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Abstract We describe the effect of homological plus-constructions on the homotopy groups of
Eilenberg-MacLane spaces in terms of universal central extensions. 1

Introduction Higher algebraic K-theory was introduced by Quillen [27] by means of
the plus-construction (a precursor of which goes back to Varadarajan [32, p. 368]). When
applied to a space X, it yields a map X −→ X+ which quotients out the maximal perfect
subgroup of π1X without changing the homology of X. In the case where X = BGL(R)
is the classifying space of the general linear group of a ring R, Kn(R) := πn(K0(R)×X+).

While this construction is readily described, its homotopy theoretic properties, es-
pecially its effect on homotopy groups, remain largely mysterious. General results in
this direction are due to Kervaire [23]. He discovered the universal central extension

π2K(G, 1)+ � P̃G � PG, where PG is the maximal perfect subgroup of G, and P̃G

is a perfect group satisfying H2(P̃G; Z) = 0. From this one easily deduces the natural

isomorphisms π2K(G, 1)+ ∼= H2(PG; Z) and π3K(G, 1)+ ∼= H3(P̃G; Z) which are special
cases of our main theorem.

A homotopy theoretic environment which is suitable for the study of plus-constructions
has been provided by the works of Bousfield [5, 6, 7, 8] and Dror Farjoun [14]. Given a
homology theory h, there is a colocalizing functor AhX −→ X which extracts from X a
universal h-acyclic cover of its h-acyclic essence: AhX is h-acyclic and map∗(A,AhX)→
map∗(A,X) is a weak homotopy equivalence for every h-acyclic space A. Dually, there is
a localizing functor X −→ X+h which strips X of its h-acyclic essence: map∗(A,X

+h) is
weakly equivalent to a point, for every h-acyclic space A.

The composite AhX −→ X −→ X+h forms a homotopy fibration and, sometimes, also
a homotopy cofibration - e.g. when h = H(−; Z); see [20, 2.5]. Meier [25] first associated
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a plus-construction with a choice of an ordinary homology theory. This process was
expanded in [11].

The map X → X+h induces an isomorphism in h-homology, but is usually not a
homotopy equivalence. Thus the homotopy groups of X must change to accommodate
the reduction of X by its h-acyclic essence. We endeavor to understand this change of
homotopy groups, and this paper is a first step. Our approach builds on the following
two pillars.

• The universal properties of the fibration AhX → X → X+h should be reflected in the
form of universal properties of appropriate segments within the long exact sequence of
homotopy groups of this fibration.

• The fibration AhX → X → X+h yields the Π-central fibration ΩX+h ∂ // AhX // X ;

i.e. all Whitehead products of the form [∂α, β] vanish, where α ∈ πpΩX
+h and β ∈

πqAhX, p, q ≥ 1; see (7.7).

Accordingly, appropriate segments within the long exact sequence of homotopy groups

of the fibration ΩX+h ∂−→ AhX → X are central extensions of groups with a certain
universal property. This statement takes its purest form in the case where X = K(G, n)
and G is a group, abelian if n ≥ 2, such that πnK(G, n) −→ πnK(G, n)+h is the 0-map.
For in this case, π∗ΩX

+h � π∗AhX � π∗K(G, n) is an extension of Π-algebras, in the
sense of Dwyer-Kan [19], which is central.

Here, we use this platform to gain insight into the effect of +h-localization on the
homotopy groups of higher Eilenberg-MacLane spaces and on the second and third ho-
motopy groups of K(G, 1)’s. We summarize our main results in the following theorem.

Theorem For n ≥ 1 and a group G, abelian if n ≥ 2, there is a unique maximal
subgroup P h

nG of G with the property that πnK(P h
nG, n) → πnK(P h

nG, n)+h is the 0-
map. Moreover, the following hold.

(i) The (n+ 1)-st homotopy group of K(G, n)+h fits into the central extension

πn+1K(G, n)+h // // P̃ h
nG

// // P h
nG,

which is universal in the sense explained in section 4. If G is abelian, this iden-
tifies πn+1K(G, n)+h as the representing object for the functor Ext(P h

nG,−) ∼=
H2(P h

nG;−) on the category of all those groups L for which K(L, n + 1) is +h-
local.

