

University of Alberta

Search for Microscopic Black Holes in Multijet Final States with the
ATLAS Detector using 8 TeV Proton-Proton Collisions
at the Large Hadron Collider

by

Asif Saddique

A thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Experimental High Energy Physics

Department of Physics

©Asif Saddique
Fall 2014
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.

Dedicated
To
Professor Riazuddin (RIP),
the father of physics in Pakistan,
a great physicist and human being.

Abstract

Microscopic black holes are expected to produce a high multiplicity of Standard Model (SM) particles having large transverse momenta in the final state. In this thesis, a search for microscopic black holes in multijet final states with the ATLAS 2012 data using 8 TeV centre of mass energy of proton-proton collisions at the Large Hadron Collider is performed in a data sample corresponding to an integrated luminosity of 20.3 fb^{-1} . The search is simplified to multijet final states because most of the expected SM particles produced from black hole decay would lead to hadronic jets. The data events with high-transverse momenta have been analysed for different exclusive jet multiplicities, i.e. 2, 3, ..., 7, and inclusive jet multiplicities, i.e. $\geq 3, 4, \dots, 7$. In this multijet analysis, Quantum Chromodynamics (QCD) multijet production is the main background. For all the multijet final states, the data distributions for the sum of jet transverse momenta ($H_T = \sum p_T$) in an event have been observed to be consistent with QCD expectations. For inclusive multijet final states, model-independent and model-dependent exclusion limits at a 95% confidence level are set on the production of new physics and non-rotating black holes, respectively. The model-independent upper limit on cross section times acceptance times efficiency is 0.29 fb to 0.14 fb for jet multiplicities ≥ 3 to ≥ 7 for $H_T > 4.0 \text{ TeV}$. The model-dependent lower limits on minimum black hole mass are set for different non-rotating black hole models.

Acknowledgements

In the name of Allah, the Most Gracious, the Ever Merciful. His kind mercy made it possible to finish my thesis.

My deepest thanks and gratitude go to my supervisor Dr. Douglas M. Gingrich for his support, patience, guidance and providing me an excellent research environment. His flexible attitude always provided a space to work independently, and his professional skills allowed for timely guidance for me. I would also like to thank all of the CPP faculty and staff members for creating a comfortable working atmosphere. I also appreciate all the facilities and the wonderful learning environment provided by the Department of Physics at the University of Alberta.

Because of the help and great support of kind people around me, the task of finishing my thesis became easier and achievable. I would especially thank my senior colleague and postdoctoral fellow Dr. Francesc Vives Vaque, whose polite and encouraging attitude always helped me a lot to boost this work. Besides work, my wife Fauzia Sadiq and I always enjoyed family gatherings with his family.

I would like to acknowledge my current and ex-fellows in the ATLAS Alberta group: Patrick, Andrew, Samina, Nooshin, Kingsley and especially Aatif Imtiaz Butt and Dr. Halasya Siva Subramania for having useful discussions with me regarding this work.

I would like to thank my ex-supervisor Dr. James Pinfold for his support and supervision in the initial phase of my PhD. I also thank my ex-colleagues Long Zhang and Dr. Nitesh Soni for providing me help to train myself in doing data analysis. I, and my wife also, have a lot of good memories of spending time with Nitesh's family.

How can I forget one of impressive personalities whom I met in Canada, Logan Sibley. I learned one thing from him – how to sacrifice your time to help people around you. I also thank him for spending his time for doing a careful proof reading of this thesis.

I am thankful to all of my family friends, Atif, Asad, Omer, Zawar, Jamil, Nadia, Amna and Tayyaba, who made our stay enjoyable in Canada. We have had several trips and gatherings during my studies in Canada. Thanks for your wonderful company.

I would love to acknowledge my beloved wife for her caring attitude and moral support in all aspects of my life. She is a wonderful life partner. I would also deeply thank my mother, father (RIP), brothers and sisters for praying and encouraging me to move forward in my life, especially my mother, who always remained worried and loving for me.

Table of Contents

1	Introduction	1
2	Standard Model Physics and Beyond	5
2.1	Introduction	5
2.2	The Standard Model of Particle Physics	6
2.2.1	Electroweak Theory and Higgs Mechanism	8
2.2.2	Limitations of the Standard Model	11
2.3	Physics Beyond the Standard Model	12
2.3.1	Theories of Extra Dimensions	12
2.4	Microscopic Black Hole Physics	18
2.4.1	Production of Black Holes	18
2.4.2	Production Cross Section of Black Holes	21
2.4.3	The Nature of Black Holes	23
2.4.4	Decay of Black Holes	26
2.5	Microscopic Black Holes at the LHC	31
2.5.1	Cross Section and Extra Dimensions	31
2.5.2	Hawking Temperature	32
2.5.3	Measurement of Mass	32
2.5.4	Missing Energy in Black Hole Searches	33
2.5.5	Current Limits on M_D	34
2.5.6	Decay of Black Holes at the LHC	35
3	The ATLAS Detector at the Large Hadron Collider	37
3.1	Introduction	37
3.2	The Large Hadron Collider	37
3.3	The ATLAS Detector	38
3.4	Inner Detector	40
3.5	Calorimeters	41
3.5.1	Liquid Argon Calorimeter	42
3.5.2	Hadronic Calorimeter	43

3.6	Muon Spectrometers	44
3.7	Forward Detectors	45
3.8	Luminosity Measurement	46
3.9	Triggers and Data Acquisition	48
4	Analysis	49
4.1	Introduction	49
4.2	Monte Carlo Simulations	50
4.2.1	QCD Background Samples	51
4.3	Trigger	52
4.4	Data Selection	54
4.4.1	Event Selection	57
4.4.2	Jet Selection	57
4.5	Data Characteristics	58
4.5.1	The H_T Distributions	61
4.5.2	Shape Invariance of Kinematic Distributions	61
4.5.3	The Signal and the Control Regions	73
4.5.4	The Background Estimation	74
4.5.5	Correction to the Background Estimation	76
4.6	Systematic Uncertainties	80
4.6.1	Corrections to Non-Invariance	83
4.6.2	Choice of Normalisation Region	90
4.6.3	Jet Energy Uncertainties	91
4.6.4	Summary of Systematics	95
4.7	Exclusion Limits	96
4.7.1	Model-Independent Limits	99
4.7.2	Model-Dependent Limits	100
5	Summary	110
	Appendices	113
A	Other Contribution to the ATLAS Experiment	114
B	Trigger Study	116
C	Event Selection	119
C.1	Event Cleaning	119
C.1.1	Data Quality	119
C.1.2	Bad and Corrupt Events	120

C.1.3	Vertex Requirement	120
C.1.4	Jet Quality	120
C.1.5	Analysis Requirements	121
C.2	CutFlow	122
D	Jet Kinematic Distributions	124
E	Pileup Study	128
E.0.1	Number of Primary Vertices (NPV)	128
E.0.2	Average Interactions per Beam Crossing (μ)	131
E.0.3	Choice of jet $p_T > 50$ GeV	131

List of Tables

2.1	$x_{\min} = E/M_D$ as a function of n extra dimensions.	20
2.2	Number of degrees of freedom (dof) of the Standard Model particles.	28
2.3	Relative emissivities per degree of freedom for SM particles.	29
2.4	Probability of emission of SM particles.	30
2.5	Lower limits on M_D at the 95 % confidence level.	35
3.1	Rapidities of the ATLAS forward detectors.	46
4.1	Specifications of PYTHIA8 dijet MC weighted samples.	52
4.2	Specifications of HERWIG++ dijet MC weighted samples.	53
4.3	Comparison of PYTHIA8 and HERWIG++ QCD MCs.	53
4.4	The parameters extracted from the straight line fits to the H_T ratios, in the normalisation region, with respect to the jet multiplicity $N = 2$, for the data and dijet MCs.	72
4.5	The values of fit parameters (p_i) along with errors (Δp_i) for the function $f(x) = \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3 \ln x}}$ fitted to the dijet H_T distribution for the ATLAS 2012 data.	75
4.6	Number of the data and background entries, in the signal region, are shown as a function of H_T^{\min} , for the jet multiplicity $N \geq 3$. The MC-based correction factors are also shown with their corresponding uncertainties.	85
4.7	Number of the data and background entries, in the signal region, are shown as a function of H_T^{\min} , for the jet multiplicity $N \geq 4$. The MC-based correction factors are also shown with their corresponding uncertainties.	86
4.8	Number of the data and background entries, in the signal region, are shown as a function of H_T^{\min} , for the jet multiplicity $N \geq 5$. The MC-based correction factors are also shown with their corresponding uncertainties.	87

4.9	Number of the data and background entries, in the signal region, are shown as a function of H_T^{\min} , for the jet multiplicity $N \geq 6$. The MC-based correction factors are also shown with their corresponding uncertainties.	88
4.10	Number of the data and background entries, in the signal region, are shown as a function of H_T^{\min} , for the jet multiplicity $N \geq 7$. The MC-based correction factors are also shown with their corresponding uncertainties.	89
4.11	The uncertainty due to the choice of the normalisation region.	92
4.12	Model-independent observed and expected upper limits on cross section times acceptance times efficiency.	102
4.13	A comparison of model-independent upper limits at the 95% confidence level on cross section times acceptance times efficiency between the CMS and ATLAS results.	104
4.14	A comparison of model-dependent lower limits at the 95% confidence level on minimum black hole mass between the CMS and ATLAS results.	109
C.1	Cut flow for the data and dijet MCs.	122
C.2	Cut flow for the the data-periods.	123
E.1	Average jet multiplicity, as a function of jet p_T and NPV, for the data.	129
E.2	Average jet multiplicity, as a function of jet p_T and μ , for the data.	132

List of Figures

2.1	Two (3+1)-spacetime branes embedded in a five dimensional spacetime.	17
3.1	The maximum instantaneous luminosity and the cumulative integrated luminosity delivered by the LHC per day and recorded by ATLAS per day for pp collisions at 8 TeV centre of mass energy.	38
3.2	Schematic view of the ATLAS detector.	39
3.3	Cut-away view of ATLAS Inner Detector (ID).	41
3.4	The ATLAS calorimeters.	42
3.5	Drawing of barrel module of the LAr calorimeter.	43
3.6	Layout of Muon Spectrometer.	46
4.1	The EF_j170_a4tchad_ht700 trigger efficiency as a function of p_T and H_T	55
4.2	The EF_j170_a4tchad_ht700 trigger efficiency.	56
4.3	The jet p_T distributions for the exclusive jet multiplicities, $N = 2, 3, \dots, 7$, for the data and dijet MCs.	59
4.4	The jet η distributions of for the exclusive multiplicities, $N = 2, 3, \dots, 7$, for the data and dijet MCs.	60
4.5	The H_T distributions for the exclusive jet multiplicity cases, $N = 2, 3, \dots, 7$, for the data and dijet MCs.	62
4.6	The H_T distributions for the inclusive jet multiplicity cases, $N \geq 2, 3, \dots, 7$, for the data and dijet MCs.	63
4.7	The H_T ratios of the exclusive jet multiplicities $N = 3, 4, \dots, 7$ to the jet multiplicity $N = 2$, for the data and dijet MCs.	65
4.8	The H_T ratios of the inclusive jet multiplicities $N \geq 3, 4, \dots, 7$ to the jet multiplicity $N = 2$, for the data and dijet MCs.	66
4.9	The H_T ratios of the exclusive jet multiplicities $N = 3, 4, \dots, 7$ to the jet multiplicity $N = 2$, in the normalisation region, for the data and dijet MCs.	68

4.10	The H_T ratios of the inclusive jet multiplicities $N \geq 3, 4, \dots, 7$ to the jet multiplicity $N = 2$, in the normalisation region, for the data and dijet MCs.	69
4.11	The slopes extracted from the H_T ratios with respect to the jet multiplicity $N = 2$, in the normalisation region, for the data and dijet MCs.	70
4.12	The slopes extracted from the H_T ratios with respect to the jet multiplicity $N = 3$, in the normalisation region, for the data and dijet MCs.	71
4.13	The background estimation for the H_T distributions with 3σ uncertainty, for the exclusive jet multiplicities $N = 2, 3, \dots, 7$. .	77
4.14	The background estimation for the H_T distributions with 3σ uncertainty, for the inclusive jet multiplicities $N \geq 2, 3, \dots, 7$. .	78
4.15	The background estimations from the uncorrected and corrected fits, in the signal region, for the exclusive jet multiplicities $N = 3, 4, \dots, 7$	81
4.16	The background estimations from the uncorrected and corrected fits, in the signal region, for the inclusive jet multiplicities $N \geq 3, 4, \dots, 7$	82
4.17	The gaussian distribution of ΔJER_i corresponding to different H_T^{\min} , for the jet multiplicities $N \geq 3$	94
4.18	The H_T^{\min} distributions for the data, and the predicted background along with total uncertainty.	97
4.19	The H_T^{\min} distributions for the data, and the predicted background along with total uncertainty.	98
4.20	Model-independent limits on upper cross section times acceptance times efficiency at the 95% confidence level, as a function of H_T^{\min}	101
4.21	Model-independent limits on upper cross section times acceptance times efficiency at the 95% confidence level, as a function of inclusive jet multiplicity.	103
4.22	CHARYBDIS2black hole samples for different numbers of extra dimensions n	105
4.23	CHARYBDIS2black hole samples for different black hole mass thresholds M_{th}	106
4.24	The upper limit on the cross section at the 95% confidence level, as a function of M_D	107

4.25 The upper limit on cross section at the 95% confidence level, as a function of M_{th}	108
B.1 The EF_j170_a4tchad_ht700 trigger efficiency as a function of H_T and jet multiplicity.	117
B.2 The EF_j170_a4tchad_ht700 trigger efficiency as a function of H_T , μ and NPV.	118
D.1 The jet ϕ distributions, for the exclusive jet multiplicities $N = 2, 3, \dots, 7$, for the data and dijet MCs.	125
D.2 The first leading jet p_T distributions, for the exclusive jet multiplicities $N = 2, 3, \dots, 7$, for the data and dijet MCs. . . .	126
D.3 The second leading jet p_T distributions, for the exclusive jet multiplicities $N = 2, 3, \dots, 7$, for the data and the dijet MCs.	127
E.1 Average jet multiplicity, as a function of NPV and jet p_T , for the data.	130
E.2 Average jet multiplicity, as a function of μ and jet p_T , for the data.	132
E.3 The H_T ratios, as a function of NPV, for the data.	134
E.4 The H_T ratios, as a function of μ , for the data.	134

List of Abbreviations and Symbols

ALFA	Absolute Luminosity For ATLAS
ALICE	A Large Ion Collider Experiment
ATLAS	A Toroidal LHC Apparatus
BCM	Beam Condition Monitor
BX	Bunch Crossing
CDF	Collider Detector at Fermilab
CERN	European Organization for Nuclear Research
CF	Correction Factor
CL	Confidence Level
CMS	Compact Muon Solenoid
CR	Control Region
CTEQ	Coordinated Theoretical-Experimental project on QCD
D0	D-Zero Experiment at Fermilab
DSID	Data Set IDentifier
EF	Event Filter
EM	ElectroMagnetic
FCAL	Forward CALorimeter
GRL	Good Run List
HEC	Hadronic Endcap Calorimeter
ID	Inner Detector
IP	Interaction Point
JER	Jet Energy Resolution
JES	Jet Energy Scale
LAr	Liquid Argon

LHC	Large Hadron Collider
LO	Leading Order
LUCID	LUMinosity measurement using Cerenkov Integrating Detector
MBTS	Minimum Bias Trigger Scintillator
MC	Monte Carlo
MDT	Muon Drift Tube
MSSM	Minimal Supersymmetric Standard Model
NLO	Next to Leading Order
NMSSM	Next to Minimal Supersymmetric Standard Model
NNLO	Next to Next to Leading Order
NPV	Number of Primary Vertices
NR	Normalization Region
PDF	Parton Distribution Function
QCD	Quantum ChromoDynamics
QED	Quantum ElectroDynamics
QFT	Quantum Field Theory
RMS	Root Mean Square
ROI	Region Of Interest
RPC	Resistive Plate Chamber
SCT	Silicon Central Tracker
SM	Standard Model
SR	Signal Region
SUSY	Supersymmetry
TGC	Thin Gap Chamber
TRT	Transition Radiation Tracker
ZDC	Zero Degree Calorimeter

n	Number of extra spatial dimensions
D	Sum of four usual and number of extra dimensions, i.e. $D = 4 + n$
M_{EW}	Electroweak scale
M_P	Planck scale (in 4 D)
M_D	Multidimensional or true Planck scale
M_{BH}	Black hole mass
\mathcal{R}	Size of extra dimension
$\mathcal{A}(\omega)$	Grey body factor of a black hole
l_P	Planck length corresponding to M_P
l_D	Planck length corresponding to M_D
r_H	Event horizon radius of a black hole
p_T	Transverse momentum of a jet
H_T	Sum of the jet transverse momenta
N	Number of jets in the final state or jet multiplicity
η	Pseudorapidity
ϕ	Azimuthal angle around the beam axis
μ	Number of interactions per bunch crossing
σ	Total Cross section

₁ Chapter 1

₂ Introduction

₃ The large difference between the electroweak ($M_{EW} \sim 0.1$ TeV¹) and the
₄ Planck scales ($M_P \sim 10^{16}$ TeV) is known as the hierarchy problem. In other
₅ words, gravity appears to be very weak as compared to the SM forces. Tech-
₆ nically, the problem can also be expressed in terms of the large difference
₇ between the physical Higgs boson mass and the Planck mass. The physical
₈ Higgs boson mass lies near the electroweak scale, which is much smaller
₉ than the Planck mass. If the SM is valid up to the Planck scale then the
₁₀ bare mass of the Higgs boson has a natural value of order of the Planck
₁₁ scale. In this case, an incredible fine tuning ($\sim 10^{17}$) of the cancellation
₁₂ of the radiative corrections and the bare Higgs boson mass is required to
₁₃ obtain a low value for the physical Higgs boson mass to the order of the
₁₄ electroweak scale. The hierarchy problem can also be solved if new gravi-
₁₅ tational physics exists near the electroweak scale. In this scenario, a new
₁₆ fundamental Planck scale of the order of the electroweak scale is defined.
₁₇ The contribution from the radiative corrections to the bare Higgs boson
₁₈ mass is much smaller than the previous case. Hence a large tuning of the
₁₉ corrections and the bare Higgs boson mass is not required to solve the
₂₀ hierarchy problem.

¹ It is assumed $\hbar = c = 1$ throughout this thesis.

21 The production of microscopic black holes in the high energy proton-
22 proton (pp) collisions at the LHC is one of the most exciting predictions of
23 low-scale quantum gravity models [1–5]. These models are motivated by the
24 hierarchy problem and explain the weakness of gravity as compared to the
25 other SM forces. According to some of the low-scale gravity models [1–3],
26 gravity is the only force that propagates in the extra dimensions (n) while
27 the other forces are confined to the four observed dimensions. Therefore,
28 the apparent gravity measured in the four dimensional physical world cor-
29 responding to the large Planck scale M_P is always much weaker than the
30 actual gravity measured in $D = 4 + n$ dimensions corresponding to the true
31 Planck scale (M_D). The low-scale (\sim TeV) gravity would appear strong
32 enough to be compared to the other SM forces and, as a consequence, the
33 formation of the massive and extra-dimensional objects such as microscopic
34 black holes may occur at the LHC.

35 In this thesis, a microscopic black hole search based on the predic-
36 tions of low-scale gravity models in high energy pp collisions with 8 TeV
37 centre of mass energy (\sqrt{s}) at the LHC collected by the ATLAS detector
38 in the year 2012 will be presented. The data correspond to a total inte-
39 grated luminosity of 20.3 fb^{-1} with a luminosity uncertainty of 2.8%². The
40 low-scale gravity models predict that short-lived ($\sim 10^{-27} \text{ sec}$) microscopic
41 black holes would decay in the detectors and leave some distinguishable
42 signature such as events with high multiplicities (number of particles in
43 the final states) and high transverse momenta (p_T). The black hole decay
44 produces particles primarily according to the SM degrees of freedom (num-
45 ber of charge, spin, flavour and color states), which mainly leads to jets
46 of hadrons in the final states. Therefore, our search for microscopic black
47 holes is focussed on multijet final states. Observations of such multijet final

² The uncertainty in luminosity for the ATLAS 2012 data is derived by using the same method adopted for the 2011 ATLAS data, which is shown in Ref. [6].

48 states having high p_T may provide valuable information about the nature of
49 black holes, the dimensionality of space-time and the fundamental Planck
50 scale.

51 The main variable chosen for this study is H_T , the scalar sum of
52 p_T of jets in an event. The H_T distributions are expected to have the
53 same shape for different jet multiplicities for the main QCD background
54 in this study [7–10]. This shape invariance with multiplicity is the key
55 assumption of this analysis used to estimate the QCD background for the
56 expected microscopic black hole signals at the LHC.

57 In chapter 2, SM physics and motivations for the physics beyond
58 the SM are discussed. The theories with extra dimensions are important
59 candidates for the potential extension of the SM, and predict the produc-
60 tion of microscopic black holes at the LHC. Since a search for microscopic
61 black holes at the LHC is the main scope of this thesis, microscopic black
62 hole physics is briefly described along with some practical implications for
63 observing them at the LHC.

64 Chapter 3 is dedicated to the description of the LHC and the ATLAS
65 detector at the CERN. Various sub-detectors of the ATLAS detector are
66 discussed according to their functionality, importance and use in this study.
67 The trigger and the data collection system of the ATLAS detector are also
68 discussed at the end of chapter 3.

69 Chapter 4 presents the main analysis, illustrating the necessary
70 tools, assumptions, procedure and results of the study for the search of
71 microscopic black holes in multijet final states of the ATLAS 2012 dataset.
72 The data used in the analysis are studied for different jet multiplicities
73 with the assumption of H_T shape invariance with jet multiplicity for QCD
74 events, which is directly determined from the data with corrections due to
75 the effects of non-invariance derived from MC simulations. A summary of

76 the study will be made by showing model-independent limits on the pro-
77 duction of new physics and model-dependent limits on the production of
78 microscopic black holes. The overall summary of the analysis is discussed
79 in chapter 5. In addition to the primary analysis, my other contributions
80 to the ATLAS experiment are described in appendix A.

⁸¹ Chapter 2

⁸² Standard Model Physics and Beyond

⁸³ 2.1 Introduction

⁸⁴ The SM is the most established theoretical framework of particle physics.
⁸⁵ Many modern particle detectors, for example ATLAS and CMS at the LHC
⁸⁶ have not found any evidence against the foundations of the SM. This theory
⁸⁷ has enjoyed many major experimental successes, like the discovery of W^\pm
⁸⁸ and Z^0 bosons, the top quark, and now the discovery of Higgs boson.

⁸⁹ The SM is not a “theory of everything” because it neither incorpo-
⁹⁰ rates gravity nor does it explain many open questions, for example, why the
⁹¹ weak force is 10^{32} times stronger than the gravitational force, the matter-
⁹² antimatter asymmetry, the nature of dark matter and dark energy, the
⁹³ strong CP problem and neutrino oscillations. These are the primary rea-
⁹⁴ sons to build theoretical models beyond the SM of particle physics.

⁹⁵ In this chapter, a brief introduction to the SM and its major limita-
⁹⁶ tions will be described along with some theories beyond the SM. There are
⁹⁷ many possible extensions of the SM and the theory of large extra dimen-
⁹⁸ sions is one of the important candidates. The production of microscopic
⁹⁹ black holes is an important consequence of the theory of large extra dimen-
¹⁰⁰ sions, which is the model used in this thesis. The physics of microscopic
¹⁰¹ black holes will be discussed by describing their production, nature and de-
¹⁰² cay. In the last section of this chapter, the observables that might show the

₁₀₃ possible signatures of microscopic black holes at the LHC will be described.

₁₀₄ 2.2 The Standard Model of Particle Physics

₁₀₅ The SM of particle physics is the theory that describes the role of the fun-
₁₀₆ damental particles and interactions between them. All the known matter is
₁₀₇ composed of particles from the SM. There are two types of particles in the
₁₀₈ SM, the fundamental fermions (leptons, quarks and their antiparticles) and
₁₀₉ the fundamental bosons (gauge bosons and the Higgs boson). The fermions
₁₁₀ are half-integer spin particles, whereas bosons are integer spin particles.
₁₁₁ There are six leptons classified in three generations. The electron (e) and
₁₁₂ the electron neutrino (ν_e) are in the first generation, the muon (μ) and
₁₁₃ the muon neutrino (ν_μ) are in the second generation and the tau (τ) and
₁₁₄ the tau neutrino (ν_τ) make the third generation. Similarly, there are six
₁₁₅ quarks in three generations, up (u) and down (d) in the first generation,
₁₁₆ strange (s) and charm (c) in the second generation and bottom (b) and
₁₁₇ top (t) in the third generation. Each quark can have three colours, red (r),
₁₁₈ green (g) and blue (b), but no free colour charge exists in nature at long
₁₁₉ distances. Except for the special case of the top quark¹, quarks only appear
₁₂₀ in bound states called hadrons like the proton (uud) and pion ($u\bar{d}$).

₁₂₁ There are four fundamental interactions in nature: the electromag-
₁₂₂ netic, the weak, the gravitational and the strong force. Every interaction
₁₂₃ has mediators: the photon for the electromagnetic force, two W 's and a Z
₁₂₄ boson for the weak force, eight gluons for the strong force and maybe the
₁₂₅ graviton for gravity. The gluons themselves carry colour and anti-colour
₁₂₆ and therefore do not exist as isolated particles, but they can exist within
₁₂₇ hadrons or in colourless combinations (glueballs). Although the SM does
₁₂₈ not explain gravity, it has incorporated the other known forces into a sin-

¹ The mean lifetime of top quark is predicted to be 5×10^{-25} s [11], which is shorter than the timescale for strong interactions, and therefore it does not form hadrons.

gle model. This model has achieved many experimental successes over the years and provided significant predictions, such as the existence of the top quark, and the masses of the weak force carriers.

The SM forces are governed by three gauge theories, Quantum Electrodynamics (QED), Quantum Chromodynamics (QCD), and Electroweak interactions from the Glashow-Weinberg-Salam model. The Standard Model is a gauge theory based on the product group $SU_C(3) \times SU_L(2) \times U_Y(1)$ associated with the colour (C), weak and hypercharge (Y) symmetries. The subscript L indicates that the charged weak interaction involves couplings only to the chiral left-handed component of the fermion. In the SM, all the gauge theories are required to be invariant under global and local gauge transformations.

QED is an abelian and renormalisable gauge theory with symmetry group $U(1)$. This theory describes the interactions between spin-1/2 charged particles, the electromagnetic interactions. The theory provides a description of the interactions between two charged particles by the exchange of a field quantum, the photon.

QCD is a non-abelian and renormalisable gauge theory based on $SU(3)$ group that describes the interaction of quarks via gluons. The non-abelian nature of the $SU(3)$ group results in self interaction terms of gluons generating three and four-gluon vertices in the theory, which leads to a strong coupling, large at low energies and small at high energies. As a consequence QCD has two important features, confinement and asymptotic freedom. According to confinement, the quarks generally are confined in hadrons and an infinite amount of energy is required to separate a quark to infinity from its hadron. For example, if the quark and antiquark move far enough apart in a meson, then field energy increases to produce two new mesons instead of creating two free quarks. According to asymptotic

₁₅₇ freedom, the strength of strong coupling is small at very small distances
₁₅₈ such that quarks and gluons interact weakly and behave as free.

₁₅₉ Electroweak theory is a unified description of the electromagnetic
₁₆₀ and weak interactions. The massive gauge bosons are the mediators of the
₁₆₁ weak force. The fermions (leptons and quarks) and the gauge bosons are
₁₆₂ required to be massless in gauge theories. The massive leptons and quarks,
₁₆₃ and W^\pm and Z gauge bosons, are accommodated in the gauge theories by
₁₆₄ the Higgs mechanism. Accordingly the local symmetry of the gauge group
₁₆₅ $SU_L(2) \times U_Y(1)$ is spontaneously broken and a Higgs field is generated that
₁₆₆ interacts with other fields to produce not only the massive gauge bosons,
₁₆₇ but also the masses of leptons and quarks. The mechanism also postulates
₁₆₈ the existence of a massive scalar particle known as the Higgs boson.

₁₆₉ 2.2.1 Electroweak Theory and Higgs Mechanism

₁₇₀ The electroweak gauge theory is the unified description of electromag-
₁₇₁ netic and weak interactions under the gauge group $SU_L(2) \times U_Y(1)$. The
₁₇₂ electroweak Lagrangian density can be written as a combination of two
₁₇₃ parts [12]

$$\mathcal{L}_{EW} = \mathcal{L}_{symm} + \mathcal{L}_{Higgs}. \quad (2.1)$$

₁₇₄ The first part of the Lagrangian density (\mathcal{L}_{symm}) involves only the gauge
₁₇₅ bosons and interactions of all fermions (including quarks and leptons). The
₁₇₆ Higgs part of the Lagrangian density (\mathcal{L}_{Higgs}) is for a neutral scalar field (ϕ)
₁₇₇ and its interaction with the fermionic field (ψ), can be written as

$$\mathcal{L}_{Higgs} = (D_\mu \phi)^\dagger (D_\mu \phi) - V(\phi^\dagger \phi) - \bar{\psi}_L \Gamma \psi_R \phi - \bar{\psi}_R \Gamma^\dagger \psi_L \phi, \quad (2.2)$$

₁₇₈ where Γ , include all the coupling constants, are the 3×3 diagonal matrices²
₁₇₉ that make the Yukawa couplings invariant under the Lorentz and gauge

² The diagonal elements of a Γ matrix provide three coupling constants to the three generations of fermions.

groups, and μ is a four vector index, i.e., $\mu = 0, 1, 2, 3$. D_μ is the covariant derivative, which will be described later in this section. In the minimal SM, all the left-handed fermionic fields (ψ_L) are doublets and right-handed fermionic fields (ψ_R) are singlets. A doublet scalar field ϕ is considered in order to generate fermion masses. Equation (2.2) is further divided into two parts, the pure scalar and Yukawa interaction Lagrangian densities

$$\mathcal{L}_{Higgs} = \mathcal{L}_\phi + \mathcal{L}_{Yukawa}. \quad (2.3)$$

The Yukawa interaction part is

$$\mathcal{L}_{Yukawa} = -\bar{\psi}_L \Gamma \psi_R \phi - \bar{\psi}_R \Gamma^\dagger \psi_L \phi. \quad (2.4)$$

The scalar part of equation (2.2) can be written as

$$\mathcal{L}_\phi = (D_\mu \phi)^\dagger (D_\mu \phi) - V(\phi^\dagger \phi). \quad (2.5)$$

The potential term $V(\phi^\dagger \phi)$ is symmetric under the $SU(2) \times U(1)$ group, which is written as

$$V(\phi^\dagger \phi) = -\frac{1}{2} \mu_1^2 \phi^\dagger \phi + \frac{1}{4} \lambda_1 (\phi^\dagger \phi)^2. \quad (2.6)$$

Here μ_1 and λ_1 are real and positive constants. In order to incorporate the massive fields in the SM, the gauge symmetry is broken spontaneously by introducing a non-zero vacuum expectation value in theory. The vacuum expectation value of scalar field ϕ is the value giving a minimum of the potential V and is written as

$$\langle \phi_0 \rangle \equiv \langle 0 | \phi(x) | 0 \rangle = v \neq 0, \quad (2.7)$$

where $\langle \phi_0 \rangle$ is the ground state expectation value of scalar field ϕ . By using the above non-zero value of the minimum potential in equation (2.4) for the Yukawa interaction, it is possible to obtain a fermionic mass matrix

$$M = \bar{\psi}_L \mathcal{M} \psi_R + \bar{\psi}_R \mathcal{M} \psi_L, \quad (2.8)$$

¹⁹⁸ with

$$\mathcal{M} = \Gamma \langle \phi_0 \rangle, \quad (2.9)$$

¹⁹⁹ where $\langle \phi_0 \rangle$ can be written in a doublet form as

$$\langle \phi_0 \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}. \quad (2.10)$$

²⁰⁰ The left-handed fermions ψ_L are doublets and all the right-handed fermions
²⁰¹ ψ_R are singlets in the SM, therefore, only Higgs doublets would be able to
²⁰² give masses to the fermions. One complex Higgs doublet is sufficient for
²⁰³ the construction of fermionic masses [12]. The couplings of the physical
²⁰⁴ Higgs H to the gauge bosons can be obtained by replacing

$$\phi = \begin{pmatrix} 0 \\ v + (H/\sqrt{2}) \end{pmatrix} \quad (2.11)$$

²⁰⁵ in equation (2.2), the first term of the covariant derivative can be written
²⁰⁶ as

$$D_\mu \phi = \left[\partial_\mu + ig \sum_{A=1}^3 t^A W_\mu^A + \frac{i}{2} g' Y B_\mu \right] \phi. \quad (2.12)$$

²⁰⁷ Here g and g' are the coupling constants for the SU(2) and U(1) gauge
²⁰⁸ groups, t^A and Y are the generators of the group $SU(2) \times U(1)$, whereas
²⁰⁹ W_μ^A and B_μ are the gauge fields for the SU(2) and U(1) gauge groups. The
²¹⁰ index $A = 1, 2, 3$ corresponds to the fields of three gauge bosons, W^+ , W^-
²¹¹ and Z^0 , respectively.

²¹² Similarly, the mass terms for the W^\pm and Z^0 bosons can be obtained
²¹³ by using the non-zero expectation value in equation (2.5). In this scenario,
²¹⁴ only the symmetry of the SU(2) group is spontaneously broken, whereas
²¹⁵ the U(1) group maintains its symmetry. The weak mediators W^\pm and
²¹⁶ Z^0 therefore obtain masses and the electromagnetic mediator (the photon)
²¹⁷ remains massless. In other words, the spontaneous symmetry breaking of
²¹⁸ $SU(2) \times U(1)$ group splits the electroweak force into two separate forces, the
²¹⁹ weak force and the electromagnetic force.

220 The predicted W^\pm and Z^0 bosons by the SM of particle physics have
221 been discovered at the CERN in 1983 [13]. This is considered one of the
222 major achievements of the SM of particle physics.

223 The search for the Higgs boson was the main goal of the LHC at
224 CERN, the most important missing link of the SM. The discovery of the
225 Higgs boson has been confirmed by the ATLAS and CMS collaborations at
226 the LHC [14, 15]. This particular milestone is considered a great achieve-
227 ment in the history of particle physics.

228 2.2.2 Limitations of the Standard Model

229 The energy scales explored up to now demonstrate the success of the SM to
230 an impressive level. Despite this, there are some real challenges for the SM
231 which are the key motivations to search for new physics, or physics beyond
232 the SM. Some major limitations are:

- 233 • Since the SM relies on Quantum Field Theory (QFT) and does not
234 cover the scope of the classical theory of general relativity, therefore
235 the fundamental force of gravity is not described by the SM.
- 236 • There are more than 20 arbitrary parameters in the SM, e.g., the
237 gauge coupling constants, three angles and a phase in the Cabibbo-
238 Kobayashi-Maskawa matrix [16]. For these constants, the SM takes
239 measurements from experiments.
- 240 • The SM was constructed to have massless neutrinos, but neutrinos
241 are observed to have a non-zero mass [17].
- 242 • The SM does not provide a good reason for the only three generations
243 of leptons and why charges are always quantised.
- 244 • The SM does not explain the large asymmetry between matter and
245 antimatter.

246 • The SM does not explain the large difference between the electroweak
247 scale and the Planck scale, i.e., the hierarchy problem.

248 • The SM does not explain the nature of dark matter and dark en-
249 ergy. It does not contain any dark matter particle consistent with
250 the properties of cosmological observations.

251 In order to address these type of issues, many theories have been developed
252 to describe the physics beyond the SM.

253 2.3 Physics Beyond the Standard Model

254 Physics beyond the SM, or often referred to as new physics, is needed
255 to satisfy many deficiencies of the SM. There are many theories which are
256 possible candidates of new physics. For example, people have developed su-
257 persymmetric theories (Minimal Supersymmetric Standard Model (MSSM))
258 and Next-to-Minimal Supersymmetric Standard Model (NMSSM)), string
259 theory, M-theory and theories of extra dimensions. All these theories have
260 different approaches towards a unified theory.

261 This study is based on the theories of extra dimensions. According
262 to this concept, gravity propagates in the extra dimensions (one warped or
263 several large extra dimensions depending on the model) and appears to be
264 strong like other SM forces at the length scale smaller than the fundamental
265 scale (electroweak). As a consequence of strong gravity at small scales,
266 microscopic black holes may be produced in high energy pp collisions at
267 the LHC. These types of theories will be described in the next subsection.

268 2.3.1 Theories of Extra Dimensions

269 The concept of extra dimensions followed quite naturally from Einstein's
270 general theory of relativity. Einstein's field equations have a potential of

²⁷¹ extending the theory for any arbitrary dimensionality without any mathematical inconsistency. Einstein's equation can be written as

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi T_{\mu\nu}, \quad (2.13)$$

²⁷³ where $R_{\mu\nu}$ is known as Ricci curvature tensor, $g_{\mu\nu}$ is the metric tensor, R is
²⁷⁴ the scalar curvature and $T_{\mu\nu}$ is the stress-energy tensor. Equation (2.13)
²⁷⁵ contains second-rank tensors whose indices can have any value depending
²⁷⁶ on the spacetime dimensionality. Soon after Einstein's theory of gravity,
²⁷⁷ Kaluza proposed his five dimensional gravitational model. In this model,
²⁷⁸ he introduced one extra spacelike dimension. Later, Klein explained the
²⁷⁹ topology of the extra dimension that it is like a spacelike dimension compact
²⁸⁰ within finite length (\mathcal{R}). To be consistent with the observations, the size of
²⁸¹ the extra dimension must be much smaller than any observable scale. The
²⁸² Kaluza-Klein (KK) gravitational model was the first attempt of a unified
²⁸³ theory in which gravity was a fundamental force.

²⁸⁴ Over the years, the idea of extra dimensions was frequently used in
²⁸⁵ string theory where most commonly six extra spacelike dimensions were
²⁸⁶ taken into account. In string theory, the size of the extra dimensions was
²⁸⁷ assumed to be $\mathcal{R} = l_P^3 = 10^{-33}$ cm by using mathematical and physical
²⁸⁸ reasonings. In the 1990s, the theories of extra dimensions entered in a
²⁸⁹ new era when some of the string theories [18–21] gave the idea that the
²⁹⁰ string scale does not necessarily need to be tied to the traditional Planck
²⁹¹ scale, $M_P = 10^{19}$ GeV. On the basis of these ideas, two types of important
²⁹² theories of extra dimensions were introduced, the theory of large extra
²⁹³ dimensions [1–3] and the theory of a warped extra dimension [4, 5]. The
²⁹⁴ former type was introduced in 1998 by Arkani-Hamed, Dimopoulos and
²⁹⁵ Dvali, known as the ADD model. The latter was introduced in 1999 by
²⁹⁶ Randall and Sundrum, known as the Randall-Sundrum (RS) model.

³ Planck length corresponding to M_P

297 Both types of extra dimensional models use the concept of the brane
 298 and the bulk. In string theory, the 4-dimensional space is called the brane
 299 and the $(4+n)$ -dimensional space is called the bulk, where n is the number
 300 of extra spatial dimensions. The SM particles are restricted to the brane
 301 which is embedded in the bulk, whereas non-SM particles such as gravitons
 302 can also propagate in the extra dimensions.

303 ADD Model

304 According to this model, all the SM fields are localized in the 4-dimensional
 305 brane while gravitons, possibly scalars and any other non-SM fields can
 306 propagate into the full $(4+n)$ -spacetime. The strength of gravity is also
 307 shared by the extra spatial dimensions which are hidden at the electroweak
 308 scale. Gravity therefore appears to be weak in $(3+1)$ -spacetime dimen-
 309 sions. The extra spatial dimensions are always compact with finite size
 310 \mathcal{R} whereas the usual $(3+1)$ -spacetime dimensions are infinite. Therefore,
 311 in this scenario, M_{EW} and \mathcal{R}^{-1} are the two fundamental scales in nature.
 312 With the concept of large extra dimensions [1-3], $\mathcal{R} \gg l_P$ and assuming
 313 all extra dimensions have the same size, it is possible to relate the four
 314 dimensional Planck scale to the fundamental or extra dimensional Planck
 315 scale (M_D) by

$$M_P^2 \simeq \mathcal{R}^n M_D^{2+n}. \quad (2.14)$$

316 The subscript $D = n + 4$ represents the total number of dimensions or the
 317 sum of the number of extra dimensions n and the four physical dimensions.
 318 By using $G_D = 1/M_D^{2+n}$, the above equation can be transformed into an
 319 equation for the gravitational constants as

$$G_D \simeq G_4 \mathcal{R}^n. \quad (2.15)$$

320 The Newtonian gravitational potential between two masses m_1 and m_2
 321 separated by $r \gg \mathcal{R}$ in four dimensions follows the ordinary Newton's law

322 measured in nature, which is written as

$$V(r) = G_4 \frac{m_1 m_2}{r}. \quad (2.16)$$

323 The potential between m_1 and m_2 separated by $r \ll \mathcal{R}$ will be much
324 stronger than in the previous case because we are now sensitive to all di-
325 mensions, and is postulated as

$$V(r) = G_D \frac{m_1 m_2}{r^{n+1}}. \quad (2.17)$$

326 From equations (2.16) and (2.17), it can be concluded that the grav-
327 itational force follows a $1/r^{2+n}$ law at short length scales, whereas it follows
328 the usual $1/r^2$ law at larger scales. Therefore, the real strength of gravity
329 can appear only at short distances, smaller than the size of the extra di-
330 mensions. In this theory, different sizes and numbers of extra dimensions
331 can provide different values of M_D from the same constant M_P by obeying
332 equation (2.14). By expressing $M_P \sim 10^{16}$ TeV in terms of the length scale,
333 i.e. $l_P \sim 10^{-35}$ m, and assuming $M_D \sim 1$ TeV with corresponding length
334 scale $l_D \sim 10^{-19}$ m, equation (2.14) can also be written as

$$\mathcal{R} = 10^{\frac{32}{n}-19} \text{m}. \quad (2.18)$$

335 Here it is important to note that as n increases, the size of the extra
336 dimensions get smaller, for example, $\mathcal{R} \sim 10^{13}$ m for $n = 1$, $\mathcal{R} \sim 10^{-3}$ m
337 for $n = 2$ and $\mathcal{R} \sim 10^{-9}$ m for $n = 3$. The $n = 1$ case represents deviation
338 from Newton's gravity over solar system distances and is experimentally
339 excluded. The $n = 2$ case is also ruled out by torsion-balance experiments
340 [22]. Therefore, within current experimental limits, it can be assumed
341 that at least three extra dimensions are required to observe a deviation
342 from Newton's inverse square law. The SM fields are accurately measured
343 at the electroweak scale, which indicates the SM fields do not feel extra
344 dimensions.

345 If the large extra dimension scenario is true, then strong gravity at
 346 short scales can result in the formation of microscopic black holes, which
 347 will be discussed in detail in section 2.4.1. The short-lived microscopic black
 348 holes will decay mostly into SM particles, producing significant signals for
 349 the brane observer, as will be discussed in section 2.4.4.

350 Randall-Sundrum Model

351 This is an alternate approach to solve the hierarchy problem and relies on
 352 a single extra spatial dimension. There are two types of RS models, RS
 353 I [4] and II [5]. In type I, the single extra dimension is bounded by two
 354 $(3+1)$ -branes, as shown in Figure 2.1. All the SM fields live on the visible
 355 brane that is at a finite distance $y = L$ from a hidden brane located at
 356 $y = 0$. All the fundamental scales at the hidden brane are of the order of
 357 $M_{D'}$, which reduce exponentially to the order of electroweak scale on the
 358 visible brane, i.e.,

$$M_{EW} = e^{-kL} M_{D'}, \quad (2.19)$$

359 where k is the curvature scale or *warp factor* associated with the negative
 360 cosmological constants of the five dimensional spacetime model, and $M_{D'}$
 361 is the true Planck scale for one extra spatial dimension, i.e., $D' = 3 + 1$.
 362 The effective Planck scale M_P is related to the $M_{D'}$ as

$$M_P^2 = \frac{M_{D'}^3}{k} (1 - e^{-2kL}). \quad (2.20)$$

363 In RS type I models, gravity is strongly attractive at the hidden brane
 364 and gravitons can propagate through the extra dimension, which is bounded
 365 by the visible brane. The size of the extra dimension or the separation
 366 between the two branes, is small as compared to that described in the
 367 ADD model. The difference between the gravitational and electroweak
 368 scales depends exponentially on the size of the extra dimension; hence, the

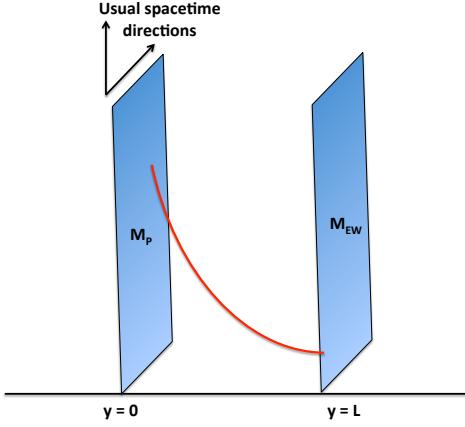


Figure 2.1: Two (3+1)-spacetime branes embedded in a five dimensional spacetime. The red line shows an exponential relation between the two branes.

