Localizing groups with action

by

Georg Peschke

Publicacions Matemátiques 33 (1989) 227–234

Localization and genus in group theory and homotopy theory

Georg Peschke¹

Abstract: When localizing the semidirect product of two groups, the effect on the factors is made explicit. As an application in Topology, we show that the loop space of a based connected CW-complex is a *P*-local group, up to homotopy, if and only if $\pi_1 X$ and the free homotopy groups $[S^{k-1}, \Omega X]$, $k \ge 2$, are *P*-local.

Introduction

The study of groups G in which the functions $\rho_p : G \to G$, $\rho_p(g) = g^p$, are, for certain primes p, bijective, has a long history, see Malcev [9], Baumslag [1] and the references there. After Sullivan [16], Bousfield-Kan [3], Hilton [5] and Hilton-Mislin-Roitberg [8] this study appears now in the guise of localizing a group with respect to a given set of primes P. In a P-local group the functions ρ_n are bijective if n belongs to the multiplicative closure of the set of primes P', which is complementary to P.

According to Ribenboim [12, 13], there is a *P*-localizing functor from the category of groups to the category of *P*-local groups, $\mathcal{G} \to \mathcal{G}_P$. While the properties of this functor, when restricted to the category of nilpotent groups, are well understood (see [5] and [7]) its properties in general are not clear at all.

For example, on nilpotent groups the *P*-localizing functor is exact, but not in general. E.g., the exact sequence $\mathbb{Z} \to S_3 \to \mathbb{Z}/2$ for the symmetric group of 3 elements gets sent to $\mathbb{Z}/3 \to 0 \to 0$, when localizing at 3. S_3 is a semidirect product $\mathbb{Z}/3 \rtimes \mathbb{Z}/2$ and the purpose of this paper is to investigate the effect of localization on semidirect products $G = H \rtimes R$.

Since localization is functorial, G_P is again a semidirect product $G_P \cong K \rtimes R_P$. Therefore, it is desirable to understand the relation between H and K. We will discover that K is the P-localization of H with respect to the change of operator groups from Rto R_P .

To explain this, we use the category ${}_R\mathcal{G}$ of R-groups (i.e. groups on which the group R acts on the left) and R-homomorphisms (i.e. group homomorphisms $f: H \to H'$ with f(r.h) = r.f(h) for all $h \in H$ and $r \in R$). Further a group homomorphism $\gamma : R \to S$ induces the change-of-operator-groups functor $\gamma^* : {}_S\mathcal{G} \to {}_R\mathcal{G}$. For $H \in {}_R\mathcal{G}$, $K \in {}_S\mathcal{G}$, a group homomorphism $f: H \to K$ is a γ -homomorphism if $f: H \to \gamma^* K$ is an R-homomorphism. We then construct a left adjoint ${}_{\gamma}\operatorname{Ad}$ for γ^* ; see (1.5).

Now ${}_{S}\mathcal{G}$ contains a subcategory ${}_{S}\mathcal{G}_{P}$ consisting of such groups on which S acts P-locally; see 1.2. Accordingly, we construct a left adjoint ${}_{S}L_{P} : {}_{S}\mathcal{G} \to {}_{S}\mathcal{G}_{P}$; see 1.6. The

¹Supported by NSERC of Canada

Addr: Dept. of Mathem. Sciences, Univ. of Alberta, Edmonton, Canada T6G 2G1 E-mail: George.Peschke ualberta.ca

composite ${}_{\gamma}L_P := {}_{S}L_P {}_{\gamma|Ad} : {}_{R}\mathcal{G} \to {}_{S}\mathcal{G}_P$ is left adjoint to the restriction of γ^* to ${}_{S}\mathcal{G}_P$. It then follows that $(H \rtimes R)_P \cong ({}_{e}L_PH) \rtimes R_P$, where $e : R \to R_P$ *P*-localizes.

Remarks

- (1) The functor ${}_{\gamma}$ Ad is of independent interest. For example, let ${}_{S}$ Ad correspond to the unique homomorphism $\{1\} \rightarrow S$. Then ${}_{S}$ Ad provides the foundation for a theory of S-groups by generators and relations.
- (2) The problem of localizing semidirect products has also been studied by Casacuberta [4] in the case where the normal subgroup H is abelian, and by A. Reynol when H is finite abelian [11].
- (3) Our study is also of interest in Topology; see (1.7) and (1.8).

