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Localization and genus in group theory
and homotopy theory

Georg Peschke1

Abstract: When localizing the semidirect product of two groups, the effect on the factors is made explicit. As an application

in Topology, we show that the loop space of a based connected CW-complex is a P -local group, up to homotopy, if and

only if π1X and the free homotopy groups [Sk−1,ΩX], k ≥ 2, are P -local.

Introduction

The study of groups G in which the functions ρp : G→ G, ρp(g) = gp, are, for certain
primes p, bijective, has a long history, see Malcev [9], Baumslag [1] and the references
there. After Sullivan [16], Bousfield-Kan [3], Hilton [5] and Hilton-Mislin-Roitberg [8] this
study appears now in the guise of localizing a group with respect to a given set of primes
P . In a P -local group the functions ρn are bijective if n belongs to the multiplicative
closure of the set of primes P ′, which is complementary to P .

According to Ribenboim [12, 13], there is a P -localizing functor from the category of
groups to the category of P -local groups, G → GP . While the properties of this functor,
when restricted to the category of nilpotent groups, are well understood (see [5] and [7])
its properties in general are not clear at all.

For example, on nilpotent groups the P -localizing functor is exact, but not in general.
E.g., the exact sequence Z � S3 � Z/2 for the symmetric group of 3 elements gets sent
to Z/3 → 0 → 0, when localizing at 3. S3 is a semidirect product Z/3 o Z/2 and the
purpose of this paper is to investigate the effect of localization on semidirect products
G = H oR.

Since localization is functorial, GP is again a semidirect product GP
∼= K o RP .

Therefore, it is desirable to understand the relation between H and K. We will discover
that K is the P -localization of H with respect to the change of operator groups from R
to RP .

To explain this, we use the category RG of R-groups (i.e. groups on which the group
R acts on the left) and R-homomorphisms (i.e. group homomorphisms f : H → H ′ with
f(r.h) = r.f(h) for all h ∈ H and r ∈ R). Further a group homomorphism γ : R → S
induces the change-of-operator-groups functor γ∗ : SG → RG. For H ∈ RG, K ∈ SG,
a group homomorphism f : H → K is a γ-homomorphism if f : H → γ∗K is an R-
homomorphism. We then construct a left adjoint γAd for γ∗; see (1.5).

Now SG contains a subcategory SGP consisting of such groups on which S acts P -
locally; see 1.2. Accordingly, we construct a left adjoint SLP : SG → SGP ; see 1.6. The
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composite γLP := SLP γ|Ad : RG → SGP is left adjoint to the restriction of γ∗ to SGP .
It then follows that (H oR)P ∼= ( eLPH) oRP , where e : R→ RP P -localizes.

Remarks

(1) The functor γAd is of independent interest. For example, let SAd correspond to the
unique homomorphism {1} → S. Then SAd provides the foundation for a theory of
S-groups by generators and relations.

(2) The problem of localizing semidirect products has also been studied by Casacuberta
[4] in the case where the normal subgroup H is abelian, and by A. Reynol when H is
finite abelian [11].

(3) Our study is also of interest in Topology; see (1.7) and (1.8).

It is a pleasure to acknowledge several useful conversations with K. Varadarajan. Also
I owe insight into the matter to correspondence with P. Hilton and C. Casacuberta.

1. We now take up the announced investigation. So let R be a group acting on
another group H via a homomorphism φ : R → Aut(H). The corresponding semidirect
product is denoted by H oφ R or H oR if there is no risk of confusion.

1.1 Lemma G = H oR is P -local if and only if the following two conditions hold:

(i) R is P -local;

(ii) For all r ∈ R and n ∈ P ′, the function

ρr,n : H −→ H, h 7−→ hφr(h)φr2(h) · · · · · φrn−1(h)

is a bijection, where φr denotes the automorphism φ(r) of H.

Proof This follows from (h, r)n = (ρr,n(h), r
n). �

The functions ρr,n have been used already by Baumslag in a setting involving wreath
products; see [2].

