
PHYS 530: Problem Set 4 Due: 4:30 pm, 26 February 2013

If the answer is shown, all the marks will be given for the derivation not for writing down
the answer. In your solutions, you may need to make some assumptions. Make sure that
you formulate all of them clearly.

1. [20] The Tsallis entropy is defined by

Sq =
∑
r

pr − pqr
q − 1

, (1)

where pr is the probability of state r, and the summation is carried over all possible
states.

(a) Prove that in the limit where q approaches one, the Tsallis entropy reduces to the
usual form

lim
q→1

Sq = −∑
r

pr ln pr. (2)

The latter expression, similar to the Boltzmann-Gibbs entropy seen in class, is
called the Shannon entropy.

(b) Consider two systems A and B with respective Tsallis entropies SA and SB. Derive
an expression for the total entropy Sq(A∪B) of the combined system in terms of
SA and SB (and possibly q).

(c) It is said that the Tsallis entropy leads to energy distribution functions that are
described by power laws, as opposed to a normal (or Maxwellian) distribution.
By maximizing the Tsallis entropy subject to appropriate constraints, obtain such
a power law.

2. [20] Consider two independent macroscopic systems 1 and 2 at equilibrium, for which
the functions Σ1(E1) and Σ2(E2) are known.

(a) Show that for the combined system, the function Σ is given by

Σ(E) =
∫ E

0
dE ′dΣ1(E

′)
dE ′ Σ2(E − E ′) =

∫ E

0
dE ′Σ1(E − E ′)

dΣ2(E
′)

dE ′ , (3)

where E is the total energy of the combined systems.

(b) In proving the equation above, you need to make some assumptions. Enumerate
all of them clearly.

(c) Using the result derived in part (a), prove that the Γ function of the combined
systems can be calculated from Γ1 and Γ2 of the individual systems as

Γ(E) =
1

Δ

∫ E

0
dE ′Γ1(E

′)Γ2(E −E ′) . (4)
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(d) Using this result, prove that the partition function for the combined system can
be written as

Q(β) = Q1(β)Q2(β). (5)

(e) Using the result above, explain how this property implies that that A = −kT lnQ
is an extensive quantity.

3. [10] Consider a system of stars constituting a small galaxy located in a remote loca-
tion of the Universe. This small galaxy is sufficiently far from anything else in the
Universe for any interaction energy with the rest of the Universe to be negligible. For
simplicity, we may also assume that the star velocities are small compared to that the
speed of light, and relativity (special or general) effects are altogether negligible. The
gravitational force between any two stars of masses mi and mj is given by

�Fij = −mimjG

r2+s
ij

(�ri − �rj) , (6)

where s is a small number, |s | < 1 Assuming equilibrium:

(a) Use the virial theorem and the equipartition theorem to find a relation between
the average kinetic energy of the system of stars and its average gravitational
potential.

(b) In part (a), did you have to account for the effect of any confining wall (or that
of an effective wall) as with the virial of an ideal gas)? Explain your answer.

4. [20] Consider a homogeneous system made of N identical particles. The N -particle
probability density function in phase space is fN(1, 2, ..., N, t), where 1, 2, ... stand for
the single particle phase space coordinates �r1, �p1, �r2, �p2, ... respectively. Assuming a
normalisation for fN such that ∫ d1

V

d2

V
· · · dN

V
fN = 1, (7)

we define the reduced n-particle distribution function as

fn(1, 2, . . . , n, t) =
∫

d(n+ 1)

V

d(n+ 2)

V
· · · dN

V
fN . (8)

Use the equation of evolution for fN

∂fN
∂t

+
N∑
i=1

(
�vi · ∂fN

∂�ri
+ �Fi · ∂fN

∂�pi

)
= 0, (9)

where

�Fi = �F ext
i −

N∑
j �=i

∂u

∂�rij
, (10)

with u = u(rij) being the two-particle interaction potential and rij = |�ri − �rj | is the
distance between points i and j.
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(a) Construct an equation describing the evolution in time of f1 and f2. From these
two cases, explain in words how an equation of evolution for fn will involve an
expression involving fn+1.

(b) Write an expression for the pair distribution function g(r) in terms of f1 and f2.