It is a pleasure to acknowledge several useful conversations with K. Varadarajan. Also I owe insight into the matter to correspondence with P. Hilton and C. Casacuberta.

1. We now take up the announced investigation. So let R be a group acting on another group H via a homomorphism $\phi : R \to \operatorname{Aut}(H)$. The corresponding semidirect product is denoted by $H \rtimes_{\phi} R$ or $H \rtimes R$ if there is no risk of confusion.

1.1 Lemma $G = H \rtimes R$ is *P*-local if and only if the following two conditions hold:

- (i) R is P-local;
- (ii) For all $r \in R$ and $n \in P'$, the function

$$\rho_{r,n}: H \longrightarrow H, \qquad h \longmapsto h \phi_r(h) \phi_{r^2}(h) \cdots \phi_{r^{n-1}}(h)$$

is a bijection, where ϕ_r denotes the automorphism $\phi(r)$ of H.

Proof This follows from $(h, r)^n = (\rho_{r,n}(h), r^n)$.

The functions $\rho_{r,n}$ have been used already by Baumslag in a setting involving wreath products; see [2].

1.2 Definition R acts P-locally on H if, for all $r \in R$ and $n \in P'$, the function $\rho_{r,n}$ of (1.1) is a bijection.

The notion of a *P*-local action has independently been introduced by Rodicio [14]. Since $\rho_{1,n}(h) = h^n$, if *R* acts *P*-locally on *H*, then *H* is *P*-local. We write ${}_R\mathcal{G}_P$ for the category of *R*-groups on which *R* acts *P*-locally.

It is straight forward to prove

1.3 Lemma Let

$$\begin{array}{c} R \rightarrowtail H \rtimes_{\phi} R \longrightarrow R \\ \underset{\alpha}{\overset{}{\downarrow}} & \underset{K}{\overset{}{\mapsto}} \downarrow & \underset{\psi}{\overset{}{\downarrow}} \\ K \longmapsto K \rtimes_{\psi} S \longrightarrow S \end{array}$$

be a commuting diagram of split exact sequences of groups. Then β *P*-localizes in \mathcal{G} if and only if the following three conditions hold:

- (i) γ *P*-localizes in \mathcal{G} ;
- (ii) S acts P-locally on K;
- (iii) For all $L \in {}_{S}\mathcal{G}$ on which S acts P-locally and every γ -homomorphism $\nu : H \to L$, there is a unique S-homomorphism $\nu' : K \to L$, with $\nu = \nu' \alpha$.

This suggests

1.4 Definition Let $H \in {}_R \mathcal{G}$, $K \in {}_S \mathcal{G}$ and let $\gamma : R \to S$ be a homomorphism. Then $\alpha : H \to K$ *P*-localizes with respect to γ if and only if the following three conditions hold:

- (i) S acts P-locally on K;
- (ii) α is a γ -homomorphism;
- (iii) α satisfies the universal property (1.3.iii) above.

Thus, Lemma 1.3 can be restated as

1.3' Lemma β *P*-localizes in \mathcal{G} if and only if γ *P*-localizes in \mathcal{G} and α *P*-localizes with respect to γ .

Now let $\gamma: R \to S$ be given. The construction of a left adjoint functor ${}_{\gamma}L_P: {}_{R}\mathcal{G} \to {}_{S}\mathcal{G}_P$ to the composite functor ${}_{S}\mathcal{G}_P \xrightarrow{\text{inclusion}} {}_{S}\mathcal{G} \xrightarrow{\gamma^*} {}_{R}\mathcal{G}$ is done in two steps.

1.5 Theorem $\gamma^*: {}_{S}\mathcal{G} \to {}_{R}\mathcal{G}$ has a left adjoint ${}_{\gamma}\mathrm{Ad}: {}_{R}\mathcal{G} \to {}_{S}\mathcal{G}$.

1.6 Theorem The inclusion functor ${}_{S}\mathcal{G}_{P} \to {}_{S}\mathcal{G}$ has a left adjoint left inverse ${}_{S}L_{P}$: ${}_{S}\mathcal{G} \to {}_{S}\mathcal{G}_{P}$.