³⁶⁹ large difference between the two scales is generated even for a very small
³⁷⁰ size of the extra dimension.

³⁷¹ In RS type II models, the visible brane is moved at an infinite dis-
³⁷² tance away from the hidden brane in the extra dimension. Therefore only
³⁷³ one brane is effectively used. RS type II models do not yield low scale
³⁷⁴ gravity and microscopic black hole production is only possible in RS type I
³⁷⁵ models.

³⁷⁶ Both the RS type I and ADD models can explain low scale gravity
³⁷⁷ for the extra dimensional scenarios and predict production of microscopic
³⁷⁸ black holes at the LHC. In this thesis, the ADD types of models have
³⁷⁹ been considered, which are well studied and simulated for the pp collisions
³⁸⁰ at the LHC. Therefore, the theoretical and experimental aspects of the
³⁸¹ production, nature and decay of extra dimensional microscopic black holes
³⁸² will be described in the light of models with large extra dimensions.

₃₈₃ 2.4 Microscopic Black Hole Physics

₃₈₄ In this section, a review of microscopic black holes will be given in the
₃₈₅ context of the theory of large extra dimensions. In high energy particle col-
₃₈₆ lisions, the criteria for their production will be discussed with the necessary
₃₈₇ boundary conditions along with their properties once they are produced.
₃₈₈ Higher dimensional microscopic black holes are short-lived and decay in the
₃₈₉ detectors by emitting mainly SM particles in form of Hawking radiation [23]
₃₉₀ on the brane or by emitting non-SM particles (e.g. gravitons) into the bulk
₃₉₁ resulting in missing energy on the brane. The Hawking emission is always
₃₉₂ dominant because of a higher number of degrees of freedom available for the
₃₉₃ SM particles. Among SM particles quarks and gluon carry most of degrees
₃₉₄ of freedom, which lead to the production of a large number of hadronic jets
₃₉₅ in the detector. Therefore, in high energy particle collisions at the LHC,
₃₉₆ microscopic black hole signatures such as high p_T multijet final states with
₃₉₇ high multiplicities are expected. Since the Hawking emission depends on
₃₉₈ the number of extra spatial dimensions, it is therefore important to study
₃₉₉ the lifetime, cross section and temperature of microscopic black holes as
₄₀₀ a function of the number of extra dimensions. In the last section 2.5, the
₄₀₁ feasibility of their detection with the current experiments at the LHC will
₄₀₂ be discussed.

₄₀₃ 2.4.1 Production of Black Holes

₄₀₄ In the models with large extra dimensions, strong gravity can be observed
₄₀₅ at the scale of quantum gravity at which gravitational interactions reach the
₄₀₆ same order of magnitude as the electroweak interactions. When the magni-
₄₀₇ tude of the true Planck scale M_D is of the order of few TeV, strong gravity
₄₀₈ in collider experiments can be observed. For $E > M_D$, the production
₄₀₉ of heavy and extended (having extra dimensions) objects like microscopic

410 black holes becomes possible.

411 The two types of models with extra dimensions predict the pro-
412 duction of black holes in collider experiments on the brane. Assuming two
413 highly energetic colliding particles form a spherically symmetric black hole,
414 then all the mass would be compressed inside the black hole horizon. The
415 gravitational radius that holds all the compressed mass within it is called
416 the Schwarzschild radius. A boundary around the Schwarzschild radius
417 beyond which the escape velocity from the surface would exceed the veloc-
418 ity of light due to the strong gravitational pull of the compressed mass, is
419 called an event horizon. For a non-rotating spherical black hole, the surface
420 at the Schwarzschild radius acts as the event horizon with radius $r_H(E)$,
421 which is a function of the centre of mass energy E of the colliding particles.

422 Beside the $E > M_D$ condition, there is also a necessary requirement
423 on the impact parameter (b) of two colliding particles for the production
424 of microscopic black holes. The two colliding particles with $b < r_H(E)$ will
425 form a black hole and disappear forever behind the event horizon according
426 to Thorne's Hoop Conjecture [24]. On the other hand, if $b > r_H(E)$ for
427 energy $E > M_D$, only gravitational elastic and inelastic scattering processes
428 occur, without the formation of black holes.

429 As an outcome of strong gravity, the microscopic black hole is also
430 a higher dimensional object which extends outside the brane. If the event
431 horizon radius is assumed to be smaller than the size of the extra dimensions
432 \mathcal{R} , this type of black hole (spherically symmetric and higher dimensional)
433 may live in a spacetime with $(4 + n)$ non-compact dimensions. By solving
434 Einstein's equation for $D = n + 4$ dimensions for a non-spinning and non-
435 charged black hole, the event horizon radius can be written [25] as

$$r_H = \frac{1}{M_D} \left(\frac{M_{BH}}{M_D} \right)^{\frac{1}{n+1}} \left(\frac{8\Gamma(\frac{n+3}{2})}{(n+2)\sqrt{\pi}^{n+1}} \right)^{\frac{1}{n+1}}, \quad (2.21)$$

n	2	3	4	5	6	7
x_{\min}	8.0	9.5	10.4	10.9	11.1	11.2

Table 2.1: $x_{\min} = E/M_D$ as a function of n extra dimensions.

436 where Γ is the complete Gamma function. The horizon radius depends
 437 on the black hole mass M_{BH} with an extra dimensional power law. The
 438 linear dependence in $4D$ can easily be restored for $n = 0$. The fundamental
 439 Planck scale M_D in the denominator will play an important role in deciding
 440 the threshold to create black holes in the high energy collisions.

441 These black holes may be produced if the Compton wavelength $\lambda_C =$
 442 $4\pi/E$ of a colliding particle of energy $E/2$ is smaller than the Schwarzschild
 443 radius $r_H(E)$ [26]. From equation (2.21), we can write this condition as

$$\frac{4\pi}{E} < \frac{1}{M_D} \left(\frac{E}{M_D} \right)^{\frac{1}{n+1}} \left(\frac{8\Gamma(\frac{n+3}{2})}{(n+2)\sqrt{\pi}^{n+1}} \right)^{\frac{1}{n+1}}. \quad (2.22)$$

444 From this inequality, it is convenient to define the ratio $x_{\min} = E/M_D$ for
 445 the production of black holes for different number of extra dimensions, as
 446 shown in Table 2.1. Furthermore, it can be established from equation (2.22)
 447 that $E \geq M_D$ is the requirement to produce black holes in the high energy
 448 collisions at the LHC.

449 There is no complete and consistent theory of quantum gravity that
 450 can describe the exact conditions for the production of higher dimensional
 451 black holes, and the amount of energy absorbed by them, during high en-
 452 ergy collisions in a strong gravitational background. The approach which is
 453 commonly used to describe the formation of black holes is the Aichelburg-
 454 Sexl model [27]. The model is built in four dimensional gravitational theory
 455 in the context of general relativity. In this approach, two shock fronts are
 456 considered to collide at a central point to form a non-linear and curved
 457 region. The uncertainties of quantum particles are neglected by assum-

458 ing boosting of shock waves to thin fronts because the particles with en-
 459 ergy $E > M_D$ have position uncertainty smaller than their horizon radius.
 460 The collision of two shock waves can form a closed trapped surface (a
 461 two-dimensional closed surface on which outward-pointing light rays are
 462 converging towards the surface) or an apparent horizon (a closed trapped
 463 surface with no convergence of light rays towards the surface). The latter
 464 case is the creation of black hole in which the apparent horizon coincides
 465 with the event horizon or lies inside it [28]. The creation of a black hole
 466 is therefore a boundary value problem. For $D = 4$ and a perfect head
 467 on collision ($b = 0$), by using analytical approach, an apparent horizon is
 468 formed with an area $32\pi\rho^2$ [29], where ρ is the energy of the colliding par-
 469 ticle ($E = 2\rho$). This defines a lower bound on the area of the event horizon
 470 A_H and the mass of black hole M_{BH} , which can be written as

$$A_H = 4\pi r_H^2 \geq 32\pi\rho^2 \Rightarrow M_{BH} \equiv \frac{r_H}{2} \geq \frac{1}{\sqrt{2}}(2\rho). \quad (2.23)$$

471 From this equation⁴, the black hole can absorb 71% of the initial energy
 472 E . In other calculations it is shown that the black hole can absorb more
 473 than 80% of the initial colliding energy [30, 31]. For a higher dimensional
 474 regime and perfect head on collision, the above equation (2.23) can be
 475 extended [32] as

$$M_{BH} \geq [0.71 \text{ (for } D = 4 \text{) to } 0.58 \text{ (for } D = 11 \text{)}](2\rho). \quad (2.24)$$

476 Hence, with the increase in dimensionality, the amount of initial energy
 477 absorbed decreases and smaller black holes are produced.

478 2.4.2 Production Cross Section of Black Holes

479 A microscopic black hole is treated as a quasi-stable state that is produced
 480 and decays semiclassically. At high energies, black hole production has a

⁴ Equation (2.23) uses natural units, i.e. $\hbar = c = G_4 = 1$, where G_4 is the Newton's gravitational constant in four dimensions.

481 good classical description instead of quantum mechanical treatment [26,33].

482 The simple form of the classical geometric cross section is given as

$$\sigma_{\text{production}} \simeq \pi r_H^2. \quad (2.25)$$

483 The Schwarzschild radius (r_H) corresponding to the black hole mass M_{BH}
484 depends on M_D and number of extra dimensions n as shown in equation
485 (2.21). For highly energetic collisions and $b \lesssim r_H$, the cross section depends
486 on the critical value of impact parameter, resulting in a range of black hole
487 masses for a given centre of mass energy E . For a geometrical interpre-
488 tation of the cross section, the average black hole mass is assumed to be
489 on the order of the centre of mass energy, i.e., $\langle M_{BH} \rangle \approx E$. By using this
490 assumption, and ignoring charge, spin and finite particle size for a micro-
491 scopic black hole, the production cross section can be expressed in terms
492 of the centre of mass energy of the collision (E) by using equation (2.25)
493 and (2.21) as

$$\sigma_{\text{production}} \propto \pi r_H^2 \approx \frac{1}{M_D^2} \left(\frac{E}{M_D} \right)^{2/(n+1)}. \quad (2.26)$$

494 This type of unique dependence on energy E in the production cross
495 section is not observed in any of the SM or beyond SM processes. The above
496 equation (2.26) is valid for two elementary and non-composite particles
497 such as partons. In pp collisions, by summing over all the possible pairs
498 of partons and ignoring radiative energy losses, the expression for cross
499 section in terms of parton distribution functions (PDFs) $f_i(x)$ takes the
500 final form [26,33]

$$\sigma_{\text{production}}^{pp \rightarrow \text{BH}} = \sum_{ij} \int_{\tau_m}^1 d\tau \int_{\tau}^1 \frac{dx}{x} f_i(x) f_j \left(\frac{\tau}{x} \right) \sigma_{\text{production}}^{ij \rightarrow \text{BH}}, \quad (2.27)$$

501 where i and j are the two colliding partons, x is the parton-momentum
502 fraction, $\tau = \sqrt{x_i x_j}$ is the parton-parton centre of mass energy fraction

503 and τ_m is the minimum parton-parton centre of mass energy fraction for the
504 black hole production. The cross section gets a considerable enhancement
505 by considering all pairs of partons. Overall, the value of cross section falls
506 off rapidly with the centre of mass energy of pp collisions because of the
507 nature of the PDFs.

508 The expression for the classical cross section shown in equation
509 (2.25) does not take into account the effects of angular momentum, gauge
510 charges, finite sizes of the incoming particles, non-trapped energy and min-
511 imum mass cutoff of the black hole. Many attempts have therefore been
512 made to improve the value of the classical cross section. For example, the
513 effects of angular momentum have been incorporated in a heuristic way
514 in some studies [34–36] with some limited successes. The effects of non-
515 trapped energy and minimum black hole mass cutoff have been studied in
516 Ref. [35–37]. In Ref. [37], different models [34–36] have been compared for
517 possible corrections in the cross section, and it has been shown that the
518 large differences in cross section between the models do not translate into
519 large differences in the limits on M_D . These limits are useful to compare
520 with experimental limits, but their accuracy depends on estimates of large
521 uncertainties in the black hole decay. Therefore, it is usually suggested that
522 M_D limits should be extracted from methods other than the direct search
523 for black holes [38].

524 2.4.3 The Nature of Black Holes

525 Microscopic black holes with mass far exceeding the fundamental Planck
526 scale, i.e. $M_{BH} \gg M_D$, are well understood in the context of general rel-
527 ativity. This type of black hole is called a thermal black hole. In general,
528 the thermal black holes are expected to go through different stages during
529 their lifetime [26] as following:

530 i. The balding phase: at this initial stage, the black hole is highly asym-
 531 metric. It emits mainly gravitational radiations and sheds all the quan-
 532 tum numbers and multipole moments apart from those determined
 533 by its mass M_{BH} , charge Q and angular momentum J . The energy
 534 emission is dominated by gravitational radiation and remains mainly
 535 invisible on the brane.

536 ii. The spin-down phase: the black hole starts losing its angular momen-
 537 tum through the emission of Hawking radiation.

538 iii. The Schwarzschild phase: the black hole is no longer rotating and
 539 continues to lose its mass in the form of Hawking radiation.

540 iv. The Planck phase: the black hole mass M_{BH} approaches the true
 541 Planck scale M_D and then becomes a quantum object. At this stage,
 542 its properties are described by a quantum theory of gravity. Either it
 543 completely evaporates or becomes a stable quantum remnant.

544 The non-vanishing temperature of black holes allow them to emit
 545 Hawking radiation. The temperature as a function of the number of extra
 546 dimensions n and the Schwarzschild radius r_H can be written [39] as

$$T_H = \frac{(n+1)}{4\pi r_H}, \quad \text{for } M_{BH} \gg M_D. \quad (2.28)$$

547 The above expression implies that higher dimensional black holes at fixed
 548 radii are hotter. This property distinguishes microscopic black holes from
 549 the large astrophysical black holes that carry an extremely low temperature
 550 and the majority of primordial black holes that are characterized by higher
 551 temperature [40].

552 As a consequence of the emission of Hawking radiation, the life-
 553 time of microscopic black holes remains finite except for the case of stable

554 remnant. The higher-dimensional black holes have the lifetime [39]

$$\tau_{n+4} \sim \frac{1}{M_D} \left(\frac{M_{BH}}{M_D} \right)^{\frac{n+3}{n+1}}, \quad \text{for } M_{BH} \gg M_D. \quad (2.29)$$

555 By using equation (2.29), the lifetime of a black hole with $M_{BH} = 5$ TeV
556 and $M_D = 1$ TeV is estimated to be on the order of 10^{-26} s for $n = 1$
557 to $n = 7$ extra-dimensions. Black holes produced in high energy collisions
558 would decay through Hawking radiation. Therefore, the knowledge of the
559 Hawking radiation spectrum is of great importance in the study of micro-
560 scopic black holes. Classically, nothing is allowed to escape from the event
561 horizon, which is why the phenomena of the emission of Hawking radiation
562 is a quantum mechanical process similar to black body emission.

563 The scenario of emission of radiation from black holes can be re-
564 alised by considering a virtual pair of particles near its event horizon. The
565 virtual particle-antiparticle pairs may be produced in the vacuum by the
566 fluctuations of electromagnetic and gravitational fields. The two particles
567 in a pair appear to move apart and then back together, and eventually
568 annihilate each other. If this virtual pair appears near the horizon of a
569 black hole, then one of them may be pulled into the black hole leaving
570 the other particle free. The virtual particle antiparticle pair becomes real
571 when it is boosted by the gravitational energy of black hole. The particle
572 that moves away from the black hole takes away some fraction of the black
573 hole mass. For an observer far away from the black hole, the black hole
574 appears to emit a particle by loosing its mass and it continues to evaporate
575 until the whole black hole mass disappears by emitting mainly SM parti-
576 cles. There is a gravitational potential barrier that reflects some particles
577 back into the event horizon and allows others to escape from the vicinity
578 of the black hole. The transmission or absorption probability of a black
579 hole is known as the *greybody factor*. This factor depends on the nature

580 of emitted particles (spin s , charge, energy ω , angular momentum numbers
581 l, m) and spacetime properties (number of extra dimensions n , Planck scale
582 M_D). Therefore, the Hawking radiation spectrum is the valuable source of
583 information on the properties of the emitted particles and the gravitational
584 background [40].

585 Another important feature of the higher dimensional microscopic
586 black holes is the emission of particles both in the bulk and on the brane.
587 The particles that are allowed to propagate in extra space dimensions and
588 carry non-SM quantum numbers, like gravitons, are also emitted in the
589 bulk. The brane observer cannot see the bulk particles and thus they are
590 treated as missing energy and missing momentum on the brane. On the
591 other hand, the black hole emits a variety of four dimensional SM parti-
592 cles on the brane, like fermions, and gauge and Higgs bosons. It is also
593 important to mention that the bulk particles see a $(4 + n)$ gravitational
594 background whereas the brane particles only see a four dimensional gravi-
595 tational background [40].

596 2.4.4 Decay of Black Holes

597 The Hawking radiation from black hole decay is emitted in two differ-
598 ent phases during the decay of black holes, the spin down phase and the
599 Schwarzschild phase. To study the emission of Hawking radiation, only the
600 brane localized modes are considered because they are directly visible to a
601 brane observer.

602 Brane localised Schwarzschild Phase

603 This phase can be explained through greybody factors $\mathcal{A}(\omega)$ for a spheri-
604 cally symmetric and neutral (with no global charge) black hole that lost all
605 of its angular momentum. The greybody factor will have different values
606 for different spins of particles ($s = 0, 1/2, 1$). The combined “master” equa-

tion of motion for all species of particles has been derived in Ref. [41, 42].
 For this equation, the factorised ansatz for the wave function in spherical
 coordinates (r, θ, ϕ) of the field can be written as

$$\psi_s = e^{-i\omega t} e^{im\phi} \Delta^{-s} R_s(r) S_{sl}^m(\theta), \quad (2.30)$$

where $\Delta \equiv r^2 \left[1 - \left(\frac{r_H}{r} \right)^{n+1} \right]$ is a function of the Schwarzschild radius r_H and the number of extra spatial dimensions n . $R_s(r)$ is the pure radial function for a particle of spin s and $S_{sl}^m(\theta)$ are the spherical harmonics (for spin s and angular momentum numbers l and m). By using Newman-Penrose method [43], decoupled equations can be obtained for the radial function $R_s(r)$ and the spin-weighted spherical harmonics $S_{sl}^m(\theta)$. We concentrate only on the radial part because it is directly related to the greybody factor.

There are two types of methods for obtaining solutions for the radial equation, analytical and numerical. In the analytical approach [41, 42], there are three steps to reach the final solution. First, the equation of motion is solved in the near-horizon regime ($r \simeq r_H$). Second, the equation of motion is solved in the far-field regime ($r \gg r_H$). In the the final step, the two asymptotic solutions are matched in an intermediate regime in order to make sure the solutions are continuous over the whole range of radius. Once the solution is obtained, the absorption probability can be written as a function of emitted energy ω as

$$|\mathcal{A}(\omega)|^2 = 1 - |\mathcal{R}(\omega)|^2 \equiv \frac{\mathcal{F}_{\text{horizon}}}{\mathcal{F}_{\text{infinity}}}, \quad (2.31)$$

where $\mathcal{R}(\omega)$ is the reflection coefficient and \mathcal{F} is the energy flux towards the black hole.

In the microscopic black hole decay, the number of degrees of freedom (dof) play an important role in determining the probability of emission for different particles. The dof is defined [44] as

$$\text{dof} = n_Q \times n_S \times n_F \times n_C, \quad (2.32)$$

Particle Type	Charge State ⁵	Spin State	Flavour State	Colour State	dof
Quarks	2	2	6	3	72
Charged leptons	2	2	3		12
Neutrinos ⁶	2	1	3		6
Gluons	1	2		8	16
Photon	1	2			2
Z boson	1	3			3
W bosons	2	3			6
Higgs boson	1				1

Table 2.2: Number of degrees of freedom (dof) of the Standard Model particles [44].

631 where n_Q , n_S , n_F and n_F are the number of charge, spin, flavour and
 632 colour states, respectively. Since the black holes mainly decay into SM
 633 dof, therefore only SM dof are taken into account, which are shown in
 634 Table 2.2 [44].

635 For a given degree of freedom (z), the absorption cross section for an
 636 extra dimensional black hole can be written in terms of absorption proba-
 637 bility [45] as

$$\sigma_{abs}^{(z)}(\omega) = \sum_l \frac{2^n \pi^{(n+1)/2} \Gamma[(n+1)/2]}{n! \omega^{n+2}} \frac{(2l+n+1)(l+n)!}{l!} |\mathcal{A}^{(z)}(\omega)|^2. \quad (2.33)$$

638 The absorption cross section is also sensitive to the particle spin ($s = 0$,
 639 $1/2$ and 1) and the spacetime properties because of its strong dependence
 640 on the greybody factor. The emission rate (number of particles emitted
 641 per unit time), in terms of $\sigma_{abs}^{(z)}(\omega)$, is given [23, 46] by

$$\frac{dN^{(z)}(\omega)}{dt} = \frac{1}{(2\pi)^{n+3}} \int \frac{\sigma_{abs}^{(z)}(\omega)}{\exp(\omega/T_H) \pm 1} d^{n+3}p, \quad (2.34)$$

642 where T_H is the Hawking temperature given in equation (2.28), $p = (\omega, \vec{p})$

⁵ If a particle and its antiparticle are different then charge state is two, otherwise one.

⁶ Dirac neutrinos have six dof, whereas in case of majorana neutrinos there are three dof because their particle and antiparticle are the same.

D	4	5	6	7	8	9	10	11
Higgs boson	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fermions	0.37	0.70	0.77	0.78	0.76	0.74	0.73	0.71
Guage bosons	0.11	0.45	0.69	0.83	0.91	0.96	0.99	1.01

Table 2.3: Fractional emission rates per degree of freedom, normalised to the scalar field, for the Standard Model particles [47].

643 is the energy-momentum 4-vector, the spin statistics factor has +1 for
 644 fermions and -1 for bosons in the denominator. By using equation (2.34)
 645 with the knowledge of greybody factor, the fractional emission rate or the
 646 relative emissivity (ϵ) for different types of particle can be calculated. For
 647 non-rotating black holes, the emissivities for different SM particles are cal-
 648 culated in Ref. [47], which are shown for different spacetime dimensions D
 649 in Table 2.3. Finally, the probability of emission (P_i) for a particle type (i)
 650 is given [44] by

$$P_i = \frac{\epsilon_i \times \text{dof}_i}{\sum_j \epsilon_j \times \text{dof}_j}, \quad (2.35)$$

651 where ϵ_i and dof_i are the emissivity and the number of degrees of freedom
 652 of particle i and the index j in the denominator runs over all the possi-
 653 ble particle types. The probabilities of emission for all the SM fields, for
 654 different spacetime dimensions D , are shown in Table 2.3 [44]. By talk-
 655 ing gravitons and all the SM fields into account, it can be concluded that
 656 the multidimensional black hole decay in the detector produces about 74%
 657 hadronic energy, 9% missing energy, 8% electroweak bosons, 6% charged
 658 leptons, 2% photons, and 1% Higgs bosons [44].

659 The Spin Down Phase on the Brane

660 For the spin down phase, the most generic situation for the creation of the
 661 black hole by a non-head-on collision is considered when the black hole has
 662 a non-vanishing angular momentum. Assuming the extra dimensional black

D	4	5	6	7	8	9	10	11
Quarks	0.71	0.66	0.62	0.59	0.57	0.55	0.53	0.51
Charged leptons	0.12	0.11	0.10	0.10	0.10	0.09	0.09	0.09
Neutrinos	0.06	0.06	0.05	0.05	0.05	0.05	0.04	0.04
Gluons	0.05	0.09	0.12	0.14	0.15	0.16	0.16	0.16
Photon	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02
EW bosons	0.03	0.05	0.07	0.08	0.09	0.09	0.09	0.09
Higgs boson	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Table 2.4: Probability of emission of the Standard Model particles [44].

663 hole produced in this situation has an angular momentum only along an
 664 axis of the three dimensional space. In this case, the absorption probability
 665 $|\mathcal{A}(\omega)|^2$ also depends on angular momentum parameter besides the particle
 666 spin and the spacetime properties. For a given value of n , the emission rate
 667 increases with the increase in angular momentum parameter [34].

668 There is another important feature of the rotation spectra of the
 669 black holes during the spin down phase. The emitted particles during the
 670 spin down phase have non-trivial angular momentum distribution because
 671 this phase has a preferred axis for the brane localised emission, the rotation
 672 axis of the black hole [40].

673 Emission in the Bulk

674 The detection of the higher dimensional black holes can greatly be facil-
 675 itated if a major part of Hawking emission is channelled into brane fields.
 676 Any emission into the bulk will be interpreted as missing energy by the
 677 brane observer. The bulk emission is sensitive to the number of extra
 678 space-like dimensions n , for example, the bulk emission rate for the gravi-
 679 tons [48–50] is greatly enhanced as n increase. Most of these studies have
 680 been performed for the Schwarzschild phase.

681 When both the brane and the bulk channels are available, it is im-
682 portant to investigate whether the higher dimensional black holes prefer to
683 decay into the brane or the bulk. In Ref. [48–50], the bulk to the brane ratio
684 has been shown for the total emissivity. These studies conclude that the
685 bulk to the brane ratio is less than unity and the brane channel remains
686 the most dominant and preferred channel for the intermediate values of
687 n whereas the bulk contribution becomes significantly important for high
688 values of n , e.g., the bulk to the brane ratio becomes 0.93 for $n = 7$.

689 2.5 Microscopic Black Holes at the LHC

690 In this section, the feasibility of measuring different observables, e.g., cross
691 section, temperature and mass of the microscopic black holes at the LHC
692 will briefly be described in the context of models with large extra dimen-
693 sions. A quick illustration of the assumptions for these observables and
694 possible sources of uncertainties in them will be given, in order to realise
695 the accuracy in the measurement of signals for the higher dimensional black
696 holes at the LHC.

697 2.5.1 Cross Section and Extra Dimensions

698 The LHC is designed to collide particles with a maximum centre of mass
699 energy of 14 TeV. Even this maximum energy would never be sufficient
700 to produce a black hole in four spacetime dimensions. For example, an
701 estimate of the Schwarzschild radius for a black hole of mass $M_{BH} = 5$ TeV
702 from equation (2.21), for the $D = 4$ case with corresponding classical value
703 of $M_P \simeq 10^{19}$ GeV, is 10^{-35} fm [40], which translates to a very tiny cross
704 section from equation (2.25). On the other hand, if we consider a few TeV
705 extra dimensional Planck scale M_D , for the same type of black hole, then
706 the Schwarzschild radius as a function of the number of extra dimensions
707 would give some measurable estimate for the cross section at the LHC.

708 Therefore, it is believed that any black hole observed at the LHC would
709 be embedded in extra space dimensions. In other words, the models with
710 extra dimensions facilitate the observation of microscopic black holes at the
711 LHC.

712 2.5.2 Hawking Temperature

713 Classically, for fixed black hole radius the value of the Hawking tempera-
714 ture increases with the number of extra dimensions as described by equation
715 (2.28). For models with large extra dimensions, the black hole would have
716 very high temperature⁷ which may be an important features to identify
717 black hole events at the LHC. The Hawking temperature should increase
718 progressively with the evaporation process, but a constant value of temper-
719 ature may also be assumed because of the fact that a black hole has a very
720 short lifetime.

721 2.5.3 Measurement of Mass

722 Measurement of the mass of multidimensional microscopic black holes at
723 the LHC is also a goal of primary importance. In the very high energy
724 collisions of the LHC, the only way to reconstruct the black hole mass is
725 through the energies of final state particles which are emitted as a result of
726 evaporation of the black hole. The weak point of this method is the missing
727 energy, which can greatly be improved by selecting the events having no or
728 very little missing transverse energy, or including missing transverse energy
729 in mass calculations. The next subsection is dedicated to briefly describe
730 the role of missing transverse energy in the mass and cross section of the
731 higher dimensional black holes at the LHC.

⁷ A higher dimensional black hole would be hotter as compared to the four dimensional black hole, as shown in equation (2.28).

732 2.5.4 Missing Energy in Black Hole Searches

733 During the formation and decay of microscopic black holes at the LHC,
734 missing energy may cause underestimation in the mass and the cross section
735 of higher dimensional black holes. The emission of gravitational radiation
736 during the black hole formation is the largest source of missing energy,
737 which results in the largest uncertainty in the black hole mass and cross
738 section. The gravitational radiation is lost into the bulk and appears as
739 missing energy for the brane observer. The effective black hole mass is
740 lowered even before it begins to be detectable by its Hawking evaporation.
741 Since the black hole cross section is the function of mass, therefore the
742 initial radiation loss could significantly lower the production cross section.
743 During the evaporation process high energy neutrinos are also emitted,
744 which further contribute to the missing energy.

745 If a black hole evaporates and becomes a stable remnant, another
746 complication may arise in the context of missing energy. The mass of the
747 stable remnant could be of the order of the Planck scale, as discussed in [51].
748 If this stable remnant is charged and ionizing it may be detected, but a
749 large missing energy may arise in the case of a neutral and non-detectable
750 remnant.

751 There is another possibility causing large missing energy, where the
752 black hole leaves the brane, as discussed in [44]. In this scenario, graviton
753 emission into the bulk can give a sufficient recoil to the black hole to leave
754 the brane and move to the bulk. Normally, black holes are not expected
755 to move to the bulk. It is more likely they will have charge, colour or
756 lepton/baryon number in order to stick them to the brane. But, if there
757 is no symmetry available, the recoil produced by the emission of higher
758 dimensional gravitons will cause the black hole to leave the brane. There
759 might be two possible situations for graviton emission. Firstly, a newly

760 formed black hole emits higher dimensional gravitons and disappears from
761 the brane without showing any visible signature in the form of Hawking
762 emission. This type of black hole decay remains undetectable and nothing
763 can be done to make it detectable. Secondly, higher dimensional gravitons
764 are emitted during Hawking evaporation resulting in the termination of
765 Hawking radiation as soon as the black hole leaves the brane. This situa-
766 tion may contribute large missing energy during the black hole decay and
767 produce large uncertainties in calculations of the black hole mass and cross
768 section.

769 With all the possibilities of missing energy during the formation
770 and decay of black holes, it may be difficult to detect microscopic black
771 holes at the LHC with a high confidence level. Furthermore, the parton
772 energy involved in the black hole formation is unknown. Therefore, the
773 fundamental Planck scale and the number of extra dimensions determined
774 from the black hole searches can have large uncertainties. All that can be
775 measured is a threshold for production. The M_D values measured from
776 black hole searches may vary largely from model to model. Therefore, it
777 is more reasonable to rely on M_D limits which are measured from other
778 quantum gravity analysis. The current limits on M_D will be presented in
779 the next subsection.

780 2.5.5 Current Limits on M_D

781 The ATLAS and CMS experiments at the LHC have searched for extra
782 dimensions and microscopic black holes. These searches put different lim-
783 its on the fundamental Planck scale, which are largely model-dependent.
784 Since all the models are still on hypothetical grounds, for M_D limits it is
785 better to rely on other searches for KK resonances in the current scenario.
786 The most recent limits on M_D , in direct graviton emission searches, have
787 been presented in Ref. [38] for LEP (ALEPH and DELPHI experiments),

n	M_D [TeV]						
	Mono-photon		Mono-jet	Mono-photon		Mono-jet	
	LEP	CDF	D0	ATLAS	CMS	ATLAS	CMS
2	1.60	1.40	0.884	1.93		4.17	4.08
3	1.20	1.15	0.864	1.83	1.73	3.32	3.24
4	0.94	1.04	0.836	1.86	1.67	2.89	2.81
5	0.77	0.98	0.820	1.89	1.84	2.66	2.52
6	0.66	0.94	0.797		1.64	2.51	2.38
7			0.797				
8			0.778				

Table 2.5: Lower limits on M_D at the 95% confidence level [38].

788 Tevatron (CDF and D0 experiments) and LHC (CMS and ATLAS experiments)
789 collider experiments. Current lower limits on M_D are shown in
790 Table 2.5 with 95% confidence level. In Table 2.5, both ATLAS and CMS
791 results correspond to graviton searches in mono-jet plus missing transverse
792 momentum and mono-photon plus missing transverse momentum in the
793 final states.

794 2.5.6 Decay of Black Holes at the LHC

795 It was explained in section 2.4.4 that the major black hole signature in the
796 detector is the hadronic energy. The hadronisation of quarks and gluons
797 emitted by the decay of black holes can produce many hadrons in the form
798 of narrow cones called jets with high transverse momenta. Most of the
799 multijet events in high energy pp collisions, however, are produced by QCD
800 and are the main background to the potential multijet final states produced
801 by black holes.

802 There are some properties of black hole multijet signals which could
803 differentiate them from QCD multijet background. In high energy pp col-

804 lisions at the LHC, the most dominant QCD process is the production
805 of dijets, where two back-to-back jets are produced with high transverse
806 momenta. On the other hand, black holes are expected to produce high
807 jet multiplicities. Furthermore, the decays of black holes are expected to
808 produce a range of jet multiplicities instead of being biased towards any
809 particular multiplicity. The QCD events with high transverse momenta are
810 expected to become rare as the centre of mass energy of the collisions in-
811 creases, whereas the production cross section for black holes increases with
812 increasing centre of mass energy, as shown by equation 2.26. It is shown
813 in different studies [26, 52, 53] that QCD dijets could be suppressed in the
814 case of black hole formation. As a result, multijet events produced by the
815 decays of black holes at the LHC are differentiable from QCD backgrounds.
816 Therefore, this study is only focussed on the multijet final states for black
817 hole searches in the ATLAS 2012 data.

818 The multijet final state data are used to calculate model-independent
819 exclusion limits on the production of new physics. To set model-dependent
820 exclusion limits, several black hole event generators, e.g., CHARYBDIS [54],
821 CATFISH [55], BLACKMAX [56] and QBH [57], have been developed to model
822 the formation of different types of black holes at the LHC. CHARYBDIS is
823 the most widely used black hole generator, using PYTHIA [58] or HERWIG
824 [59] simulations to handle all the QCD interactions, hadronisation and
825 secondary decays. In this study, the data samples produced from the
826 CHARYBDIS generator are used to set model-dependent exclusion limits
827 on the production of black holes.

828 Chapter 3

829 The ATLAS Detector at the Large
830 Hadron Collider

831 3.1 Introduction

832 The analysis described in this thesis has been performed using pp collisions
833 collected by ATLAS in 2012. ATLAS is one of the general purpose detectors
834 at the LHC. In this chapter, a brief introduction to the ATLAS detector
835 is given by describing its major components. The types of information
836 used in the analyses are mostly based on calorimeter measurements. The
837 important sub detectors of ATLAS will be described in detail.

838 3.2 The Large Hadron Collider

839 The LHC is the world's largest particle accelerator operating at the
840 highest collider energy ever achieved in an accelerator. It is a ring 27
841 kilometres in circumference, 100 metres beneath the French-Swiss border
842 near Geneva, Switzerland. It is designed to collide mainly proton-proton
843 (pp) beams, moving in opposite directions, with 14 TeV centre of mass
844 energy and a luminosity of $10^{34} \text{ cm}^{-2}\text{s}^{-1}$. Inside the LHC, there are eight
845 accelerating cavities and each one of them provides a strong electric field
846 of about 5 MV/m used to accelerate the beams. It also contains 1232
847 superconducting main dipole magnets (to bend the beams), providing a

total field of 8.33 T, and 392 super conducting quadrupole magnets (to focus the beams), providing a total field of 6.86 T. The LHC is expected to shed light on some of the most fundamental questions of physics, the understanding of basic laws through which nature governs this universe. In the exciting year of 2012, the LHC not only successfully operated at 8 TeV centre of mass energy but also accomplished one of its major goals, the discovery of the Higgs boson [14, 15].

There are four major detectors on the LHC ring: ATLAS, CMS, ALICE (dedicated to heavy ion physics) and LHCb (dedicated to b-physics). ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) are the two general purpose detectors that have been built to probe pp collisions mainly. The analysis described in the next chapter is performed with the ATLAS 2012 data from pp collisions. ATLAS has recorded an integrated luminosity of 21.7 fb^{-1} in 2012, as shown in Figure 3.1.

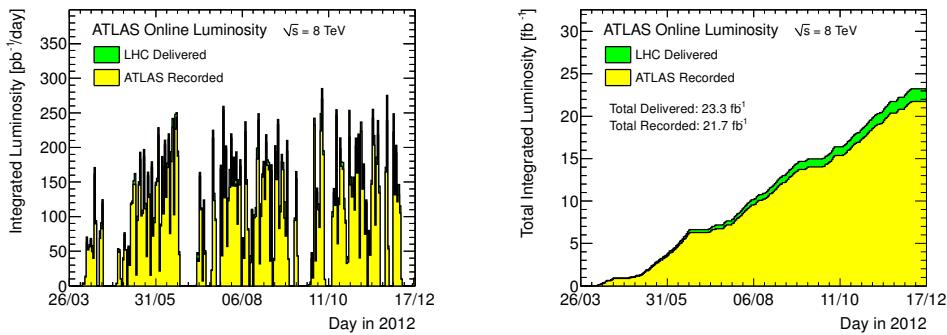


Figure 3.1: The maximum instantaneous luminosity (left) and the cumulative integrated luminosity (right) delivered by the LHC per day and recorded by ATLAS per day for pp collisions at 8 TeV centre of mass energy during the stable beams in 2012 [60].

3.3 The ATLAS Detector

The ATLAS detector [61] is shown in Figure 3.2. The centre of the detector is called the nominal interaction point (IP) and is the origin of the

865 coordinate system of the ATLAS detector. The beam axis is defined as the
 866 z -axis and the x - y plane is considered as the plane transverse to the beam
 867 axis. The positive x -axis is defined as pointing from the interaction point
 868 to the centre of the LHC ring and the positive y -axis is defined as pointing
 upwards.

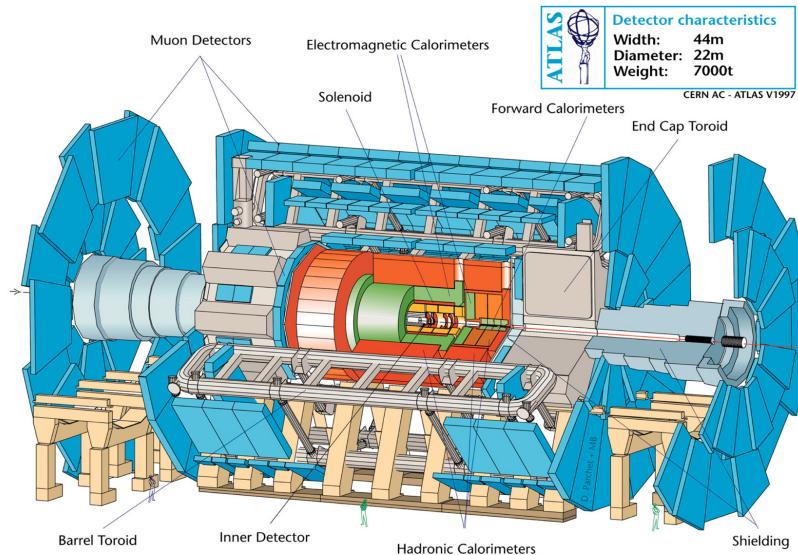


Figure 3.2: Layout of the full ATLAS detector [62].

869

870 The azimuthal angle ϕ is measured around the beam axis, and the
 871 polar angle θ from the positive beam axis. On the basis of the polar angle
 872 one can define pseudorapidity as $\eta = -\ln \tan(\theta/2)$. The ATLAS detector
 873 is symmetric in the z -axis and it covers the whole range of ϕ .

874 The Inner Detector (ID), the Calorimeters and the Muon Spectrometer
 875 are the major sub detectors of ATLAS, which will briefly be described
 876 in the next sections. The ATLAS detector has a three-level trigger system
 877 for the selection of events and event storage for offline analysis, which will
 878 be described in the last section of this chapter. Starting from the IP, the
 879 detector closest to the IP is the Inner Detector (ID).

880 3.4 Inner Detector

881 The ATLAS ID combines high-resolution detectors at the inner radii with
882 continuous tracking elements at the outer radii, capable of recognising pri-
883 mary and secondary vertices in an event. All the ID systems are housed in
884 a central solenoid magnet to provide a field of 2 T to the inner tracking.
885 There are three main components of the ID: the Semiconductor Pixel detec-
886 tors followed by the Semiconductor Tracker (SCT) and then the Transition
887 Radiation Tracker (TRT) at the outer radius. In the barrel region, they are
888 arranged in concentric cylinders around the beam axis, while the end-cap
889 detectors are mounted on disks perpendicular to the beam axis, as shown
890 in Figure 3.3. Typically for each track, the pixel detector, the SCT and the
891 TRT contribute 3, 4 and 36 tracking measurements, respectively. Hence,
892 the 3 layers of the pixel detector and the 4 layers of the SCT precisely
893 measure the tracks and momentum within the radius of 56 cm, surrounded
894 by a continuous tracking system provided by the TRT.

895 The pixel and the SCT are called the precision detectors and cover
896 the region of $|\eta| < 2.5$. In the barrel region, the pixel and the SCT layers
897 are segmented in azimuthal ($R\text{-}\phi$) and axial (z) directions, whereas in the
898 end-cap region, the disks are segmented in azimuthal ($R\text{-}\phi$) and radial (R)
899 directions. The TRT covers the region of $|\eta| < 2$ and measures in $R\text{-}\phi$ plane
900 only. The pixel sensors have better resolution as compared to the SCT and
901 the TRT to provide precise measurements close to the IP. Each layer of
902 pixels has an accuracy of $10 \mu\text{m}$ ($R\text{-}\phi$) and $115 \mu\text{m}$ (z) in the barrel region,
903 and $10 \mu\text{m}$ ($R\text{-}\phi$) and $115 \mu\text{m}$ (R) in the end-cap region. The 80.4 million
904 pixels on different silicon wafers allow them to identify the positions of
905 different tracks accurately, since the hits on individual pixels are measured.
906 The SCT is less accurate than pixels. Each of its layer has an accuracy
907 of $17 \mu\text{m}$ ($R\text{-}\phi$) and $580 \mu\text{m}$ (z) and $17 \mu\text{m}$ ($R\text{-}\phi$) and $580 \mu\text{m}$ (R) in the

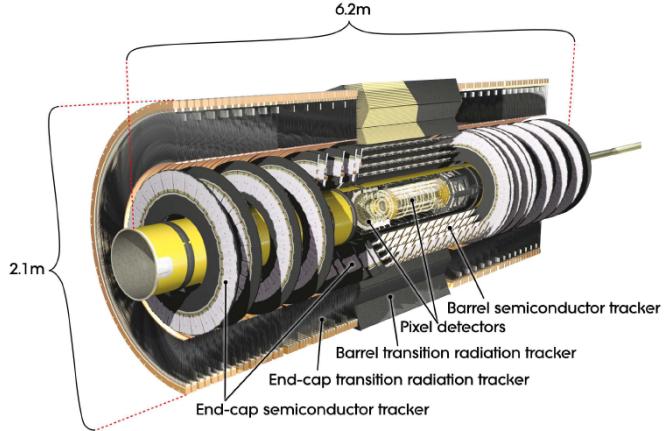


Figure 3.3: Cut-away view of ATLAS Inner Detector (ID) [61].

908 barrel and end-cap regions, respectively. The TRT is a straw tube detector
 909 filled with a xenon-based gas mixture that can also identify electrons, it
 910 has a drift-time accuracy of $130 \mu\text{m}$ per straw.