(ii) If n = 1, we have

π1K(G, 1)+h ∼= G/P h
1 G

π2K(G, 1)+h ∼= π2K(P h
1 G, 1)+h ∼= H2

(
K(P h

1 G, 1)+h; Z
)

πiK(G, 1)+h ∼= πiK(P h
1 G, 1)+h, i ≥ 2.
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Further, if h is π2-compatible (see (2.18)), then

π3K(G, 1)+h ∼= H3

(
K(P̃ h

1 G, 1)+h ; Z
)
.

For abelian G, our results overlap with [29] and [12]. However, their approaches are
derived from a different view point.

This paper is organized as follows. Section 0 contains background material on (co)-
localization. Section 1 establishes key results on maps whose homotopy fiber is h-acyclic.
In section 2, we introduce hn-perfect groups together with their duals, hn-acyclically
reduced groups and present their basic properties. Section 3 introduces, for n ≥ 1, a lo-
calization functor of abelian groups from the effect of h-localization on abelian K(G, n)’s.
All of this is used in section 4 to formulate and prove our main results, stated above.
Section 5 contains examples. Section 6 consists of an algebraic lemma. Section 7 presents
prerequisites on Π-central fibrations which motivate our approach but are also of inde-
pendent interest.

Acknowledgements We thank Jérôme Scherer and the referee for many useful com-
ments. The second author is grateful to the ETH (Zürich) for inviting him for a brief
visit to facilitate completing this work.

0 Preliminaries

Here we gather some concepts and facts about homological localization which are relevant
in what follows. Most of the key insights here are work of Bousfield. A good exposition
can also be found in [29].

Homotopical localization with respect to a based map f :U → V of CW-spaces is a
continuous homotopically idempotent functor Lf on the category of compactly generated
Hausdorff spaces; see [16], [14] and compare [6], [21]. One may occasionally have need
to resort to CW-substitutes to avoid pathologies in mapping spaces, or to ensure the
existence of covering maps. Alternatively, one can work simplicially. We assume that our
spaces are based. Maps are based unless we specify otherwise.

The Lf -local objects Z, also called f -local objects, are characterized by the property
that, between spaces of free maps, f ∗ : map(V, Z) −→ map(U,Z) is a weak homotopy
equivalence. A function u : A → B is an Lf -equivalence if Lf (u) is a (weak) homotopy
equivalence. If c :W → ∗ is the map to a 1-point space, we write X//W for LcX, and call it
the W -reduction of X. Other notation in use includes LWX and PWX. A (W → ∗)-local
space is also called W -reduced.

3



We consider only non-trivial homology theories (h̃∗S
0 6= 0), which can be described by

a CW-spectrum. Such theories are additive. Therefore h-acyclic CW-spaces (h∗(X)
∼=→

h∗(pt)) are necessarily connected.

0.1 Proposition and Terminology Given a homology theory h, there exists an h-
equivalence f between connected CW-spaces such that the following hold.

(i) X → LfX =: Xh is Bousfield’s homology localization with respect to h; see [5]. X
is called h-local if X is Lf -local

(ii) If A := cofib(f), then the h-localizing map X → Xh factors uniquely through the
h-acyclic reduction X+h := LAX, which we call the +h-construction of X; compare
[8, 4.4]. A space Y is called +h-local or h-acyclically reduced, if Y ' Y +h. A map u
is a +h-equivalence if LA(u) is a (weak) homotopy equivalence. The +h-localization
of a disconnected CW-space X is given by the disjoint union of the +h-localizations
of the connected components of X.

(iii) The homotopical colocalization of X with respect to A is the functor u :AhX :=
CWAX → X of Dror Farjoun [14]. It is characterized by the property that AhX is h-
acyclic and that u∗ :map∗(B,AhX) −→ map∗(B,X) is a weak homotopy equivalence
for every h-acyclic space B.

(iv) For every connected space X, AhX → X → X+h is a homotopy fibration.

Proof Only (iv) remains to be shown. Let F → X → X+h be the homotopy fibration
associated to +h-localization. By design, map∗(B,X

+h) ' ∗ for every h-acyclic space B.
Consequently, map∗(B,F ) −→ map∗(B,X) is a weak homotopy equivalence. To see that
F is h-acyclic we consider the map of fibrations below; [18, p. 74].