It then follows from 1.3' that $(H \rtimes R)_P \cong ({}_e L_P H) \rtimes R_P$, where $e : R \to R_P$ *P*-localizes.

Here is an interesting application of P-local actions in Topology.

1.7 Theorem Let X be a based connected CW-complex. Then the two conditions below are equivalent.

(i) $\pi_1 X$ and the free homotopy groups $[S^{k-1}, \Omega X]$, $k \ge 2$, are *P*-local;

(ii) ΩX is *P*-local group up to homotopy; i.e. for each $n \in P'$, the map $\overline{\rho}_n : \Omega X \to \Omega X$, $\overline{\rho}_n(x) = x^n$, is a homotopy equivalence.

Proof "(ii) \implies (i)' Recall that $\overline{\rho}_n$ induces ρ_n on $\pi_0 \Omega X$ and on all free homotopy groups $[\mathbf{S}^{k-1}, \Omega X], k \geq 2$. If $\overline{\rho}_n$ is a homotopy equivalence, then ρ_n is a bijection. Thus $\pi_0 \Omega X \cong \pi_1 X$ and $[\mathbf{S}^{k-1}, \Omega X]$ are *P*-local.

(i) \implies (ii) Recall from [10] that ωX is an H-semidirect product: $\Omega X \simeq (\Omega X)_0 \rtimes \pi_1 X$ and, as a consequence, that $[S^{k-1}, \Omega X] \cong \pi_k X \rtimes \pi_1 X$, for all $k \ge 2$. Since $\pi_1 X$ is *P*-local, $\overline{\rho}_n$ determines a bijection of the connected components of ΩX . Since $(\Omega X)_0$ is a simple space, the restriction of ρ_n to $(\Omega X)_0 \times \{r\}, r \in \Pi_1 X$, induces the homomorphism

$$\pi_{k-1}(\Omega X)_0 \times \{r\} \cong [\mathbf{S}^{k-1}, (\Omega X)_0 \times \{r\}] \longrightarrow [\mathbf{S}^{k-1}, (\Omega X)_0 \times \{r^n\}] \cong \pi_{k-1}(\Omega X)_0 \times \{r^n\}.$$

By hypothesis, this is a bijection. Thus, $\overline{\rho}_n$ is a homotopy equivalence.

1.8 Corollary The loop space of a *P*-local nilpotent CW-complex is a *P*-local group up to homotopy.

Proof If X is a P-local nilpotent space, then $\pi_1 X$ is P-local. Furthermore, the groups $[S^{k-1}, \Omega X], k \ge 2$, are semidirect products of the P-local groups $\pi_k X$ and $\pi_1 X$ with respect to a nilpotent action of $\pi_1 X$ on $\pi_k X$. By a result of Hilton [6], the groups $[S^{k-1}, X]$ are P-local, for $k \ge 2$; compare also Roitberg [15]. Now apply (1.7).

2 Proof of Theorem 1.5

We need the following lemma whose proof is a little tedious but straightforward.

2.1 Lemma Let R act on H via $\phi : R \to Aut(H)$. Let

$$D := \{ rhr^{-1}\phi_r(h^{-1}) : r \in R, h \in H \} \subset H * R.$$

Let \overline{H} , \overline{D} denote the normal closure of H, D in H * R. Then \overline{D} is normal in \overline{H} and $\overline{H}/\overline{D}$ is isomorphic to H.

Step 1 for the proof of (1.5): Construction of ${}_{\gamma}Ad$ Let R act on H via $\phi: R \to Aut(H)$ and consider the diagram

$$\begin{array}{c} \overline{H} \xrightarrow{i} H \ast R \xrightarrow{\pi} R \\ \eta & 1 & \downarrow^{\mathrm{Id} \ast \gamma} 2 & \downarrow^{\gamma} \\ \widehat{H} \xrightarrow{i'} H \ast S \xrightarrow{\pi'} S \end{array}$$

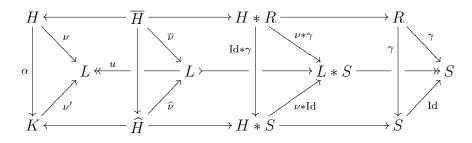
where π , π' are the canonical epimorphisms making the right hand square commute. $\overline{H} := \ker(\pi)$ and $\widehat{H} := \ker(\pi')$. Note that $(\operatorname{Id} * \gamma)(\overline{H}) \subset \widehat{H}$ and let η be the restriction of $\operatorname{Id} * \gamma$ to \overline{H} . Then the left hand square also commutes.