911 3.5 Calorimeters

912 The ATLAS calorimeter system is the set of detectors which is radially out-
 913 side the ID, providing a full ϕ -symmetry and coverage of $|\eta| < 4.9$ around
 914 the beam axis, shown in Figure 3.4. The system has two major types of
 915 calorimeters: the electromagnetic and the hadronic calorimeters, both of
 916 which are shower-based detectors. The electromagnetic system uses liquid-
 917 argon (LAr) as an active detector medium chosen for its intrinsic linear
 918 behaviour, stability of response over time and intrinsic radiation-hardness.
 919 The hadronic system is based on scintillator tiles with an absorbing medium
 920 of steel. The inner-most calorimeters are mounted in three cryostats, one
 921 barrel and two end-caps. The barrel cryostat contains the electromagnetic
 922 barrel calorimeter, whereas the two end-cap cryostats each contains an elec-
 923 tromagnetic end-cap calorimeter (EMEC), a hadronic end-cap calorimeter
 924 (HEC), located behind the EMEC, and then a forward calorimeter (FCal)
 925 to cover the region closest to the beam.

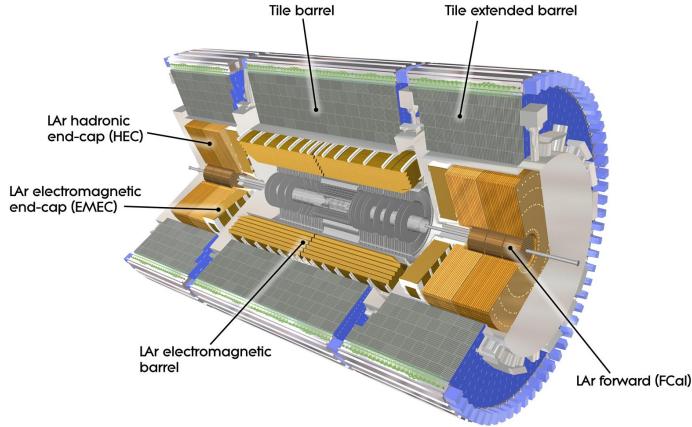


Figure 3.4: The ATLAS calorimeters [61].

926 3.5.1 Liquid Argon Calorimeter

927 The electromagnetic calorimeter mainly measures the energies of charged
 928 and neutral particles that interact electromagnetically, for example elec-
 929 trons and photons. It consists of several layers of accordion-shaped ab-
 930 sorbers of lead and copper electrodes, and LAr between them. For example,
 931 a high energy electron interacts with the absorber and forms a shower of
 932 low energy electrons, positrons and photons, which passes through LAr and
 933 produces more negatively charged electrons and positively charged ions by
 934 ionisation. Finally, these ionisation electrons are collected on electrodes
 935 and the charge is measured leading to measure energy of the primary
 936 electron. The accordion geometry of the LAr calorimeter provides sev-
 937 eral active layers in the system, three in the precision-measurement region
 938 ($1.5 < |\eta| < 2.5$), two in the higher- η region ($2.5 < |\eta| < 3.2$) and two in
 939 the overlap region ($1.375 < |\eta| < 1.5$) between the barrel and the EMEC.
 940 For $|\eta| < 2.5$, one of the high precision-measurement components with its
 941 three layers is shown in Figure 3.5, the first layer contains narrow strips
 942 positioned with a 4 mm separation in the η -direction with a very fine gran-
 943 ularity of $\Delta\eta \times \Delta\phi = 0.0025 \times 0.01$. The second layer consists of small

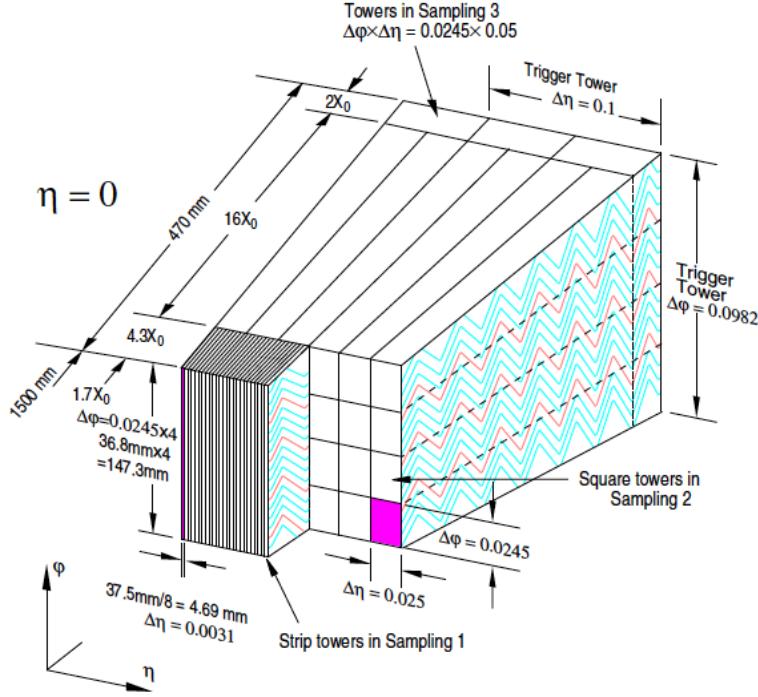


Figure 3.5: Drawing of barrel module of the LAr calorimeter [61].

944 segments placed into towers with granularity of $\Delta\eta \times \Delta\phi = 0.025 \times 0.025$.
 945 The third layer has relatively low precision, as compared to the previous
 946 two, with a granularity $\Delta\eta \times \Delta\phi = 0.05 \times 0.025$. Overall, the barrel part of
 947 LAr calorimeter provides a coverage of $|\eta| < 1.475$, while the two end-cap
 948 components provide $1.375 < |\eta| < 3.2$ coverage.

949 3.5.2 Hadronic Calorimeter

950 The tile calorimeter is the next layer to the electromagnetic calorimeter in
 951 both the barrel ($|\eta| < 1$) and the end cap regions ($0.8 < |\eta| < 1.8$). The
 952 hadronic system also works like the electromagnetic system. In this case,
 953 strongly interacting particles interact with the absorbing steel to produce
 954 showers of secondary hadrons (for example protons, neutrons and pions)
 955 and these showers interact with the scintillating tile material to produce
 956 the measurable signals.

957 The HEC calorimeters are mounted in two wheels per end cap and
958 placed just after the EMEC calorimeter. Each HEC wheel contains two
959 layers and hence there are four HEC layers per end-cap. They cover the
960 $1.5 < |\eta| < 3.2$ region with variable granularity: $\Delta\eta \times \Delta\phi = 0.1 \times 0.1$ for
961 $1.5 < |\eta| < 2.5$ and 0.2×0.2 for the $2.5 < |\eta| < 3.2$ region.

962 The FCal provides higher electromagnetic and hadronic coverage in
963 the forward region ($3.1 < |\eta| < 4.9$), mounted in each end-cap. It consists
964 of three modules, also containing LAr as a sensitive material. The first
965 one is made up of copper (to optimise electromagnetic interactions), while
966 other two are made up of tungsten (to optimise hadronic interactions).

967 3.6 Muon Spectrometers

968 The outermost part of ATLAS detector is the muon spectrometer, designed
969 to detect muons in the pseudorapidity range $|\eta| < 2.7$. The different compo-
970 nents of Muon Spectrometer are shown in Figure 3.6. Energetic muons are
971 typically the only detectable particles that can traverse all the calorimeters
972 without being stopped. The muon spectrometer surrounds the calorime-
973 ter and measures the muon's path by determining their momenta with a
974 typical resolution of about 10%. It contains thousands of charged particle
975 sensors in the central and end-cap regions in order to perform a precision
976 measurement. The sensors are similar to the straw tubes of the ID, but
977 with larger tube diameters. The large superconducting toroidal coils inside
978 the muon spectrometer produce a magnetic field of 0.5 T in the central
979 region and 1 T in the end-caps regions. The minimum energy for muons to
980 reach the spectrometer is ~ 3 GeV, due to energy loss in the calorimeters.

981 The precise tracking of muons through the spectrometer is accom-
982 plished by CSCs (Cathode Strip Chambers) and MDT (Monitored Drift
983 Tube) chambers. The fast trigger system of the spectrometer consists of

984 three RPC (Resistive Plate Chamber) stations in the barrel, and three
985 stations of TGCs (Thin Gap Chambers) in the end-cap regions.

986 The MDT chambers consist of aluminium tubes with a central W - Re
987 wire and a gas mixture of Ar - CO_2 , which is filled at an absolute pressure of
988 3 bars that provides a maximum drift time of approximately 700 ns. The
989 MDT chambers are constructed from 2×4 and 2×3 monolayers of drift
990 tubes for the inner and middle/outer stations, respectively. In the drift
991 chambers, the avalanche of secondary ionisations is being detected, which
992 is proportional to the initial ionisation. The CSCs ($2 < |\eta| < 2.7$), using
993 a mixture of Ar , CO_2 and CF_4 gas, are multiwire proportional chambers
994 with a segmented cathode strip readout providing position measurements
995 from the avalanche formed on the anode wire. The RPC ($|\eta| < 1.05$)
996 is a gaseous detector ($C_2H_2F_4$ gas), constructed without wires from two
997 detector layers and four readout strip panels. It typically provides space
998 and time resolutions of 1 cm and 1 ns, respectively. Finally, the TGCs
999 ($1.05 < |\eta| < 2.4$) are multi-wire proportional chambers. The anode wires
1000 and readout strips of these chambers are arranged parallel and orthogonal,
1001 respectively, to the MDT wires and provide both the spatial and trigger
1002 information.

1003 3.7 Forward Detectors

1004 In addition to the main ATLAS detector systems described in previous
1005 sections, there are five smaller sets of detectors to cover the forward region
1006 in more detail: the Beam Condition Monitor (BCM), the Minimum Bias
1007 Trigger Scintillator (MBTS), the LUMinosity measurement using Cerenkov
1008 Integrating Detector (LUCID), the Zero Degree Calorimeter (ZDC) and
1009 the Absolute Luminosity ALFA detectors at distances 1.84 m, 3.6 m, 17 m,
1010 140 m and 240 m from the IP of ATLAS, respectively. They are symmetric

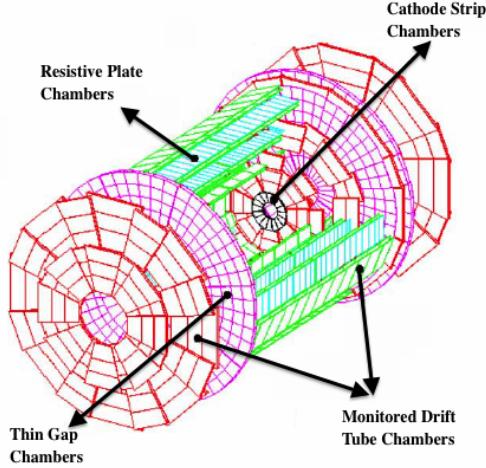


Figure 3.6: Layout of Muon Spectrometer [63].

Forward Detectors	Rapidity Range
BCM	$ \eta \sim 4.2$
MBTS	$2.1 < \eta < 3.8$
LUCID	$5.6 < \eta < 5.9$
ZDC	$ \eta > 8.3$
ALFA	$1.06 < \eta < 13.5$

Table 3.1: Rapidities of forward detectors of ATLAS.

1011 on either side of the IP. Along with the central detectors of ATLAS, the
 1012 forward detectors provide an additional rapidity coverage in the forward
 1013 regions as shown in Table 3.1. The forward detectors are closely connected
 1014 to the luminosity determination in ATLAS, which will briefly be described
 1015 in the next section.

1016 3.8 Luminosity Measurement

1017 The ATLAS luminosity is measured in inelastic interactions by using dif-
 1018 ferent forward detectors and their corresponding counting-algorithms [64].
 1019 For a given fraction of bunch crossings (BXs), the number of registered
 1020 events by a detector are counted according to specific selection criteria,
 1021 with event selection efficiency (ε), which depends on the specific detector

1022 and the algorithm chosen. The luminosity (\mathcal{L}) corresponding to an inelastic
 1023 cross section (σ_{inel}), for the total number of BXs at the IP (n_b) and the
 1024 number of inelastic interactions per BX (μ), can be written as

$$\mathcal{L} = \frac{\mu n_b f_r}{\sigma_{inel}} = \frac{\mu_{vis} n_b f_r}{\sigma_{vis}}, \quad (3.1)$$

1025 where f_r is the bunch revolution frequency of the proton bunches. In the
 1026 above equation, σ_{vis} is the visible cross section related to the average visible
 1027 interactions per BX (μ_{vis}). The quantity μ_{vis} is the visible quantity seen
 1028 by a detector which is defined as $\mu_{vis} \equiv \varepsilon \mu$, hence $\sigma_{vis} \equiv \varepsilon \sigma_{inel}$. In the
 1029 limit $\mu_{vis} \ll 1$, i.e., for a low number of interactions per BX, μ_{vis} is linearly
 1030 related to the event counting in a detector (N^{vis}) as

$$\sigma_{vis} \approx \frac{N^{vis}}{N_{BX}} \quad (3.2)$$

1031 where N_{BX} are the number of bunch crossings in the same time interval in
 1032 which N^{vis} are measured. On the other hand, when μ increases, the prob-
 1033 ability of two or more than two pp interactions in the same BX is no longer
 1034 negligible, and the relation between μ_{vis} and N^{vis} is not linear anymore.
 1035 Therefore, for high μ_{vis} , Poisson statistics must be taken into account. The
 1036 detector algorithms are modified to take the Poisson distribution effects
 1037 into account for the luminosity calculations.

1038 There is another method for luminosity measurement which neither
 1039 requires any prior knowledge of cross section nor depends on detector effi-
 1040 ciencies. It is known as the van der Meer (vdM) scans method [65]. This
 1041 technique only depends on the machine parameters and luminosity. The
 1042 equation for the vdM scans method is written as

$$\mathcal{L} = \frac{n_b f_r n_1 n_2}{2\pi \Sigma_x \Sigma_y}, \quad (3.3)$$

1043 where n_1 and n_2 are the number of protons in two colliding bunches, and Σ_x
 1044 and Σ_y are the numbers measured from the horizontal and vertical beam

1045 profiles scanned by vdM method. However, this method requires some
1046 dedicated runs and special setup to scan the beam profiles.

1047 3.9 Triggers and Data Acquisition

1048 The ATLAS trigger and data acquisition system is a three level online
1049 data refinery, and events which pass all the three levels are written out for
1050 the offline analysis. The Level-1 (L1) trigger takes information from sub
1051 detectors, reduces the event rate to about 75 kHz, and makes an initial
1052 selection. For example, it recognises muon p_T from the RPCs and TGCs,
1053 and accepts electrons, hadrons and jets from the calorimeter system. The
1054 latency of L1 is the time between pp collisions and the time at which the
1055 decision of L1 is available for the next level, Level-2 (L2), which is $2.5 \mu\text{s}$.
1056 Therefore, in this small time L1 decides whether to send this information
1057 to L2 or not.

1058 The selection criteria of L2 trigger are based on the information
1059 provided by L1, called Regions-of-Interest (RoIs). A RoI information can
1060 include various parameters such as p_T , missing transverse energy E_T^{miss} , and
1061 the positions of particles in (η, ϕ) . Along with the L1-RoI, the L2 trigger
1062 uses some additional RoIs with some tighter cuts to process an event in less
1063 than 40 ms, and reduces the trigger rate to ~ 3.5 kHz. The Event Filter
1064 (EF) is the last stage of the online trigger system, which also uses RoI. The
1065 EF reduces the event rate to 200 Hz and processes an event on the order of
1066 1 s, and therefore has an ability to run a complex analysis on the data due
1067 to the longer processing time available. The EF is able to filter events with
1068 respect to different physics needs, for example events with high p_T jets are
1069 used for this analysis. Finally, these events are written out to mass storage
1070 for offline analysis.

₁₀₇₁ Chapter 4

₁₀₇₂ Analysis

₁₀₇₃ In this chapter, the search for microscopic black holes in multijet final states
₁₀₇₄ for pp collisions with 8 TeV centre of mass energy at the LHC, using the
₁₀₇₅ ATLAS 2012 data, is presented. The study is mainly data-driven, but uses
₁₀₇₆ corrections derived from MC-simulations (MCs) of QCD. The black hole
₁₀₇₇ search in this analysis is based on low-scale gravity models which predict
₁₀₇₈ production of non-perturbative gravitational states, such as black holes in
₁₀₇₉ high energy particle collisions at the LHC [66].

₁₀₈₀ 4.1 Introduction

₁₀₈₁ According to low-scale gravity models, the hierarchy problem (described in
₁₀₈₂ chapter 1) can be solved when the fundamental gravitational scale reduces
₁₀₈₃ to the order of the electroweak scale. As a consequence, the production
₁₀₈₄ of black holes or string balls may occur at the LHC with masses much
₁₀₈₅ higher than the fundamental gravitational scale. Once produced, the mi-
₁₀₈₆ croscopic black holes at the LHC will act like classical thermal states and
₁₀₈₇ quickly decay to a large number of particles (high multiplicity) with high
₁₀₈₈ p_T . As discussed in subsection 2.4.4 and section 2.5 that the black hole
₁₀₈₉ decay mainly leads to the production of jets of hadrons in the detector.
₁₀₉₀ Therefore, high p_T multijet final states are chosen as a potential signal for
₁₀₉₁ the microscopic black holes.

1092 In this study, we look for high multiplicity multijet final states with
1093 high p_T . The suitable variable is the scalar sum of jet- p_T ($H_T = \sum p_T$).
1094 For different jet multiplicity bins, the shape of the H_T distribution is ex-
1095 pected to be the same because initial state radiation (ISR) and final state
1096 radiation (FSR) are collinear in nature with respect to the incoming and
1097 outgoing partons. The assumption of the H_T shape invariance for the
1098 QCD-type events allows us to predict the QCD background for all the jet
1099 multiplicities. Since microscopic black holes are expected to decay to high
1100 jet multiplicities, the lowest multiplicity case of dijet is therefore chosen as
1101 the control region. The most invariant sub-region of H_T with multiplicity
1102 of the control region is defined as the normalisation region in the H_T dis-
1103 tribution for all the jet multiplicities, where there are no black holes seen.
1104 By using the shape invariance assumption and a fit-based technique, the
1105 control region fits, along with the appropriate normalisation factors, are
1106 applied to jet multiplicities larger than two in order to estimate the back-
1107 ground in the signal region. By considering all the possible uncertainties
1108 in the signal region, model-independent and model-dependent upper limits
1109 are derived for the inclusive jet multiplicities $N \geq 3, 4, \dots, 7$. This analysis
1110 method is adopted from the previous studies for microscopic black hole
1111 searches in the ATLAS [67] and CMS [7–10] collaborations.

1112 4.2 Monte Carlo Simulations

1113 QCD multijet events constitute the dominant background in the search
1114 region. PYTHIA8 [68] and HERWIG++ [69] dijet MC samples are used
1115 to study the main background. All other background contributions from
1116 events such as $t\bar{t}$, $Z+jets$, $W+jets$, di-boson (ZZ , WW , WZ) and $\gamma+jets$
1117 are considerably small and can be ignored [7, 8, 10]. Detailed descriptions
1118 of generated dijet samples will be illustrated in next subsection.

1119 All the MC samples are passed through a full simulation of the
1120 ATLAS detector [70] using GEANT4 [71]. All the MC simulated data
1121 samples used in this analysis have been produced centrally by the ATLAS
1122 collaboration for 8 TeV centre of mass energy in order to compare with the
1123 ATLAS 2012 data. The MC simulated data is also corrected with respect
1124 to pileup effects (described in Appendix E) in the 2012 data. Finally, the
1125 MC events are reconstructed and analyzed with the same procedures as
1126 used on the data.

1127 4.2.1 QCD Background Samples

1128 The baseline simulated QCD MC samples are generated using PYTHIA8
1129 implementing leading-order (LO) perturbative QCD matrix elements for
1130 $2 \rightarrow 2$ processes and p_T -ordered parton showers calculated in a leading log-
1131 arithmetic approximation with the ATLAS AU2 tune [72] and the CT10 PDF
1132 set [73]. Effectively, these samples are generated for eight different leading
1133 jet p_T regions based on their cross sections covering the entire p_T spectrum
1134 accessible by the ATLAS detector. The PYTHIA8 MC samples produced
1135 for different leading jet p_T slices are named as $JZ0W, JZ1W, \dots, JZ7W$,
1136 and also called J -samples. At the generator level, events are filtered by the
1137 p_T cut corresponding to each J -sample. The efficiency of this cut is known
1138 as the filter efficiency. The dataset identifiers (DSIDs), number of events,
1139 p_T ranges, cross sections and the filter efficiencies for all the J -samples are
1140 given in Table 4.1.

1141 Similarly, HERWIG++ [69] is used to produce another type of base-
1142 line QCD events for $2 \rightarrow 2$ processes with the EE3 tune [74] and the
1143 CTEQ6L1 PDF set [75]. Different slices with corresponding DSIDs based
1144 on their cross sections and filter efficiencies are shown in Table 4.2. All the
1145 specifications of both the QCD MC events are also compared in Table 4.3.

DSID	Slice	Events	p_T [TeV]	Cross section [fb]	Filter Efficiency
147910	$JZ0W$	1500000	0-0.02	7.3×10^{13}	9.9×10^{-1}
147911	$JZ1W$	1599994	0.02-0.08	7.3×10^{13}	1.3×10^{-4}
147912	$JZ2W$	5999034	0.08-0.2	2.6×10^{10}	4.0×10^{-3}
147913	$JZ3W$	5977254	0.2-0.5	5.4×10^8	1.2×10^{-3}
147914	$JZ4W$	5997214	0.5-1.0	6.4×10^6	7.1×10^{-4}
147915	$JZ5W$	2996082	1.0-1.5	4.0×10^4	2.2×10^{-3}
147916	$JZ6W$	2993651	1.5-2.0	4.2×10^2	4.7×10^{-4}
147917	$JZ7W$	2991955	>2.0	4.1×10^1	1.5×10^{-2}

Table 4.1: PYTHIA8 dijet MC weighted samples with their corresponding dataset identifier (DSID), name of the sample (Slice), number of events, p_T range, cross section and the efficiency of the kinematic filter at the generator level (Filter Efficiency) are shown.

1146 For both the PYTHIA8 and HERWIG++ MCs, all the J -samples (p_T
 1147 slices) need to be properly weighted and combined together in order to
 1148 obtain the whole p_T spectrum. A J -sample can be weighted corresponding
 1149 to its filter efficiency ϵ_F , cross section σ , weight of each event and the total
 1150 number of events as following

$$\text{Weight} = \frac{\epsilon_F \times \sigma \times \text{Event weight}}{\text{Number of events}}. \quad (4.1)$$

1151 The above p_T slice weight is applied on an event by event basis for each
 1152 J -sample. Finally, all the weighted samples are combined to obtain a full
 1153 p_T distribution in order to compare it with the data distribution.

1154 4.3 Trigger

1155 The selection of a trigger is the starting point of an analysis, as it decides
 1156 whether to reject an event or keep it for the analysis. Different types of trig-
 1157 gers are designed based on objects (electrons, photons, muons, jets, etc.)
 1158 and physics needs. Since H_T is the key variable of this analysis, and micro-
 1159 scopic black hole signals are expected to lie in the high H_T region, a trigger
 1160 requiring high p_T jets and high H_T would be suitable for this analysis. The

DSID	Slice	Events	Cross section [fb]	Filter Efficiency
159110	<i>JZ0W</i>	1399998	1.2×10^8	9.9×10^{-1}
159111	<i>JZ1W</i>	1399897	3.6×10^{12}	1.4×10^{-3}
159112	<i>JZ2W</i>	1399993	1.9×10^{10}	2.6×10^{-3}
159113	<i>JZ3W</i>	1399680	3.6×10^8	8.5×10^{-4}
159114	<i>JZ4W</i>	1399665	4.2×10^6	5.4×10^{-4}
159115	<i>JZ5W</i>	399490	8.3×10^4	5.5×10^{-4}
159116	<i>JZ6W</i>	1389845	5.8×10^3	2.0×10^{-4}
159117	<i>JZ7W</i>	1396932	6.5×10^2	5.7×10^{-4}

Table 4.2: HERWIG++ dijet MC weighted samples with their corresponding dataset identifier (DSID), name of the sample (Slice), number of events, cross section and the efficiency of the kinematic filter at the generator level (Filter Efficiency) are shown.

Generator	PYTHIA8	HERWIG++
Process	dijet	dijet
Matrix	PYTHIA8	HERWIG++
Hadronisation	PYTHIA8	HERWIG++
Underlying Event	PYTHIA8	HERWIG++
ATLAS Tune	AU2	EE3
PDF Set	CT10	CETQ6L1

Table 4.3: Matrix element generator, hadronisation generator, underlying event generator, ATLAS tune and parton distribution function (PDF) set is shown for both PYTHIA8 and HERWIG++ QCD dijet MC events.

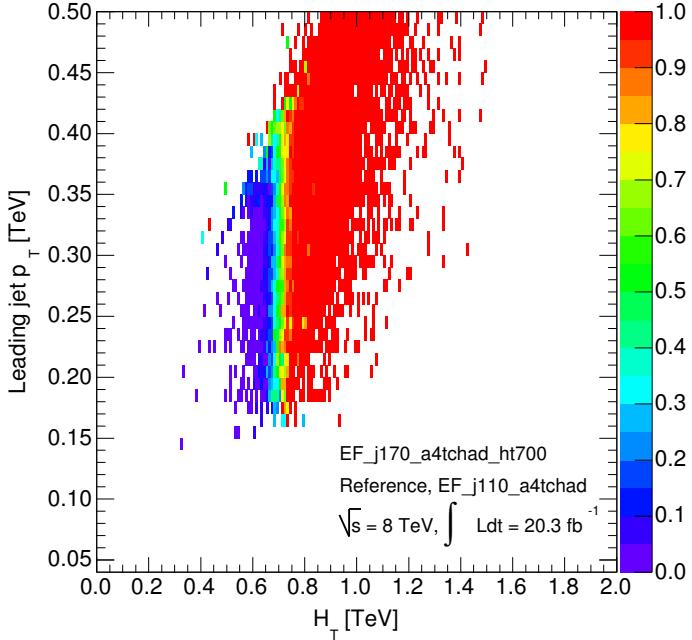
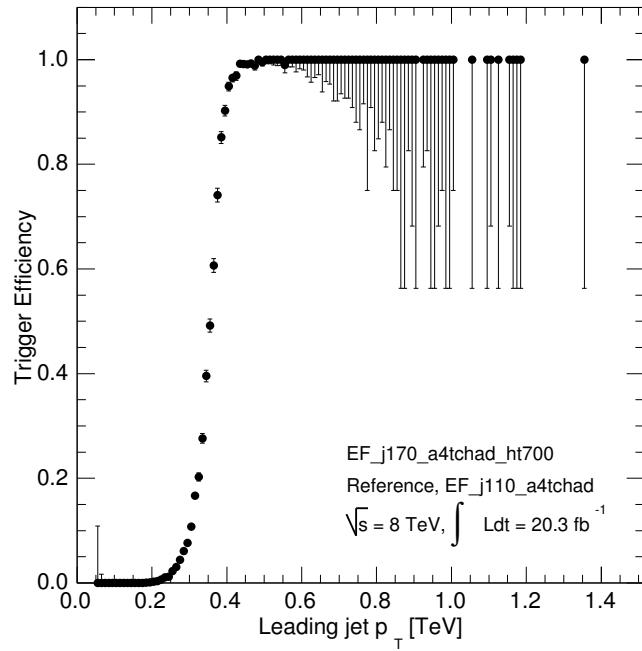
1161 EF_j170_a4tchad_ht700 trigger fulfills the need of this study by requiring at
 1162 least one reconstructed hadronic jet of $p_T \geq 170$ GeV and $H_T \geq 700$ GeV
 1163 at the EF level. The term a4tchad stands for a hadronic (had) jet, which
 1164 is reconstructed from topological clusters (tc) [76] of calorimeters by using
 1165 an anti-kt algorithm [77] with a distance parameter $R = 0.4$ (a4) [77, 78].
 1166 The trigger efficiency has been studied as a function of the leading jet p_T
 1167 and H_T with respect to the reference trigger EF_j110_a4tchad. If the main
 1168 trigger EF_j170_a4tchad_ht700 and the reference trigger EF_j110_a4tchad
 1169 are represented as “A” and “B”, respectively, then the trigger efficiency for
 1170 a variable is calculated as

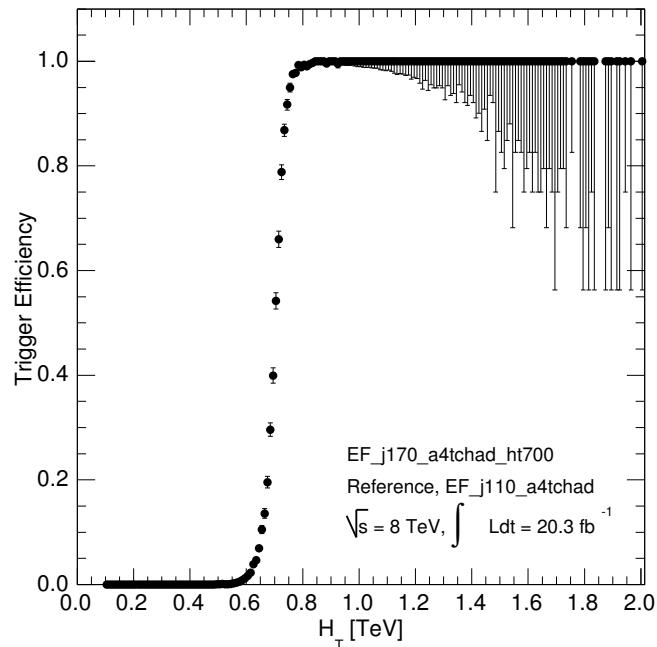
$$\text{Trigger Efficiency} = \frac{A \cap B}{B}. \quad (4.2)$$

1171 The trigger efficiency as a function of the leading jet p_T and H_T is shown
 1172 in Figure 4.1. The correlation between the two variables shows that the
 1173 fully efficient region of the trigger can be obtained for $H_T > 0.9$ TeV.
 1174 Furthermore, the trigger efficiency as a function of the leading jet p_T and
 1175 H_T is shown independent of each other in Figure 4.2, which confirms the H_T
 1176 threshold for the plateau region. Further details on the trigger efficiency
 1177 are shown in Appendix B.

1178 4.4 Data Selection

1179 The analysis is performed over the full 2012 data set of pp collisions at
 1180 $\sqrt{s} = 8$ TeV collected by the ATLAS detector, corresponding to an in-
 1181 tegrated luminosity of 20.3 fb^{-1} . The data for the year are divided into
 1182 different data periods, e.g., period-A, period-B, and so on, corresponding
 1183 to certain time spans of data-taking. A data period consists of the data
 1184 runs which are made according to the stability of beam conditions at the
 1185 LHC and detectors collecting the data. A run is further divided into lumi-
 1186 blocks tagged with numbers called lumi-block numbers (lbn). The length


Figure 4.1: The EF_j170_a4tchad_ht700 trigger efficiency versus leading jet p_T and H_T , with respect to the reference EF_j110_a4tchad trigger.

of each lumi-block is on the order of a few minutes and contains several data events. The reason for dividing the data into runs and lumi-blocks is to create a computing ease to deal with the problematic parts of the data with respect to their time stamps while doing the offline analysis. These affected data may arise because of several factors while data-taking. For example, hardware issues in detectors because of the intense radiation environment or any other reason like electronic noise, non-collision and cosmic ray background, etc. can be sources of bad data collected during collisions. In order to discard the bad data, different physics groups in the ATLAS collaboration define good run lists according to their analysis requirements.

The data is then stored in different formats for offline analyses. The ATLAS physics groups make their own short formatted data sets by filtering the raw data according to their physics needs. Furthermore, the data events are filtered using standard event cleaning criteria.

(a) The trigger efficiency as a function of the leading jet p_T .

(b) The trigger efficiency as a function of the H_T .

Figure 4.2: The EF_j170_a4tchad_ht700 trigger efficiency with respect to the reference trigger EF_j110_a4tchad.

1201 4.4.1 Event Selection

1202 All the good runs and lumi-blocks for the ATLAS 2012 data are used.
1203 Events are required to have a reconstructed primary vertex associated with
1204 at least two tracks. The data events are only considered when the trigger
1205 system, tracking detectors, calorimeters and magnets were operating at
1206 the nominal conditions. More details on event selection can be found in
1207 Appendix C.

1208 4.4.2 Jet Selection

1209 This study is mainly focused on multijet final states. Well-reconstructed
1210 hadronic jets, along with the jets which are made due to photons and
1211 electrons, are used. Since microscopic black holes are expected to decay
1212 predominately to SM particles. By considering multijet final states most
1213 of the potential black hole signatures are taken into account. Moreover,
1214 since the jets from electrons and photons are not identified as different
1215 objects than the hadronic jets there is no concern for object double count-
1216 ing. Therefore, this multijet analysis that does not identify other objects
1217 considerably simplifies the search method.

1218 In the ATLAS data, jets are reconstructed using the anti-kt clus-
1219 tering algorithm with different values of jet distance parameter [77, 78].
1220 Anti-kt jets with a distance parameter $R = 0.4$ made up of topological
1221 calorimeter clusters with a positive energy are used. Furthermore, local
1222 cluster weighting (LCW) calibration is used for the jets, which can distin-
1223 guish between electromagnetic and hadronic jets to apply the appropriate
1224 corrections accordingly, greatly improving the jet energy resolution. The
1225 jet p_T measurement is further improved by applying offline calibrations and
1226 corrections based on different factors such as pseudorapidity, transverse en-
1227 ergy and momentum, event topology and event pileup effects [79]. All good

jets (shown in appendix C.1.4), defined by the percentage of tracks in the jet originating from the vertex, are used. Furthermore, jets with $p_T > 50$ GeV are selected to minimize pileup effects. The detailed description of the event pileup and choice of $p_T > 50$ GeV is mentioned in appendix E. In order to obtain the well-measured jets, only jets reconstructed in the central region of the ATLAS detector, i.e. $|\eta| < 2.8$, are chosen.

For different jet multiplicities ($N = 2, 3, \dots, 7$) the jet p_T and η distributions are shown in Figures 4.3 and 4.4, respectively. Both the p_T and η distributions for the ATLAS 2012 data are compared with PYTHIA8 and HERWIG++ MCs. For a given jet multiplicity, the dijet MC distributions are normalized with respect to the area under the data curve. For the jet p_T , both PYTHIA8 and HERWIG++ MCs agree with the data to within 30% and are also in good agreement to each other. However, for the jet η , from the data to MC ratio at the bottom of each plot in Figure 4.4, the agreement of the data with PYTHIA8 MC is better than the data with HERWIG++ MC.

4.5 Data Characteristics

H_T is the main variable of this analysis, constructed from the scalar sum of p_T of jets with $p_T > 50$ GeV and pseudorapidity $|\eta| < 2.8$, summarized as

$$H_T = \sum p_T \quad \text{for } p_T > 50 \text{ GeV and } |\eta| < 2.8. \quad (4.3)$$

The H_T variable is directly formed from the jet p_T which have good agreement between the data and the MCs, as shown in Figure 4.3. Therefore, the disagreement of the data and MCs for the η distributions, shown in Figure 4.4, does not affect the analysis strategy. Furthermore, some other jet kinematic variables, the leading jet p_T , the second leading jet p_T and the jet ϕ , are shown in appendix D.

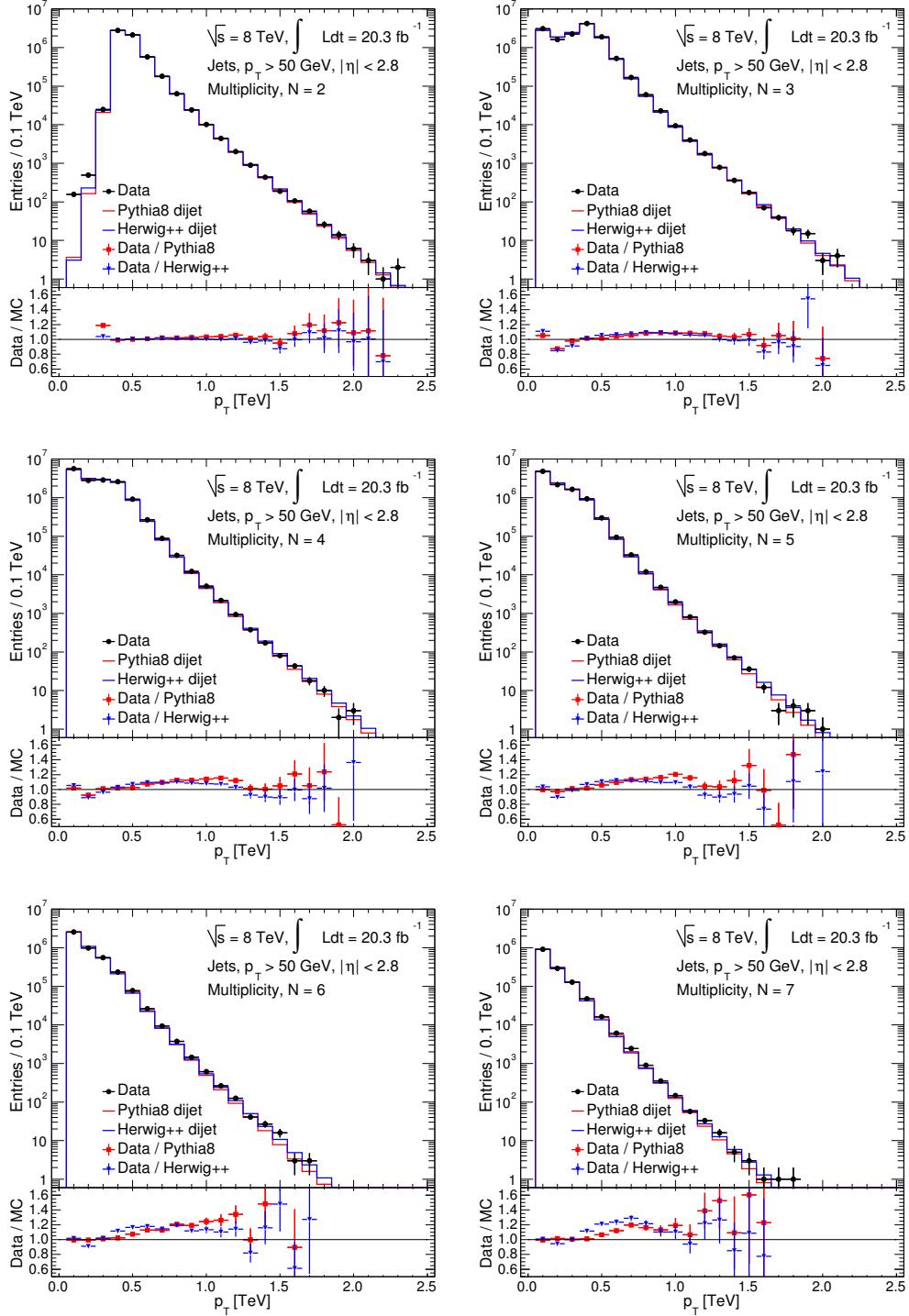


Figure 4.3: The jet p_T distributions for the exclusive jet multiplicities, $N = 2, 3, \dots, 7$, for the ATLAS 2012 data, PYTHIA8 (red) and HERWIG++ (blue) MCs. At the bottom of each plot, the ratio of the data to the MC are shown for both the MCs.

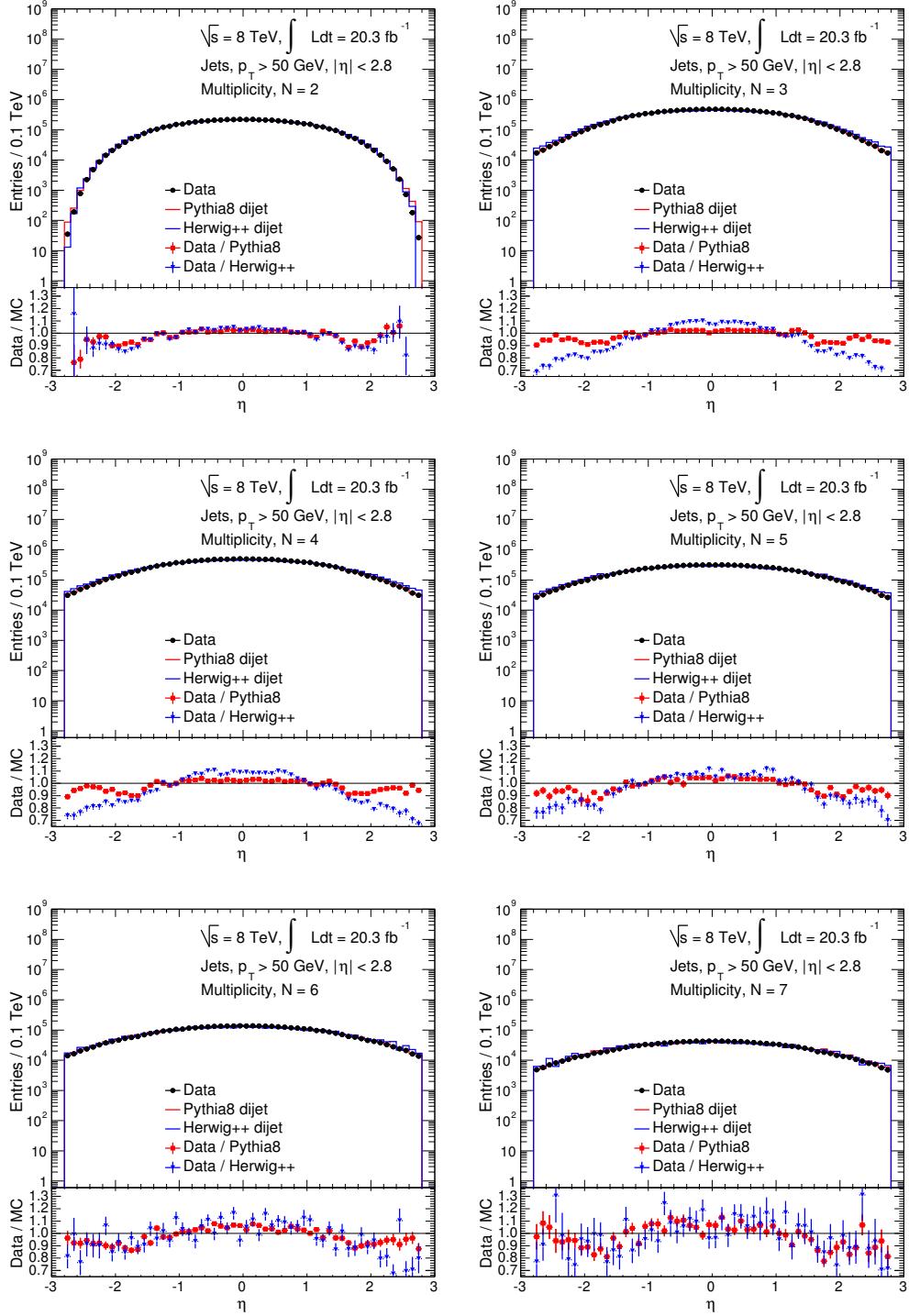


Figure 4.4: The η distributions of jets for the exclusive jet multiplicities, $N = 2, 3, \dots, 7$, for the ATLAS 2012 data, PYTHIA8 (red) and HERWIG++ (blue) MCs. At the bottom of each plot, the ratio of the data to the MC are shown for both the MCs.

1254 4.5.1 The H_T Distributions

1255 In this multijet analysis searching for microscopic black hole, the H_T dis-
1256 tributions play an important role. The comparison of the H_T distributions
1257 for the ATLAS 2012 data, PYTHIA8 and HERWIG++ MCs has been shown
1258 in Figures 4.5 and 4.6 for the exclusive jet multiplicities, $N = 2, 3, \dots, 7$, and
1259 inclusive jet multiplicities, $N \geq 2, 3, \dots, 7$, respectively. From Figure 4.5,
1260 for the exclusive jet multiplicities, the data and the MCs are within 20%
1261 agreement, similar to the p_T distributions (Figure 4.3), whereas the agree-
1262 ment is improved for the inclusive jet multiplicities, as shown in Figure 4.6.
1263 Since for the inclusive jet multiplicities, many jet multiplicities are consid-
1264 ered at once with a lower threshold on jet multiplicity, e.g., $N \geq 3$. The
1265 disagreements are therefore compensated to an extent in the H_T distribu-
1266 tions.

1267 The shapes of the H_T distributions are expected to be the same for
1268 all types of multijet final states and this is the key assumption to estimate
1269 the major QCD background in this study. The shape invariance of the
1270 H_T distributions for different jet multiplicities, both for the inclusive and
1271 exclusive multiplicity cases, will be examined in the next subsection.

