 1979), that, qualitatively, the unforced
solution evolves into a combination of envelope soli-
tons and dispersive waves. If the topographic forcing
in the interaction equations is relatively weak and
smooth, then soliton perturbation theory (e.g., Kaup
and Newell 1978 ) would qualitatively suggest that these
individual envelope solitons would, to leading order,
modulate adiabatically with the possibility of dispersive
wave tails being generated. If the topographic forcing
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in the wave-wave interaction equations is not weak,
then soliton perturbation theory is not naively appro-
priate, The situation being considered here belongs to
the latter configuration in which the topographic
anomaly makes an O(1) contribution to the wave-
wave interaction equations. With respect to an explicit
mathematical characterization of the initial wave en-
velopes assumed here, they are members of the set of
steady or steadily traveling periodic cnoidal wave so-
lutions of the unforced interaction equations.

The solution for the topographically forced inter-
action equations can be obtained as follows. Since we
are working with shelf waves that have negative group
velocities we will impose our “initial” conditions to
the right of the topographic feature, that is, at ¥ = 0.
In each individual Yinterval, Yo < Y, Y, < Y < Yy,
and Y < Y., the solution will be of the form derived
in section 5.c for an appropriately determined shift pa-
rameter Y; and jump parameter H. Since, in general,
the Y, parameter will be different for the individual
regions, the auxiliary independent variable £ used in
the solutions presented in section 5.3 will be different
for the individual Y intervals in (5.4.1). Nevertheless,
the solutions for the envelope amplitude and phase
functions can be made continuous at the Y interval
boundaries (i.e., Yo and Y;) by choosing the initial
values of the b; of the interval just entered, to the final
values of the amplitudes of the region just exited. One
then recomputes the new roots J;, y,, and J; of the
polynomial (5.3.17) with the new initial values of the
b; and topographic parameters. The parameter &, in
(5.3.19a) then determined so the new j satisfies y( &)
= ( at the Y interval boundary point just passed. Also,
at each Y interval boundary point, one must determine
which sign is appropriate for the argument of s» in
(5.3.19a). The correct sign is chosen so that when
the rhs of (5.3.10a) is positive at the boundary point
then b, must be increasing to the left of the boundary
point, and vice versa if the rhs is negative. Forcing b,
to be increasing or decreasing will fix the correct sign
for sn’s argument in (5.3.19a).

For the top-hat anomaly (5.4.1), the parameters and
arguments Yy, £, &, and H needed in the solution will
be given by

Y, =0
§=Y .
mn Yy<Y<(, (5.4.2a)
H=0
=0
Ys=YO
E=Y-Y, ]
_ in Y<Y<Y, (542b)
H=H
=0
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Y=Y,
tE=Y-Y,
H=0
=0

The wavenumbers and frequencies for the resonant
triad used in this calculation are given approximately
by

in YQ = Yl. (542C)

(k1, w1) =(—2.592,0.5292)
(k2, wp) = (1.15, —0.3819)
(k3, ws3) = (1.442, —0.1473)

(5.4.3a)

The cdrresponding group velocities, which are all neg-
ative, are given approximately by

g = —0.02
Cg, = —0.22 (5.4.3b)
g, = —0.08

The interaction coefficients in (5.3.5) and (5.3.6) will
be given approximately by

Ko = —210.8
Ky =22.03 (5.4.3¢c)
K30 = 6.818

The topographic parameter ¢ determined by (5.3.2) is
given approximately by

o = 0.8206, (5.44)
where
pio = 0.7003
uz0 = —0.7003 (5.4.5)
u3o = 0.8687
For this example we will set
Y, = ~1}
. (5.4.6)
Y, =-3

The initial values of the envelope amplitudes b;, and
the phase ®; will be specified at the position ¥ = 0. We
will assume that initially the resonant triad is maxi-
mally interacting, with the initial envelope phases given
by

®,(0)=n/2
$,(0)=0 (5.4.7)
$;(0)=0

The wavelength of the wave-wave interaction (i.e., the
distance Y over which the energy exchange goes
through one complete cycle) is determined by the roots
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of the cubic potential, which in turn depend in part on
the wave initial amplitudes. For the simulation de-
scribed here, we have chosen the initial conditions

b (0)=1.0
b,(0) = 0.0029 } ,
b3(0) = 0.0010

(5.4.8)

for the real amplitudes determined by (5.3.5). These
initial values imply that the interaction nondimen-
siona] wavelength in the absence of alongshore topog-
raphy is about one nondimensional Y unit. Note that
b,(0) is assumed to be relatively large compared to
b,(0) and b3(0). We have chosen these initial condi-
tions because Hsieh and Mysak interpreted the triad
observed by Cutchin and Smith as corresponding to
the interaction of a relatively large amplitude atmo-
spherically generated shelf wave with two relatively
small amplitude shelf waves.