(c) In the mean field approximation

f2(1, 2) = f1(1)f1(2). (11)

Derive an equation for the evolution of f1 in that approximation.

5. [5] One centimeter cube of an ideal gas at 300 K and pressure 105 Pa is in equilibrium
with a large heat reservoir.

(a) Calculate the most probable internal energy.

(b) Calculate the standard deviation in that energy.

6. [5] The derivation of the viral of an ideal gas involves a certain number of assumptions,
some of which were stated in class. Enumerate all the assumptions (as many applicable
and independent assumptions as you can think of, including the ones mentioned in
class) that are necessary in order for this derivation to be valid.

7. [10] Using expression S = −k〈lnPr〉 = −k
∑

r Pr lnPr, prove that the entropy is exten-
sive. That is, in your solution, you may need to make some assumptions. Make sure
that you formulate all of them clearly.

8. [5] Solve problem 3.5 in Pathria’s book
Making use of the fact that the Helmholtz free energy A(N, V, T ) of a thermodynamic
system is an extensive property of the system, show that

N

(
∂A

∂N

)
V,T

+ V

(
∂A

∂V

)
N,T

= A . (12)

[Note that this result implies the well-known relationship: Nμ = A+ PV (≡ G).]

9. [15] Solve problem 3.6 in Pathria’s book.

(a) Assuming that the total number of microstates accessible to a given statistical
system is Ω, show that the entropy of the system, as given by S = −k〈lnPr〉 =
−k

∑
r Pr lnPr, is maximum when all Ω states are equally likely to occur.

(b) If, on the other hand, we have an ensemble of systems sharing energy (with mean
value Ē), then show that the entropy, as given by the same formal expression,
is maximum when Pr ∝ exp(βEr), β begin a constant to be determined by the
given value of Ē.
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(c) Further, if we have an ensemble of systems sharing energy (with mean value Ē)
and also sharing particles (with mean value N̄), then show that the entropy, given
by a similar expression, is maximum when Pr,s ∝ exp(−αNr−βEs), α and β being
constants to be determined by the given values of N̄ and Ē.

10. [10] Solve problem 3.11 in Pathria’s book
Determine the work done on a gas and the amount of heat absorbed by it during a
compression from volume V1 to volume V2, following the law PV γ = constant.

11. [5] Solve problem 3.39 in Pathria’s book.
Atoms of silver vapour, each having a magnetic moment μB(g = 2, J = 1/2), align
themselves either parallel or antiparallel to the direction of an applied magnetic field.
Determine the respective fractions of atoms aligned parallel and antiparallel to a field
of flux density 0.1 weber/m2 at a temperature of 1,000 K.

12. [10] Solve problem 3.40 in Pathria’s book.

(a) Show that, for any magnetisable material, the heat capacities at constant field H
and at constant magnetisation M are connected by the relation

CH − CM = −T

(
∂H

∂T

)
M

(
∂M

∂T

)
H

. (13)

(b) Show that for a paramagnetic material obeying Curie’s law

CH − CM = C
H2

T 2
, (14)

where C on the right side of this equation denotes the Curie constant of the given
sample.

13. [5] Solve problem 3.43 in Pathria’s book.
Consider a system of charge particle (not dipoles), obeying classical mechanics and
classical statistics. Show that the magnetic susceptibility of this system is identically
zero (Bohr-van Leeuwen theorem). [Note that the Hamiltonian of this system in the

presence of a magnetic field �H (= �∇× �A) will be a partition function of the quantities

�pj + (ej/c) �A(�rj), and not of the �pj as such. One has now to show that the partition
function of the system is independent of the applied field.]

14. [10] Consider an ideal gas made of electrons in a fixed and uniform neutralising back-
ground (so that the volume charge density vanishes). Assume that the electron gas
has a volume density n and temperature T , and that it is immersed in a constant and
uniform magnetic B.

(a) Calculate the average magnetic moment per unit volume.
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(b) If the plasma is in a cylinder with circular cross section of radius a and length L,
and if the magnetic field is oriented along the axis of the cylinder, calculate the
total magnetic moment of the plasma cylinder.

(c) Is there any contradiction between this result and what you found in problem 13?
If so, how can it be reconciled?
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