1272 4.5.2 Shape Invariance of Kinematic Distributions

1273 The shape of the H_T distribution is considered to be invariant with the jet
1274 multiplicity. The shape invariance is expected above an H_T value set by the
1275 jet $p_T > 0.05$ TeV selection, i.e., $H_T > [N \times 0.05]$ TeV. The multiplicity-
1276 dependent onset for invariance can be observed if the H_T ratios of mul-
1277 tiplicities $N > 2$ are inspected with respect to the case of two jets, i.e.
1278 $N = 2$, as shown in Figures 4.7 and 4.8. The reason of choosing dijet case
1279 as a benchmark case will be described at the end of this subsection. The
1280 onset for invariance is different for different multiplicities, but to keep the

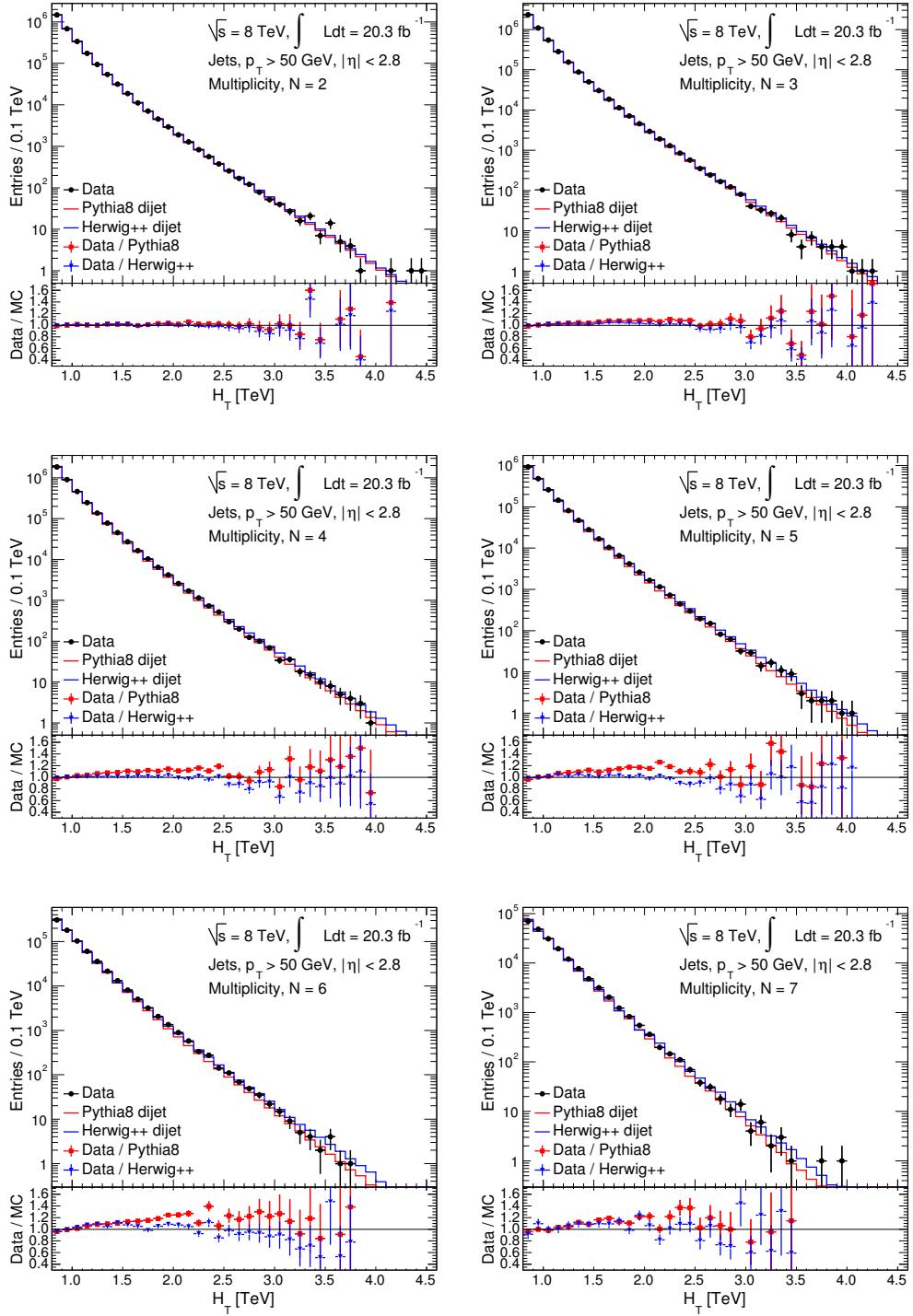


Figure 4.5: The H_T distributions for the exclusive jet multiplicity cases, $N = 2, 3, \dots, 7$, for the ATLAS 2012 data, PYTHIA8 (red) and HERWIG++ (blue) MCs. At the bottom of each plot, the ratio of the data to the MC are shown for both the MCs.

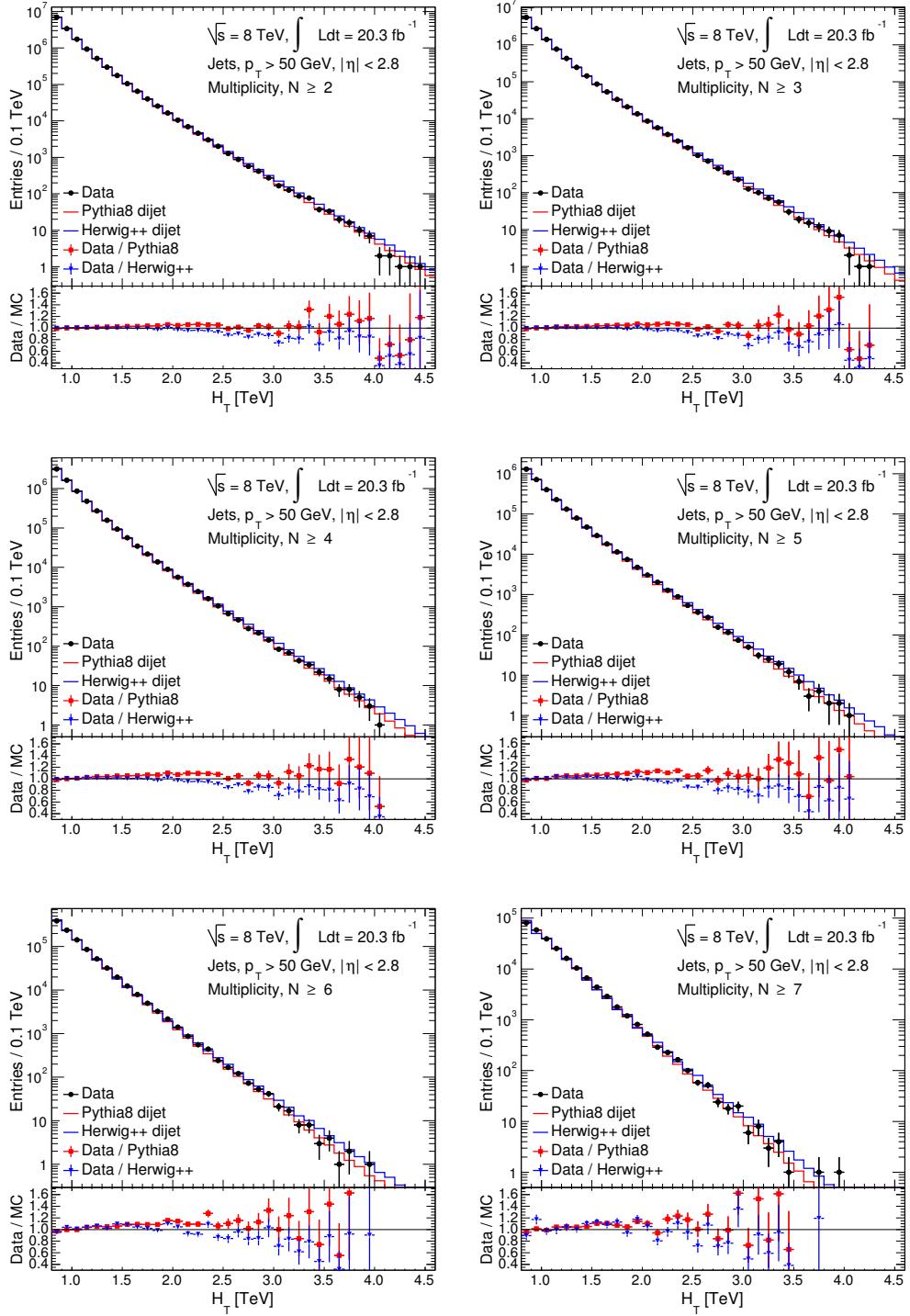


Figure 4.6: The H_T distributions for the inclusive jet multiplicity cases, $N \geq 2, 3, \dots, 7$, for the ATLAS 2012 data, PYTHIA8 (red) and HERWIG++ (blue) MCs. At the bottom of each plot, the ratio of the data to the MC are shown for both the MCs.

1281 background estimation procedure general, a common invariant region for
1282 all the jet multiplicities is defined. From Figures 4.7 and 4.8, by consid-
1283 ering all multiplicity cases under observation, the $H_T > 1.7$ TeV region is
1284 chosen where the plateau is observed in the ratio plots. By ignoring the
1285 $H_T < 1.7$ TeV region, some kinematical effects can be removed, but still
1286 there are some non-invariance effects (negative slopes) for the $H_T > 1.7$ TeV
1287 region. These non-invariant effects can be minimized by applying correc-
1288 tions which will be discussed later in this section. After choosing the lower
1289 H_T threshold, different upper thresholds on the H_T ratios have been stud-
1290 ied and the $1.7 < H_T < 2.4$ TeV region is chosen as the flattest region in
1291 the H_T ratios and is defined as the normalisation region.

1292 In order to investigate the shape invariance of the H_T distribution, a
1293 detailed study is performed in the normalisation region based on the flatness
1294 of the ratio of the H_T distributions. The study of linear fitting and χ^2 -tests
1295 of the ratios for both the data and the QCD simulated background events
1296 determine the flatness in the H_T ratio distributions. The linear fitting tests
1297 in the normalisation region, for the exclusive and inclusive jet multiplicities,
1298 are shown in Figures 4.9 and 4.10, respectively, for the ATLAS 2012 data,
1299 PYTHIA8 dijet and HERWIG++ dijet simulation samples.

1300 The linear fits in the normalisation region shown in Figures 4.9 and
1301 4.10 have different values of fitted slopes and chi-squares (χ^2) depending on
1302 the jet multiplicity, giving valuable information about the shape invariance.
1303 All the fit parameters are shown in Table 4.4 for the exclusive and inclu-
1304 sive jet multiplicities, corresponding to the data and the QCD background
1305 simulations. Ideally, the slope of the straight line fit over the ratio of the
1306 H_T distribution should exactly be consistent with zero for perfect shape
1307 invariance of the H_T distributions, independent of the jet multiplicity. In
1308 most cases, the fit slopes are not consistent with zero but very close to zero,

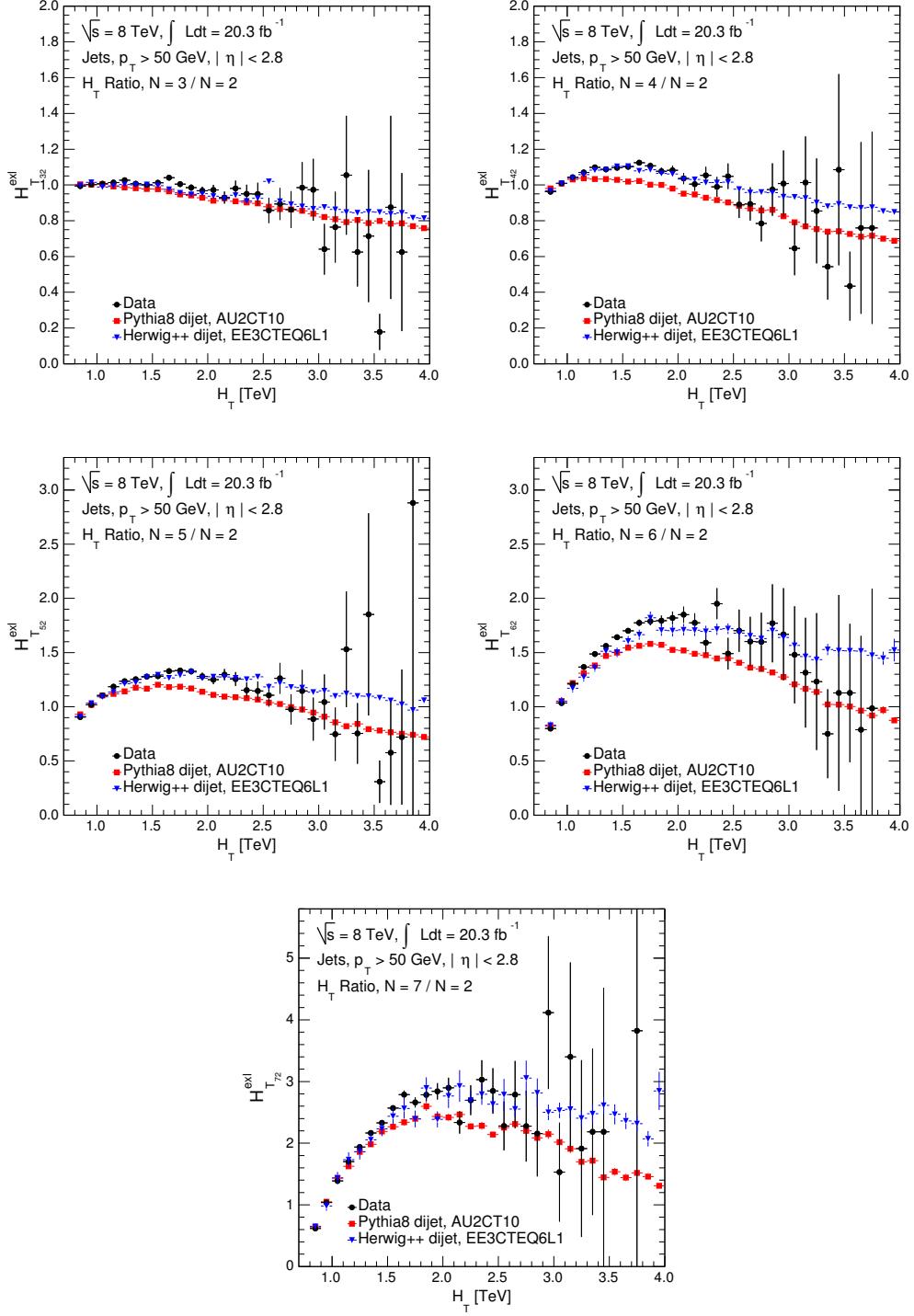


Figure 4.7: The $H_{T_{i2}}^{\text{exl}}$ are the H_T ratios of the exclusive jet multiplicities $i = 3, 4, \dots, 7$ with respect to the reference jet multiplicity $N = 2$, shown for the ATLAS 2012 data, PYTHIA8 and HERWIG++ MCs.

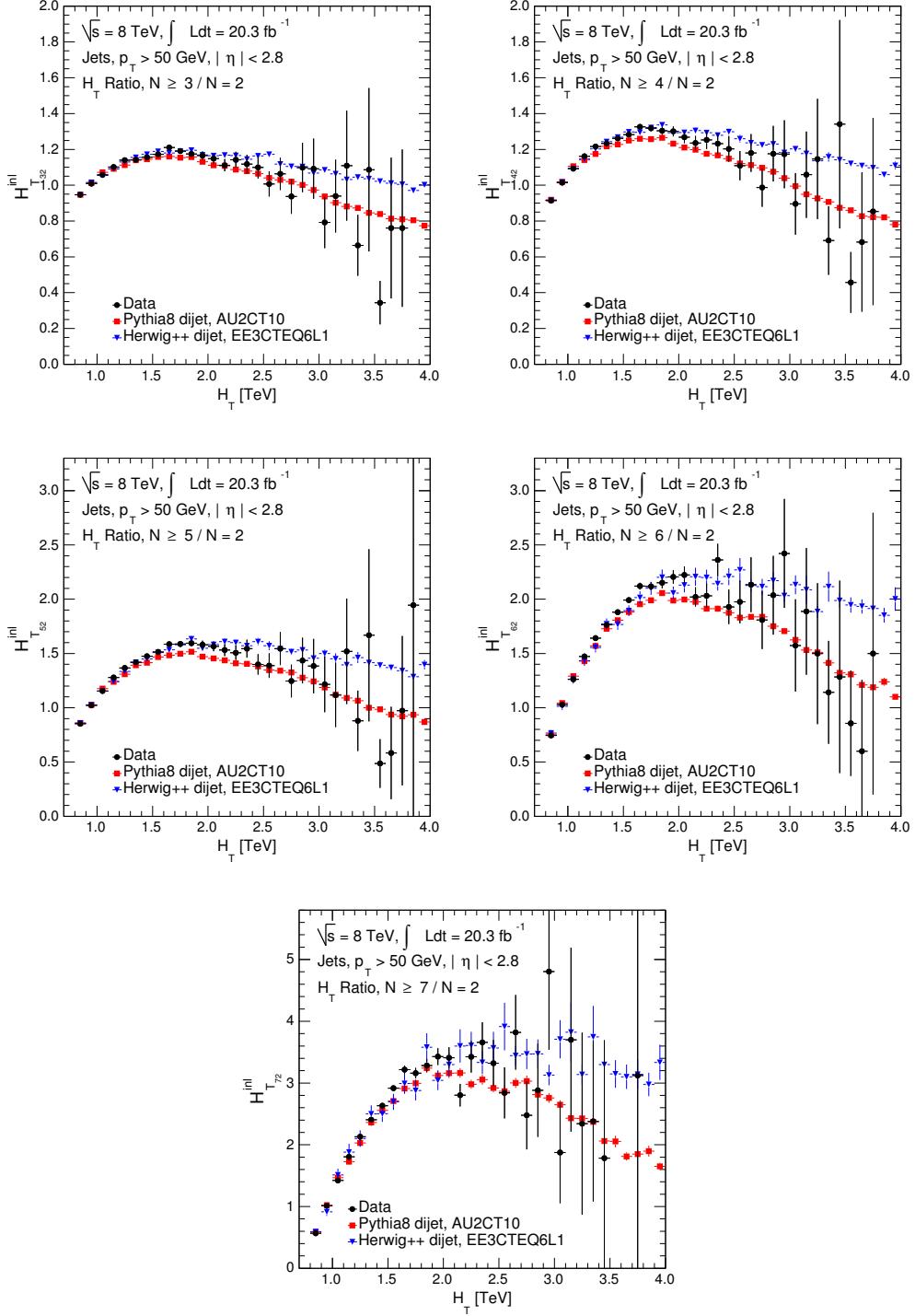


Figure 4.8: The $H_{T_{i2}}^{\text{inl}}$ are the H_T ratios of the inclusive jet multiplicities $i \geq 3, 4, \dots, 7$ with respect to the reference jet multiplicity $N = 2$, shown for the ATLAS 2012 data, PYTHIA8 and HERWIG++ MCs.

1309 which indicates some non-invariant effects in the normalisation region, as
1310 shown in Figure 4.11. In this figure, the slope trends have been shown for
1311 the exclusive (top plot) and inclusive (bottom plot) jet multiplicities. The
1312 effects from non-invariance are compensated to some extent in the inclusive
1313 cases. This is one of the reasons that the model-independent limits calcu-
1314 lated on the basis of shape invariance are more reliable for the inclusive
1315 jet multiplicities. In Figure 4.11, the slopes shown for the H_T ratios are
1316 computed from the jet multiplicities $N > 2$ with respect to the reference jet
1317 multiplicity $N = 2$, for the data and the background MCs. Similarly, the
1318 option of using the jet multiplicity $N = 3$ as the reference is also studied
1319 to check the invariance of the H_T distributions for $N \geq 3$, as shown in
1320 Figure 4.12. However, this search for microscopic black holes is more sen-
1321 sitive for higher jet multiplicities, i.e. the probability of a black hole signal
1322 is higher for $N = 3$ than $N = 2$. Moreover, the QCD background for dijet
1323 case is also very well studied and no resonance has been observed [80–82].
1324 Therefore, it is better to use the dijet case as the benchmark multiplicity
1325 and apply non-invariance corrections to the estimated background in the
1326 signal region.

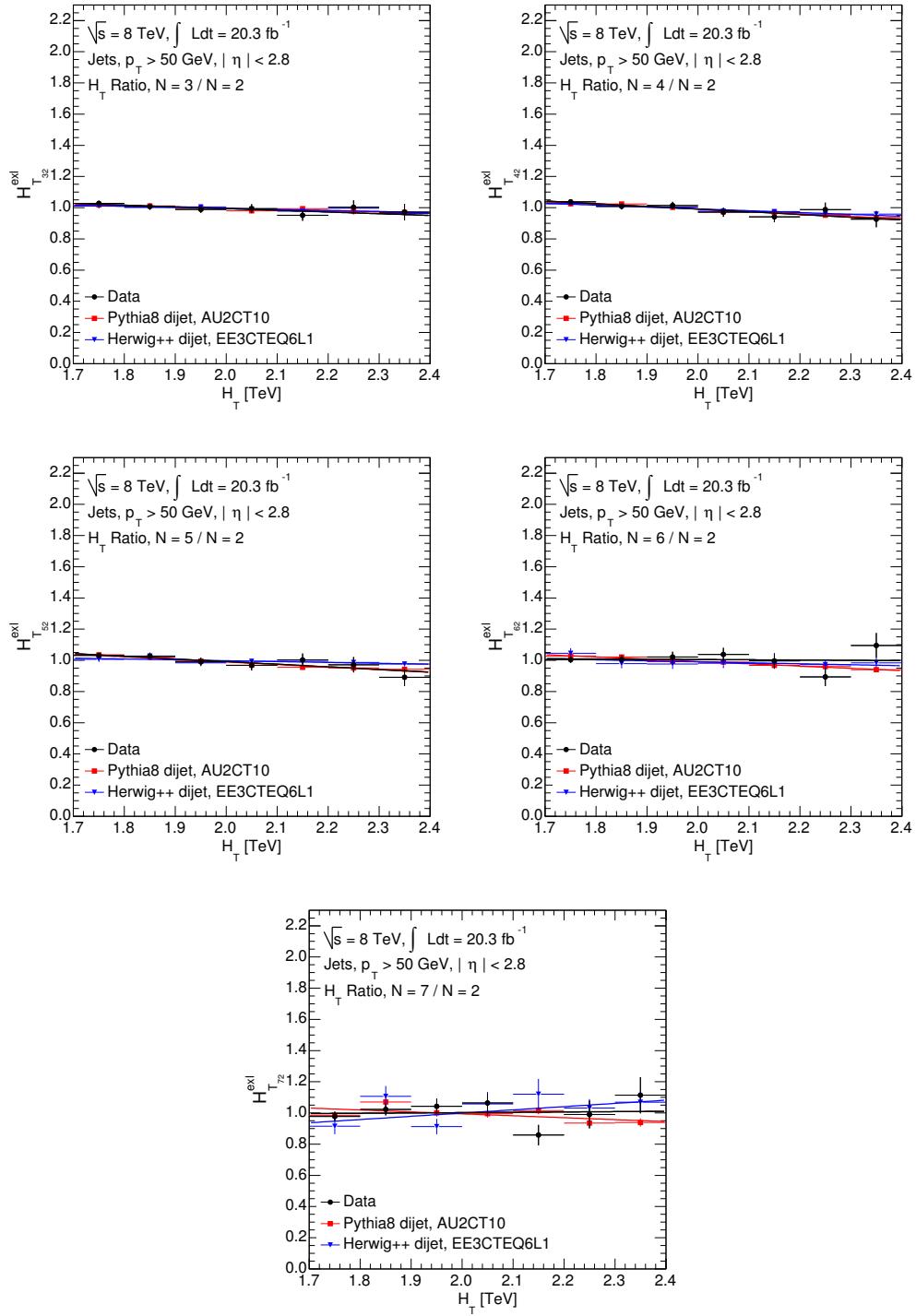


Figure 4.9: The H_T^{exl} are the H_T ratios of the exclusive jet multiplicities $i = 3, 4, \dots, 7$ with respect to the reference jet multiplicity $N = 2$ in the normalisation region $1.7 < H_T < 2.4$ TeV, shown for the ATLAS 2012 data, PYTHIA8 and HERWIG++ MCs.

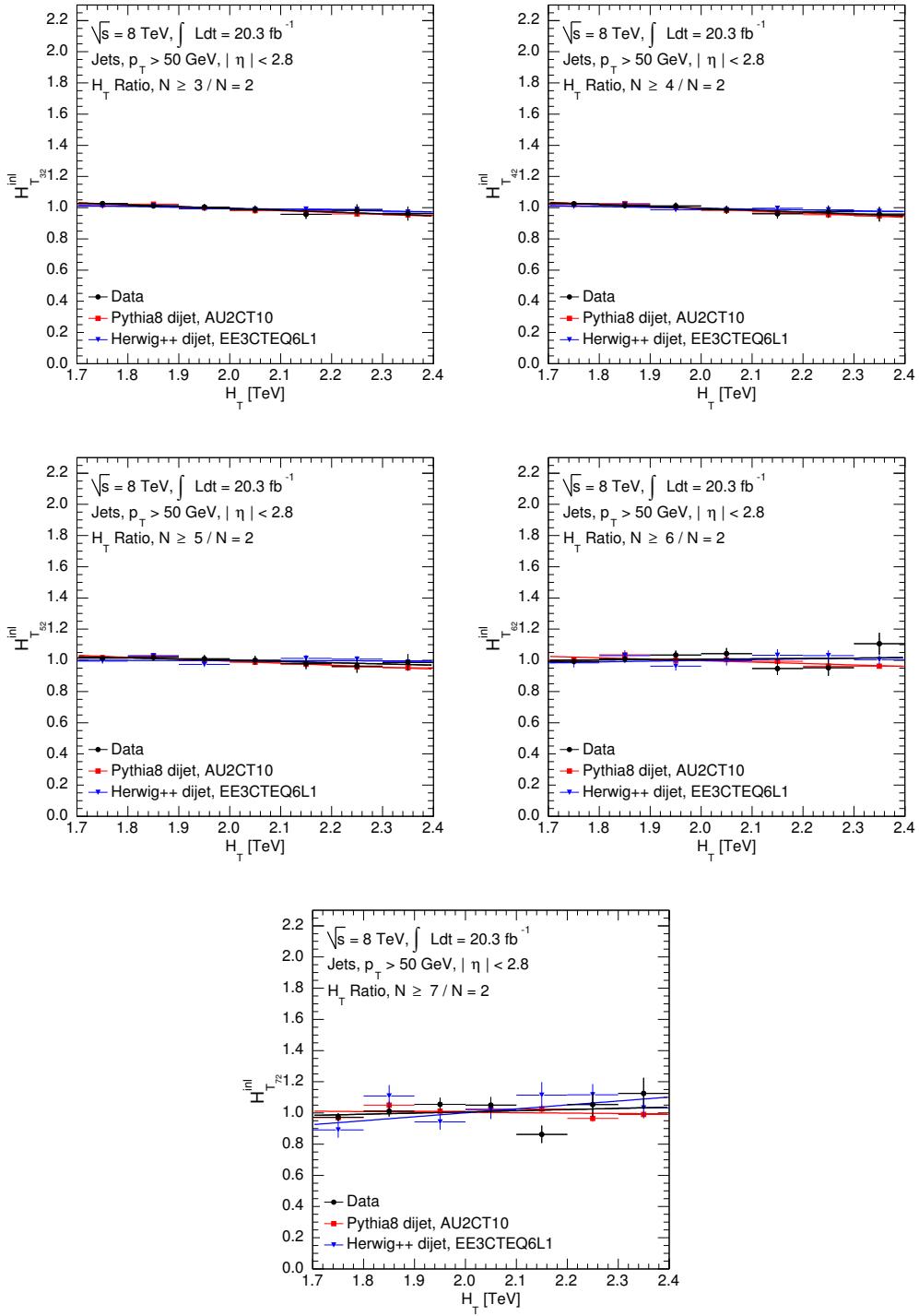


Figure 4.10: The $H_{T_{i2}}^{\text{inl}}$ are the H_T ratios of the inclusive jet multiplicities $i \geq 3, 4, \dots, 7$ with respect to the reference jet multiplicity $N = 2$ in the normalisation region $1.7 < H_T < 2.4$ TeV, shown for the ATLAS 2012 data, PYTHIA8 and HERWIG++ MCs.

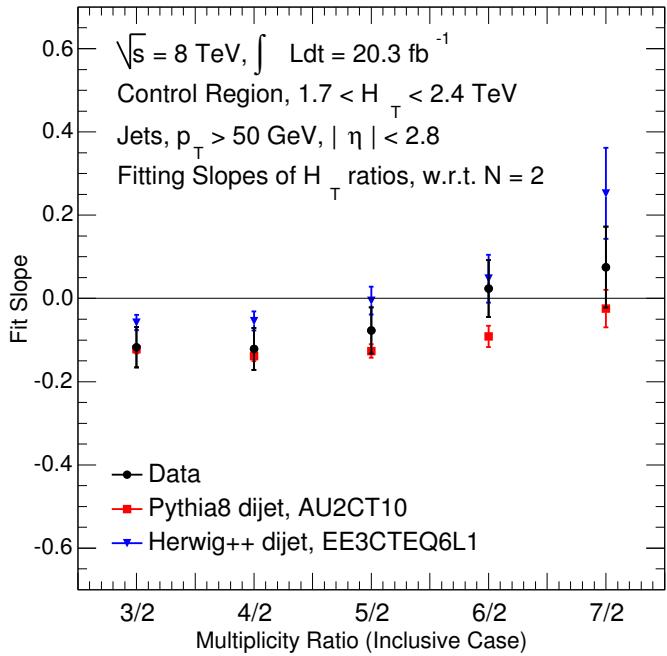
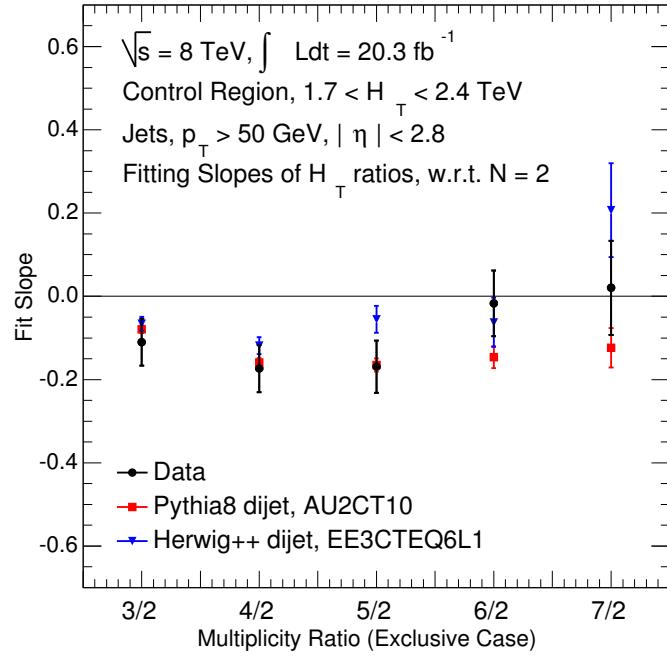



Figure 4.11: The slopes extracted from the straight line fit to the H_T ratios, for the ATLAS 2012 data, PYTHIA8 and HERWIG++ MCs in the normalisation region $1.7 < H_T < 2.4$ TeV. The top (bottom) plot shows the slopes for the exclusive (inclusive) jet multiplicity ratios of $N = 4, 5, \dots, 7$ ($N \geq 3, 4, \dots, 7$) to $N = 2$.

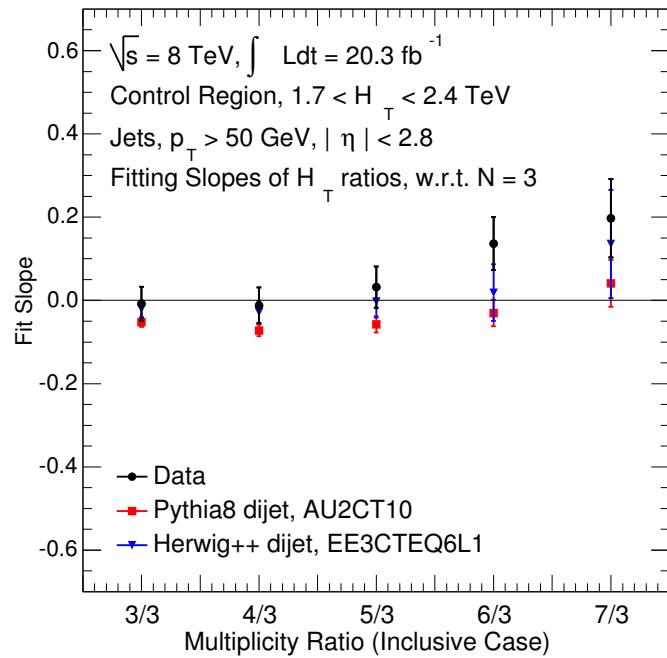
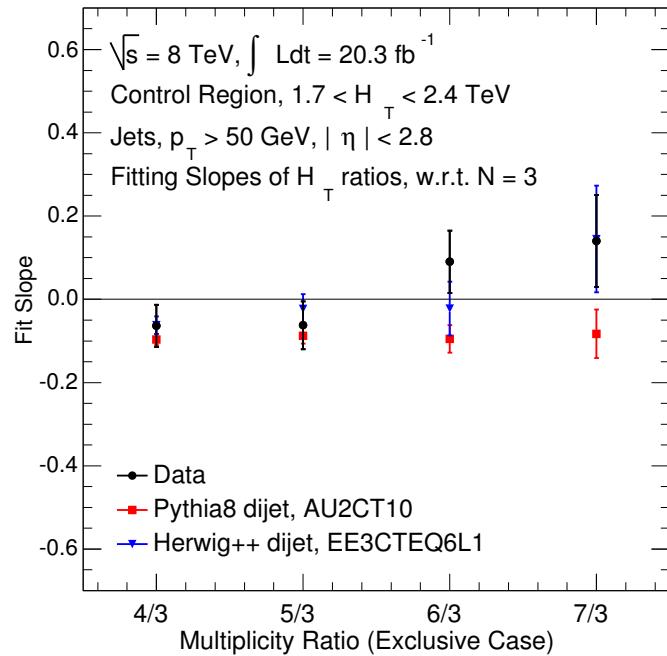



Figure 4.12: The slopes extracted from the straight line fit to the H_T ratios, for the ATLAS 2012 data, PYTHIA8 and HERWIG++ MCs in the normalisation region $1.7 < H_T < 2.4$ TeV. The top (bottom) plot shows the slopes for the exclusive (inclusive) jet multiplicity ratios of $N = 4, 5, \dots, 7$ ($N \geq 3, 4, \dots, 7$) to $N = 3$.

H_T Ratio	Fit Slope			χ^2/NDF		
	Data	PYTHIA8	HERWIG++	Data	PYTHIA8	HERWIG++
$H_{T_{32}}^{\text{exl}}$	-0.11 \pm 0.06	-0.08 \pm 0.01	-0.07 \pm 0.02	1.76/5 = 0.35	8.01/5 = 1.60	6.34/5 = 1.27
$H_{T_{42}}^{\text{exl}}$	-0.17 \pm 0.06	-0.16 \pm 0.01	-0.12 \pm 0.02	1.92/5 = 0.38	7.39/5 = 1.48	1.95/5 = 0.39
$H_{T_{52}}^{\text{exl}}$	-0.17 \pm 0.06	-0.16 \pm 0.02	-0.06 \pm 0.03	2.12/5 = 0.42	6.36/5 = 1.27	2.65/5 = 0.53
$H_{T_{62}}^{\text{exl}}$	-0.02 \pm 0.08	-0.15 \pm 0.03	-0.06 \pm 0.06	5.81/5 = 1.16	0.88/5 = 0.18	2.50/5 = 0.50
$H_{T_{72}}^{\text{exl}}$	0.02 \pm 0.11	-0.12 \pm 0.05	0.21 \pm 0.11	8.36/5 = 1.67	10.93/5 = 2.19	8.50/5 = 1.70
$H_{T_{32}}^{\text{inl}}$	-0.12 \pm 0.05	-0.12 \pm 0.01	-0.06 \pm 0.02	0.75/5 = 0.15	7.47/5 = 1.49	2.48/5 = 0.50
$H_{T_{42}}^{\text{inl}}$	-0.12 \pm 0.05	-0.14 \pm 0.01	-0.05 \pm 0.02	0.56/5 = 0.11	7.36/5 = 1.47	3.35/5 = 0.67
$H_{T_{52}}^{\text{inl}}$	-0.08 \pm 0.06	-0.13 \pm 0.02	-0.01 \pm 0.03	0.63/5 = 0.13	5.04/5 = 1.01	5.76/5 = 1.15
$H_{T_{62}}^{\text{inl}}$	0.02 \pm 0.07	-0.09 \pm 0.03	0.05 \pm 0.06	7.37/5 = 1.47	7.26/5 = 1.45	3.82/5 = 0.76
$H_{T_{72}}^{\text{inl}}$	0.07 \pm 0.10	-0.02 \pm 0.05	0.25 \pm 0.11	11.28/5 = 2.26	10.02/5 = 2.00	8.40/5 = 1.68

Table 4.4: The $H_{T_{32}}^{\text{exl}}$ is the H_T ratio of the exclusive jet multiplicity $N = 3$ to the jet multiplicity $N = 2$. Similarly, $H_{T_{32}}^{\text{inl}}$ is the H_T ratio of the inclusive multiplicities $N \geq 3$ to the jet multiplicity $N = 2$, and so on. The slopes of straight line fits with errors and χ^2/NDF for the different H_T ratios are shown for the ATLAS 2012 data, PYTHIA8 and HERWIG++ MCs. All the values are extracted from the normalisation region $1.7 < H_T < 2.4$ TeV.

1327 4.5.3 The Signal and the Control Regions

1328 In this study, three mutually exclusive regions are defined: the control
1329 region, the normalisation region and the signal region with respect to the
1330 (N, H_T) variable space. The regions are defined as following:

1331 • control region: $N = 2$ and $H_T > 1.7$ TeV.

1332 This region is well-described by SM processes, and no resonances or
1333 threshold enhancements have been observed at the LHC.

1334 • normalisation region: $N \geq 2$ and $1.7 < H_T < 2.4$ TeV.

1335 In this region, the H_T distribution for any jet multiplicity $N > 2$ is
1336 normalized to the jet multiplicity $N = 2$.

1337 • signal region: $N > 2$ and $H_T > 2.4$ TeV.

1338 Only this region is searched for possible signals.

1339 In summary, the control region does not contain any threshold en-
1340 hancement or resonance and the SM processes are dominant in the region.
1341 Moreover, microscopic black holes are expected to produce high multiplicity
1342 final states. Therefore, in the multijet study, the choice of the dijet case
1343 is safe for the control region. The flattest region in the H_T ratio is chosen
1344 as the normalisation region, the sub-region of the control region with best
1345 shape invariance. The flatness in the H_T ratio ensures the control region
1346 fit has a better background estimation for the signal region. To estimate
1347 the background for $N > 2$ a normalisation factor is determined from the
1348 normalisation region to normalize the control region fit. Finally, the sig-
1349 nal region can be defined beyond the upper threshold of the normalisation
1350 region.

1351 4.5.4 The Background Estimation

1352 The QCD background is determined by using an ansatz fitting function,

$$f(x) = \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3 \ln x}}, \quad (4.4)$$

1353 where p_0 , p_1 , p_2 and p_3 are the fit parameters and $x \equiv H_T/\sqrt{s}$. The
1354 function is fit to the H_T distribution for the data instead of x . For a
1355 physical background estimation from the H_T distributions, the function
1356 should be continuously decreasing in an allowed range and have physical
1357 values at the tail. This function was already used in invariant mass study
1358 for the smooth SM dijet and γ +jet backgrounds in different experiments
1359 at both the Tevatron and LHC [80, 83, 84].

1360 The parameter p_0 acts as a normalisation factor and does not affect
1361 the shape of the fit, but its value depends on the other fit parameters
1362 which are highly correlated with the x -dependent factors in equation (4.4).
1363 On the other hand, fits with the same shapes and different normalisation
1364 factors will have identical p_1 , p_2 and p_3 but different p_0 . Therefore, $p_0 > 0$
1365 is required to fit any H_T distribution for a shape-dependent analysis.

1366 The factor $(1-x)^{p_1}$ in the numerator of equation (4.4) controls the
1367 upper physical threshold of x . Assuming $p_1 > 0$, the function vanishes
1368 as $x \rightarrow 1$, since no event can be produced above \sqrt{s} ($x > 1$). Hence, it
1369 is appropriate to require $p_1 > 0$ to maintain the continuously decreasing
1370 trend of the QCD background at high x . Furthermore, the function is not
1371 required to fit a resonance or increase with H_T due to a non-perturbative
1372 gravity signal. The function is designed to fit to the background only.

1373 For the factor $x^{p_2+p_3 \ln x}$ in the denominator of equation (4.4), p_3 is
1374 the relevant parameter as $x \rightarrow 0$ because $\ln x \rightarrow -\infty$ as $x \rightarrow 0$. There are
1375 two possibilities¹ for the function as $x \rightarrow 0$ depending on the parameter p_3 .

¹ The possibility of $p_3 = 0$ is ignored because the function to fit the data has four parameters, and requiring $p_3 = 0$ changes the function.

Fit parameters	$p_0 \pm \Delta p_0$	$p_1 \pm \Delta p_1$	$p_2 \pm \Delta p_2$	$p_3 \pm \Delta p_3$
	0.03 ± 0.00	4.72 ± 0.18	11.29 ± 0.06	1.57 ± 0.04

Table 4.5: The values of fit parameters (p_i) along with errors (Δp_i) for the function $f(x) = \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3 \ln x}}$ fitted to the dijet H_T distribution for the ATLAS 2012 data.

1376 The first possibility is that the function approaches infinity as $x \rightarrow 0$, which
 1377 requires $p_3 < 0$. The value of the function becomes non-physical at $x = 0$,
 1378 but it can be avoided by applying a small x cut-off in the experimental H_T
 1379 distributions and the function remains physical in the measured x -range.
 1380 The second possibility is to have a function maximum in the $0 < x < 1$
 1381 range and a decreasing trend as $x \rightarrow 0$ by requiring $p_3 > 0$. The require-
 1382 ment does not remain physical and intuitive if the function peak lies within
 1383 the x -range under consideration. This possibility can only be taken into
 1384 account if the peak of the function lies below the minimum x of the experi-
 1385 mental H_T distributions. In conclusion, all the parameters are constrained
 1386 to have a monotonically decreasing function trend with a negative slope for
 1387 the x -range under consideration. The values of all the fit parameters are
 1388 shown in the Table 4.5. In this study, the resulting experimental limits are
 1389 for the particular choice of the ansatz function similar to the choice of a
 1390 benchmark signal model.

1391 The function in equation (4.4) is used to fit the control region only.
 1392 The shape of the control region fit is normalized based on the H_T distri-
 1393 butions in the normalisation region, which is used to determine the back-
 1394 ground shapes in the signal region. Using the observed number of events
 1395 compared to the predicted number of SM background events in the signal
 1396 region, upper limits are set on the production of new physics and micro-
 1397 scopic black holes.

1398 The background prediction along with three sigma uncertainty band

1399 due to fit parameter errors is shown in Figures 4.13 and 4.14 for both the
 1400 exclusive and inclusive jet multiplicities. The three sigma uncertainty band
 1401 is shown because one and two sigma bands are too narrow to be seen clearly.
 1402 In these figures, there is an overestimation of background for most of jet
 1403 multiplicity cases in the signal region. In the next subsection, the source
 1404 of this problem and correction to the background estimation is discussed.