F //

��

F+h

��

X //

��

X+h

X+h X+h

Visibly F+h ' ∗, implying that F is h-acyclic. From the universal property of Ah-
colocalization we infer F ' AhX. �

The loop space operation relates h-localization and +h-localization as follows.

0.2 Lemma If X is +h-local and path connected, then ΩX is h-local.
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Proof Fiberwise h-localization gives the morphism of fibrations

ΩX //

��

(ΩX)h

��

∗ //

��

Z

��

X X

The map ∗ → Z is an h-equivalence. So Z is h-acyclic. On the other hand, Z is +h-local,
being the total space of a fibration whose fiber and base are +h-local. Thus Z ' ∗, and
the two fibrations are isomorphic. �

For an arbitrary space W , the W -reduction map X → X//W commutes with the
covering space operation in the following precise sense.

0.3 Lemma Given connected CW-complexes W and X, let K be the kernel of π1X →
π1(X//W ). Then there is a natural homeomorphism

X//W −→ X̃//W,

where X is the covering space of X corresponding to K C π1X and X̃//W is the universal
cover of X//W .

Proof sketch Recall that W -reduction of a space Y is constructed by repeating the
pushout construction

U //

ε

��

V

��

Y // Y ′

where the top arrow is∐
k≥0

(
map(Sk oW,Y )×(Sk oW )

)
−→

∐
k≥0

(
map(Sk oW,Y )×C(Sk oW )

)
,

and ε is evaluation. Thus π1Y → π1Y
′ is onto. If κ is a normal subgroup of π1Y containing

ker(π1Y → π1Y
′) let Y be the covering space corresponding to κ. Then∐

k≥0

map(Sk oW,Y ) −→
∐
k≥0

map(Sk oW,Y )
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is a covering map with π1Y/κ sheets. The morphism of pushout diagrams