By design, R acts on \overline{H} by conjugation and S acts on \widehat{H} by conjugation and η is a γ -homomorphism. Using (2.1), we relate these actions to the given action of R on H. We have refined the method of HNN-extensions.

By (2.1), $\overline{D} \subset \overline{H}$. Let \widehat{D} be the normal closure of $\eta(D)$ in H * S. Since $\eta(D) \subset \widehat{H} \triangleleft (H * S)$, $\widehat{D} \subset \widehat{H}$. Take $K := {}_{\gamma} \operatorname{Ad}(H) := \widehat{H}/\widehat{D}$. Then η defines $\alpha \colon H \cong \overline{H}/\overline{D} \to \widehat{H}/\widehat{D} = K$.

The action of S on \widehat{H} by conjugation passes down to an action $\psi : S \to \operatorname{Aut}(K)$. Explicitly, $\psi_S(\widehat{h}\widehat{D}) = s\widehat{h}s^{-1}\widehat{D}$. The action of R on \overline{H} by conjugation passes down to the original action ϕ , by (2.1). It is clear that α is a γ -homomorphism.

Step 2: Verification of the universal property of $\alpha : H \to K$. Let S act on L via $\theta : S \to \operatorname{Aut}(L)$. Let $\nu : H \to L$ be a γ -homomorphism. Consider the diagram



The right hand prism commutes and induces homomorphisms $\overline{\nu}$, $\hat{\nu}$ by restriction. Further $\overline{\nu}(D) \subset \ker(u)$. Consequently, $\hat{\nu}(\widehat{D}) \subset \ker(u)$, showing that $\hat{\nu}$ factors through K with $\nu': K \to L$. Since $\hat{\nu}$ is an S-homomorphism, so is ν' .

It is straightforward to check uniqueness of ν' on the generators xhx^{-1} of K, where $x \in H * S$, $h \in H$. That $_{\gamma}$ Ad is a functor is immediate. This completes the proof of (1.5).

It follows directly from the construction of $_{\gamma}Ad$ that

2.2 Proposition γ Ad preserves epimorphisms.

3 Proof of Theorem 1.6

Let

$${}_{S}\mathcal{U}_{P} := \{ K \in {}_{S}\mathcal{G} : \rho_{s,n} \text{ is 1-1 for all } s \in S, n \in P' \}$$
$${}_{S}\mathcal{E}_{P} := \{ K \in {}_{S}\mathcal{G} : \rho_{s,n} \text{ is onto for all } s \in S, n \in P' \}.$$

Then ${}_{S}\mathcal{G}_{P} := {}_{S}\mathcal{U}_{P} \cap {}_{S}\mathcal{E}_{P}$ is the category of S-groups on which S acts P-locally.

We construct functors ${}_{S\sqrt{P}}: {}_{S}\mathcal{G} \to {}_{S}\mathcal{G}$, which create preimages for the functions $\rho_{s,n}$ as well as ${}_{S}U_{P}: {}_{S}\mathcal{G} \to {}_{S}\mathcal{U}_{P}$, which make preimages of the functions $\rho_{s,n}$ unique.

Let S act on K via $\psi : S \to \operatorname{Aut}(K)$. Let FK denote the free group with basis $\{k_{s,n} : k \in K, s \in S, n \in P'\}$ and let $\xi K := {}_{S}\operatorname{Ad}(FK)$ denote the free S-group with that basis. If $\theta : S \to \operatorname{Aut}(\xi K)$ denotes the corresponding S-action, then S acts on $K * \xi K$ by $S \ni s \mapsto \psi_s * \theta_s \in \operatorname{Aut}(K * \xi K)$. Let N denote the S-invariant normal closure of the set $\{\rho_{s,n}(k_{s,n}k^{-1} : k \in K, s \in S, n \in P'\}$ in $K * \xi K$.