1405 4.5.5 Correction to the Background Estimation

1406 From Figures 4.7 and 4.8, the QCD MCs show non-invariant effects in the
 1407 H_T distributions. It can be concluded that the non-invariant effects are
 1408 causing an overestimation of the data-driven background in the signal re-
 1409 gion. Therefore, correction factors are derived from both the PYTHIA8 and
 1410 HERWIG++ MCs and applied to the data-driven background to compensate
 1411 for the H_T non-invariance in the signal region. Any possible signal bias can
 1412 be avoided by using correction factors derived from the QCD MCs. The H_T
 1413 ratio for the MC distributions in the normalisation region can be written
 1414 as

$$\left[\frac{1}{n_f^{\text{nom.}}} \frac{H_T^{N>2}}{H_T^{N=2}} \right]_{\text{MC}} = [ax' + b]_{\text{MC}}, \quad (4.5)$$

1415 where $x' \equiv H_T$, $n_f^{\text{nom.}}$ is the normalisation factor measured in the nominal
 1416 normalisation region, i.e. $1.7 < H_T < 2.4$ TeV, and a and b are the
 1417 slope and intercept of the straight line, respectively. The straight line fit
 1418 $[ax' + b]_{\text{MC}}$ obtained from equation (4.5) is used as a correction factor
 1419 and applied to the background estimation. For the $N > 2$ background
 1420 estimation, by using the shape invariance assumption, the control region
 1421 fit is multiplied by a normalisation factor (as described in subsection 4.5.4),
 1422 i.e.

$$f^{N>2}(x) = n_f^{\text{nom.}} f(x) = n_f^{\text{nom.}} \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3 \ln x}}, \quad (4.6)$$

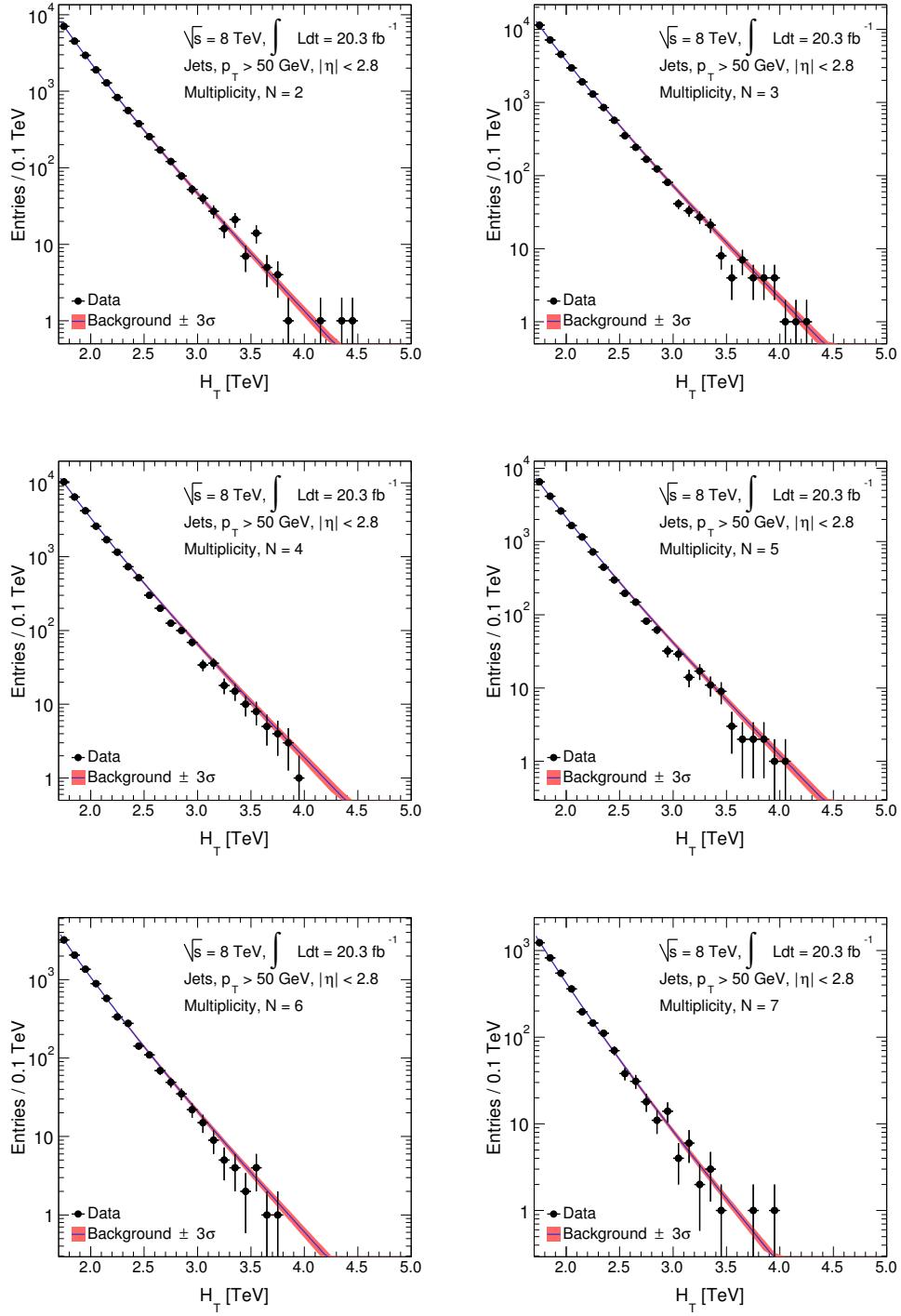


Figure 4.13: The background estimation for the H_T distributions with 3σ uncertainty, for the exclusive jet multiplicities $N = 2, 3, \dots, 7$.

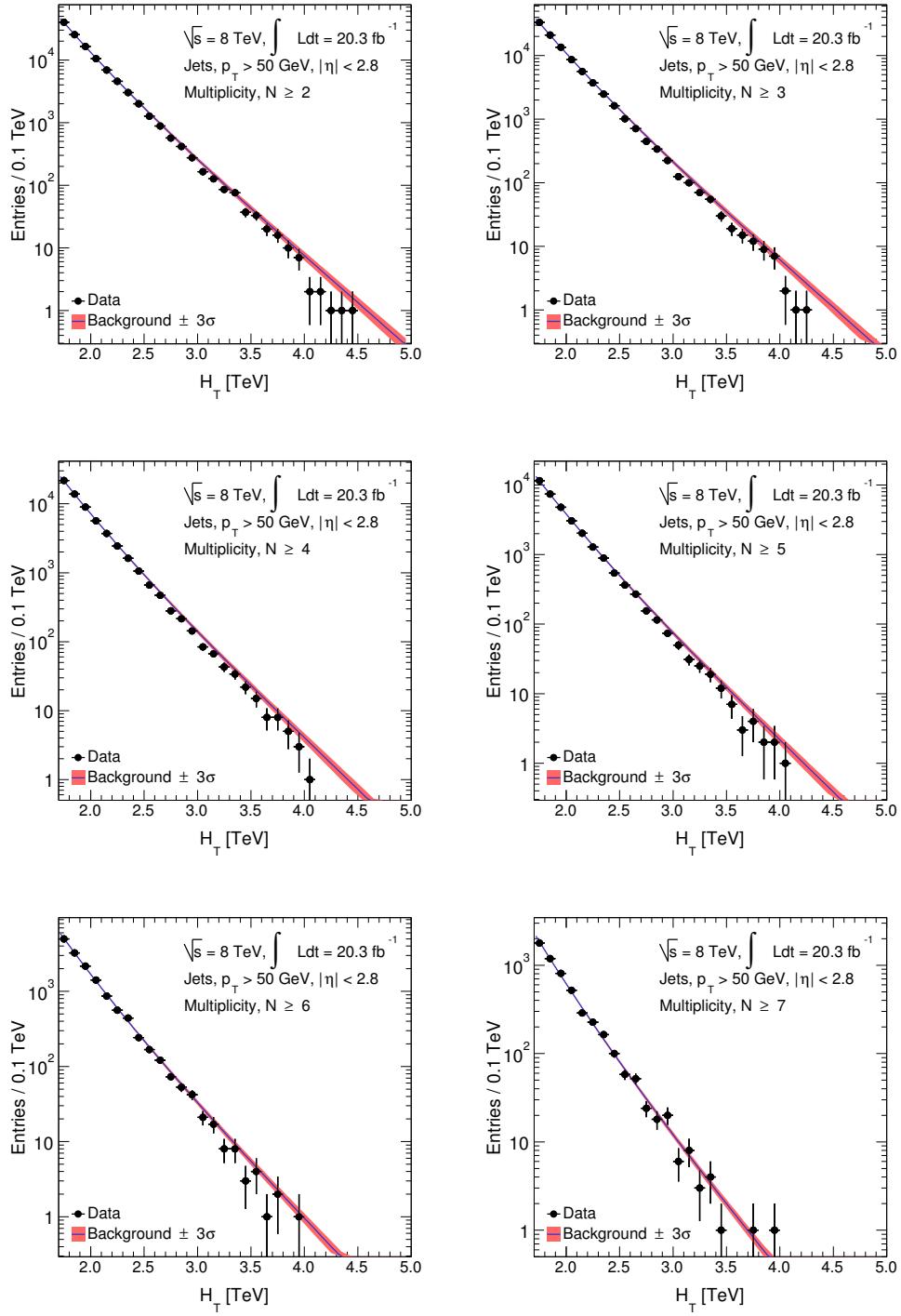


Figure 4.14: The background estimation for the H_T distributions with 3σ uncertainty, for the inclusive jet multiplicities $N \geq 2, 3, \dots, 7$.

1423 where $f(x)$ is the function described in equation (4.4) used to fit the dijet
 1424 H_T distribution and $f^{N>2}(x)$ is the same function multiplied by a normal-
 1425 isation factor (n_f^{nom}) used to determine the background for the jet mul-
 1426 tiplicities $N > 2$. Now the corrected function $f_{\text{corr.}}^{N>2}(x)$ can be written as

1427

$$f_{\text{corr.}}^{N>2}(x) = f^{N>2}(x) \left[ax' + b \right]_{\text{MC}} = \left[n_f^{\text{nom.}} \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3 \ln x}} \right] \left[ax' + b \right]_{\text{MC}}, \quad (4.7)$$

1428 where $x \equiv x'/\sqrt{s} = H_T/\sqrt{s}$. Equation (4.7) illustrates that the data-driven
 1429 background for all the H_T distributions other than $N = 2$ is corrected by
 1430 the straight line parameters obtained from the H_T distributions for the
 1431 QCD MCs. If the background is corrected by PYTHIA8, then the slope
 1432 $a \equiv a_P$ and intercept $b \equiv b_P$ are extracted from the H_T distributions for
 1433 the PYTHIA8 MC. Similarly, $a \equiv a_H$ and $b \equiv b_H$ are the slope and intercept
 1434 corresponding to the straight line corrections based on HERWIG++ MC.

1435 Finally, both the PYTHIA8 and HERWIG++ MCs are used to ap-
 1436 ply a final correction on the data-driven background in the signal region.
 1437 The slope and intercept trends are averaged for both the MC distributions
 1438 as $a \equiv (a_P + a_H)/2$ and $b \equiv (b_P + b_H)/2$. The uncorrected background
 1439 ($B_{\text{uncorr.}}$), PYTHIA8 corrected background ($B_{\text{corr.}}^P$), HERWIG++ corrected
 1440 background ($B_{\text{corr.}}^H$), and combined PYTHIA8 and HERWIG++ corrected
 1441 background ($B_{\text{corr.}}^{\text{MC}}$) are shown in Figures 4.15 and 4.16, for the exclusive
 1442 and inclusive jet multiplicity cases.

1443 The uncorrected background ($B_{\text{uncorr.}}$) is corrected by multiplying a
 1444 correction factor (CF) derived from the MC H_T distributions. The cor-
 1445 rected background can be expressed in terms of correction factors based on
 1446 PYTHIA8 MC, HERWIG++ MC and both the MCs as

$$B_{\text{corr.}}^P = \text{CF}^P B_{\text{uncorr.}}, \quad B_{\text{corr.}}^H = \text{CF}^H B_{\text{uncorr.}} \quad \text{and} \quad B_{\text{corr.}}^{\text{MC}} = \text{CF}^{\text{MC}} B_{\text{uncorr.}}, \quad (4.8)$$

1447 where CF^P , CF^H and CF^{MC} are the correction factors derived from PYTHIA8,

1448 HERWIG++ and both the MCs, respectively. The uncertainty due to this
1449 correction will be discussed in the next section 4.6.

1450 4.6 Systematic Uncertainties

1451 In this multijet search for microscopic black holes, the main QCD back-
1452 ground is directly estimated from the data on the basis of a shape invariance
1453 assumption using the ansatz fitting function described in subsection 4.5.4.
1454 The ansatz function used in this study is a choice to fit the data. There
1455 may be a different arbitrary function that fits the data as well. Therefore,
1456 a particular choice of an ansatz function may lead to a systematic uncer-
1457 tainty. There are two approaches to handle the systematic uncertainty due
1458 to the choice of a specific function. The first approach is to not consider this
1459 type of systematic uncertainty and understand the resulting experimental
1460 limits based on the particular function. This method is similar to choosing
1461 a benchmark signal model for a study, i.e. the ansatz of new physics. The
1462 second approach is to use two alternative functions, one that gives larger
1463 results while the other gives lower results when compared to the nominal
1464 function. This takes the uncertainty due to the choice of function into ac-
1465 count. The amount of uncertainty depends again on the choice of the two
1466 alternative functions out of many arbitrary choices. In this analysis, the
1467 first approach is adopted.

1468 The largest uncertainty involved in the background estimation arises
1469 due to the MC-based corrections to the non-invariant effects in the H_T dis-
1470 tributions for different jet multiplicities. The background estimation in
1471 the signal region also has uncertainties related to the relative differences
1472 from the choice of the normalisation region. Different normalisation ranges
1473 will result in different values of normalisation factors and, hence, the back-
1474 ground estimation.

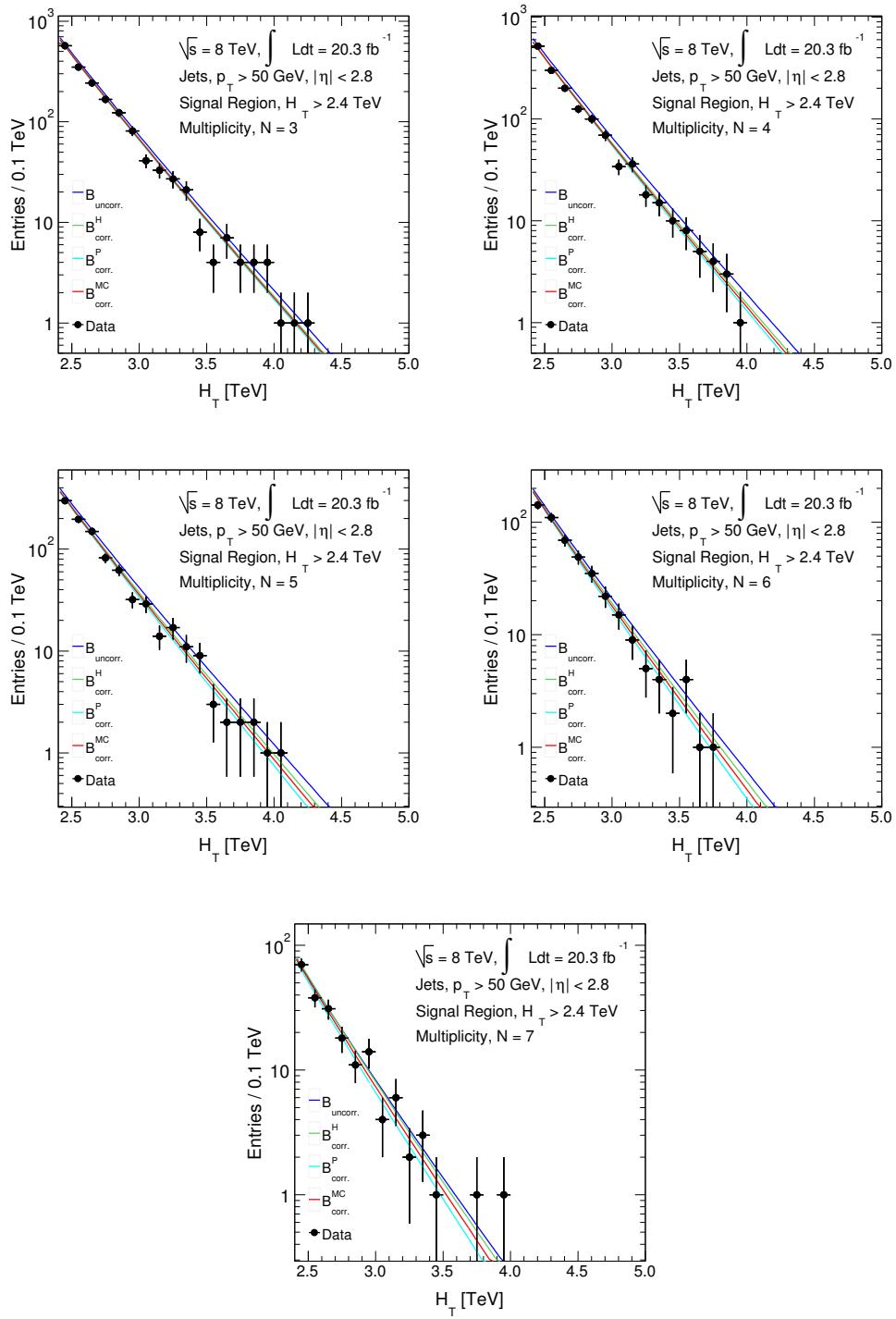


Figure 4.15: The H_T distributions in the signal region, for the exclusive jet multiplicities $N = 3, 4, \dots, 7$, and the background estimations from the uncorrected fit ($B_{\text{uncorr.}}$), HERWIG++ MC corrected fit ($B^H_{\text{corr.}}$), PYTHIA8 MC corrected fit ($B^P_{\text{corr.}}$) and the corrected fit based on both the MCs ($B^{\text{MC}}_{\text{corr.}}$), are shown for the ATLAS 2012 data.

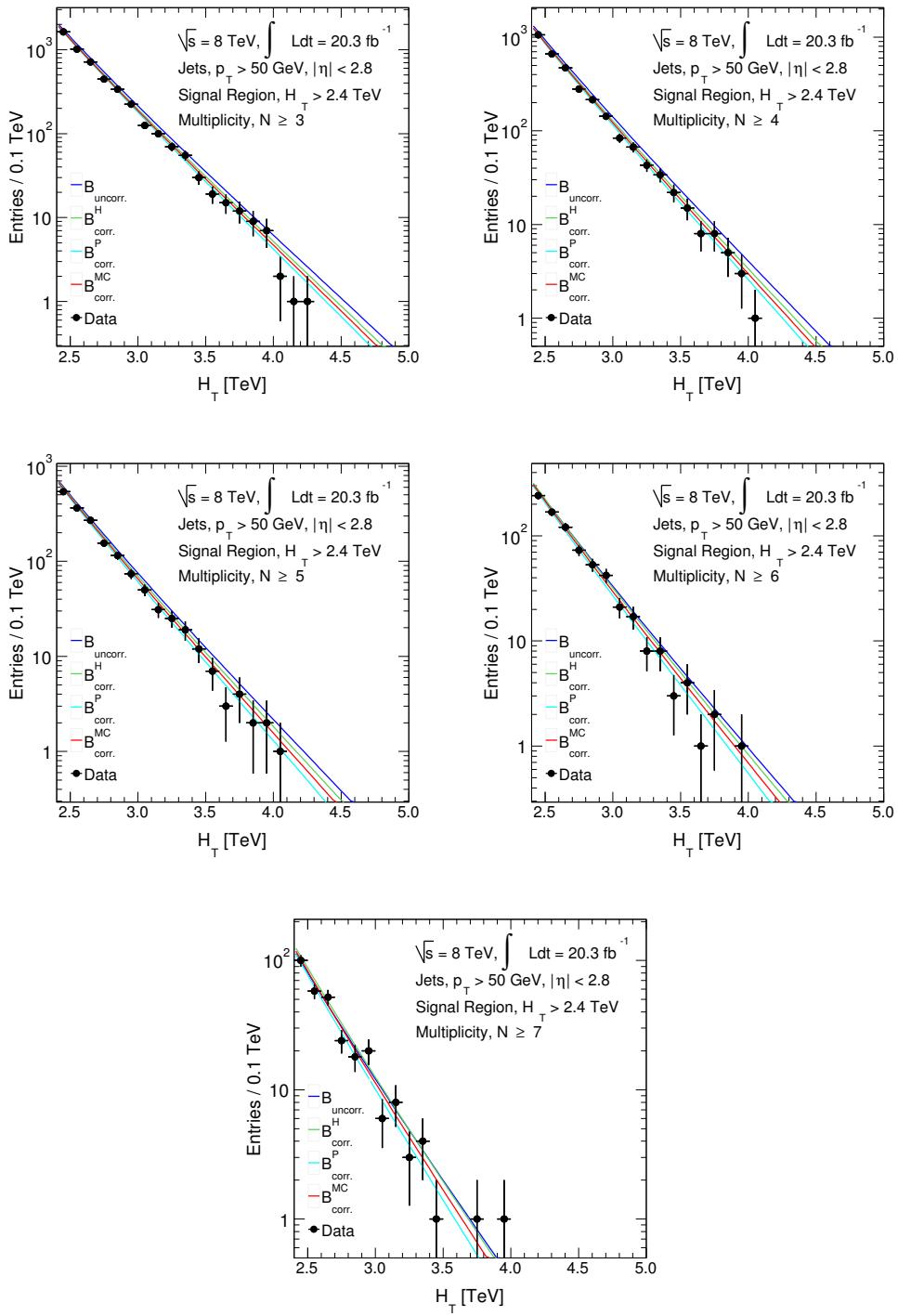


Figure 4.16: The H_T distributions in the signal region, for the inclusive jet multiplicities $N \geq 3, 4, \dots, 7$, and the background estimations from the uncorrected fit ($B_{\text{uncorr.}}$), HERWIG++ MC corrected fit ($B_{\text{corr.}}^H$), PYTHIA8 MC corrected fit ($B_{\text{corr.}}^P$) and the corrected fit based on both the MCs ($B_{\text{corr.}}^{\text{MC}}$), are shown for the ATLAS 2012 data.

1475 Finally, the typical jet energy uncertainties due to the jet energy
1476 resolution (JER) [85] and the jet energy scale (JES) [86] also affect the
1477 background estimation. The jet energy uncertainties are comparatively
1478 smaller than the uncertainties due to corrections to the non-invariant H_T
1479 shapes and larger than the uncertainties due to the choice of the normal-
1480 isation region. Overall, there are three types of systematic uncertainties
1481 involved in this study:

1482 • Corrections to non-invariance,
1483 • Choice of normalisation region, and
1484 • Jet energy uncertainties.

1485 By using all these systematic uncertainties, the model-independent and
1486 model-dependent limits are calculated, shown in the next section. Micro-
1487 scopic black holes are expected to produce a range of jet multiplicities
1488 instead of biasing towards any particular multiplicity. It is therefore more
1489 intuitive to consider the inclusive jet multiplicities only, i.e. $N \geq 3, 4, \dots, 7$,
1490 for the limit calculations. Also, the large effect of jet migrations from one
1491 multiplicity bin to another due to the above-mentioned uncertainties can
1492 greatly be suppressed by using the inclusive jet multiplicities. Furthermore,
1493 the shape invariance in the normalisation region is better for the inclusive
1494 jet multiplicities, which results in reducing all the uncertainties. Therefore,
1495 the systematic uncertainties will be described in the following subsections
1496 only for the inclusive jet multiplicities.

1497

4.6.1 Corrections to Non-Invariance

1498 The MC-based corrections applied to the data-driven background, to com-
1499 pensate the non-invariant effects, introduce the largest uncertainty in this
1500 study. These corrections are derived from the straight line fits to the H_T

ratios in the signal region for the dijet MCs, as described in the subsection 4.5.5. The overall systematic uncertainty due to these corrections to the non-invariance would involve the statistical uncertainty measured from errors on fit parameters and the systematic uncertainty measured from the difference between the fit parameters of the straight lines for the two MCs. The systematic uncertainty due to corrections to the non-invariance ($\Delta B_{\text{corr.}}^{\text{syst.}}$) is the ratio of the difference between the straight line fits to the sum of the straight line fits of two MCs over all the H_T bins of the signal region, i.e.

$$\Delta B_{\text{corr.}}^{\text{syst.}} = \sum_{H_T \in SR} \frac{|(a_P + b_P x') - (a_H + b_H x')|}{(a_P + b_P x') + (a_H + b_H x')}, \quad (4.9)$$

where $x' \equiv H_T$ while $a_P(a_H)$ and $b_P(b_H)$ are the intercept and slope of the straight line fits corresponding to the PYTHIA8 (HERWIG++) MCs. The statistical uncertainty due to corrections to the non-invariance ($\Delta B_{\text{corr.}}^{\text{stat.}}$) from these fits is written as

$$\Delta B_{\text{corr.}}^{\text{stat.}} = \frac{1}{2} \sum_{H_T \in SR} \sqrt{(\sigma_P)^2 + (\sigma_H)^2}, \quad (4.10)$$

where σ_P and σ_H are the one sigma fit errors corresponding to PYTHIA8 and HERWIG++, respectively. The total uncertainty on the estimated background due to corrections to the effects from non-invariance ($\Delta B_{\text{corr.}}^{\text{tot.}}$) derived from both the MCs in the signal region, is written as

1518

$$\Delta B_{\text{corr.}}^{\text{tot.}} (\%) = \sqrt{(\Delta B_{\text{corr.}}^{\text{stat.}})^2 + (\Delta B_{\text{corr.}}^{\text{syst.}})^2} \times 100. \quad (4.11)$$

For different lower thresholds (H_T^{min}) of the signal regions, the number of entries for the data, uncorrected background ($B_{\text{uncorr.}}$), PYTHIA8 correction factor (CF^P), HERWIG++ correction factor (CF^H), correction factor derived from both the MCs (CF^{MC}), and the uncertainties ($\Delta B_{\text{corr.}}^{\text{stat.}}$, $\Delta B_{\text{corr.}}^{\text{syst.}}$ and $\Delta B_{\text{corr.}}^{\text{tot.}}$) due to CF^{MC} shown in Tables 4.6 to 4.10 for the inclusive jet multiplicities $N \geq 3, 4, \dots, 7$, respectively.

H_T^{\min}	Data	$B_{\text{uncorr.}}$	CF^P	CF^H	CF^{MC}	$\Delta B_{\text{corr.}}^{\text{stat.}} (\%)$	$\Delta B_{\text{corr.}}^{\text{syst.}} (\%)$	$\Delta B_{\text{corr.}}^{\text{tot.}} (\%)$
2.4	4812	5451.76	0.89	0.94	0.92	9.32	10.15	13.78
2.5	3181	3723.96	0.88	0.93	0.90	8.95	10.50	13.80
2.6	2168	2556.31	0.86	0.92	0.89	8.61	10.86	13.86
2.7	1455	1762.81	0.84	0.92	0.88	8.28	11.23	13.95
2.8	1008	1220.76	0.83	0.91	0.87	7.98	11.60	14.08
2.9	670	848.68	0.81	0.90	0.86	7.70	11.98	14.24
3.0	446	592.11	0.79	0.89	0.84	7.43	12.36	14.42
3.1	321	414.45	0.78	0.89	0.83	7.18	12.75	14.64
3.2	221	290.95	0.76	0.88	0.82	6.95	13.15	14.87
3.3	151	204.79	0.75	0.87	0.81	6.73	13.55	15.13
3.4	96	144.48	0.73	0.86	0.80	6.53	13.96	15.41
3.5	66	102.15	0.71	0.86	0.79	6.33	14.37	15.70
3.6	47	72.34	0.70	0.85	0.77	6.14	14.79	16.02
3.7	32	51.30	0.68	0.84	0.76	5.94	15.22	16.34
3.8	20	36.42	0.67	0.84	0.75	5.75	15.66	16.68
3.9	11	25.88	0.65	0.83	0.74	5.55	16.10	17.03
4.0	4	18.39	0.64	0.82	0.73	5.34	16.56	17.40
4.1	2	13.07	0.62	0.81	0.72	5.12	17.01	17.77
4.2	1	9.28	0.61	0.81	0.71	4.89	17.48	18.15
4.3	0	6.58	0.59	0.80	0.70	4.64	17.96	18.55
4.4	0	4.66	0.58	0.79	0.69	4.37	18.44	18.95
4.5	0	3.28	0.56	0.79	0.67	4.08	18.93	19.37
4.6	0	2.31	0.55	0.78	0.66	3.78	19.44	19.80
4.7	0	1.61	0.53	0.77	0.65	3.45	19.95	20.24
4.8	0	1.11	0.52	0.77	0.64	3.10	20.47	20.70
4.9	0	0.76	0.51	0.76	0.63	2.72	20.99	21.17
5.0	0	0.50	0.50	0.76	0.63	2.33	21.53	21.66

Table 4.6: Number of entries for the data and uncorrected background ($B_{\text{uncorr.}}$), are shown for the jet multiplicity $N \geq 3$. The correction factors based on PYTHIA8 MC (CF^P), HERWIG++ MC (CF^H) and both the MCs (CF^{MC}), are shown corresponding to the minimum H_T thresholds (H_T^{\min}). The uncertainties (statistical $\Delta B_{\text{corr.}}^{\text{stat.}}$, systematic $\Delta B_{\text{corr.}}^{\text{syst.}}$ and total $\Delta B_{\text{corr.}}^{\text{tot.}}$) due to the correction factor CF^{MC} , are also shown for each H_T^{\min} .

H_T^{\min}	Data	$B_{\text{uncorr.}}$	CF^P	CF^H	CF^{MC}	$\Delta B_{\text{corr.}}^{\text{stat.}} (\%)$	$\Delta B_{\text{corr.}}^{\text{syst.}} (\%)$	$\Delta B_{\text{corr.}}^{\text{tot.}} (\%)$
2.4	3121	3590.82	0.88	0.94	0.91	11.23	12.85	17.07
2.5	2061	2452.80	0.86	0.93	0.89	10.78	13.32	17.14
2.6	1398	1683.72	0.84	0.92	0.88	10.36	13.80	17.25
2.7	928	1161.08	0.82	0.91	0.87	9.96	14.28	17.42
2.8	648	804.06	0.80	0.90	0.85	9.59	14.78	17.62
2.9	433	558.98	0.78	0.90	0.84	9.25	15.28	17.86
3.0	290	389.99	0.77	0.89	0.83	8.92	15.80	18.14
3.1	206	272.98	0.75	0.88	0.81	8.62	16.32	18.46
3.2	139	191.63	0.73	0.87	0.80	8.34	16.86	18.81
3.3	96	134.89	0.71	0.86	0.79	8.07	17.40	19.18
3.4	62	95.17	0.69	0.85	0.77	7.81	17.96	19.58
3.5	40	67.28	0.67	0.85	0.76	7.57	18.52	20.01
3.6	25	47.65	0.65	0.84	0.75	7.33	19.10	20.46
3.7	17	33.79	0.64	0.83	0.73	7.09	19.69	20.93
3.8	9	23.99	0.62	0.82	0.72	6.85	20.30	21.42
3.9	4	17.04	0.60	0.81	0.71	6.61	20.91	21.93
4.0	1	12.11	0.58	0.81	0.69	6.36	21.54	22.46
4.1	0	8.61	0.56	0.80	0.68	6.09	22.18	23.00
4.2	0	6.11	0.54	0.79	0.67	5.81	22.84	23.56
4.3	0	4.33	0.53	0.78	0.65	5.51	23.50	24.14
4.4	0	3.07	0.51	0.77	0.64	5.19	24.19	24.74
4.5	0	2.16	0.49	0.77	0.63	4.85	24.89	25.36
4.6	0	1.52	0.48	0.76	0.62	4.48	25.60	25.99
4.7	0	1.06	0.46	0.75	0.61	4.09	26.34	26.65
4.8	0	0.73	0.44	0.74	0.59	3.67	27.08	27.33
4.9	0	0.50	0.43	0.74	0.58	3.23	27.85	28.04
5.0	0	0.33	0.42	0.73	0.57	2.76	28.63	28.77

Table 4.7: Number of entries for the data and uncorrected background ($B_{\text{uncorr.}}$), are shown for the jet multiplicity $N \geq 4$. The correction factors based on PYTHIA8 MC (CF^P), HERWIG++ MC (CF^H) and both the MCs (CF^{MC}), are shown corresponding to the minimum H_T thresholds (H_T^{\min}). The uncertainties (statistical $\Delta B_{\text{corr.}}^{\text{stat.}}$, systematic $\Delta B_{\text{corr.}}^{\text{syst.}}$ and total $\Delta B_{\text{corr.}}^{\text{tot.}}$) due to the correction factor CF^{MC} , are also shown for each H_T^{\min} .

H_T^{\min}	Data	$B_{\text{uncorr.}}$	CF^P	CF^H	CF^{MC}	$\Delta B_{\text{corr.}}^{\text{stat.}} (\%)$	$\Delta B_{\text{corr.}}^{\text{syst.}} (\%)$	$\Delta B_{\text{corr.}}^{\text{tot.}} (\%)$
2.4	1675	1915.29	0.88	0.96	0.92	14.44	16.25	21.74
2.5	1134	1308.28	0.86	0.95	0.90	13.86	16.85	21.82
2.6	770	898.07	0.84	0.94	0.89	13.31	17.46	21.96
2.7	500	619.30	0.81	0.93	0.87	12.80	18.09	22.16
2.8	345	428.87	0.79	0.92	0.86	12.31	18.73	22.41
2.9	230	298.15	0.77	0.91	0.84	11.86	19.38	22.72
3.0	156	208.02	0.75	0.90	0.83	11.43	20.04	23.07
3.1	106	145.60	0.73	0.89	0.81	11.03	20.73	23.48
3.2	75	102.21	0.71	0.89	0.80	10.65	21.42	23.93
3.3	50	71.95	0.68	0.88	0.78	10.30	22.13	24.41
3.4	31	50.76	0.66	0.87	0.77	9.96	22.86	24.94
3.5	19	35.89	0.64	0.86	0.75	9.63	23.61	25.50
3.6	12	25.41	0.62	0.85	0.74	9.32	24.37	26.09
3.7	9	18.02	0.60	0.84	0.72	9.01	25.15	26.72
3.8	5	12.80	0.58	0.83	0.71	8.70	25.96	27.37
3.9	3	9.09	0.56	0.82	0.69	8.38	26.78	28.06
4.0	1	6.46	0.54	0.82	0.68	8.05	27.62	28.77
4.1	0	4.59	0.52	0.81	0.66	7.71	28.48	29.50
4.2	0	3.26	0.50	0.80	0.65	7.34	29.36	30.27
4.3	0	2.31	0.48	0.79	0.63	6.96	30.27	31.06
4.4	0	1.64	0.46	0.78	0.62	6.55	31.20	31.88
4.5	0	1.15	0.44	0.77	0.61	6.12	32.15	32.73
4.6	0	0.81	0.42	0.77	0.59	5.65	33.13	33.61
4.7	0	0.56	0.40	0.76	0.58	5.16	34.14	34.52
4.8	0	0.39	0.38	0.75	0.57	4.63	35.17	35.47
4.9	0	0.27	0.36	0.74	0.55	4.07	36.23	36.46
5.0	0	0.18	0.35	0.74	0.54	3.48	37.32	37.49

Table 4.8: Number of entries for the data and uncorrected background ($B_{\text{uncorr.}}$), are shown for the jet multiplicity $N \geq 5$. The correction factors based on PYTHIA8 MC (CF^P), HERWIG++ MC (CF^H) and both the MCs (CF^{MC}), are shown corresponding to the minimum H_T thresholds (H_T^{\min}). The uncertainties (statistical $\Delta B_{\text{corr.}}^{\text{stat.}}$, systematic $\Delta B_{\text{corr.}}^{\text{syst.}}$ and total $\Delta B_{\text{corr.}}^{\text{tot.}}$) due to the correction factor CF^{MC} , are also shown for each H_T^{\min} .

H_T^{\min}	Data	$B_{\text{uncorr.}}$	CF^P	CF^H	CF^{MC}	$\Delta B_{\text{corr.}}^{\text{stat.}} (\%)$	$\Delta B_{\text{corr.}}^{\text{syst.}} (\%)$	$\Delta B_{\text{corr.}}^{\text{tot.}} (\%)$
2.4	764	845.88	0.89	0.99	0.94	21.67	19.62	29.23
2.5	522	577.80	0.87	0.98	0.93	20.77	20.35	29.08
2.6	354	396.63	0.84	0.97	0.91	19.93	21.09	29.02
2.7	233	273.51	0.82	0.96	0.89	19.14	21.85	29.05
2.8	160	189.41	0.79	0.96	0.87	18.39	22.63	29.16
2.9	107	131.68	0.77	0.95	0.86	17.68	23.43	29.35
3.0	65	91.87	0.74	0.94	0.84	17.02	24.25	29.62
3.1	44	64.30	0.72	0.93	0.82	16.40	25.08	29.97
3.2	27	45.14	0.70	0.92	0.81	15.82	25.94	30.38
3.3	19	31.77	0.67	0.91	0.79	15.27	26.82	30.86
3.4	11	22.42	0.65	0.90	0.77	14.74	27.73	31.40
3.5	8	15.85	0.62	0.89	0.76	14.24	28.65	32.00
3.6	4	11.22	0.60	0.88	0.74	13.76	29.61	32.65
3.7	3	7.96	0.58	0.87	0.72	13.28	30.58	33.34
3.8	1	5.65	0.55	0.86	0.71	12.81	31.59	34.08
3.9	1	4.02	0.53	0.85	0.69	12.33	32.62	34.87
4.0	0	2.85	0.51	0.84	0.67	11.83	33.68	35.70
4.1	0	2.03	0.48	0.83	0.66	11.32	34.77	36.57
4.2	0	1.44	0.46	0.82	0.64	10.79	35.89	37.48
4.3	0	1.02	0.44	0.81	0.62	10.22	37.05	38.43
4.4	0	0.72	0.41	0.80	0.61	9.62	38.24	39.43
4.5	0	0.51	0.39	0.80	0.59	8.98	39.46	40.47
4.6	0	0.36	0.37	0.79	0.58	8.30	40.73	41.56
4.7	0	0.25	0.35	0.78	0.56	7.57	42.03	42.71
4.8	0	0.17	0.33	0.77	0.55	6.80	43.37	43.90
4.9	0	0.12	0.31	0.76	0.54	5.98	44.76	45.16
5.0	0	0.08	0.29	0.76	0.52	5.11	46.19	46.47

Table 4.9: Number of entries for the data and uncorrected background ($B_{\text{uncorr.}}$), are shown for the jet multiplicity $N \geq 6$. The correction factors based on PYTHIA8 MC (CF^P), HERWIG++ MC (CF^H) and both the MCs (CF^{MC}), are shown corresponding to the minimum H_T thresholds (H_T^{\min}). The uncertainties (statistical $\Delta B_{\text{corr.}}^{\text{stat.}}$, systematic $\Delta B_{\text{corr.}}^{\text{syst.}}$ and total $\Delta B_{\text{corr.}}^{\text{tot.}}$) due to the correction factor CF^{MC} , are also shown for each H_T^{\min} .

H_T^{\min}	Data	$B_{\text{uncorr.}}$	CF^P	CF^H	CF^{MC}	$\Delta B_{\text{corr.}}^{\text{stat.}} (\%)$	$\Delta B_{\text{corr.}}^{\text{syst.}} (\%)$	$\Delta B_{\text{corr.}}^{\text{tot.}} (\%)$
2.4	296	308.81	0.92	1.07	0.99	36.96	23.02	43.54
2.5	196	210.94	0.89	1.06	0.98	35.37	23.82	42.64
2.6	138	144.80	0.86	1.05	0.96	33.87	24.64	41.88
2.7	86	99.85	0.84	1.04	0.94	32.45	25.48	41.26
2.8	62	69.15	0.81	1.03	0.92	31.11	26.35	40.77
2.9	44	48.07	0.78	1.01	0.90	29.85	27.23	40.41
3.0	24	33.54	0.76	1.00	0.88	28.67	28.14	40.18
3.1	18	23.48	0.73	0.99	0.86	27.56	29.08	40.06
3.2	10	16.48	0.70	0.98	0.84	26.51	30.04	40.06
3.3	7	11.60	0.68	0.97	0.82	25.52	31.02	40.17
3.4	3	8.18	0.65	0.96	0.80	24.59	32.04	40.39
3.5	2	5.79	0.62	0.95	0.79	23.70	33.08	40.69
3.6	2	4.10	0.60	0.94	0.77	22.84	34.15	41.09
3.7	2	2.91	0.57	0.93	0.75	22.01	35.26	41.56
3.8	1	2.06	0.55	0.92	0.73	21.19	36.39	42.11
3.9	1	1.47	0.52	0.90	0.71	20.37	37.57	42.73
4.0	0	1.04	0.49	0.89	0.69	19.53	38.77	43.42
4.1	0	0.74	0.47	0.88	0.68	18.67	40.02	44.16
4.2	0	0.53	0.44	0.87	0.66	17.78	41.30	44.97
4.3	0	0.37	0.42	0.86	0.64	16.84	42.63	45.83
4.4	0	0.26	0.39	0.85	0.62	15.85	43.99	46.76
4.5	0	0.19	0.37	0.84	0.61	14.79	45.41	47.76
4.6	0	0.13	0.35	0.83	0.59	13.67	46.87	48.82
4.7	0	0.09	0.32	0.82	0.57	12.48	48.38	49.96
4.8	0	0.06	0.30	0.81	0.56	11.21	49.94	51.19
4.9	0	0.04	0.28	0.81	0.54	9.86	51.56	52.50
5.0	0	0.03	0.26	0.80	0.53	8.44	53.24	53.90

Table 4.10: Number of entries for the data and uncorrected background ($B_{\text{uncorr.}}$), are shown for the jet multiplicity $N \geq 7$. The correction factors based on PYTHIA8 MC (CF^P), HERWIG++ MC (CF^H) and both the MCs (CF^{MC}), are shown corresponding to the minimum H_T thresholds (H_T^{\min}). The uncertainties (statistical $\Delta B_{\text{corr.}}^{\text{stat.}}$, systematic $\Delta B_{\text{corr.}}^{\text{syst.}}$ and total $\Delta B_{\text{corr.}}^{\text{tot.}}$) due to the correction factor CF^{MC} , are also shown for each H_T^{\min} .

1525 4.6.2 Choice of Normalisation Region

1526 The ansatz function $f(x)$ is only used for the baseline case of multiplicity
 1527 two. For all other multiplicities, $N > 2$, the same function is normalized
 1528 to determine the number of background events in the signal region, i.e.
 1529 $f^{N>2}(x) = n_f^{\text{nom.}} f(x)$ (shown in equation 4.6). The nominal normalisation
 1530 factor $n_f^{\text{nom.}}$ measured in the normalisation region is used to normalize the
 1531 $f(x)$ to the $f^{N>2}(x)$. The sensitivity of the normalisation factor has been
 1532 studied by sliding the upper and lower boundaries of the nominal normal-
 1533 isation region by 0.1 TeV on either side. The normalisation factor n_f is
 1534 measured in different normalisation ranges and compared with the $n_f^{\text{nom.}}$.
 1535 The normalisation factor n_f corresponding to any normalisation region is
 1536 defined as

$$1537 n_f = \frac{n_f^{\text{num.}}}{n_f^{\text{den.}}}, \quad (4.12)$$

1538 where $n_f^{\text{num.}}$ and $n_f^{\text{den.}}$ are the numerator and denominator of n_f correspond-
 1539 ing to any normalisation region (NR) and defined as

$$1540 n_f^{\text{num.}} = \sum_{H_T \in NR}^{N>2} H_T \quad \text{and} \quad n_f^{\text{den.}} = \sum_{H_T \in NR}^{N=2} H_T. \quad (4.13)$$

1541 The statistical uncertainty ($\Delta n_f^{\text{stat.}}$) for the normalisation factor n_f can be
 1542 written as

$$1543 \Delta n_f^{\text{stat.}} = n_f \sqrt{\frac{1}{n_f^{\text{num.}}} + \frac{1}{n_f^{\text{den.}}}}, \quad (4.14)$$

1544 whereas the systematic uncertainty ($\Delta n_f^{\text{syst.}}$) corresponding to n_f is written
 1545 as

$$1546 \Delta n_f^{\text{syst.}} = |n_f^{\text{nom.}} - n_f|. \quad (4.15)$$

1547 The total uncertainty due to the choice of the normalisation region can be
 1548 written as

$$1549 \Delta n_f(\%) = \frac{1}{n_f^{\text{nom.}}} \left[\sqrt{(\Delta n_f^{\text{stat.}})^2 + (\Delta n_f^{\text{syst.}})^2} \right] \times 100. \quad (4.16)$$

1545 In Table 4.11, the statistical uncertainty $\Delta n_f^{\text{stat.}}$, systematic uncertainty
1546 $\Delta n_f^{\text{syst.}}$ and the total uncertainty (Δn_f) due to the choice of the normalisa-
1547 tion region are shown for inclusive jet multiplicities. In order to compensate
1548 the uncertainties from all the possible choices of the normalisation region,
1549 the maximum Δn_f is chosen for the limit calculations. Typically this un-
1550 certainty remains less than 3%.