1.2 Definition R acts P -locally on H if, for all r ∈ R and n ∈ P ′, the function ρr,n
of (1.1) is a bijection.

The notion of a P -local action has independently been introduced by Rodicio [14].
Since ρ1,n(h) = hn, if R acts P -locally on H, then H is P -local. We write RGP for the
category of R-groups on which R acts P -locally.

It is straight forward to prove
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1.3 Lemma Let

R // //

α

��

H oφ R // //

β
��

R

γ

��

K // // K oψ S // // S

be a commuting diagram of split exact sequences of groups. Then β P -localizes in G if
and only if the following three conditions hold:

(i) γ P -localizes in G;

(ii) S acts P -locally on K;

(iii) For all L ∈ SG on which S acts P -locally and every γ-homomorphism ν : H → L,
there is a unique S-homomorphism ν ′ : K → L, with ν = ν ′α.

This suggests

1.4 Definition Let H ∈ RG, K ∈ SG and let γ : R→ S be a homomorphism. Then
α : H → K P -localizes with respect to γ if and only if the following three conditions
hold:

(i) S acts P -locally on K;

(ii) α is a γ-homomorphism;

(iii) α satisfies the universal property (1.3.iii) above.

Thus, Lemma 1.3 can be restated as

1.3’ Lemma β P -localizes in G if and only if γ P -localizes in G and α P -localizes
with respect to γ. �

Now let γ : R → S be given. The construction of a left adjoint functor γLP : RG →

SGP to the composite functor SGP
inclusion
−−−→ SG

γ∗−→ RG is done in two steps.

1.5 Theorem γ∗ : SG → RG has a left adjoint γAd : RG → SG.

1.6 Theorem The inclusion functor SGP → SG has a left adjoint left inverse SLP :

SG → SGP .

It then follows from 1.3’ that (HoR)P ∼= ( eLPH)oRP , where e : R→ RP P -localizes.

Here is an interesting application of P -local actions in Topology.

1.7 Theorem Let X be a based connected CW-complex. Then the two conditions
below are equivalent.

(i) π1X and the free homotopy groups [Sk−1,ΩX], k ≥ 2, are P -local;
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(ii) ΩX is P -local group up to homotopy; i.e. for each n ∈ P ′, the map ρn : ΩX → ΩX,
ρn(x) = xn, is a homotopy equivalence.

Proof “(ii) =⇒ (i)’ Recall that ρn induces ρn on π0ΩX and on all free homotopy
groups [Sk−1,ΩX], k ≥ 2. If ρn is a homotopy equivalence, then ρn is a bijection. Thus
π0ΩX ∼= π1X and [Sk−1,ΩX] are P -local.
(i) =⇒ (ii) Recall from [10] that ωX is an H-semidirect product: ΩX ' (ΩX)0 o π1X
and, as a consequence, that [Sk−1,ΩX] ∼= πkXoπ1X, for all k ≥ 2. Since π1X is P -local,
ρn determines a bijection of the connected components of ΩX. Since (ΩX)0 is a simple
space, the restriction of ρn to (ΩX)0 × {r}, r ∈ Π1X, induces the homomorphism

πk−1(ΩX)0 × {r} ∼= [Sk−1, (ΩX)0 × {r}] −→ [Sk−1, (ΩX)0 × {rn}] ∼= πk−1(ΩX)0 × {rn}.

By hypothesis, this is a bijection. Thus, ρn is a homotopy equivalence. �

1.8 Corollary The loop space of a P -local nilpotent CW-complex is a P -local group
up to homotopy.

Proof If X is a P -local nilpotent space, then π1X is P -local. Furthermore, the groups
[Sk−1,ΩX], k ≥ 2, are semidirect products of the P -local groups πkX and π1X with respect
to a nilpotent action of π1X on πkX. By a result of Hilton [6], the groups [Sk−1, X] are
P -local, for k ≥ 2; compare also Roitberg [15]. Now apply (1.7). �

2 Proof of Theorem 1.5

We need the following lemma whose proof is a little tedious but straightforward.