3.1 Definition ${}_{S_{\sqrt{D}}}K := K * \xi K/N.$

There is a canonical homomorphism $t: K \to s_{\sqrt{P}}K$. By design, $\operatorname{im}(t) \subset \operatorname{im}(\rho_{s,n})$, for all $s \in S$ and $n \in P'$. Further, an S-homomorphism $f: K \to K'$ induces the Shomomorphism $\xi f: \xi K \to \xi K'$ via the function $k_{s,n} \mapsto [f(k)]_{s,n}$ on bases. Hence, the S-homomorphism $(f * \xi f): K * \xi K \to K' * \xi K'$ is defined. Passing to quotients, it yields the S-homomorphism $s_{\sqrt{P}}f: s_{\sqrt{P}}K \to s_{\sqrt{P}}K'$.

3.2 Lemma The following hold.

- (i) ${}_{S\sqrt{P}}: {}_{S}\mathcal{G} \to {}_{S}\mathcal{G}$ is a covariant functor.
- (ii) $_{S\sqrt{P}}$ preserves epimorphisms.
- (iii) The homomorphism $t: K \to {}_{S \sqrt{P}} K$ defines a natural transformation of the identity functor on ${}_{S}\mathcal{G}$ to ${}_{S \sqrt{P}}$.
- (iv) If $f: K \to L$ is an S-homomorphism such that $\rho_{l,n}$ is (1–1) and onto $\operatorname{im}(f)$ for all $l \in L$ and $n \in P'$, then there is a unique S-homomorphism $f': {}_{S}\sqrt{{}_{P}K} \to L$ with f = f't.

Proof (i), (ii) and (iii) are straightforward from the construction.

(iv) The universal property of ${}_{S}Ad$ yields a unique S-homomorphism $d : \xi K \to L$ corresponding to the homomorphism $FK \to L$, $k_{s,n} \mapsto \rho_{s,n}^{-1}f(k)$. Observe that $\ker(K * \xi K \twoheadrightarrow {}_{S}\sqrt{}_{P}K) \subset \ker(f*d)$. Hence f' exists. Uniqueness of f' follows from $f''\rho_{s,n} = \rho_{s,n}f''$, for any $f'' : {}_{S}\sqrt{}_{P}K \to L$ with f = f''t.

3.3 Definition Let *K* be any *S*-group.

$${}_{S}E_{P}K := \lim \{K \to {}_{S} \swarrow_{P} K \to ({}_{S} \swarrow_{P})^{2} K \to \cdots \}.$$

By induction, using lemma (3.2), we get

3.4 Proposition The following hold:

- (i) ${}_{S}E_{P}: {}_{S}\mathcal{G} \to {}_{S}\mathcal{E}_{P}$ is a covariant functor.
- (ii) ${}_{S}E_{P}$ preserves epimorphisms.

- (iii) The canonical homomorphism $\tau : K \to {}_{S}E_{P}K$ defines a natural transformation of the identity functor on ${}_{S}\mathcal{G}$ to ${}_{S}E_{P}$.
- (iv) If $f: K \to L$ is an S-homomorphism and S acts P-locally on L, then there is a unique S-homomorphism $f': {}_{S}E_{P}K \to L$ with $f = f'\tau$.

To make the functions $\rho_{s,n}$ of an S-group K (1–1), we factor out a suitable subgroup. Let

$$_{Sa_PK} := \cap \{ \ker(f : K \to U) : U \in _{S}\mathcal{U}_P, f \text{ any } S \text{-homomorphism} \}$$

3.5 Definition ${}_{S}U_{P}K := K/ {}_{S}a_{P}K.$

It follows that ${}_{S}U_{P}K \in {}_{S}\mathcal{U}_{P}$. Further, if $f: K \to K'$ is an S-homomorphism, then $f({}_{S}a_{P}K) \subset {}_{S}a_{P}K'$. So f induces ${}_{S}U_{P}f: {}_{S}U_{P}K \to {}_{S}U_{P}K'$. The lemma below is a direct consequence of this definition.