1551 4.6.3 Jet Energy Uncertainties

1552 The jet energy measured in the ATLAS calorimeters is corrected because of
1553 the non-compensating response of the calorimeters [87] and energy losses in
1554 the bad calorimeter regions (as discussed in Appendix A). The correction
1555 is called as jet energy scale (JES) [86]. Due to limited resolution of the
1556 detector, the effect of jet energy resolution (JER) is also measured by using
1557 some dedicated analyses, as discussed in Ref. [85]. The uncertainties on
1558 the JES and JER are also calculated in Ref. [85, 86]. In this analysis,
1559 the uncertainties due to the JES and JER uncertainties are measured and
1560 collectively referred to as the jet energy uncertainties. The JER uncertainty
1561 depends on pseudorapidity, transverse momentum, transverse energy and
1562 azimuthal angle. The JES uncertainty also depends on the same variables
1563 but, in addition, it uses the number of primary vertices (NPV) and average
1564 number of interactions per bunch crossing (μ) variables in order to take the
1565 pileup uncertainty effects into account. The effects of both uncertainties
1566 on the H_T distributions are computed using data, for each jet multiplicity
1567 and as a function of H_T^{min} .

1568 In order to estimate the effect of the JES uncertainty, the p_T of
1569 all the jets are modified by the JES uncertainty and the H_T distribution
1570 is recomputed. Since the exclusion limits in this study are calculated on
1571 the basis of counting experiments², the effects of JES uncertainty in the

² The number of data events are counted for each H_T^{min} .

H_T Ratio	$n_f^{\text{nom.}}$	normalisation region (NR) [TeV]	n_f	$\Delta n_f^{\text{stat.}}$	$\Delta n_f^{\text{syst.}}$	$\Delta n_f^{\text{total}}(\%)$
$H_{T_{32}}^{\text{inl}}$	4.606	1.6 – 2.3	4.672	0.030	0.065	1.559
		1.6 – 2.4	4.668	0.029	0.061	1.477
		1.6 – 2.5	4.662	0.029	0.056	1.364
		1.7 – 2.3	4.612	0.037	0.005	0.807
		1.7 – 2.5	4.598	0.036	0.008	0.804
		1.8 – 2.3	4.561	0.046	0.045	1.395
		1.8 – 2.4	4.554	0.045	0.052	1.491
		1.8 – 2.5	4.543	0.045	0.063	1.684
		1.6 – 2.3	3.064	0.020	0.030	1.205
$H_{T_{42}}^{\text{inl}}$	3.034	1.6 – 2.4	3.061	0.020	0.027	1.122
		1.6 – 2.5	3.058	0.020	0.024	1.021
		1.7 – 2.3	3.038	0.025	0.004	0.847
		1.7 – 2.5	3.028	0.025	0.006	0.840
		1.8 – 2.3	3.008	0.032	0.026	1.347
		1.8 – 2.4	3.002	0.031	0.032	1.461
		1.8 – 2.5	2.994	0.031	0.040	1.654
		1.6 – 2.3	1.625	0.012	0.006	0.833
		1.6 – 2.4	1.622	0.012	0.004	0.771
$H_{T_{52}}^{\text{inl}}$	1.618	1.6 – 2.5	1.621	0.012	0.003	0.741
		1.7 – 2.3	1.622	0.015	0.004	0.948
		1.7 – 2.5	1.616	0.015	0.002	0.917
		1.8 – 2.3	1.615	0.019	0.003	1.170
		1.8 – 2.4	1.610	0.018	0.008	1.243
		1.8 – 2.5	1.606	0.018	0.012	1.339
		1.6 – 2.3	0.713	0.006	0.002	0.925
		1.6 – 2.4	0.712	0.006	0.003	0.959
		1.6 – 2.5	0.712	0.006	0.003	0.981
$H_{T_{62}}^{\text{inl}}$	0.715	1.7 – 2.3	0.716	0.008	0.001	1.139
		1.7 – 2.5	0.714	0.008	0.001	1.107
		1.8 – 2.3	0.722	0.010	0.007	1.728
		1.8 – 2.4	0.719	0.010	0.005	1.541
		1.8 – 2.5	0.718	0.010	0.003	1.462
		1.6 – 2.3	0.260	0.003	0.001	1.355
		1.6 – 2.4	0.260	0.003	0.001	1.337
		1.6 – 2.5	0.259	0.003	0.001	1.371
		1.7 – 2.3	0.261	0.004	0.000	1.591
$H_{T_{72}}^{\text{inl}}$	0.261	1.7 – 2.5	0.260	0.004	0.000	1.572
		1.8 – 2.3	0.265	0.005	0.004	2.658
		1.8 – 2.4	0.265	0.005	0.005	2.639
		1.8 – 2.5	0.265	0.005	0.004	2.438

Table 4.11: Statistical uncertainty ($\Delta n_f^{\text{stat.}}$), systematic uncertainty ($\Delta n_f^{\text{syst.}}$) and total uncertainty (Δn_f) due to the choice of the normalisation region for inclusive H_T ratios ($H_{T_{i2}}^{\text{inl}}$), i.e. the ratios of the inclusive multiplicities $i = N \geq 3, 4, \dots, 7$ with respect to the reference jet multiplicity $N = 2$. The normalisation factor ($n_f^{\text{nom.}}$) corresponds to the nominal normalisation range, $1.7 < H_T < 2.4$ TeV.

1572 jet p_T are assumed to be propagated in the modified H_T . For each bin of
 1573 H_T^{\min} , the difference between the modified H_T distribution (H_T^{JES}) and the
 1574 nominal H_T distribution (H_T^{nom}) is used to define the systematic uncertainty
 1575 (ΔJES), i.e.,

$$\Delta\text{JES} = \frac{H_T^{\text{JES}} - H_T^{\text{nom}}}{H_T^{\text{nom}}}. \quad (4.17)$$

1576 To quantify the effects of the JER uncertainty on the H_T distribu-
 1577 tion, the jet p_T resolution is smeared according to the JER uncertainty
 1578 by generating five hundred pseudo datasets. The difference between the
 1579 H_T distributions constructed from the datasets ($H_T^{\text{JER}_1}, H_T^{\text{JER}_2}, \dots, H_T^{\text{JER}_{500}}$)
 1580 and the H_T^{nom} , on bin-by-bin basis, is used to define quantities ΔJER_1 ,
 1581 $\Delta\text{JER}_2, \dots, \Delta\text{JER}_{500}$, i.e.,

$$\Delta\text{JER}_i = \frac{H_T^{\text{JER}_i} - H_T^{\text{nom}}}{H_T^{\text{nom}}}, \quad (4.18)$$

1582 where $i = 1, 2, \dots, 500$ is an integer index corresponding to the dataset
 1583 number. The final systematic uncertainty due to effects of JER uncertainty
 1584 is defined from the mean and root mean square values of the gaussian
 1585 distribution of ΔJER_i . The ΔJER_i gaussian distributions in different H_T^{\min}
 1586 bins, for the jet multiplicity $N \geq 3$, are shown as representative cases in
 1587 Figure 4.17.

1588 Typically, the effect of JER uncertainty is 1 – 3%, whereas the ef-
 1589 fect of JES uncertainty remains 3 – 5%, depending on the H_T^{\min} for the
 1590 signal region and the jet multiplicity. The overall jet energy uncertainty is
 1591 obtained by adding JER and JES uncertainties in quadrature. The effect
 1592 of jet energy uncertainties on the background estimation remains smaller
 1593 as compared to the uncertainty due to corrections to non-invariance in H_T
 1594 with jet multiplicity.

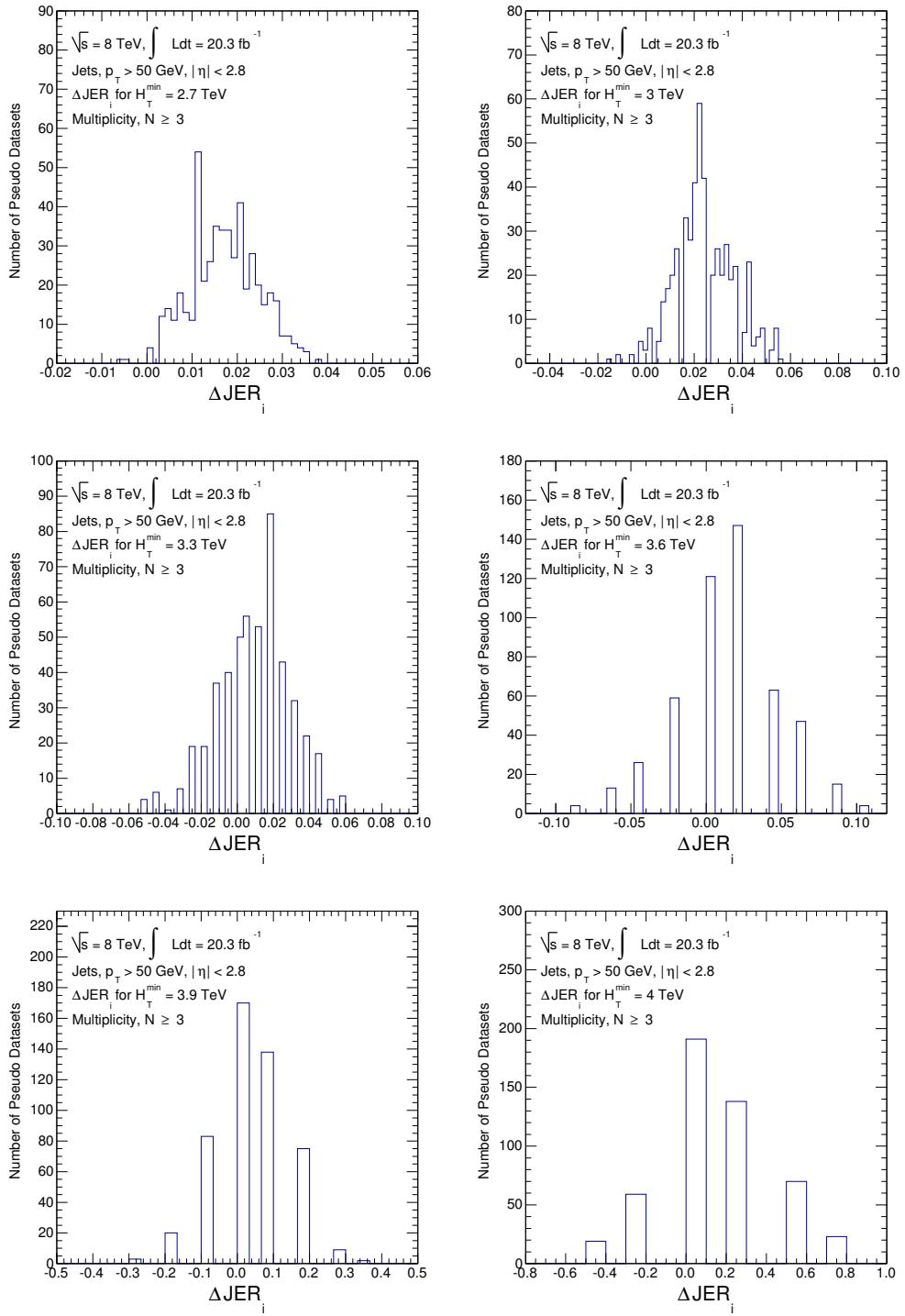


Figure 4.17: The $\Delta JER_i = \frac{H_T^{JER_i} - H_T^{\text{nom}}}{H_T^{\text{nom}}}$ gaussian distributions of five hundred pseudo datasets, i.e., $i = 1, 2, \dots, 500$, corresponding to $H_T^{\text{min}} = 2.7, 3.0, 3.3, 3.6, 3.9, 4.0$ TeV, for the jet multiplicities $N \geq 3$, are shown for the ATLAS 2012 data. For a given pseudo dataset i , the H_T distribution with the effect of jet energy resolution (JER) uncertainty is defined as $H_T^{JER_i}$, whereas the nominal H_T distribution is defined as H_T^{nom} .

1595 4.6.4 Summary of Systematics

1596 In this subsection, all the systematic uncertainties described in the previ-
1597 ous three subsections are summarized. For the inclusive jet multiplicities
1598 $N \geq 3, 4, \dots, 7$, the data and estimated background along with the total
1599 uncertainty are shown in Figure 4.18, as a function of H_T^{\min} . For each mul-
1600 tiplicity, the uncertainty band due to all the systematics, at the each H_T^{\min} ,
1601 is obtained by adding all the uncertainties in quadrature. The different un-
1602 certainties may increase or decrease the estimated background, producing
1603 an asymmetric uncertainty band, as shown in Figure 4.18.

1604 From Figure 4.18, the total uncertainty to the background estima-
1605 tion increases with the decreasing statistics with decreasing H_T^{\min} and from
1606 one inclusive multiplicity case to the higher one. Therefore, the lowest
1607 statistics case, i.e. $N \geq 7$ (the highest inclusive multiplicity in this study),
1608 has larger uncertainties than the other multiplicities corresponding to the
1609 same H_T^{\min} values. The shape invariance is also affected by statistics, there-
1610 fore, the contribution of uncertainty due to non-invariance is dominant in
1611 the low statistics region. As a result, the larger overestimation of the back-
1612 ground is observed in the high H_T^{\min} region. Similarly, for a given H_T^{\min} , the
1613 overestimation of the background increases from a lower multiplicity to the
1614 higher one. The uncertainty due to the choice of the normalisation region
1615 has a constant effect along the whole range of the H_T^{\min} (as discussed in
1616 subsection 4.6.2), for any inclusive multiplicity. Finally, the jet energy un-
1617 certainties contribute significantly in the overall band of total uncertainty,
1618 and also increase with the increase in H_T^{\min} .

1619 For $N \geq 3$, $N \geq 4$ and $N \geq 5$, the amount of total uncertainty
1620 typically remains in the 15-35% and 35-70% ranges, in the $2.4 < H_T^{\min} \leq$
1621 3.5 TeV and $3.6 < H_T^{\min} \leq 4.5$ TeV regions, respectively. For higher inclu-
1622 sive cases, i.e. $N \geq 6$ and $N \geq 7$, the amount of total uncertainties typically

1623 lies in the 30-50% and 50-70% ranges, in the $2.4 < H_T^{\min} \leq 3.5$ TeV and
1624 $3.6 < H_T^{\min} \leq 4.5$ TeV regions, respectively. For the $H_T^{\min} > 4.5$ TeV region,
1625 all the multiplicities have a total uncertainty in the 75-100% range.

1626 The plots in Figure 4.18 as a function of H_T^{\min} indicate an accumu-
1627 lative representation of the data and estimated background from the plots
1628 shown in Figure 4.16. The data points, from Figure 4.16, fluctuate above
1629 and below the estimated background whereas they are always below the
1630 estimated background in Figure 4.18. Therefore, another way to visualize
1631 the data and estimated background, as a function of H_T^{\min} , is shown in Fig-
1632 ure 4.19. In this figure, the accumulated background shown for different
1633 inclusive multiplicities is estimated by excluding the background from the
1634 empty data-bins. In this representation, the data and background agree-
1635 ment is improved as compared to shown in Figure 4.18.

1636 There is no excess of data events found above the estimated back-
1637 ground, therefore, model-inpedent and mode-dependent exclusion limits are
1638 set at the 95% confidence level (CL). The data and background shown in
1639 Figure 4.18 are within one sigma uncertainty. The one sigma agreement can
1640 also be seen later from the model-independent exclusion limits. Moreover,
1641 the exclusion limits are set in the high H_T region, i.e., including the region
1642 with empty data bins, therefore, the results obtained from Figure 4.18 are
1643 used for calculating limits.

1644 4.7 Exclusion Limits

1645 The exclusion limits are calculated as a function of H_T^{\min} for the inclusive jet
1646 multiplicities. In the signal region, different $H_T > H_T^{\min}$ values are chosen
1647 and counting experiments are performed as a function of H_T^{\min} . The upper
1648 limits are calculated by using a frequentist CL_s method [88, 89]. Exclusion
1649 limits on the production of new physics and black holes are set by taking

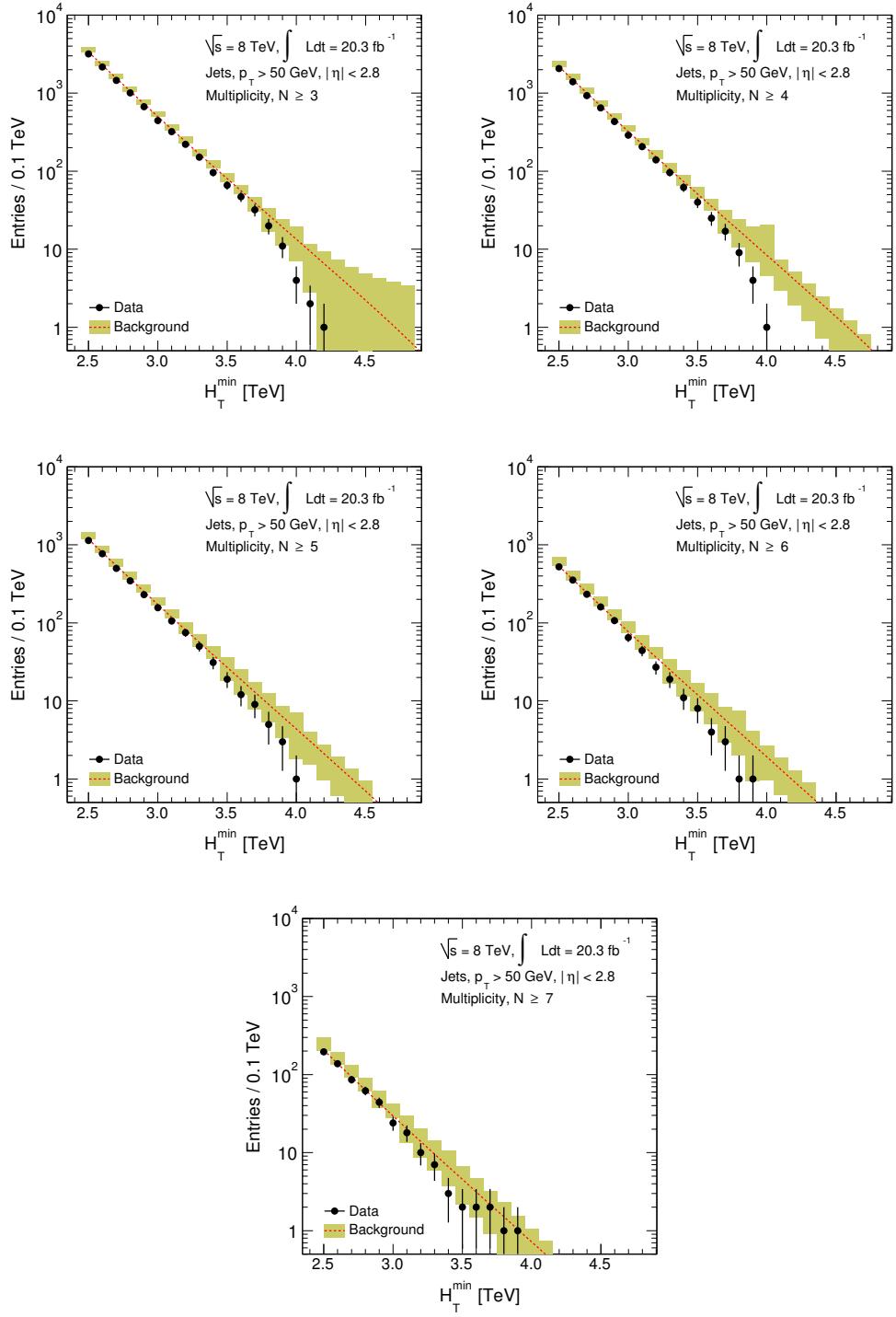


Figure 4.18: The H_T^{\min} distributions, for the inclusive jet multiplicities $N \geq 3, 4, \dots, 7$, are shown for the ATLAS 2012 data and predicted background along with total uncertainty.

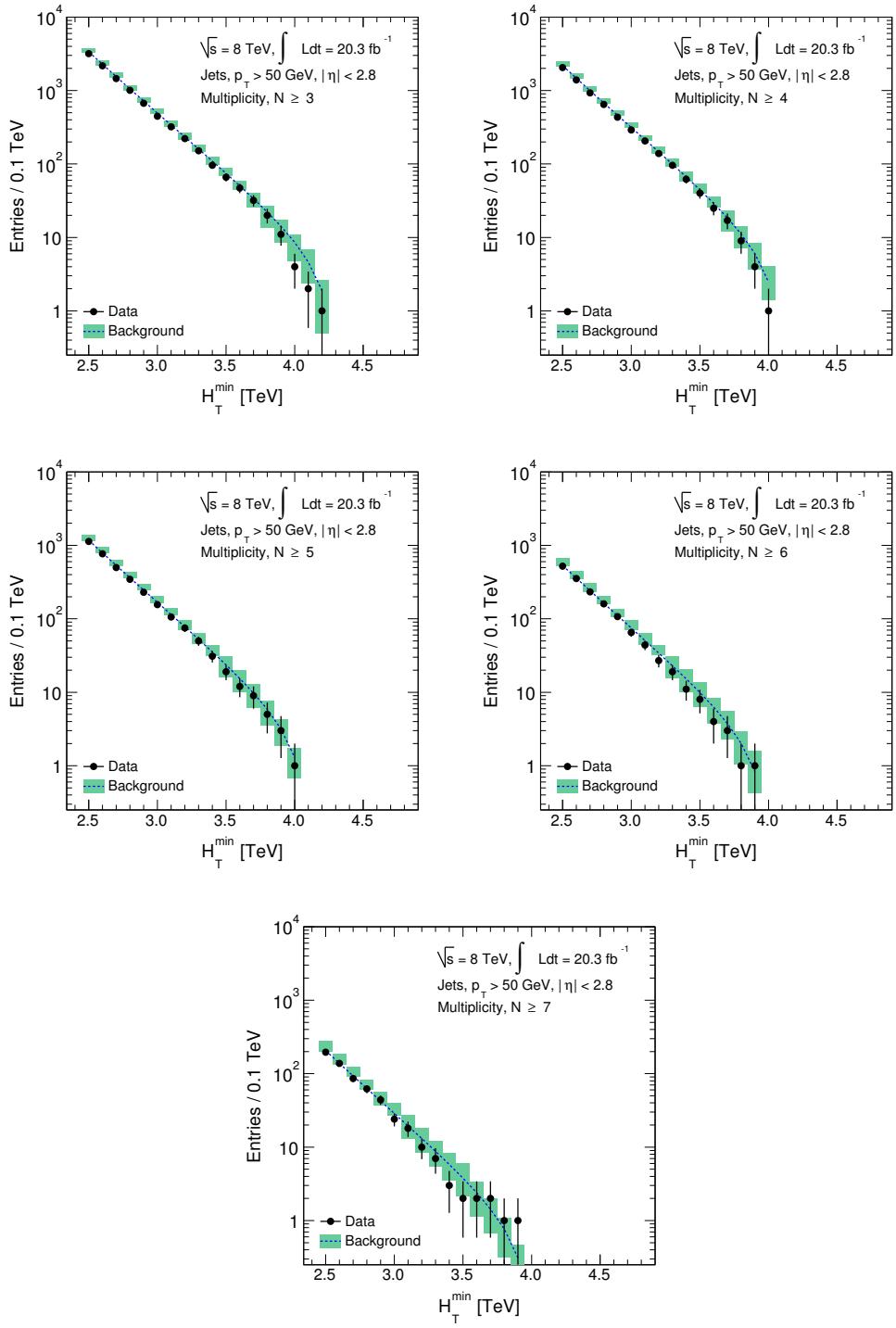


Figure 4.19: The H_T^{\min} distributions, for the inclusive jet multiplicities $N \geq 3, 4, \dots, 7$, are shown for the ATLAS 2012 data and predicted background along with total uncertainty. The background is estimated by dropping the empty data bins in the H_T distributions.

1650 all the three types of systematic uncertainties described in section 4.6 into
1651 account. The 2.8% luminosity uncertainty is also used in the upper limit
1652 calculations. The model-independent upper limits are shown in the next
1653 subsection.

1654 4.7.1 Model-Independent Limits

1655 Model-independent upper limits are calculated at the 95% CL on cross
1656 section times the acceptance for new physics production in the high H_T
1657 inclusive multijet final states for $N \geq 2, 3, \dots, 7$, as shown in Figure 4.20.
1658 These figures show the observed and expected limits along with the one and
1659 two standard deviation bands for the expected limits. The observed limits
1660 are obtained from the data, whereas the expected limit is the median of
1661 the distribution of the limits at the 95% CL generated by pseudo datasets.
1662 The pseudo datasets assume a background-only model and are generated
1663 by randomly fluctuating the predicted background value. A total of 2500
1664 pseudo datasets are used in this study and an upper limit is calculated for
1665 each one of them. Finally, the expected limit is computed by determining
1666 the median of the distribution of the upper limits obtained from all the
1667 pseudo datasets. The one and two sigma bands are the 68% and 95%
1668 confidence intervals around the median value.

1669 The observed limits typically lie below the expected limits within
1670 one sigma uncertainty. The exclusion limit on the cross section times ac-
1671 ceptance times efficiency³ is 0.29 fb to 0.14 fb for $N \geq 3$ to $N \geq 7$ for
1672 the high- H_T , i.e. $H_T > 4.0$ TeV. The limits as a function of the H_T^{\min} and
1673 jet multiplicity are shown in Table 4.12. In order to observe variation of
1674 exclusion limits with H_T and multijet final states, upper limits on cross
1675 section times acceptance times efficiency at the 95% CL as a function of
1676 the inclusive jet multiplicities for fixed H_T^{\min} values, are also shown in Fig-

³ These are the acceptance and efficiency of the detector.

ure 4.21. For $H_T^{\min} = 2.5, 3.0$ and 3.5 TeV, limits decrease with the increase in jet multiplicity. The $H_T^{\min} = 4.0$ TeV case looks almost flat for $N \geq 4$ and beyond, whereas the $H_T^{\min} = 4.5$ and 5 TeV cases are flat for all the inclusive multijet final states because no data events are in the $H_T > 4.5$ TeV region. Moreover, exclusion limits drop quickly with increasing H_T^{\min} and then are flat for $H_T^{\min} > 4$ TeV. The exclusion limits reported in this study are improved limits as compared to the CMS study for the microscopic black hole searches at $\sqrt{s} = 8$ TeV [9, 10], as shown in Table 4.13⁴.

4.7.2 Model-Dependent Limits

The ADD-type of black hole signal samples simulated by the CHARYBDIS2 black hole event generator are used to calculate model-dependent limits. A brief description of the CHARYBDIS2 samples is given below.

CHARYBDIS2 Black Hole Samples

The black hole event generator CHARYBDIS2 version 1.0.4 is used to simulate the production and decay of microscopic black holes in pp collisions by using a semi-classical approach in models with flat extra dimensions and TeV-scale gravity. The black hole production is assumed to be a classically-dominated phenomena that occurs at energies well above the fundamental Planck scale. On the other hand, black hole decay is considered to be dominated by quantum effects with the emission of Hawking radiation. The decay process is required to conserve charge and baryon number. The generator is interfaced with PYTHIA8 to incorporate the effects of parton showering, hadronisation and underlying events.

The black hole samples are generated as a function of three parameters, n , M_D and a lower mass threshold to produce black hole (M_{th}). Any two parameters can be fixed to observe the sensitivity of the third param-

⁴ In CMS papers, efficiency of detector is merged in the definition of acceptance.

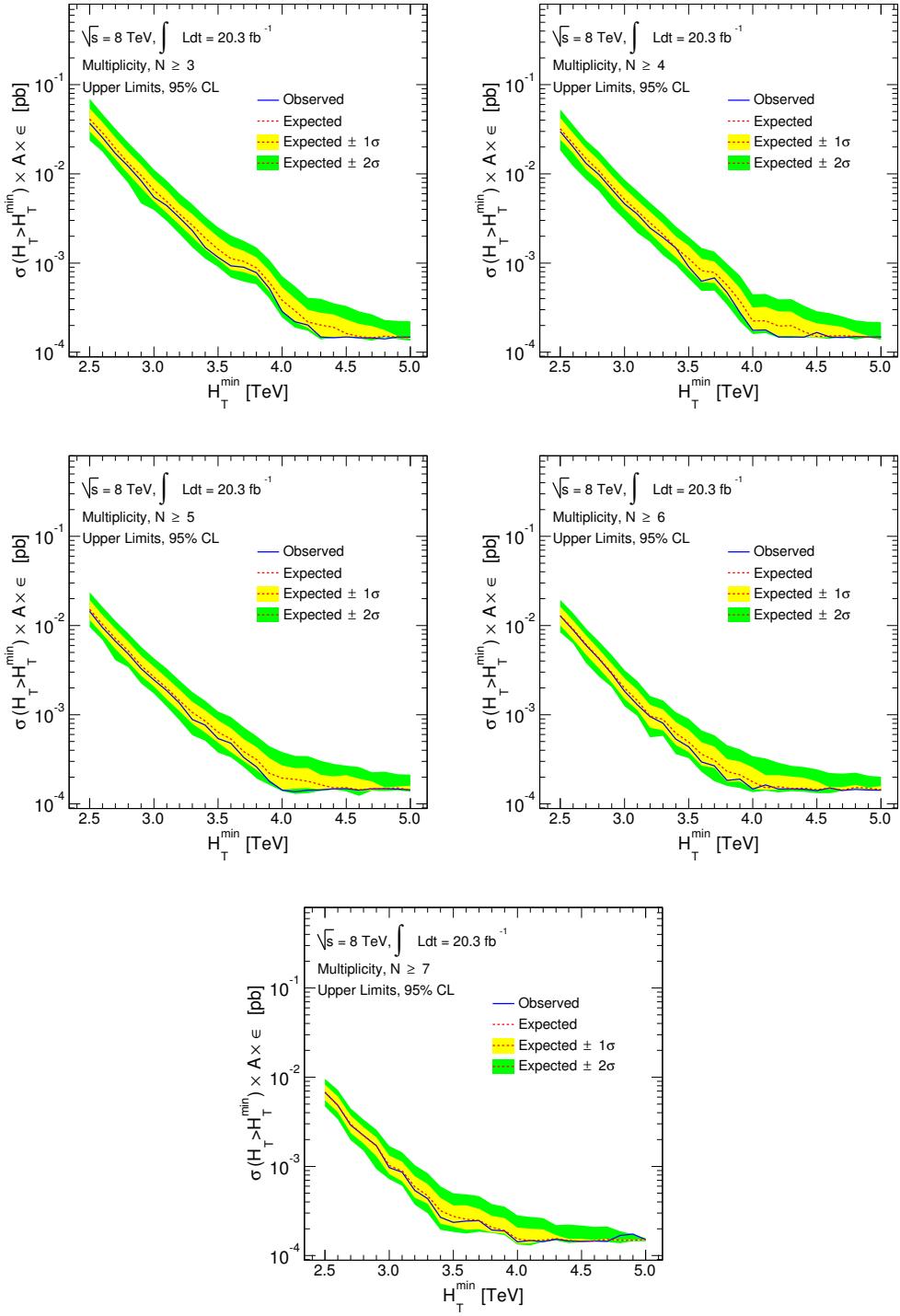


Figure 4.20: Model-independent limits using ATLAS 2012 data, on upper cross section (σ) times acceptance (A) times efficiency (ϵ) at the 95% confidence level (CL) for counting experiments with $H_T > H_T^{\min}$, as a function of H_T^{\min} for inclusive jet multiplicities $N \geq 3, 4, \dots, 7$. The blue solid (red dotted) lines correspond to an observed (expected) limit. The yellow and green bands represent one and two sigma standard deviations from the expected limits.

H_T^{\min} (TeV)	Limit (fb)	$N \geq 3$	$N \geq 4$	$N \geq 5$	$N \geq 6$	$N \geq 7$
2.5	obs	36.95	29.84	20.96	12.78	6.77
	exp	41.16	31.95	21.74	12.91	6.83
2.6	obs	25.45	20.02	14.42	8.93	4.84
	exp	28.95	21.81	15.17	9.13	4.83
2.7	obs	16.93	13.10	9.53	6.00	2.91
	exp	19.44	14.86	10.32	6.18	2.97
2.8	obs	12.14	9.86	6.69	4.25	2.22
	exp	13.19	10.85	7.18	4.32	2.21
2.9	obs	8.37	6.74	4.83	2.89	1.71
	exp	9.63	7.37	5.19	2.96	1.70
3.0	obs	5.48	4.61	3.29	1.83	0.97
	exp	6.56	5.18	3.57	1.99	1.02
3.1	obs	4.40	3.53	2.46	1.29	0.86
	exp	4.89	3.82	2.65	1.44	0.89
3.2	obs	3.23	2.47	1.87	0.95	0.54
	exp	3.55	2.83	1.99	0.96	0.59
3.3	obs	2.31	1.94	1.35	0.80	0.44
	exp	2.65	2.11	1.44	0.89	0.47
3.4	obs	1.50	1.48	0.88	0.53	0.27
	exp	1.91	1.48	1.06	0.62	0.32
3.5	obs	1.16	0.91	0.76	0.44	0.24
	exp	1.43	1.13	0.85	0.49	0.27
3.6	obs	0.93	0.63	0.54	0.30	0.24
	exp	1.12	0.82	0.64	0.36	0.26
3.7	obs	0.90	0.68	0.48	0.27	0.25
	exp	1.04	0.78	0.53	0.31	0.25
3.8	obs	0.78	0.47	0.33	0.18	0.19
	exp	0.89	0.56	0.39	0.23	0.21
3.9	obs	0.52	0.28	0.26	0.19	0.19
	exp	0.61	0.38	0.32	0.21	0.19
4.0	obs	0.29	0.18	0.18	0.15	0.14
	exp	0.38	0.22	0.22	0.18	0.15
4.1	obs	0.22	0.18	0.14	0.16	0.15
	exp	0.29	0.23	0.19	0.15	0.15
4.2	obs	0.20	0.15	0.14	0.15	0.14
	exp	0.22	0.20	0.19	0.16	0.15
4.3	obs	0.15	0.15	0.14	0.15	0.15
	exp	0.20	0.20	0.18	0.15	0.16
4.4	obs	0.15	0.15	0.14	0.15	0.15
	exp	0.19	0.17	0.16	0.15	0.15
4.5	obs	0.15	0.17	0.15	0.14	0.14
	exp	0.16	0.15	0.15	0.14	0.15
4.6	obs	0.15	0.15	0.15	0.15	0.15
	exp	0.15	0.15	0.15	0.15	0.15
4.7	obs	0.14	0.15	0.14	0.14	0.14
	exp	0.15	0.15	0.14	0.14	0.15
4.8	obs	0.14	0.15	0.15	0.15	0.17
	exp	0.15	0.15	0.15	0.15	0.15
4.9	obs	0.15	0.15	0.15	0.14	0.17
	exp	0.15	0.15	0.15	0.15	0.15
5.0	obs	0.15	0.15	0.15	0.14	0.15
	exp	0.15	0.15	0.15	0.14	0.15

Table 4.12: Model-independent observed (obs) and expected (exp) upper limits using ATLAS 2012 data, on cross section times acceptance times efficiency at the 95% confidence level (CL) for counting experiments with $H_T > H_T^{\min}$, as a function of H_T^{\min} for inclusive jet multiplicities $N \geq 3, 4, \dots, 7$.

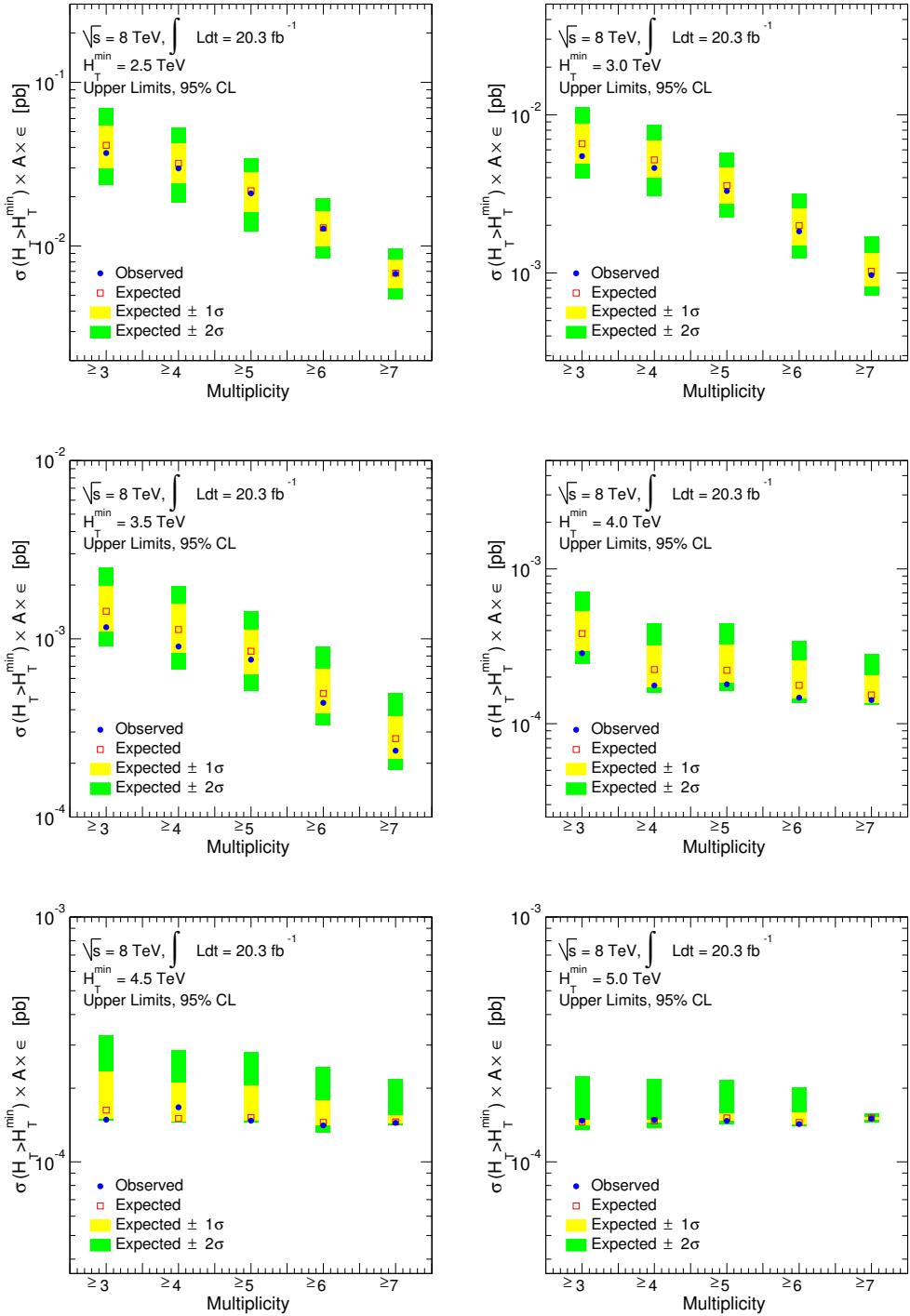


Figure 4.21: Model-independent limits using ATLAS 2012 data, on upper cross section (σ) times acceptance (A) times efficiency (ϵ) with 95% confidence level for counting experiments with $H_T > H_T^{\min}$, as a function of inclusive jet multiplicity corresponding to $H_T^{\min} = 2.5, 3.0, 3.5, 4.0, 4.5$ and 5.0 TeV. The solid blue dots (the empty red squares) correspond to an observed (expected) limit. The yellow and green bands represent one and two sigma standard deviations from the expected limits.

Model-independent upper Limit on $\sigma \times A \times \epsilon$ (fb)		
CMS (for 3.7 fb^{-1})	CMS (for 12.1 fb^{-1})	ATLAS (for 20.3 fb^{-1})
0.70	0.20	0.15

Table 4.13: Model-independent upper limits at the 95% confidence level on cross section (σ) times acceptance (A) times efficiency (ϵ), for the CMS [9, 10] and ATLAS (this study) 2012 data. The limits are shown for the high H_T region, i.e. $H_T > 4.5 \text{ TeV}$.

1703 eter. As an indicative case, the black hole samples for $M_D = 1.5 \text{ TeV}$,
 1704 $M_{\text{th}} = 5.5 \text{ TeV}$ and different numbers of extra dimensions n for inclusive
 1705 jet multiplicities are shown in Figure 4.22. Similarly, the black hole simu-
 1706 lations for $M_D = 1.5 \text{ TeV}$, $n = 6$ and different black hole mass thresholds
 1707 M_{th} are shown in Figure 4.23.

1708 Limits on Models

1709 The upper limits have been calculated for a variety of models corresponding
 1710 to different values of n , M_D and M_{th} . In order to obtain the upper limits
 1711 for a signal model, the entire analysis is repeated for that model and the
 1712 number of signal events are measured as a function of H_T^{\min} . The uncer-
 1713 tainties due to the jet energy uncertainties on the signal MC are very small
 1714 compared to the uncertainties discussed in subsection 4.6.3 and can be ig-
 1715 nored. In addition to the inputs used to calculate the model-independent
 1716 limits, the number of signal events obtained from a model are used to
 1717 compute the observed model-dependent upper limits. The upper limits
 1718 are computed by using the same frequentist CL_s method. The acceptance
 1719 and efficiency of the detector are already taken into account when a signal
 1720 sample is passed through all the selection criteria of the analysis, there-
 1721 fore, the model-dependent upper limits are set on cross section σ only. In
 1722 Figure 4.24, the theoretical values of cross section are also shown with the
 1723 dotted lines, whereas the experimental values of the upper limits are shown

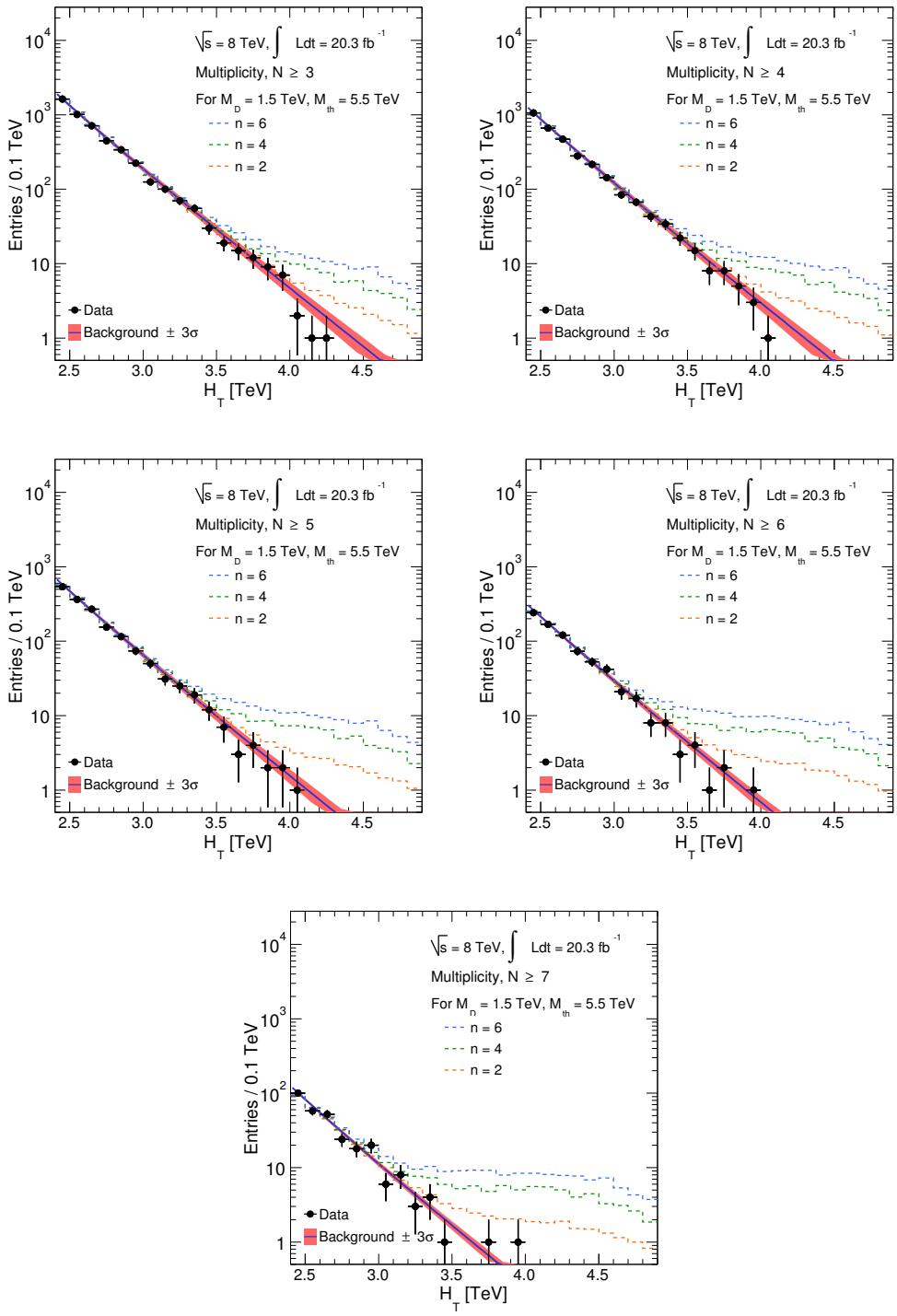


Figure 4.22: CHARYBDIS2 black hole samples generated for fundamental Planck scale $M_D = 1.5 \text{ TeV}$, black hole mass threshold $M_{th} = 5.5 \text{ TeV}$ and different numbers of extra dimensions n , shown with the ATLAS 2012 data and the estimated background along with the three sigma uncertainty band for inclusive jet multiplicities $N \geq 3, 4, \dots, 7$.