In Fig. 6, we show the energy cycle from Y = 0.0 to
Y = —5.0 in the absence of any alongshore topography
(i.e., H = 0). The relative envelope amplitude mag-
nitudes reflect the energy partition between the mem-
bers of the triad as a function of position along the
coast at a particular moment in time. Since the group
velocity is negative for all members of the triad, it may
be useful to think of the energy as starting at ¥ = 0.0
and progressing to Y = —5.0. We can see that for the
first half of the cycle, for example, —0.5 < Y < 0.0, the
energy is extracted from wave 1 (the wave with the
interaction coefficient with a sign opposite the other

12 ———————
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0.4
0.2

b o
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FIG. 6. Plot of b; versus Y for the initial amplitudes given by (5.4.8)
with no topographic anomaly. Wave 1, wave 2, and wave 3 are de-
noted by the solid, dashed, and dotted lines, respectively.
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FiG. 7a. Plot of b; versus Y for H = 0.5,
Yo=-1.0,and Y, = -3.0.

two) and transferred to waves 1 and 3. For the second
half of the cycle, for example, —0.1 < Y < —0.5, the
process is reversed and the energy is transferred back
to wave 1 from waves 2 and 3. In the absence of any
alongshore topography the flow of energy among the
members of the triad pulsates indefinitely with a fixed
spatial /temporal period.

1.0 . S

0.6}
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0.2 h
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-1.0 I 1 1 1 1 i 1 i
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F1G. 7b. Plot of cos(®) versus Y for the parameter values given
in Fig. 7a. Maximum energy exchange occurs when cos(®) = 0, and
no energy exchange occurs when cos(®) = *1.
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FI1G. 8a. Plot of b; versus Y for a moderate topographic height
of H = 0.75 with Y, and Y, given in Fig. 7a.

In Figure 7 we show how the energy exchange is
modified for a “small” topographic jump parameter
of H = 0.5. In the initial region where the water depth
has not yet changed, —1.0 < Y < 0.0, the energy ex-
change is unforced and is identical to that depicted in
Fig. 6. However, over the region where the water depth
has changed —3.0 < Y < —1.0, the energy partition
has been modified; see Fig. 7a. While energy exchange
still occurs, it does so in a less complete fashion in that
the magnitude of the amplitude of wave 1 never de-
creases to zero while the maximum values of the am-
plitudes of waves 2 and 3 are reduced. Also, the effective
wavelength of energy exchange over the topographic
feature has been increased to about 1.2 units. Once the
topographic feature has been traversed (Y < —3.0), the
energy exchange nearly returns to its pretopographic
level, although the wavelength of interaction is greatly
reduced. That the energy exchange nearly returns to
its pretopographic level in the post-topographic region
is not, however, a property that holds generally but
depends on the particular length and height of the to-
pographic feature.

It follows from (5.3.5) and (5.3.6) that the topo-
graphically induced dephasing and resulting reduction
in the efficiency of the energy exchange is determined
by the magnitude of cos[®(Y)] [or equivalently
sin(®)]. If cos(®) = 0, it follows that maximum energy
exchange is occurring. If |cos(®)| = 1, then there is
no energy exchange. Figure 7b is a plot of cos(®) versus
Y for H = 0.5. In the initial no-topography region —1.0
< Y < 0.0, we have cos(®) = 0 and hence maximum
energy exchange is occurring. However, over the region
of nonzero topography —3.0 < Y < —1.0, cos(®) begins
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FIG. 8b. Plot of cos(®) versus Y for the parameter values given
in Fig. 8a. Maximum energy exchange occurs when cos(®) = 0, and
no energy exchange occurs when cos(®) = *1.

to fluctuate between the value of +1.0 and —1.0. This
change in ® is caused by the forcing due to the nonzero
jump parameter (H # 0). Moreover, we can see that
even after the topography has been traversed cos(®(Y'))
# 0 so that the wave—wave energy exchange remains
permanently suppressed. B

One can see how the magnitude of H affects the
energy exchange over the topography and even in the
posttopographic region by looking at Fig. 8, where H
is increased to the value.of 0.75. We can see in Fig. 8a
that over the topographic feature, the increase in H
further decreases the wave~wave energy exchange and
that the wavelength of the interaction is increased to
about 1.4 nondimensional units. Here, again, we see
in Fig. 8b that in the post-topographic region the wave-
wave energy exchange remains suppressed.

If we backtrack through transformations (5.3.4),
(2.31), and (2.15), we can write the expressions for
the individual streamfunctions in the form

@ = by(ey)d(x) expli(8,
+ wihi (Y)/cg + 1(Y))] + cc.

) = by(ey)$(x) expli(8;
+ uahi(Y)/ ¢, + $2(Y))] + coc.