3.6 Lemma The following hold

- (i) ${}_{S}U_{P}: {}_{S}\mathcal{G} \to {}_{S}\mathcal{U}_{P}$ is a covariant functor.
- (ii) The canonical epimorphism $\sigma: K \twoheadrightarrow {}_{S}U_{P}K$ defines a natural transformation of the identity on ${}_{S}\mathcal{G}$ to ${}_{S}U_{P}$.
- (iii) ${}_{S}U_{P}$ preserves epimorphisms.
- (iv) If $f : K \to L$ is an S-homomorphism and $L \in {}_{S}\mathcal{U}_{P}$, then there is a unique homomorphism $f' : {}_{S}U_{P}K \to L$ with $f = f'\sigma . {}_{S}U_{P}$ is left adjoint left inverse to the inclusion functor ${}_{S}\mathcal{U}_{P} \to {}_{S}\mathcal{G}$.

3.7 Definition Let $\gamma : R \to S$ be a group homomorphism. Let ${}_{\gamma}L_P := {}_{S}U_P {}_{S}E_P {}_{\gamma}Ad : \mathcal{G}_R \to {}_{S}\mathcal{G}_P$ be the composite of the three functors.

Note that the natural transformations associated with ${}_{S}U_{P}$, ${}_{S}E_{P}$, ${}_{\gamma}Ad$ define a natural transformation $e (= {}_{\gamma}e_{P})$ of the identity functor on ${}_{R}\mathcal{G}$ to ${}_{S}L_{P}$.

3.8 Proposition Let $\gamma : R \to S$ be a group homomorphism.

- (i) ${}_{S}L_{P} : {}_{R}\mathcal{G} \to {}_{S}\mathcal{G}_{P}$ is a covariant functor which is left adjoint to the change-ofoperator-groups functor $\gamma^{*} : {}_{S}\mathcal{G}_{P} \to {}_{R}\mathcal{G}$.
- (ii) ${}_{S}L_{P}$ preserves epimorphisms.

Proof Combine (1.5), (2.2), (3.4), (3.6).

This completes the proof of (1.6).

The author is grateful to the referee for pointing out the connection of [2], [6], [14] with the present paper.

References

- G. Baumslag. Some Aspects of Groups with Unique Roots. Acta Math. 104 (1960) 217–303.
- [2] G. Baumslag Roots and Wreath Products. Proc. Cam. Phil. Soc. 56 (1960) 109–117.
- [3] A.K. Bousfield, D.M. Kan *Homotopy Limits, Completions and Localizations.* Springer-Verlag, Berlin/New York 1987 (second corrected printing)
- [4] C. Casacuberta Espais topoloógics amb accions P-locals. Ph.D. Thesis, Universitat Autònoma de Barcelona 1988
- [5] P.J. Hilton. Localization and Cohomology of Nilpotent Groups. Math. Z. 132 (1973) 265–286.
- P.J. Hilton Nilpotent actions on nilpotent groups. Springer LNM 450, Springer Verlag Berlin/New York 1975, 174–196.
- [7] P.J. Hilton. Nilpotente Gruppen und nilpotente Räume. Springer LNM 1053, Springer Verlag Berlin/New York 1984.
- [8] P.J. Hilton, G. Mislin, J. Roitberg. Localization of Nilpotent Groups and Spaces. North-Holland, Amsterdam 1975.
- [9] A.I. Malcev Nilpotent torsion free groups. Izv. Akad. Nauk. SSSR Ser. Mat. (Russian) 13 (1949) 202–212.
- [10] G. Peschke H-semidirect Products. Can. Math. Bull. 30 (1987) 402–511.
- [11] A. Reynol. *P*-localization of some classes of groups. preprint.
- [12] P. Ribenboim. Equations in groups, with special emphasis on localization and torsion I. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia(8) 19 (1987) 23-60.
- [13] P. Ribenboim. Equations in groups, with special emphasis on localization and torsion II. Portugal. Math. 44 (1987) 417–445.
- [14] A.G. Rodicio. Métodos homológicos en grupos P-locales. Ph.D. thesis 1986.
- [15] J. Roitberg. Note on nilpotent spaces and localization. Math. Z. 137 (1974) 67–74.
- [16] D. Sullivan. Genetics of homotopy theory and the Adams conjecture. Ann. of Math. 100 (1974) 1–79.