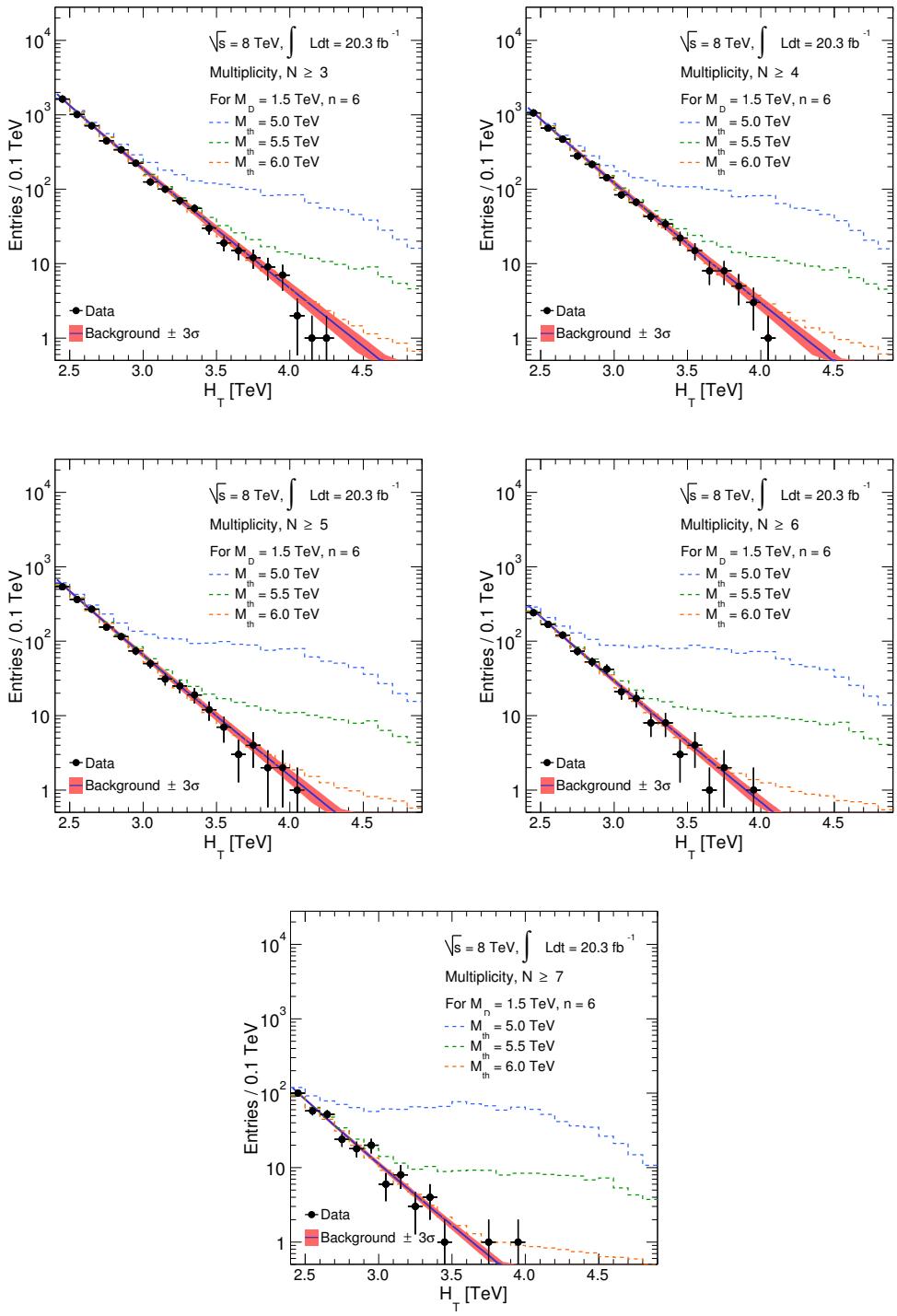


Figure 4.23: CHARYBDIS2 black hole samples generated for fundamental Planck scale $M_D = 1.5 \text{ TeV}$, number of extra dimensions $n = 6$ and different black hole mass thresholds M_{th} , shown with the ATLAS 2012 data and the estimated background along with the three sigma uncertainty band for inclusive jet multiplicities $N \geq 3, 4, \dots, 7$.

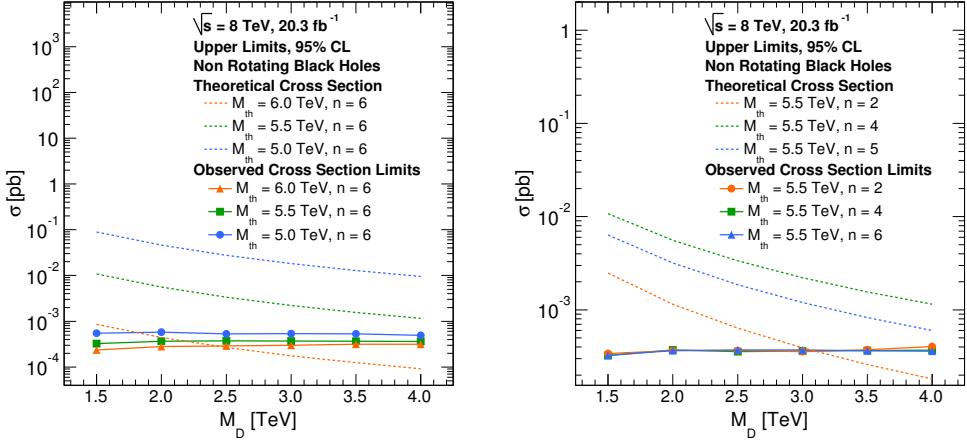


Figure 4.24: The upper limit on the cross section (σ) at the 95% confidence level (CL) (solid lines) for the three sets of the number of extra dimensions (n) and minimum black hole mass (M_{th}) compared with the signal production cross sections from the CHARYBDIS2 black hole generator (dotted lines), as a function of fundamental Planck scale (M_D). The sensitivity of M_{th} and n is observed for the fixed n (left) and M_{th} (right), respectively, as a function of M_D .

1724 with the solid lines. Each colour in Figure 4.24 indicates the trend of the
 1725 black hole samples, for fixed n and M_{th} values, as a function of M_D . For a
 1726 given set of (n, M_{th}) , the models with specific M_D values can be excluded
 1727 on the basis of the crossing point of the theoretical and experimental curves.

1728

1729 In Figure 4.24 (left), the case where the theory and experiment
 1730 curves cross corresponds to $n = 6$ and $M_{\text{th}} = 6 \text{ TeV}$. The dotted orange
 1731 curve lies above the solid orange curve until $M_D = 2.4 \text{ TeV}$, therefore, for
 1732 this set of parameters ($n = 6, M_{\text{th}} = 6 \text{ TeV}$), the $M_D = 2.4 \text{ TeV}$ is the
 1733 lower limit and the $M_D < 2.4 \text{ TeV}$ region can be excluded for microscopic
 1734 black hole production. The other two types of curves (green and blue) do
 1735 not have any crossing point, therefore, the models in these curves are com-
 1736 pletely excluded. Similarly, in Figure 4.24 (right), the orange curves have
 1737 a crossing point around $M_D = 3 \text{ TeV}$. Therefore, the models corresponding
 1738 to $n = 2$ and $M_{\text{th}} = 5.5 \text{ TeV}$ have a lower limit $M_D = 3 \text{ TeV}$. The models

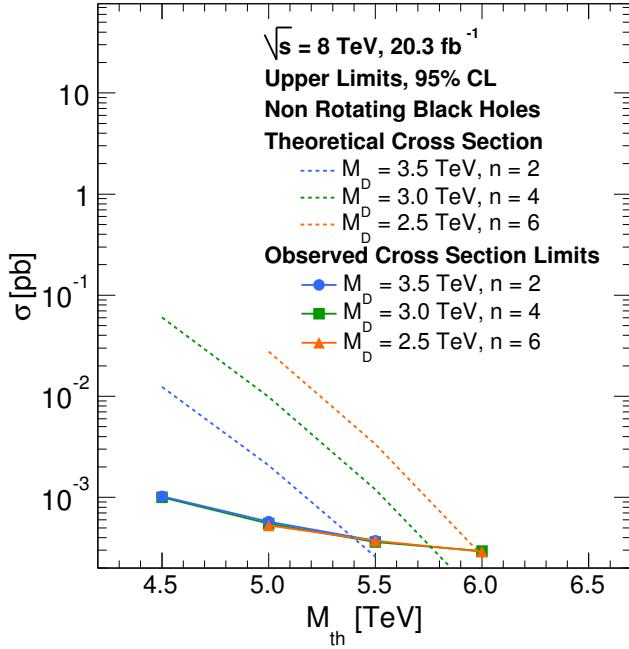


Figure 4.25: The upper limit on cross section (σ) at the 95% confidence level (CL) (solid lines) for the three sets of the number of extra dimension (n) and fundamental Planck scale M_D compared with the signal production cross sections from the CHARYBDIS2 black hole generator (dotted lines), as a function of minimum black hole mass (M_{th}).

1739 corresponding to the set of parameters in the blue and green curves are
 1740 completely excluded due to same reason described earlier.

1741 A lower limit on M_{th} can also be set for a fixed set of the other two
 1742 parameters (n, M_D) by using the same method shown in Figure 4.24. For
 1743 example, the cross section curves for the theory and experiment for three
 1744 sets of (n, M_D) as a function of M_{th} are shown in Figure 4.25. The lower
 1745 limits from these curves at the 95% confidence level are shown in Table 4.14
 1746 along with a comparison to the CMS results [9, 10]. The lower limits on
 1747 M_{th} in this study improve upon those published by CMS.

n	M_D (TeV)	Model-dependent lower limits on M_{th} (TeV)		
		CMS (for 3.7 fb^{-1})	CMS (for 12.1 fb^{-1})	ATLAS (for 20.3 fb^{-1})
2	3.5	4.9	5.2	5.4
4	3.0	5.4	5.6	5.8
6	2.5	5.7	5.9	6.0

Table 4.14: Model-dependent lower limits at the 95% confidence level on black hole mass threshold M_{th} for the CMS [9,10] and ATLAS (this study) 2012 data, for three different sets of extra dimension (n) and fundamental Planck scale (M_D), obtained from CHARBDIS2 non-rotating black hole simulations.

₁₇₄₈ Chapter 5

₁₇₄₉ Summary

₁₇₅₀ In this study, a search for microscopic black holes in multijet final states is
₁₇₅₁ conducted with the ATLAS 2012 data using 8 TeV centre of mass energy of
₁₇₅₂ pp collisions at the LHC. The data corresponds to an integrated luminosity
₁₇₅₃ of 20.3 fb^{-1} . The analysis is based on the QCD H_T shape invariance in
₁₇₅₄ jet multiplicity for multijet final states. Given that the microscopic black
₁₇₅₅ holes are expected to decay into the high (N, H_T) region, and dedicated
₁₇₅₆ ATLAS studies on dijet events [80–82] have not found any resonance or
₁₇₅₇ threshold enhancement, the dijet case is chosen as the reference multiplicity
₁₇₅₈ to estimate the QCD background. In particular, the $N = 2$ and $H_T >$
₁₇₅₉ 1.7 TeV region is considered as the control region. The shape invariance
₁₇₆₀ hypothesis allows the estimation of the QCD multijet background in the
₁₇₆₁ higher multiplicity states, i.e. $N > 2$, on the basis of function fitting for the
₁₇₆₂ dijet multiplicity, i.e. $N = 2$. In order to apply the normalisation region fit
₁₇₆₃ to the higher multiplicities, the $N > 2$ and $1.7 < H_T < 2.4$ TeV region is
₁₇₆₄ defined as the normalisation region. Finally, $N > 2$ and $H_T > 2.4$ TeV is
₁₇₆₅ taken as the signal region.

₁₇₆₆ The QCD multijet background is estimated from the data. However,
₁₇₆₇ corrections to the data-driven background estimate due to non-invariance in
₁₇₆₈ the H_T distributions using QCD MCs are applied. The effects due to non-
₁₇₆₉ invariance cause an overestimation of background in the high- H_T region.

1770 The data characteristics, kinematic variables, function fitting and
1771 the H_T shape invariance are studied for both the exclusive jet multiplici-
1772 ties $N = 2, 3, \dots, 7$ and the inclusive jet multiplicities $N \geq 2, 3, \dots, 7$. The
1773 exclusive jet multiplicities are useful to study in order to verify the anal-
1774 ysis strategy, but the inclusive jet multiplicities are chosen for the model-
1775 independent limits. Since microscopic black holes are expected to produce a
1776 range of jet multiplicities instead of decaying into a particular jet multiplicity
1777 it is more useful to use the inclusive multiplicities for the final results.
1778 Moreover, the analysis method works better for the inclusive multiplicity
1779 cases because the effects of jet migration due to selection thresholds from
1780 one multiplicity to another multiplicity state are minimized in the inclusive
1781 multijet analysis.

1782 In order to calculate model-independent limits, a counting exper-
1783 iment is performed for $H_T > H_T^{\min}$ as a function of H_T^{\min} values in the
1784 signal region. Therefore, uncertainties are also studied as a function of
1785 H_T^{\min} . The uncertainty due to the correction to non-invariance in the H_T
1786 distributions contributes as the major uncertainty in the limit calculations.
1787 The uncertainty arising due to corrections to non-invariance remains about
1788 5 - 25% in the $2.4 < H_T^{\min} < 3.5$ TeV region, about 25 - 40% in the
1789 $3.6 < H_T^{\min} < 4.5$ TeV region and about 35 - 50% in the $H_T^{\min} > 4.5$ TeV
1790 region for the jet multiplicities $N \geq 3, 4, \dots, 7$. The uncertainty gradu-
1791 ally increases as the statistics decrease with increasing H_T^{\min} . Beside the
1792 uncertainty due to corrections, the uncertainty due to the choice of the
1793 normalisation region and the uncertainties due to jet energy scale (JES)
1794 and the jet energy resolution (JER) are also calculated in this analysis.
1795 The uncertainty due to the choice of the signal region varies as 1 - 3%
1796 increasing with jet multiplicity. The JER uncertainties lies in the band of
1797 1 - 3%, whereas the JES uncertainty remains around 3 - 5%, depending on

1798 H_T^{\min} and the jet multiplicity. The jet energy uncertainties increase with
1799 decreasing statistics, i.e. increasing H_T^{\min} and jet multiplicity.

1800 The study is concluded by calculating exclusion limits at the 95% CL
1801 for the ATLAS 2012 data on the production of new physics and black holes.
1802 The model-independent exclusion limits on cross section times acceptance
1803 times efficiency as function of H_T^{\min} fall rapidly at low H_T^{\min} and are flat at
1804 high H_T^{\min} . The upper limit on the cross section times acceptance times effi-
1805 ciency is 0.29 fb to 0.14 fb for $N \geq 3$ to $N \geq 7$ for $H_T > 4.0$ TeV. Finally the
1806 limits on the model parameters are also calculated by using CHARYBDIS2
1807 black hole simulations. Both the model-independent and model-dependent
1808 limits have improved values as compared to the CMS results [9, 10].

Appendices

₁₈₁₀ Appendix A

₁₈₁₁ Other Contribution to the ATLAS
₁₈₁₂ Experiment

₁₈₁₃ Beside the main analysis shown in chapter 4, I have performed service work
₁₈₁₄ for one year to qualify as an author of the ATLAS collaboration. The three
₁₈₁₅ types of major tasks as part of my service work are listed as following:

- ₁₈₁₆ • Bad Calorimeter Regions in the ATLAS 2011 Data: In this study, the
₁₈₁₇ problematic regions of the calorimeters were studied in the ATLAS
₁₈₁₈ 2011 data. In 2011 data-taking, some of the calorimeter portions
₁₈₁₉ were electronically dead during certain data-runs. The study was
₁₈₂₀ concluded by suggesting a treatment to avoid the bad data from such
₁₈₂₁ problematic regions.
- ₁₈₂₂ • Jet Cleaning for the ATLAS 2012 Data: The process of filtering fake
₁₈₂₃ and badly measured jets is called jet cleaning. The fake jets may ap-
₁₈₂₄ pear because of the hardware problems, beam conditions and cosmic
₁₈₂₅ ray showers. The study was conducted in order to improve the 2011
₁₈₂₆ jet cleaning. The efficiency of different cleaning criteria was studied
₁₈₂₇ in 2012 ATLAS data and compared with the 2011 results.
- ₁₈₂₈ • Tile HotSpot in the ATLAS 2012 Data: In this study, some electronic
₁₈₂₉ noise bursts produced in few runs in a particular $\eta - \phi$ region of tile
₁₈₃₀ calorimeter were analyzed. The tile region for these infected runs is

1831 named as the HotSpot region.

1832 All the above studies have played a key role in deciding the official recom-
1833 mendations to deal with these issues, for all the physics groups working in
1834 the ATLAS collaboration.

1835 The ATLAS-Alberta group also plays an important role in providing
1836 the general services for the ATLAS experiment. As a part of this effort, I
1837 have also performed the following tasks:

- 1838 • ATLAS Control Room Shifts: These shifts are performed inside AT-
1839 LAS control room by monitoring the performance of different sub-
1840 detectors during data-taking. In these shifts, all the minor and major
1841 problems are put into an electronic records for the later use. All the
1842 major problems are immediately reported to the related experts, and
1843 a team of experts decides whether to continue or stop the ongoing
1844 data-run.
- 1845 • Data Quality Shifts: The quality of data is regularly checked after
1846 recording the data. The response of different sub-detectors is cross
1847 checked. In case of any problem, the data-runs are tagged with dif-
1848 ferent labels in order to take the problems into account for the later
1849 analyses.

₁₈₅₀ Appendix B

₁₈₅₁ Trigger Study

₁₈₅₂ In this appendix, further details of the EF_j170_a4tchad_lt700 trigger effi-
₁₈₅₃ ciency are presented. In this multijet analysis, the data events are analyzed
₁₈₅₄ in different jet multiplicity bins, therefore it is important to study the trig-
₁₈₅₅ ger efficiency as a function of jet multiplicity. The trigger efficiency as a
₁₈₅₆ function of H_T and jet multiplicity is shown in Figure B.1. The efficiency
₁₈₅₇ plateau with 40% error always remains true for $H_T > 0.9$ TeV.

₁₈₅₈ The trigger efficiency may also be affected by the pileup effects (de-
₁₈₅₉ scribed in appendix E). In order to investigate the pileup effects, the trigger
₁₈₆₀ efficiency is studied as a function of number of primary vertices (NPV), av-
₁₈₆₁ erage number of beam interactions (μ) and H_T . In both the cases, the
₁₈₆₂ trigger remains fully efficient for $H_T > 0.9$ TeV, as shown in Figure B.2.
₁₈₆₃ Since the H_T variable is constructed from the high- p_T (> 50 GeV) jets, the
₁₈₆₄ pileup effects on the trigger efficiency are suppressed. The trigger study
₁₈₆₅ is repeated with another reference EF_j145_a4tchad trigger, and all the re-
₁₈₆₆ sults stay the same. The EF_j110_a4tchad trigger is preferred as a reference
₁₈₆₇ because there may be a biasing from the threshold of the EF_j145_a4tchad
₁₈₆₈ trigger, which is very close to the threshold of the trigger used in this
₁₈₆₉ study. The trigger efficiency is also studied for PYTHIA8 and HERWIG++
₁₈₇₀ MC samples. The results are similar to those presented for the ATLAS
₁₈₇₁ 2012 data.

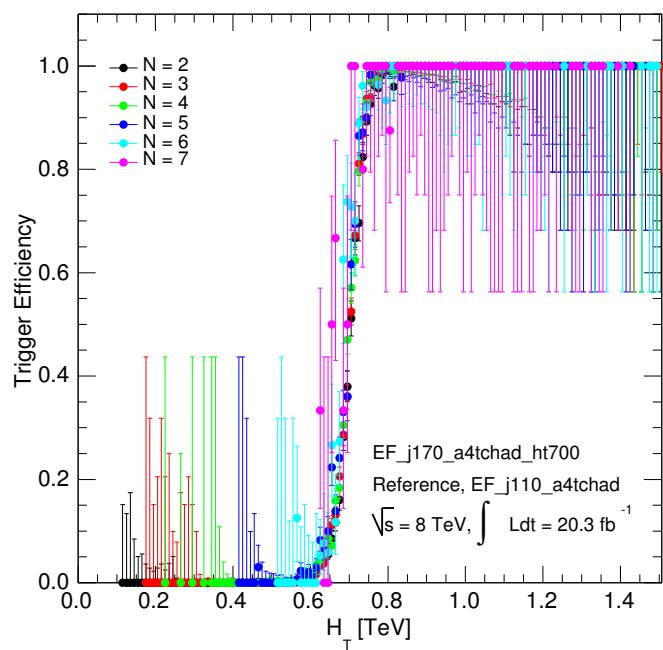


Figure B.1: The EF_j170_a4tchad_ht700 trigger efficiency as a function of H_T , for multiplicities $N = 2, 3, \dots, 7$, with respect to the reference trigger EF_j110_a4tchad.

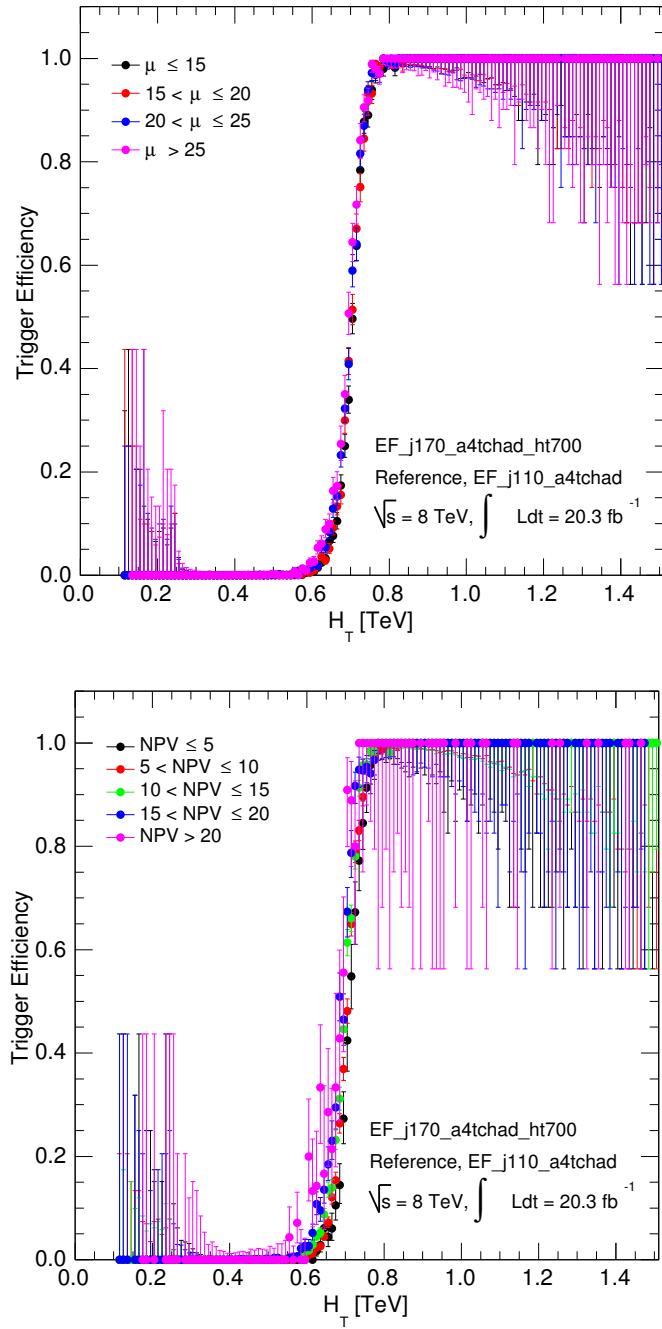


Figure B.2: The EF_j170_a4tchad_ht700 trigger efficiency as a function of H_T , for different μ (number of interactions per bunch crossing) and NPV (number of primary vertices) bins, with respect to the reference EF_j110_a4tchad trigger.

₁₈₇₂

Appendix C

₁₈₇₃

Event Selection

₁₈₇₄ In this appendix, the event selection criteria used in the analysis are de-
₁₈₇₅ scribed. The standard and analysis-based event cleaning are described in
₁₈₇₆ the first section. The sequential cut flow for the data and dijet MC events
₁₈₇₇ is shown in the second section.

₁₈₇₈

C.1 Event Cleaning

₁₈₇₉ The recommended event cleaning for all the physics analyses in the AT-
₁₈₈₀ LAS collaboration requires to have good quality data by removing bad and
₁₈₈₁ incomplete data events.

₁₈₈₂

C.1.1 Data Quality

₁₈₈₃ In order to remove bad data runs and bad lumi-blocks a standard good run
₁₈₈₄ list (GRL) is used, which is officially produced by the data quality team of
₁₈₈₅ the ATLAS collaboration. The GRL used in this study is

₁₈₈₆

- data12_8TeV.periodAllYear_DetStatus-v58-pro14-01_DQDefects-00-00-
₁₈₈₇ 33_PHYS_StandardGRL_All_Good.xml

₁₈₈₈ The above GRL corresponds to the ATLAS data with good data runs for
₁₈₈₉ the whole year of 2012 with the latest tags of detector status (DetStatus)
₁₈₉₀ and data quality defects (DQDefects). After applying the GRL filter to

1891 the data, some other standard cuts are applied to remove the bad and
1892 incomplete events.

1893 C.1.2 Bad and Corrupt Events

1894 The data events are vetoed by four types of criteria:

1895 • larError: The variable “larError” in D3PDs is used to point out dra-
1896 matic problems related to various detectors and particularly events
1897 with the noise bursts and data integrity errors in the LAr calorimeter.
1898 Such type of problematic events in the data can be removed by this
1899 flag.

1900 • tileError: Similar to above larError variable this variable removes
1901 tile corrupted events which may correspond to any type of noise or
1902 problem appeared in tile calorimeter.

1903 • coreFlags: In 2012 data-taking there may be some incomplete events
1904 where some detector information is missing from the event. This
1905 variable is used to remove all such events from our analysis.

1906 • Tile HotSpot: It is officially recommended to remove the HotSpot
1907 region (described in appendix A) from all the physics analyses.

1908 C.1.3 Vertex Requirement

1909 Events in the data are required to have a primary vertex with two or more
1910 than two associated tracks. The events with no primary vertex or vertices
1911 with less than two associated tracks may come from the pileup effects. The
1912 vertex requirement removes some portion of the pileup effects.

1913 C.1.4 Jet Quality

1914 Jet quality is required by removing events with bad and ugly jets with jet
1915 $p_T > 20$ GeV. The bad and ugly jets are described as following:

1916 • Bad jets: The “bad” jets correspond to fake energy depositions in the
1917 calorimeters which may arise from various sources, such as hardware
1918 problems, LHC beam conditions, and cosmic-ray showers. There are
1919 different variables to remove the bad jets and we use “isBadLooseMi-
1920 nus” variable to remove such fake jets appearing from calorimeter
1921 noises, non-collision and cosmic backgrounds. Since our trigger re-
1922 quires only high- p_T jets and therefore loose criteria of removing bad
1923 jets is enough for our analysis.

1924 • Ugly jets: The “ugly” jets correspond to real energy depositions in
1925 calorimeter regions but their energy measurement is not accurate be-
1926 cause of problematic (or dead) cells or the transition region between
1927 barrel and end-caps.

1928 Jet cleaning ensures to have good jets in this study.

1929 C.1.5 Analysis Requirements

1930 After applying standard cleaning cuts, further selection cuts based on the
1931 analysis are applied:

1932 • At least 2 jets: As this analysis is based on the assumption of the
1933 the H_T shape invariance for different jet multiplicities, a function
1934 is fitted on a baseline H_T distribution and applied to the shapes of
1935 higher jet multiplicities. In this study, the well studied QCD dijet
1936 events [80–82] are chosen as the baseline distribution, therefore, all
1937 the monojet events are filtered out.

1938 • $p_T > 50$ GeV: The jet p_T cut is applied to reject the event pileup
1939 effects. The pileup effects and the choice of the jet p_T are described
1940 in detail in appendix E.

Selection	ATLAS data 2012		PYTHIA8		HERWIG++	
	Events	Cumulative (%)	Events	Cumulative (%)	Events	Cumulative (%)
Trigger	33259733	100.00	18343546	100.00	6403931	100.00
GRL	32056724	96.38	18343546	100.00	6403931	100.00
larError	31936940	96.02	18343546	100.00	6403931	100.00
tileError	31936938	96.02	18343546	100.00	6403931	100.00
coreFlags	31936878	96.02	18343546	100.00	6403931	100.00
Vertex	31932861	96.01	18343545	100.00	6403931	100.00
Jet Quality ¹	31642401	95.14	18184117	99.13	6348673	99.14
At least 2 jets ²	31638794	95.13	18184117	99.13	6348673	94.14

Table C.1: Cut flow for the ATLAS data 2012, PYTHIA8 and HERWIG++ MCs. Number of events and cumulative percentages corresponding to the selection cuts, are shown for the data and MCs.

1941 • $|\eta| < 2.8$: This cut is based on the detector configuration in order to
 1942 avoid the forward detector regions where the measurements are com-
 1943 paratively difficult and dedicated studies are required for the forward
 1944 physics.

1945 C.2 CutFlow

1946 The event cleaning variables described in previous section are sequentially
 1947 applied to the data and the MC distributions. The event survival for the
 1948 ATLAS 2012 data, PYTHIA8 MC and HERWIG++ MC after applying each
 1949 cleaning cut is shown in Table C.1. The 2012 data-taking is performed in
 1950 the ten data periods, Table C.2 shows cut flow corresponding to each data
 1951 period.

¹ The removal of jets in the HotSpot region is also included in the jet quality criteria. Same definition is valid for the next table

² At least two jets with $p_T > 50$ GeV and $|\eta| < 2.8$. Same definition is valid for the next table.

Period	Trigger	GRL	larError	tileError	coreFlags	Vertex	JetQuality	At least 2 jets	$H_T > 0.9$ TeV
A	1324372	1236133	1233570	1233570	1233406	1222298	1222034	568192	
B	8175261	7953998	7914386	7914385	7913088	7841907	7840916	3573215	
C	2318068	2246480	2240777	2240776	2240562	2220833	2220568	995256	
D	5389454	5273567	5253150	5253150	5252754	5205995	5205572	2323204	
E	4262874	4083010	4069707	4069707	4069695	4069196	4031640	4031307	1791521
G	2072213	2029595	2025730	2025730	2025726	2025432	2006408	2006061	901100
H	2332681	2230169	2224149	2224149	2224149	2223898	2202918	2202426	1025997
I	1729785	1614597	1607303	1607303	1607303	1607073	1592397	1592261	719134
J	4246887	4062695	4046434	4046434	4046434	4045814	4008829	4008552	1833614
L	1408138	1326480	1321734	1321734	1321734	1321638	1309176	1309097	599834

Table C.2: The number of events survived corresponding to each selection criteria, for all the ATLAS 2012 data periods of pp collisions.

¹⁹⁵² Appendix D

¹⁹⁵³ Jet Kinematic Distributions

¹⁹⁵⁴ The jet ϕ , the first leading jet p_T and the second leading jet p_T distributions,
¹⁹⁵⁵ for the exclusive jet multiplicities i.e. $N = 2, 3, \dots, 7$, are shown in Figures
¹⁹⁵⁶ D.1, D.2 and D.3, respectively. The distributions are shown for the ATLAS
¹⁹⁵⁷ 2012 data, PYTHIA8 and HERWIG++ MCs. The distributions for both the
¹⁹⁵⁸ MCs show good compatibility with the data, and with each other.

¹⁹⁵⁹ From Figure D.1, the jet ϕ distributions for the data and MCs are in
¹⁹⁶⁰ agreement within 10% for the most of jet multiplicity cases. There are also
¹⁹⁶¹ some fluctuations around $\phi = 1.6$, especially in low jet multiplicities. These
¹⁹⁶² fluctuations are not reproduced by the MC distributions, which come from
¹⁹⁶³ known detector problems.

¹⁹⁶⁴ From Figures D.2 and D.3, the first and second leading jet p_T distri-
¹⁹⁶⁵ butions for the data and MCs have the reasonable shapes and good agree-
¹⁹⁶⁶ ment to each other. Most of distributions are within 20% agreement which
¹⁹⁶⁷ remains almost the same when all the jets ($p_T > 50$ GeV and $|\eta| < 2.8$) in
¹⁹⁶⁸ an event are used to construct the H_T distributions shown in Figures 4.5
¹⁹⁶⁹ and 4.6. Both the PYTHIA8 and HERWIG++ distributions show almost the
¹⁹⁷⁰ same shapes for the jet p_T distributions especially for the low multiplicities.

¹⁹⁷¹

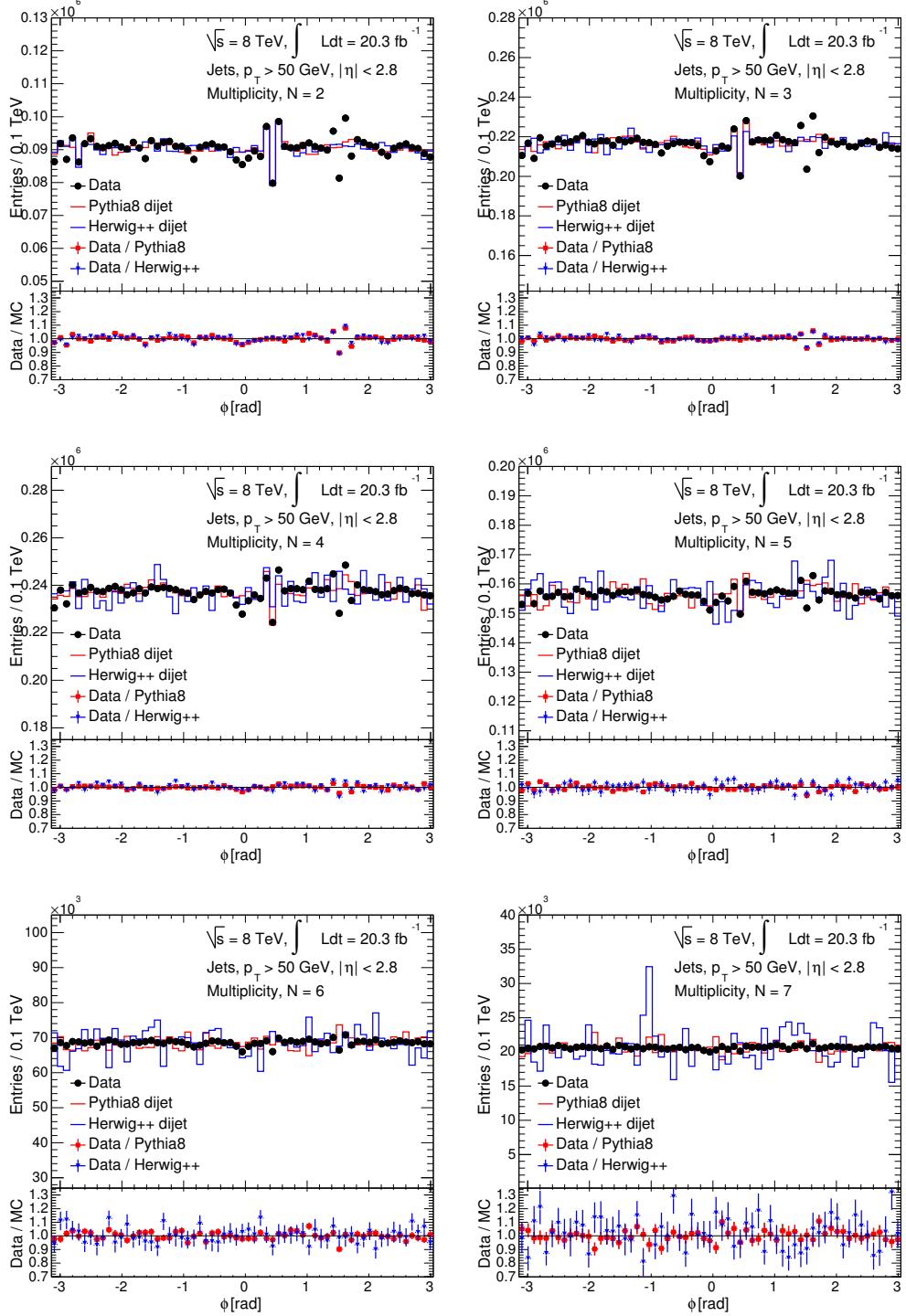


Figure D.1: The ϕ distributions of jets for the exclusive jet multiplicities, $N = 2, 3, \dots, 7$, shown for the ATLAS 2012 data, PYTHIA8 (red) and HERWIG++ (blue) MCs. At the bottom of each plot, the ratio of the data to MC has been shown for both the MCs.

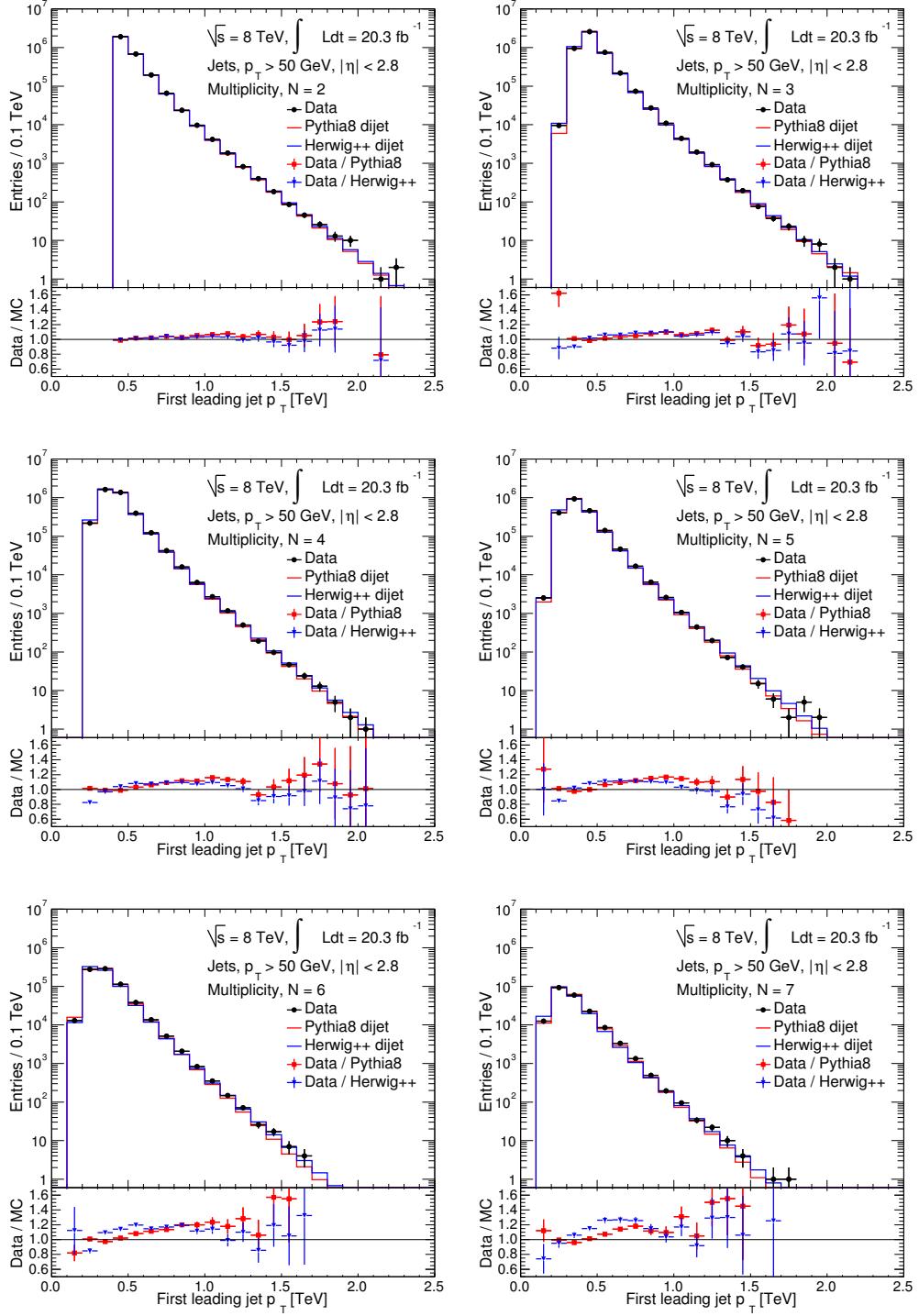


Figure D.2: The first leading jet p_T distributions for the exclusive jet multiplicities, $N = 2, 3, \dots, 7$, shown for the ATLAS 2012 data, PYTHIA8 (red) and HERWIG++ (blue) MCs. At the bottom of each plot, the ratio of the data to MC has been shown for both the MCs.

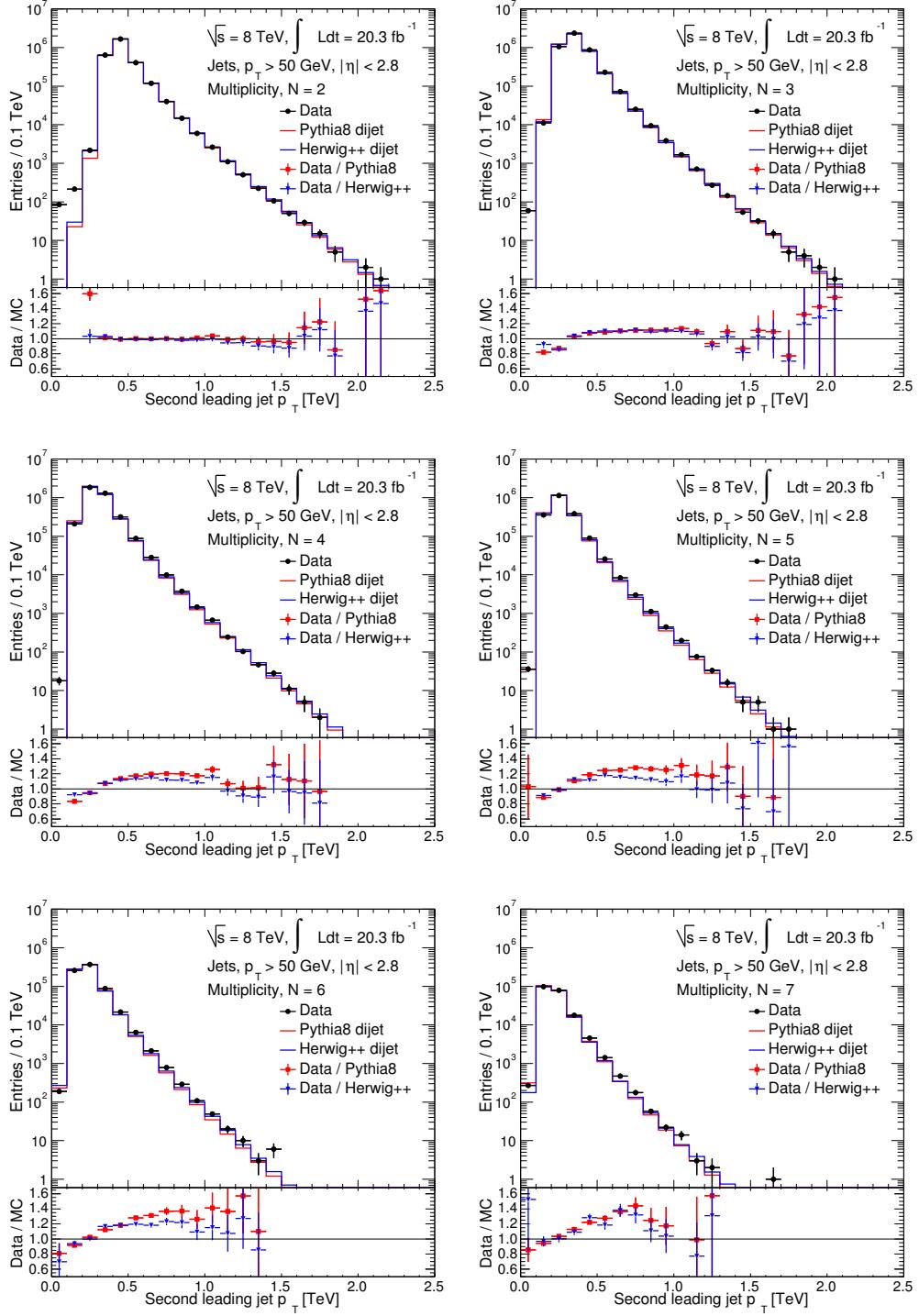


Figure D.3: The second leading jet p_T distributions for the exclusive jet multiplicities, $N = 2, 3, \dots, 7$, shown for the ATLAS 2012 data, PYTHIA8 (red) and HERWIG++ (blue) MCs. At the bottom of each plot, the ratio of the data to MC has been shown for both the MCs.