2.1 Lemma Let R act on H via φ : R→ Aut(H). Let

D := {rhr−1φr(h
−1) : r ∈ R, h ∈ H} ⊂ H ∗R.

Let H, D denote the normal closure of H, D in H ∗R. Then D is normal in H and H/D
is isomorphic to H. �

Step 1 for the proof of (1.5): Construction of γAd
Let R act on H via φ : R→ Aut(H) and consider the diagram

H // i //

η

��

1

H ∗R π // //

Id∗γ

��

2

R

γ

��

Ĥ //

i′
// H ∗ S

π′
// // S
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where π, π′ are the canonical epimorphisms making the right hand square commute.
H := ker(π) and Ĥ := ker(π′). Note that (Id ∗ γ)(H) ⊂ Ĥ and let η be the restriction of
Id ∗ γ to H. Then the left hand square also commutes.

By design, R acts on H by conjugation and S acts on Ĥ by conjugation and η is a
γ-homomorphism. Using (2.1), we relate these actions to the given action of R on H. We
have refined the method of HNN-extensions.

By (2.1), D ⊂ H. Let D̂ be the normal closure of η(D) in H ∗ S. Since η(D) ⊂ Ĥ C
(H ∗ S), D̂ ⊂ Ĥ. Take K := γAd(H) := Ĥ/D̂. Then η defines α : H ∼= H/D → Ĥ/D̂ =
K.

The action of S on Ĥ by conjugation passes down to an action ψ : S → Aut(K).

Explicitly, ψS(ĥD̂) = sĥs−1D̂. The action of R on H by conjugation passes down to the
original action φ, by (2.1). It is clear that α is a γ-homomorphism.

Step 2: Verification of the universal property of α : H → K. Let S act on L via
θ : S → Aut(L). Let ν : H → L be a γ-homomorphism. Consider the diagram

H

α

��

ν

��
>>

>>
>>

>> Hoo //

ν

��
>>

>>
>>

>

��

H ∗R //

ν∗γ

$$IIIIIIIIII

Id∗γ

��

R
γ

��
==

==
==

==

γ

��

L
uoooo L // // L ∗ S // // S

K

ν′

@@��������
Ĥoo //

ν̂

@@��������
H ∗ S //

ν∗Id

::uuuuuuuuuu
S

Id

@@��������

The right hand prism commutes and induces homomorphisms ν, ν̂ by restriction. Further
ν(D) ⊂ ker(u). Consequently, ν̂(D̂) ⊂ ker(u), showing that ν̂ factors through K with
ν ′ : K → L. Since ν̂ is an S-homomorphism, so is ν ′.

It is straightforward to check uniqueness of ν ′ on the generators xhx−1 of K, where
x ∈ H ∗ S, h ∈ H. That γAd is a functor is immediate. This completes the proof of
(1.5). �

It follows directly from the construction of γAd that

2.2 Proposition γAd preserves epimorphisms. �

3 Proof of Theorem 1.6

Let
SUP := {K ∈ SG : ρs,n is 1-1 for all s ∈ S, n ∈ P ′}
SEP := {K ∈ SG : ρs,n is onto for all s ∈ S, n ∈ P ′}.

Then SGP := SUP ∩ SEP is the category of S-groups on which S acts P -locally.
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We construct functors S
√
P

: SG → SG, which create preimages for the functions ρs,n
as well as SUP : SG → SUP , which make preimages of the functions ρs,n unique.

Let S act on K via ψ : S → Aut(K). Let FK denote the free group with basis
{ks,n : k ∈ K, s ∈ S, n ∈ P ′} and let ξK := SAd(FK) denote the free S-group with that
basis. If θ : S → Aut(ξK) denotes the corresponding S-action, then S acts on K ∗ ξK by
S 3 s 7→ ψs ∗ θs ∈ Aut(K ∗ ξK). Let N denote the S-invariant normal closure of the set
{ρs,n(ks,nk−1 : k ∈ K, s ∈ S, n ∈ P ′} in K ∗ ξK.