¥5” = by(cy)$(x) expli(fs
+ w3, (Y)/ g, + ®3(Y))] + coc. |

where 0;, (j = 1, 2, 3), is the “fast” phase variable
given by k;¥ — w;t. If we think of (5.4.9) as a plane
wave solution, as in WKB theory, we can identify the
total phase of the jth wave as

L, (5.4.9)
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0; =0, — wh(Y)/cs; + ®(Y), (5.4.10)
from which we can identify in turn the wavenumber
denoted by «;(¢y), as given by
k; = 80;/dy

= k; + e[0%;/9Y — p;,h1(Y)/c,] (5.4.11)

for j = 1, 2, and 3. If we now form the quantity «,
+ ko + k3, it follows, upon using the resonance con-
ditions and the definition of #(Y'), that
3
Z Kj = e‘I)y.

j=1

(5.4.12)

Thus, the resonance condition applied to the complete
WKB wavenumber is no longer satisfied if y # 0. We
can interpret e®y in (5.4.12) as a topographically in-
duced wavenumber mismatch. -

6. Summary and discussion

In this paper, we have attempted to develop a theory
to describe the Ekman damping and topographic mod-
ulation of resonantly interacting continental shelf
waves. The resonant interaction equations were derived
by using a multiple-scale asymptotic expansion in
which it was assumed that 1) the e-folding time due
to the Ekman friction was comparable to the time of
energy transfer due to the nonlinear resonant inter-
action, and that 2) the alongshore topography varied
over the same length scale as the energy exchange pro-
cess. This expansion resulted in a set of evolution
equations for the wave packet amplitudes including
the effects of alongshore topography and bottom fric-
tion.

The damping coefficient for each wave in the gov-
erning equations was found to be inversely proportional
to the phase speed. The very short shelf waves (lengths
~ 100-140 km), predicted by the triad theory for the
Oregon shelf would have very small phase speeds and
would thus be quickly dissipated by bottom friction as
suggested by Hsieh and Mysak.

We have shown that in the absence of damping the
forced wave interaction equations conserved energy.
To isolate on the one hand the balance between dis-
sipation and nonlinear energy exchange, and on the
other the effect of topographic forcing on the resonant
interactions, we looked at the purely temporal and the
steady-state problems separately.

The purely temporal problem with bottom friction,

in the absence of alongshore topographic variation was
numerically solved. Because estimates for the vertical
eddy viscosity vary considerably, it is difficult to assess
the exact effect of bottom friction. For lower estimates
of the friction parameter, the frictional decay time scale
is long enough that energy exchange due to wave—wave
interactions may still be of importance. For the upper
estimates of Ekman friction, dissipative losses over-
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shadow any energy exchange due to resonant wave-
wave interactions.

An exact nonlinear solution to the steady-state wave~
wave interaction equations in the absence of bottom
friction and forced by a linearly varying topographic
coefficient was presented. These solutions were ex-
pressed in terms of Jacobi elliptic functions. In section
5.d we showed how the solutions of 5.c can be pieced
together to construct a solution for a resonant triad of
waves forced by a piecewise constant topographic
bump. Even though this topographic anomaly is very
crude, the solutions were able to describe, at least qual-
itatively, the mechanism by which topographic forcing
acts to ““dephase” a resonant triad.

The effect of alongshore topography variation is to
inhibit nonlinear energy exchange between the mem-
bers of the triad. We have shown that the effect of to-
pographic forcing is to induce a dephasing of the res-
onant triad which is then permanently maintained by
the wave-wave interaction. The dephasing can be in-
terpreted as a small amplitude slow-varying oscillation
in the alongshore wavenumbers. The individual en-
velope phase functions will not, in general, satisfy the
triad resonance conditions in the presence of topog-
raphy or after the topographic feature has been tra-
versed, and this in turn can be interpreted as responsible
for the suppression of the energy exchange between the
waves. Another important effect is that the wavelength
or period of the exchange cycle is modified in both the
topographic region and the posttopographic region.
The degree to which the energy exchange is reduced
depends on the height of the topographic feature, the
initial envelope amplitudes and the length of the to-
pographic feature.

Several shortcomings remain to our model. Strati-
fication and atmospheric forcing have yet to be in-
cluded in the model. Atmospheric forcing in particular,
must probably be included to compensate for the large
dissipation in energy if resonant interactions are to be
expected to explain the transfer of a significant amount
of energy to the other members of the triad. One im-
portant drawback is that the interactions that we have
examined have been in the main steady. As a result
we have not examined in any real detail the initial-
value problem for the topographically forced interac-
tions of continental shelf waves. This would be es-
pecially interesting since the resonant triad used by

- Hsieh and Mysak (1980) was inherently time depen-

dent; that is, the group velocities were not all of the
same in sign. A numerical study with a more realistic
topographic configuration would also be very inter-
esting.
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