1972 Appendix E

1973 Pileup Study

1974 In pp collisions at the LHC, the proton beams are in the form of bunches.

1975 During a bunch crossing, there may be more than one pp interaction due to

1976 increased per-bunch luminosity, varying bunch configuration and reduced

1977 bunch spacing. All these additional interactions are often referred to as the

1978 pileup effects. Due to reduced bunch spacing and high luminosity in 2012

1979 as compared to pp collisions in years 2011 and 2010 at the LHC, the effects

1980 of event pileup on jets are significantly different.

1981 The average amount of pileup can be described by the number of
1982 reconstructed primary vertices in an event, i.e. NPV, and average number
1983 of interactions per bunch crossing, i.e. μ . In the next two subsections,
1984 the study of these two variables as a function of the jet p_T thresholds is
1985 presented, to find a suitable jet- p_T threshold to minimize the pileup effects.
1986 After selecting an appropriate jet- p_T threshold, the pileup effects are cross
1987 checked for the H_T distributions at the end of this appendix.

1988 E.0.1 Number of Primary Vertices (NPV)

1989 In this study, the events with at least one primary vertex with two or more
1990 tracks are chosen, with a very low inefficiency ($< 1\%$). An average jet
1991 multiplicity $\langle N \rangle$ in different bins of NPV is computed for different lower
1992 thresholds of the jet p_T . The five NPV bins are defined as

NPV	Average jet multiplicity $\langle N \rangle$ for different jet p_T cuts of					
	20 GeV	30 GeV	40 GeV	50 GeV	60 GeV	70 GeV
0-5	5.29	4.39	3.94	3.63	3.40	3.22
5-10	5.36	4.36	3.89	3.58	3.35	3.18
10-15	5.60	4.38	3.88	3.56	3.33	3.16
15-20	6.03	4.44	3.88	3.56	3.33	3.15
> 20	6.72	4.57	3.91	3.57	3.33	3.15

Table E.1: The five NPV (average number of interactions per bunch crossing) bins, $0 < \text{NPV} < 5$, $5 < \text{NPV} < 10$, $10 < \text{NPV} < 15$, $15 < \text{NPV} < 20$ and $\text{NPV} > 20$, corresponding to average jet multiplicity $\langle N \rangle$, are shown for jets with $p_T > 20, 30, \dots, 70$ GeV, for the ATLAS 2012 data.

₁₉₉₃ • $0 < \text{NPV} < 5$

₁₉₉₄ • $5 < \text{NPV} < 10$

₁₉₉₅ • $10 < \text{NPV} < 15$

₁₉₉₆ • $15 < \text{NPV} < 20$, and

₁₉₉₇ • $\text{NPV} > 20$.

₁₉₉₈ For these NPV-bins, the values of average multiplicity $\langle N \rangle$ are shown in
₁₉₉₉ Table E.1 for jet $p_T > 20, 30, \dots, 70$ GeV, which are also plotted in Fig-
₂₀₀₀ ure E.1. The pileup effects would be prominent if average jet multiplicity
₂₀₀₁ $\langle N \rangle$ increases with increase in NPV otherwise a constant trend in $\langle N \rangle$ cor-
₂₀₀₂ responds to the minimum pileup effects. From Figure E.1, the maximum
₂₀₀₃ pileup effects can be seen for the jets with $p_T > 20$ GeV case and these
₂₀₀₄ effects decrease with increasing jet p_T threshold. A tradeoff is set here by
₂₀₀₅ choosing a threshold of jet p_T to have minimal pileup effects and reason-
₂₀₀₆ able statistics. Therefore, the jets with $p_T > 50$ GeV are chosen where the
₂₀₀₇ pileup effects are minimized and statistics are reasonably high.

₂₀₀₈ Both in Table E.1 and Figure E.1, no errors are being shown on
₂₀₀₉ $\langle N \rangle$ because the error on mean multiplicity $\langle N \rangle_{\text{error}}$ is always very small as

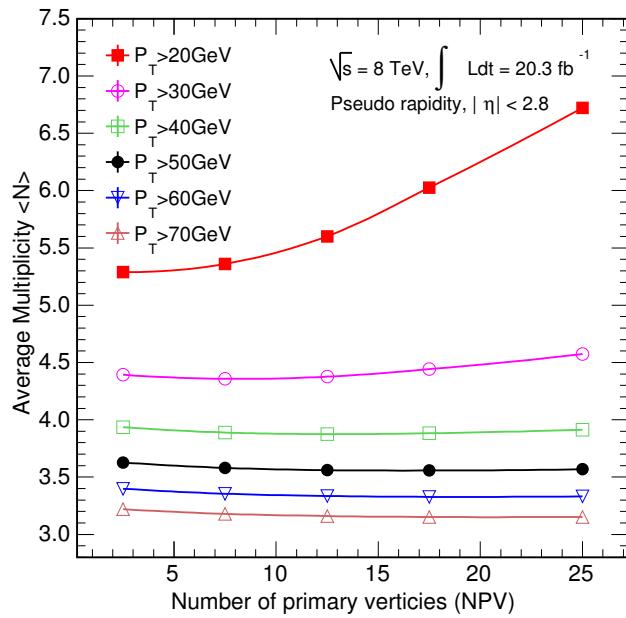


Figure E.1: Average jet multiplicity $\langle N \rangle$ as a function of number of primary vertices (NPV) and jet p_T thresholds, is shown for the ATLAS 2012 data. The five points in each p_T curve correspond to five NPV-bins, i.e. $0 < \text{NPV} < 5$, $5 < \text{NPV} < 10$, $10 < \text{NPV} < 15$, $15 < \text{NPV} < 20$ and $\text{NPV} > 20$.

2010 compared to $\langle N \rangle$ and can be ignored, as it is defined as

$$\langle N \rangle_{\text{error}} = \frac{1}{N_{\text{events}}} \sum_i \sqrt{(N_i - \langle N \rangle)^2} \simeq 10^{-4}, \quad (\text{E.1})$$

2011 where N_{events} are the total number of entries in a NPV-bin, $\langle N \rangle$ are the
2012 average number of jets or mean jet multiplicity in a NPV-bin and N_i are the
2013 total number of jets in an event i . The error on $\langle N \rangle_{\text{error}}$ remains very small
2014 for all the NPV-bins, typically of the order of 10^{-4} , and can be neglected.

2015 E.0.2 Average Interactions per Beam Crossing (μ)

2016 Similar to NPV study, an average jet multiplicity $\langle N \rangle$ is also computed in
2017 different μ -bins for different jet- p_T thresholds. The four μ -bins are defined
2018 so that each bin can have almost the same statistics. The μ -bins are

2019 • $0 < \mu < 15$

2020 • $15 < \mu < 20$

2021 • $20 < \mu < 25$, and

2022 • $\mu > 25$.

2023 The average jet multiplicity $\langle N \rangle$ as a function of jet p_T and μ -bins are
2024 shown in Table E.2 and Figure E.2. Again, the pileup effects are dominant
2025 for jet $p_T > 20$ GeV. The choice of $p_T > 50$ GeV looks reasonable in order
2026 to minimize the pileup effects¹.

2027 The errors for $\langle N \rangle$ are very small, typically of the order of 10^{-4} , and
2028 can be ignored.

2029 E.0.3 Choice of jet $p_T > 50$ GeV

2030 From the study of NPV and μ variables, the jet $p_T > 50$ GeV is chosen to
2031 minimize the pileup effects.

¹ As compared to $p_T > 20$ GeV, the choice of $p_T > 50$ GeV removes the low p_T jets,
i.e. $20 < p_T < 50$, which are more sensitive to the pileup effects.

μ	Average jet multiplicity $\langle N \rangle$ for different jet p_T cuts of					
	20 GeV	30 GeV	40 GeV	50 GeV	60 GeV	70 GeV
0-15	5.29	4.34	3.88	3.57	3.35	3.17
15-20	5.44	4.36	3.88	3.57	3.35	3.17
20-25	5.62	4.39	3.89	3.57	3.34	3.17
>25	5.88	4.43	3.90	3.57	3.34	3.17

Table E.2: The four μ (average number of interactions per bunch crossing) bins, $0 < \mu < 15$, $15 < \mu < 20$, $20 < \mu < 25$ and $\mu > 25$, corresponding to average jet multiplicity $\langle N \rangle$ values are shown for jet $p_T > 20$, 30 , ..., 70 GeV, for the ATLAS 2012 data.

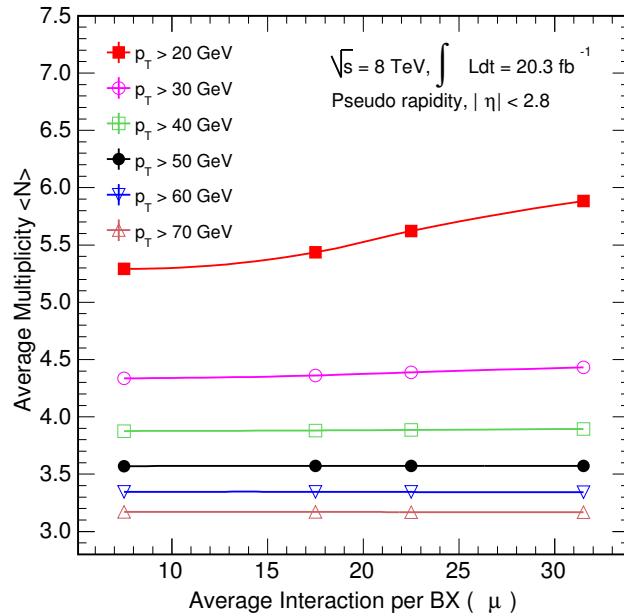


Figure E.2: Average jet multiplicity $\langle N \rangle$ as a function of average number of interactions per bunch crossing (BX), denoted as μ , and jet p_T is shown for ATLAS 2012 data. The four points in p_T curve correspond to four μ -bins, i.e. $0 < \mu < 15$, $15 < \mu < 20$, $20 < \mu < 25$ and $\mu > 25$.

2032 Jet vertex fraction (JVF) is another variable used to study pileup
2033 effects. The JVF estimates the fraction of tracks transverse momentum
2034 associated to a jet from the hard-scattering interaction, therefore it dis-
2035 crimulates the jets produced in the hard-scattering and those due to the
2036 pileup effects. The choice of jet $p_T > 50$ GeV eliminates the need of JVF
2037 cut because it is recommended for the low- p_T jets.

2038 In this section, the pileup effects for the H_T distributions are cross
2039 checked for the choice of $p_T > 50$ GeV. In earlier sections, different NPV and
2040 μ -bins are defined to investigate the pileup effects, the same bins are used
2041 to study the pileup effect in the H_T distributions. If the pileup effects in the
2042 H_T distributions are minimized then the H_T distribution in one NPV-bin
2043 should match to the H_T distribution in any other NPV-bin and similarly
2044 true for the μ -bins. The H_T ratios for four NPV-bins, $0 < \text{NPV} < 5$,
2045 $5 < \text{NPV} < 10$, $15 < \text{NPV} < 20$ and $\text{NPV} > 20$ are calculated with respect
2046 to a NPV-bin, $10 < \text{NPV} < 15$. For the jet $p_T > 50$ GeV, the flat trend of
2047 the H_T ratio as a function of NPV shows that the pileup effects are minimal
2048 (Figure E.3). The NPV-bin $15 < \text{NPV} < 20$ is the highest statistics bin
2049 and used as the reference. Any NPV-bin can be used as the reference but
2050 the choice of the highest statistics bin is more generic to investigate the
2051 flatness in the H_T ratios.

2052 Similarly, the H_T ratios of three μ -bins, $0 < \mu < 15$, $20 < \mu < 25$
2053 and $\mu > 25$ with respect to the H_T in $15 < \mu < 20$ are shown in Figure E.4.
2054 The H_T ratio for each μ -bin shows the flat trend. Therefore, the pileup
2055 effects are minimized for the H_T distributions constructed from the jets
2056 with $p_T > 50$ GeV.

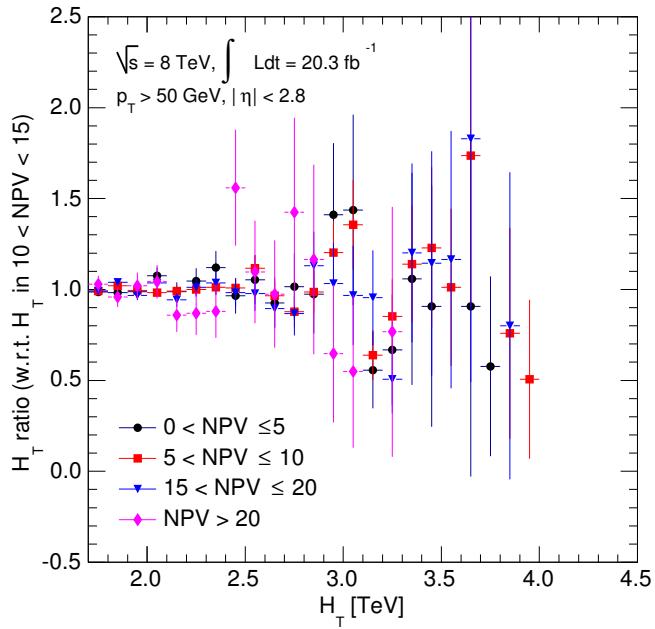


Figure E.3: The ratios of the H_T in NPV-bins, $0 < \text{NPV} < 5$, $5 < \text{NPV} < 10$, $15 < \text{NPV} < 20$ and $\text{NPV} > 20$ to the H_T in $10 < \text{NPV} < 15$, for the ATLAS 2012 data.

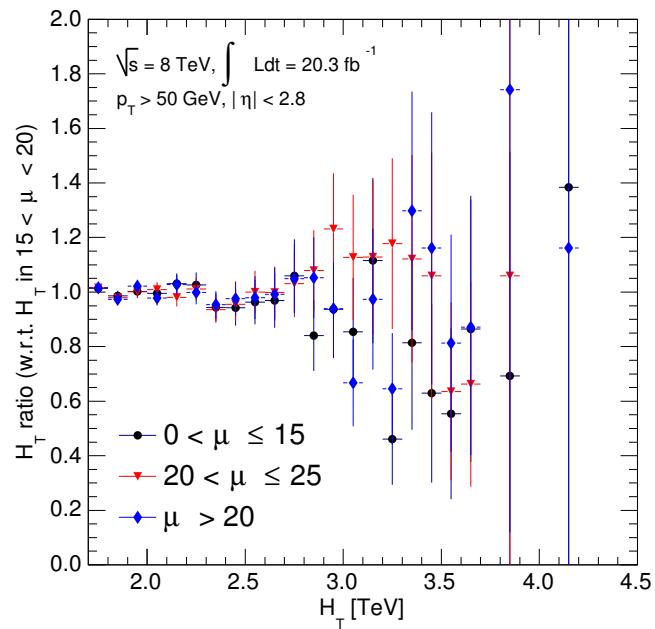


Figure E.4: The ratios of the H_T in μ -bins, $0 < \mu < 15$, $20 < \mu < 25$ and $\mu > 25$ to the H_T in $15 < \mu < 20$, for the ATLAS 2012 data.

2057

Bibliography

2058 [1] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “New
2059 dimensions at a millimeter to a fermi and superstrings at a TeV,”
2060 Physics Letters B 436 no. 3-4, (1998) 257–263,
2061 [arXiv:hep-ph/9804398](https://arxiv.org/abs/hep-ph/9804398) [hep-ph]. <http://www.sciencedirect.com/science/article/pii/S0370269398008600>.

2063 [2] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “The hierarchy
2064 problem and new dimensions at a millimeter,” Phys. Lett. B 429
2065 (1998) 263–272, [arXiv:hep-ph/9803315](https://arxiv.org/abs/hep-ph/9803315) [hep-ph]. <http://www.sciencedirect.com/science/article/pii/S0370269398004663>.

2067 [3] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “Phenomenology,
2068 astrophysics and cosmology of theories with submillimeter
2069 dimensions and TeV scale quantum gravity,” Phys. Rev. D 59 (1999)
2070 086004, [arXiv:hep-ph/9807344](https://arxiv.org/abs/hep-ph/9807344) [hep-ph].
2071 <http://prd.aps.org/abstract/PRD/v59/i8/e086004>.

2072 [4] L. Randall and R. Sundrum, “A large mass hierarchy from a small
2073 extra dimension,” Phys. Rev. Lett. 83 (1999) 3370–3373,
2074 [arXiv:hep-ph/9905221](https://arxiv.org/abs/hep-ph/9905221) [hep-ph].
2075 http://prl.aps.org/abstract/PRL/v83/i17/p3370_1.

2076 [5] L. Randall and R. Sundrum, “An alternative to compactification,”
2077 Phys. Rev. Lett. 83 (1999) 4690–4693, [arXiv:hep-th/9906064](https://arxiv.org/abs/hep-th/9906064)
2078 [hep-th]. http://prl.aps.org/abstract/PRL/v83/i23/p4690_1.

2079 [6] ATLAS Collaboration, “Improved luminosity determination in pp
2080 collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector at the LHC,”
2081 Eur. Phys. J. C 73 (2013) 2518, [arXiv:1302.4393](https://arxiv.org/abs/1302.4393) [hep-ex].
2082 <http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-013-2518-3>.

2084 [7] CMS Collaboration, “Search for microscopic black hole signatures at
 2085 the Large Hadron Collider,” Phys. Lett. B 697 (2011) 434–453,
 2086 arXiv:1012.3375 [hep-ex]. <http://www.sciencedirect.com/science/article/pii/S0370269311001778>.

2088 [8] CMS Collaboration, “Search for microscopic black holes in pp
 2089 collisions at $\sqrt{s} = 7$ TeV,” J. High Energy Phys. 1204 (2012) 061,
 2090 arXiv:1202.6396 [hep-ex]. <http://link.springer.com/article/10.1007%2FJHEP04%282012%29061>.

2092 [9] CMS Collaboration, “Search for microscopic black holes in pp
 2093 collisions at $\sqrt{s} = 8$ TeV with the CMS detector,” CMS PAS
 2094 EXO-12-009 (2012) . <https://cds.cern.ch/record/1460444>.

2095 [10] CMS Collaboration, “Search for microscopic black holes in pp
 2096 collisions at $\sqrt{s} = 8$ TeV,” J. High Energy Phys. 1307 (2013) 178,
 2097 arXiv:1303.5338 [hep-ex]. <http://link.springer.com/article/10.1007%2FJHEP07%282013%29178>.

2099 [11] A. Quadt, “Top quark physics at hadron colliders,” Eur. Phys. J. C
 2100 48 (2006) 835–1000. <http://link.springer.com/article/10.1140%2Fepjc%2Fsc2006-02631-6>.

2102 [12] G. Altarelli, “The standard model of particle physics,”
 2103 arXiv:hep-ph/0510281 [hep-ph].

2104 [13] E. Radermacher, “The experimental discovery of the intermediate
 2105 vector bosons W^+ , W^- and Z^0 at the CERN $p\bar{p}$ collider,” Prog.
 2106 Part. Nucl. Phys. 14 (1985) 231–328. <http://www.sciencedirect.com/science/article/pii/0146641085900559>.

2108 [14] ATLAS Collaboration, “Observation of a new particle in the search
 2109 for the standard model Higgs boson with the ATLAS detector at the
 2110 LHC,” Phys. Lett. B 716 (2012) 1 – 29, arXiv:1207.7214
 2111 [hep-ex]. <http://www.sciencedirect.com/science/article/pii/S037026931200857X>.

2113 [15] CMS Collaboration, “Observation of a new boson at a mass of 125
 2114 GeV with the CMS experiment at the LHC,” Phys. Lett. B716 no. 1,
 2115 (2012) 30 – 61, arXiv:1207.7235 [hep-ex]. <http://www.sciencedirect.com/science/article/pii/S0370269312008581>.

2117 [16] Particle Data Group, “Review of particle physics (RPP),” Phys. Rev.
 2118 D 86 (Jul, 2012) 010001.
 2119 <http://prd.aps.org/abstract/PRD/v86/i1/e010001>.

2120 [17] OPERA Collaboration, “Observation of a first candidate event in the
 2121 OPERA experiment in the CNGS beam,” Phys. Lett. B 691 no. 3,
 2122 (2010) 138 – 145, [arXiv:1006.1623 \[hep-ex\]](https://arxiv.org/abs/1006.1623). <http://www.sciencedirect.com/science/article/pii/S0370269310007537>.

2124 [18] I. Antoniadis, “A possible new dimension at a few TeV,” Phys. Lett.
 2125 B 246 (1990) 377–384. <http://www.sciencedirect.com/science/article/pii/037026939090617F>.

2127 [19] P. Horava and E. Witten, “Eleven-dimensional supergravity on a
 2128 manifold with boundary,” Nucl.Phys. B475 (1996) 94–114,
 2129 [arXiv:hep-th/9603142 \[hep-th\]](https://arxiv.org/abs/hep-th/9603142). <http://www.sciencedirect.com/science/article/pii/0550321396003082>.

2131 [20] P. Horava and E. Witten, “Heterotic and Type I string dynamics
 2132 from eleven-dimensions,” Nucl. Phys. B 460 (1996) 506–524,
 2133 [arXiv:hep-th/9510209 \[hep-th\]](https://arxiv.org/abs/hep-th/9510209). <http://www.sciencedirect.com/science/article/pii/0550321395006214>.

2135 [21] J. D. Lykken, “Weak scale superstrings,” Phys. Rev. D 54 (1996)
 2136 3693–3697, [arXiv:hep-th/9603133 \[hep-th\]](https://arxiv.org/abs/hep-th/9603133).
 2137 http://prd.aps.org/abstract/PRD/v54/i6/pR3693_1.

2138 [22] D. Kapner, T. Cook, E. Adelberger, J. Gundlach, B. R. Heckel,
 2139 et al., “Tests of the gravitational inverse-square law below the
 2140 dark-energy length scale,” Phys. Rev. Lett. 98 (2007) 021101,
 2141 [arXiv:hep-ph/0611184 \[hep-ph\]](https://arxiv.org/abs/hep-ph/0611184).
 2142 <http://prl.aps.org/abstract/PRL/v98/i2/e021101>.

2143 [23] S. Hawking, “Particle creation by black holes,” Commun. Math.
 2144 Phys. 43 (1975) 199–220.
 2145 <http://link.springer.com/article/10.1007%2FBF02345020>.

2146 [24] K. S. Thorne, “Nonspherical gravitational collapse—a short review,”
 2147 Magic Without Magic: John Archibald Wheeler 1 (1972) 231.

2148 [25] R. Myers and M. Perry, “Black holes in higher dimensional
 2149 space-times,” Annals of Physics 172 no. 2, (1986) 304 – 347.

2150 http://www.sciencedirect.com/science/article/pii/
2151 0003491686901867.

[26] S. Giddings and S. Thomas, “High energy colliders as black hole factories: The end of short distance physics,” Phys. Rev. D 65 (2002) 056010, [arXiv:hep-ph/0106219 \[hep-ph\]](https://arxiv.org/abs/hep-ph/0106219).
<http://prd.aps.org/abstract/PRD/v65/i5/e056010>.

[27] P. Aichelburg and R. Sexl, “On the gravitational field of a massless particle,” Gen. Rel. Grav. 2 (1971) 303–312.
<http://link.springer.com/article/10.1007%2FBF00758149>.

[28] S. W. Hawking, Hawking on the Big Bang and Black Holes. World Scientific Publishing Company, 1993.
<http://www.worldscientific.com/worldscibooks/10.1142/1751>.

[29] R. Penrose, “Unpublished,” 1974.

[30] P. D. D'Eath and P. N. Payne, “Gravitational radiation in black-hole collisions at the speed of light. I. Perturbation treatment of the axisymmetric collision,” Phys. Rev. D 46 (Jul, 1992) 658–674.
<http://link.aps.org/doi/10.1103/PhysRevD.46.658>.

[31] P. D. D'Eath and P. N. Payne, “Gravitational radiation in black-hole collisions at the speed of light. II. Reduction to two independent variables and calculation of the second-order news function,” Phys. Rev. D 46 no. 2, (1992) 675–693.
<http://link.aps.org/doi/10.1103/PhysRevD.46.675>.

[32] D. M. Eardley and S. B. Giddings, “Classical black hole production in high-energy collisions,” Phys. Rev. D 66 (2002) 044011, [arXiv:gr-qc/0201034 \[gr-qc\]](https://arxiv.org/abs/gr-qc/0201034).
<http://prd.aps.org/abstract/PRD/v66/i4/e044011>.

[33] S. Dimopoulos and G. L. Landsberg, “Black holes at the Large Hadron Collider,” Phys. Rev. Lett. 87 (2001) 161602, [arXiv:hep-ph/0106295 \[hep-ph\]](https://arxiv.org/abs/hep-ph/0106295).
<http://prl.aps.org/abstract/PRL/v87/i16/e161602>.

[34] D. Ida, K. Oda, and S. C. Park, “Rotating black holes at future colliders. II. Anisotropic scalar field emission,” Phys. Rev. D 71 (2005) 124039, [arXiv:hep-th/0503052 \[hep-th\]](https://arxiv.org/abs/hep-th/0503052).
<http://prd.aps.org/abstract/PRD/v71/i12/e124039>.

2184 [35] H. Yoshino and Y. Nambu, “Black hole formation in the grazing
 2185 collision of high-energy particles,” Phys. Rev. D 67 (2003) 024009,
 2186 arXiv:gr-qc/0209003 [gr-qc].
 2187 <http://inspirehep.net/record/974903>.

2188 [36] H. Yoshino and V. S. Rychkov, “Improved analysis of black hole
 2189 formation in high-energy particle collisions,” Phys. Rev. D 71 (2005)
 2190 104028, arXiv:hep-th/0503171 [hep-th].
 2191 <http://prd.aps.org/abstract/PRD/v77/i8/e089905>.

2192 [37] Douglas M. Gingrich, “Black hole cross-section at the LHC,” Int. J.
 2193 Mod. Phys. A 21 (2006) 6653–6676, arXiv:hep-ph/0609055
 2194 [hep-ph]. <http://www.worldscientific.com/doi/abs/10.1142/S0217751X06035087>.

2196 [38] Douglas M. Gingrich, “Experimental limits on the fundamental
 2197 Planck scale in large extra dimensions,” arXiv:1210.5923
 2198 [hep-ex].

2199 [39] P. C. Argyres, S. Dimopoulos, and J. March-Russell, “Black holes
 2200 and submillimeter dimensions,” Phys. Lett. B 441 (1998) 96–104,
 2201 arXiv:hep-th/9808138 [hep-th]. <http://www.sciencedirect.com/science/article/pii/S0370269398011848>.

2203 [40] P. Kanti, “Black holes at the Large Hadron Collider,” Lect. Notes
 2204 Phys. 769 (2009) 387–423, arXiv:0802.2218 [hep-th]. http://link.springer.com/chapter/10.1007%2F978-3-540-88460-6_10.

2206 [41] P. Kanti and J. March-Russell, “Calculable corrections to brane
 2207 black hole decay: The scalar case,” Phys. Rev. D 66 (2002) 024023,
 2208 arXiv:hep-ph/0203223 [hep-ph].
 2209 <http://prd.aps.org/abstract/PRD/v66/i2/e024023>.

2210 [42] P. Kanti and J. March-Russell, “Calculable corrections to brane
 2211 black hole decay. II. Greybody factors for spin 1/2 and 1,” Phys.
 2212 Rev. D 67 (2003) 104019, arXiv:hep-ph/0212199 [hep-ph].
 2213 <http://prd.aps.org/abstract/PRD/v67/i10/e104019>.

2214 [43] E. Newman and R. Penrose, “An approach to gravitational radiation
 2215 by a method of spin coefficients,” J. Math. Phys. 3 no. 3, (1962)
 2216 566–578. http://jmp.aip.org/resource/1/jmapaq/v3/i3/p566_s1?isAuthorized=no.

2218 [44] Douglas M. Gingrich, “Missing energy in black hole production and
 2219 decay at the Large Hadron Collider,” J. High Energy Phys. 0711
 2220 (2007) 064, [arXiv:0706.0623 \[hep-ph\]](https://arxiv.org/abs/0706.0623).
 2221 <http://iopscience.iop.org/1126-6708/2007/11/064/>.

2222 [45] S. S. Gubser, I. R. Klebanov, and A. A. Tseytlin, “String theory and
 2223 classical absorption by three-branes,” Nucl. Phys. B 499 (1997)
 2224 217–240, [arXiv:hep-th/9703040 \[hep-th\]](https://arxiv.org/abs/hep-th/9703040). <http://www.sciencedirect.com/science/article/pii/S0550321397003258>.

2226 [46] P. Kanti, “Black holes in theories with large extra dimensions: A
 2227 review,” Int. J. Mod. Phys. A 19 (2004) 4899–4951,
 2228 [arXiv:hep-ph/0402168 \[hep-ph\]](https://arxiv.org/abs/hep-ph/0402168). <http://www.worldscientific.com/doi/abs/10.1142/S0217751X04018324>.

2230 [47] C. M. Harris and P. Kanti, “Hawking radiation from a
 2231 (4+n)-dimensional black hole: Exact results for the Schwarzschild
 2232 phase,” J. High Energy Phys. 0310 (2003) 014,
 2233 [arXiv:hep-ph/0309054 \[hep-ph\]](https://arxiv.org/abs/hep-ph/0309054).
 2234 <http://iopscience.iop.org/1126-6708/2003/10/014/>.

2235 [48] V. Cardoso, M. Cavaglia, and L. Gualtieri, “Black hole particle
 2236 emission in higher-dimensional spacetimes,” Phys. Rev. Lett. 96
 2237 (2006) 071301, [arXiv:hep-th/0512002 \[hep-th\]](https://arxiv.org/abs/hep-th/0512002).
 2238 <http://link.aps.org/doi/10.1103/PhysRevLett.96.071301>.

2239 [49] V. Cardoso, M. Cavaglia, and L. Gualtieri, “Erratum: Black hole
 2240 particle emission in higher-dimensional spacetimes,” Phys. Rev. Lett. 96
 2241 no. 21, (2006) 219902.
 2242 <http://prl.aps.org/abstract/PRL/v96/i21/e219902>.

2243 [50] V. Cardoso, M. Cavaglia, and L. Gualtieri, “Hawking emission of
 2244 gravitons in higher dimensions: Non-rotating black holes,” J. High
 2245 Energy Phys. 0602 (2006) 021, [arXiv:hep-th/0512116 \[hep-th\]](https://arxiv.org/abs/hep-th/0512116).
 2246 <http://iopscience.iop.org/1126-6708/2006/02/021/>.

2247 [51] B. Koch, M. Bleicher, and S. Hossenfelder, “Black hole remnants at
 2248 the LHC,” J. High Energy Phys. 0510 (2005) 053,
 2249 [arXiv:hep-ph/0507138 \[hep-ph\]](https://arxiv.org/abs/hep-ph/0507138).
 2250 <http://iopscience.iop.org/1126-6708/2005/10/053/>.

2251 [52] T. J. Humanic, B. Koch, and H. Stoecker, “Signatures for black hole
 2252 production from hadronic observables at the Large Hadron Collider,”
 2253 Int. J. Mod. Phys. E 16 (2007) 841–852, [arXiv:hep-ph/0607097](https://arxiv.org/abs/hep-ph/0607097)
 2254 [hep-ph]. <http://www.worldscientific.com/doi/abs/10.1142/S0218301307006320>.

2256 [53] B. Koch, M. Bleicher, and H. Stoecker, “Black holes at LHC?,” J.
 2257 Phys. G 34 (2007) S535–542, [arXiv:hep-ph/0702187](https://arxiv.org/abs/hep-ph/0702187) [hep-ph].
 2258 <http://iopscience.iop.org/0954-3899/34/8/S44/>.

2259 [54] C. Harris, P. Richardson, and B. Webber, “CHARYBDIS: A black
 2260 hole event generator,” J. High Energy Phys. 0308 (2003) 033,
 2261 [arXiv:hep-ph/0307305](https://arxiv.org/abs/hep-ph/0307305) [hep-ph].
 2262 <http://iopscience.iop.org/1126-6708/2003/08/033/>.

2263 [55] M. Cavaglia, R. Godang, L. Cremaldi, and D. Summers, “Catfish: A
 2264 Monte Carlo simulator for black holes at the LHC,” Comput. Phys.
 2265 Commun. 177 (2007) 506–517, [arXiv:hep-ph/0609001](https://arxiv.org/abs/hep-ph/0609001) [hep-ph].
 2266 <http://www.sciencedirect.com/science/article/pii/S0010465507002524>.

2268 [56] D. C. Dai, G. Starkman, D. Stojkovic, C. Issever, E. Rizvi, et al.,
 2269 “BlackMax: A black-hole event generator with rotation, recoil, split
 2270 branes, and brane tension,” Phys. Rev. D 77 (2008) 076007,
 2271 [arXiv:0711.3012](https://arxiv.org/abs/0711.3012) [hep-ph].
 2272 <http://prd.aps.org/abstract/PRD/v77/i7/e076007>.

2273 [57] Douglas M. Gingrich, “Monte Carlo event generator for black hole
 2274 production and decay in proton-proton collisions – QBH version
 2275 1.02,” Comput. Phys. Commun. 181 (2010) 1917–1924,
 2276 [arXiv:0911.5370](https://arxiv.org/abs/0911.5370) [hep-ph]. <http://www.sciencedirect.com/science/article/pii/S0010465510002602>.

2278 [58] T. Sjostrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics
 2279 and Manual,” J. High Energy Phys. 0605 (2006) 026,
 2280 [arXiv:hep-ph/0603175](https://arxiv.org/abs/hep-ph/0603175) [hep-ph].
 2281 <http://iopscience.iop.org/1126-6708/2006/05/026/>.

2282 [59] G. Corcella, I. Knowles, G. Marchesini, S. Moretti, K. Odagiri, et al.,
 2283 “HERWIG 6: An event generator for hadron emission reactions with
 2284 interfering gluons (including supersymmetric processes),” J. High

2285 Energy Phys. 0101 (2001) 010, arXiv:hep-ph/0011363 [hep-ph].
 2286 <http://iopscience.iop.org/1126-6708/2001/01/010/>.

2287 [60] ATLAS Twiki Pages. <https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults>.

2289 [61] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large
 2290 Hadron Collider,” Journal of Instrumentation 3 (2008) S08003.
 2291 <http://iopscience.iop.org/1748-0221/3/08/S08003/>.

2292 [62] J. L. Caron, “ATLAS detector in A4 format with English captions.
 2293 Détecteur ATLAS format A4 avec légende et caractéristiques en
 2294 anglais.,” March, 1998. <http://cds.cern.ch/record/841458/>.

2295 [63] ATLAS Collaboration, “The trigger chambers of the ATLAS muon
 2296 spectrometer: Production and tests,” Nucl. Instrum. Meth. A 535
 2297 (2004) 265–271. <http://www.sciencedirect.com/science/article/pii/S0168900204016511>.

2299 [64] ATLAS Collaboration, “Luminosity determination in pp collisions at
 2300 $\sqrt{s} = 7$ TeV using the ATLAS detector at the LHC,” Eur. Phys. J. C
 2301 71 (2011) 1630, arXiv:1101.2185 [hep-ex]. <http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-011-1630-5>.

2303 [65] van der Meer, S., “Calibration of the Effective Beam Height in the
 2304 ISR,” CERN-ISR-PO-68-31 (1968) .
 2305 <http://cds.cern.ch/record/296752?ln=en>.

2306 [66] S. Dimopoulos and G. L. Landsberg, “Black Holes at the Large
 2307 Hadron Collider,” Phys. Rev. Lett. 87 (2001) 161602,
 2308 arXiv:hep-ph/0106295 [hep-ph].
 2309 <http://link.aps.org/doi/10.1103/PhysRevLett.87.161602>.

2310 [67] ATLAS Collaboration, “Search for microscopic black holes in
 2311 multijet final states with the ATLAS detector at $\sqrt{s} = 7$ TeV.”.
 2312 <http://inspirehep.net/record/1204114>.

2313 [68] T. Sjostrand, S. Mrenna, and P. Z. Skands, “A brief introduction to
 2314 PYTHIA 8.1,” Comput. Phys. Commun. 178 (2008) 852–867,
 2315 arXiv:0710.3820 [hep-ph]. <http://www.sciencedirect.com/science/article/pii/S0010465508000441>.

2317 [69] M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton, et al.,
 2318 “Herwig++ physics and manual,” Eur. Phys. J. C 58 (2008) 639–707,
 2319 arXiv:0803.0883 [hep-ph]. <http://link.springer.com/article/10.1140/epjc/s10052-008-0798-9>.
 2320

2321 [70] ATLAS Collaboration, “The ATLAS simulation infrastructure,” Eur.
 2322 Phys. J. C 70 (2010) 823–874, arXiv:1005.4568
 2323 [physics.ins-det]. <http://cds.cern.ch/record/1267853?ln=en>.
 2324

2325 [71] GEANT4 Collaboration, “Geant4 – a simulation toolkit,” Nucl.
 2326 Instrum. Methods Phys. Res. Sect. A 506 (2003) 250 – 303.
 2327 <http://www.sciencedirect.com/science/article/pii/S0168900203013688>.
 2328

2329 [72] ATLAS Collaboration, “Summary of ATLAS Pythia 8 tunes,”
 2330 ATL-PHYS-PUB-2012-003, ATL-COM-PHYS-2012-738 (2012) .
 2331 <http://cds.cern.ch/record/1474107?ln=en>.
 2332

2333 [73] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin,
 2334 and C.-P. Yuan, “New parton distributions for collider physics,”
 2335 Phys. Rev. D 82 (Oct, 2010) 074024, arXiv:arXiv:1007.2241
 2336 [hep-ph].
 2337 <http://link.aps.org/doi/10.1103/PhysRevD.82.074024>.
 2338

2339 [74] S. Gieseke, C. Rohr, and A. Siódmiok, “Colour reconnections in
 2340 Herwig++,” Eur. Phys. J. C 72 (2012) 2225, arXiv:1206.0041
 2341 [hep-ph]. <http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-012-2225-5>.
 2342

2343 [75] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and
 2344 W.-K. Tung, “New generation of parton distributions with
 2345 uncertainties from global QCD analysis,” J. High Energy Phys. 2002
 2346 (2002) 012, arXiv:hep-ph/0201195 [hep-ph].
 2347 <http://iopscience.iop.org/1126-6708/2002/07/012>.
 2348

2349 [76] W. Lampl, P. Loch, S. Menke, S. Rajagopalan, S. Laplace, G. Unal,
 2350 H. Ma, S. Snyder, D. Lelas, and D. Rousseau, “Calorimeter
 2351 clustering algorithms: Description and performance,”
 2352 ATL-LARG-PUB-2008-002 (2008) .
 2353 <http://cds.cern.ch/record/1099735>.
 2354

2350 [77] M. Cacciari, G. P. Salam, and G. Soyez, “The anti- k_t jet clustering
 2351 algorithm,” J. High Energy Phys. 0804 (2008) 063, [arXiv:0802.1189](https://arxiv.org/abs/0802.1189)
 2352 [hep-ph]. <http://iopscience.iop.org/1126-6708/2008/04/063/>.

2353 [78] ATLAS Collaboration, “Jet mass and substructure of inclusive jets in
 2354 $\sqrt{s} = 7$ TeV pp collisions with the ATLAS experiment,” J. High
 2355 Energy Phys. 1205 (2012) 128, [arXiv:1203.4606](https://arxiv.org/abs/1203.4606) [hep-ex].
 2356 [http://link.springer.com/article/10.1007/JHEP05\(2012\)128](http://link.springer.com/article/10.1007/JHEP05(2012)128).

2357 [79] ATLAS Collaboration, “Jet energy measurement with the ATLAS
 2358 detector in proton-proton collisions at $\sqrt{s} = 7$ TeV,” Eur. Phys. J. C
 2359 73 (2013) 2304, [arXiv:1112.6426](https://arxiv.org/abs/1112.6426) [hep-ex]. <http://link.springer.com/article/10.1140/epjc/s10052-013-2304-2>.

2361 [80] ATLAS Collaboration, “A search for new physics in dijet mass and
 2362 angular distributions in pp collisions at $\sqrt{s} = 7$ TeV measured with
 2363 the ATLAS detector,” New J. Phys. 13 (2011) 053044,
 2364 [arXiv:1103.3864](https://arxiv.org/abs/1103.3864) [hep-ex].
 2365 <http://iopscience.iop.org/1367-2630/13/5/053044/>.

2366 [81] ATLAS Collaboration, “Search for new physics in dijet mass and
 2367 angular distributions using 4.8 fb^{-1} of pp collisions at $\sqrt{s} = 7$ TeV
 2368 collected by the ATLAS detector,” ATLAS-CONF-2012-038 (2011) .
 2369 <http://cds.cern.ch/record/1432206>.

2370 [82] ATLAS Collaboration, “Search for new phenomena in the dijet mass
 2371 distribution using 5.8 fb^{-1} of pp collisions at $\sqrt{s} = 8$ TeV collected
 2372 by the ATLAS detector,” ATLAS-CONF-2012-088 (2012) .
 2373 <http://cds.cern.ch/record/1460400>.

2374 [83] CDF Collaboration, “Search for new particles decaying into dijets in
 2375 proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV,” Phys. Rev. D 79
 2376 (2009) 112002, [arXiv:0812.4036](https://arxiv.org/abs/0812.4036) [hep-ex].
 2377 <http://prd.aps.org/abstract/PRD/v79/i11/e112002>.

2378 [84] CMS Collaboration, “Search for dijet resonances in 7 TeV pp
 2379 collisions at CMS,” Phys. Rev. Lett. 105 (2010) 211801,
 2380 [arXiv:1010.0203](https://arxiv.org/abs/1010.0203) [hep-ex].
 2381 <http://prl.aps.org/abstract/PRL/v105/i21/e211801>.

2382 [85] ATLAS Collaboration, “Jet energy resolution in proton-proton
 2383 collisions at $\sqrt{s} = 7$ TeV recorded in 2010 with the ATLAS

2384 detector,” Eur. Phys. J. C 73 (2013) 2306, arXiv:1210.6210
2385 [hep-ex]. <http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-013-2306-0>.

2387 [86] ATLAS Collaboration, “Jet energy measurement with the ATLAS
2388 detector in proton-proton collisions at $\sqrt{s} = 7$ TeV,” Eur. Phys. J. C
2389 73 (2013) 2304, arXiv:1112.6426 [hep-ex]. <http://link.springer.com/article/10.1140/epjc/s10052-013-2304-2>.

2391 [87] ATLAS Collaboration, “Expected performance of the ATLAS
2392 experiment - detector, trigger and physics,” arXiv:0901.0512
2393 [hep-ex]. <http://cds.cern.ch/record/1125884?ln=en>.

2394 [88] A. L. Read, “Presentation of search results: The CL(s) technique,”
2395 J.Phys. G28 (2002) 2693–2704.
2396 <http://iopscience.iop.org/0954-3899/28/10/313/>.

2397 [89] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic
2398 formulae for likelihood-based tests of new physics,” Eur. Phys. J. C
2399 71 (2011) 1554, arXiv:1007.1727 [physics.data-an].
2400 <http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-011-1554-0>.