3.1 Definition S
√
P
K := K ∗ ξK/N .

There is a canonical homomorphism t : K → S
√
P
K. By design, im(t) ⊂ im(ρs,n),

for all s ∈ S and n ∈ P ′. Further, an S-homomorphism f : K → K ′ induces the S-
homomorphism ξf : ξK → ξK ′ via the function ks,n 7→ [f(k)]s,n on bases. Hence, the
S-homomorphism (f ∗ ξf) : K ∗ ξK → K ′ ∗ ξK ′ is defined. Passing to quotients, it yields
the S-homomorphism S

√
P
f : S

√
P
K → S

√
P
K ′.

3.2 Lemma The following hold.

(i) S
√
P

: SG → SG is a covariant functor.

(ii) S
√
P

preserves epimorphisms.

(iii) The homomorphism t : K → S
√
P
K defines a natural transformation of the identity

functor on SG to S
√
P
.

(iv) If f : K → L is an S-homomorphism such that ρl,n is (1–1) and onto im(f) for all
l ∈ L and n ∈ P ′, then there is a unique S-homomorphism f ′ : S

√
P
K → L with

f = f ′t.

Proof (i), (ii) and (iii) are straightforward from the construction.
(iv) The universal property of SAd yields a unique S-homomorphism d : ξK → L
corresponding to the homomorphism FK → L, ks,n 7→ ρ−1

s,nf(k). Observe that ker(K ∗
ξK � S

√
P
K) ⊂ ker(f∗d). Hence f ′ exists. Uniqueness of f ′ follows from f ′′ρs,n = ρs,nf

′′,

for any f ′′ : S
√
P
K → L with f = f ′′t. �

3.3 Definition Let K be any S-group.

SEPK := lim{K → S
√
P
K → ( S

√
P
)2K → · · · }.

By induction, using lemma (3.2), we get

3.4 Proposition The following hold:

(i) SEP : SG → SEP is a covariant functor.

(ii) SEP preserves epimorphisms.

7



(iii) The canonical homomorphism τ : K → SEPK defines a natural transformation of
the identity functor on SG to SEP .

(iv) If f : K → L is an S-homomorphism and S acts P -locally on L, then there is a
unique S-homomorphism f ′ : SEPK → L with f = f ′τ .

To make the functions ρs,n of an S-group K (1–1), we factor out a suitable subgroup.
Let

SaPK := ∩{ker(f : K → U) : U ∈ SUP , f any S-homomorphism}.

3.5 Definition SUPK := K/ SaPK.

It follows that SUPK ∈ SUP . Further, if f : K → K ′ is an S-homomorphism, then
f( SaPK) ⊂ SaPK

′. So f induces SUPf : SUPK → SUPK
′. The lemma below is a

direct consequence of this definition.

3.6 Lemma The following hold

(i) SUP : SG → SUP is a covariant functor.

(ii) The canonical epimorphism σ : K � SUPK defines a natural transformation of the
identity on SG to SUP .

(iii) SUP preserves epimorphisms.

(iv) If f : K → L is an S-homomorphism and L ∈ SUP , then there is a unique
homomorphism f ′ : SUPK → L with f = f ′σ. SUP is left adjoint left inverse to the
inclusion functor SUP → SG. �

3.7 Definition Let γ : R→ S be a group homomorphism. Let γLP := SUP SEP γAd :
GR → SGP be the composite of the three functors.

Note that the natural transformations associated with SUP , SEP , γAd define a natural
transformation e (= γeP ) of the identity functor on RG to SLP .

3.8 Proposition Let γ : R→ S be a group homomorphism.

(i) SLP : RG → SGP is a covariant functor which is left adjoint to the change-of-
operator-groups functor γ∗ : SGP → RG.

(ii) SLP preserves epimorphisms.

Proof Combine (1.5),(2.2),(3.4),(3.6). �

This completes the proof of (1.6). �

The author is grateful to the referee for pointing out the connection of [2], [6], [14]
with the present paper.
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