U //

����
��

��
�

��

V

~~}}
}}

}}
}}

��

U //

��

V

��

Y

����
��

��
��

// Y
′

~~~~
~~

~~
~~

Y // Y ′

has Y
′
connected, which covers Y ′ with π1Y/κ sheets. Moreover, π1Y

′ ∼= κ/ker(π1Y →
π1Y

′). Thus Y
′ → Y ′ is the covering map of Y ′ corresponding to im(κ→ π1Y

′). To infer
the lemma, set κ := K and repeat this argument (transfinitely often if necessary). �

0.4 Corollary The higher homotopy groups of K(G, 1)//W depend only on the kernel
of π1K(G, 1)→ π1K(G, 1)//W . �

0.5 Corollary Given a connected CW-space W and an arbitrary group G, then
K(G, 1) is W -reduced if and only if Hom(π1W,G) = ∗.

Proof If K(G, 1) is W -reduced, then map∗(W,K(G, 1)) = ∗ and so Hom(π1W,G) ' ∗.
Conversely, if Hom(π1W,G) = ∗, then π1K(G, 1) −→ π1K(G, 1)//W is an isomorphism.

But then, with the notation of (0.3), ∗ ' K(G, 1) ' K(G, 1)//W ' ˜K(G, 1)//W . Thus
K(G, 1)→ K(G, 1)//W is a homotopy equivalence. �

We will need to recognize h-acyclic spaces. If h is connective (i.e. hn(pt) = 0, for n
sufficiently small), we are aided by the following result of Bousfield [4].

0.6 Theorem Given a connective homology theory h, let P denote the set of primes
p for which h∗(pt) is not uniquely p-divisible. Let

R(h) :=

{
⊕p∈PZ/p if h∗(pt) is torsion

ZP if h∗(pt) is not torsion

Then a space X is h-acyclic if and only if H̃∗(X;R(h)) = 0. �

More generally, we have
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0.7 Lemma For a homology theory h, define R(h) as in (0.6). Then everyH(−;R(h))-
acyclic space is also h-acyclic. In particular, +h-localization factors through +H(−;R(h))-
localization.

Proof If Z is H(−;R(h))-acyclic, then the second page of the Atiyah-Hirzebruch spec-
tral sequence for h∗Z consists only of the 0-th column. The claim follows. �

A convenient tool for relating reduction and localizing functors of spaces is the follow-
ing lemma of Zabrodsky; compare [31].

0.8 Lemma Given a fibration F → E
f−→ B, if a space Y is F -reduced, then Y is

f -local. �

0.9 Corollary Suppose Ω is an h-acyclic loop space. Then BΩ is h-acyclic.

Proof We have the fibration Ω → ∗ f−→ BΩ. If Y is arbitrary +h-local, then Y is
Ω-reduced and, therefore, f -local; (0.8). Thus f is a +h-equivalence, implying that BΩ
is h-acyclic. �

1 h-acyclic maps

1.1 Definition A map of path connected spaces f :X → Y is h-acyclic if fib(f) is
h-acyclic.

Our definition of “h-acyclic map” extends Quillen’s in [28]. We suggest to think of
an h-acyclic map as being h-acyclicity reducing because the target of an h-acyclic map
appears in a universal way between X and the completely h-acyclicity reduced space X+h.
This is one possible interpretation of the lemma below.

1.2 Lemma Associated with an h-acyclic map f :X → Y there is the natural com-
mutative diagram below whose rows and columns are fibrations.

F //

'
��

AhX //

��

AhY

��

F //

��

X
f

//

��

Y

��

∗ // X+h
'

// Y +h

7



Proof Universality of the operations Ah and +h yields the morphism of the two vertical
fibrations on the right. From Zabrodsky’s lemma (0.8) or fiberwise localization [14, 1.H.1],
we see that f is a +h-equivalence. Therefore X+h → Y +h is a homotopy equivalence and,
hence, the homotopy fibers of the horizontal maps are as indicated. �

1.3 Corollary An h-acyclic map is a +h-equivalence and, hence, an h-equivalence.
�

Based on this information we expect

1.4 Corollary If X is path connected, then the universal map X+h → Xh is a homo-
topy equivalence if and only if fib(X → Xh) is h-acyclic, which is the case if and only if
fib(X+h → Xh) is h-acyclic.

Proof We verify one implication: Suppose F := fib(X → Xh) is h-acyclic. By (1.2),
X+h → (Xh)+h = Xh is a homotopy equivalence. The rest of the argument is similar.

�

Thus an h-acyclic map is an h-equivalence with some additional property. We make
this statement precise in the case where h is connective.

1.5 Proposition Let h be a connective homology theory. Then a map f :X → Y of
path connected spaces is h-acyclic if and only if f induces an isomorphism in homology
with twisted coefficients

• f∗ :
⊕

P H∗(X; f ∗Z/p[π1Y ]) −→
⊕

P H∗(Y ; Z/p[π1Y ]), if h∗(pt) is torsion

• f∗ :H∗(X; f ∗ZP [π1Y ]) −→ H∗(Y ; ZP [π1Y ]), if h∗(pt) is not torsion.

In either case, P is the set of primes p for which h∗(pt) is not uniquely p-divisible.

Proof This follows by combining Bousfield’s result (0.6) with [20] or [25, 1.1]. �

1.6 Proposition If h is connective and Xh is simply connected, then the natural map
u :X+h → Xh is a weak homotopy equivalence.

Proof u is an h-equivalence and, hence an H(−;R)-equivalence; see (0.6). Further, u
is h-acyclic, by using (1.5) and that Xh is simply connected. Thus fib(u) is +h-local and
h-acyclic, hence is a point, which implies the claim. �

1.7 Example If h is connective, then +h-localization and h-localization agree on sim-
ply connected spaces. For, in this case, h-localization does not reduce connectivity; see
[7, 7.3]. �
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The following example illustrates that +h-localization and h-localization can agree on
Eilenberg-MacLane spaces, even if h is not connective.

1.8 Example If h = K is real or complex K-theory, and G is an abelian group, then

(i) K(G, 1)+h = K(G, 1)h = K(G, 1)

(ii) K(G, 2)+h = K(G, 2)h = K(G/torsion, 2)

(iii) K(G, i)+h = K(G, i)h = K(G⊗Q, i), for i ≥ 3.

Proof K(G, n)h has been computed by Mislin; see [26]. Thus the claims will follow
once we have shown that, in each case, fib(K(G, n)+h → K(G, n)h) is h-acyclic. Indeed,
K(G, 1)h = K(G, 1), implying (i). Moreover, K(G, 2)h = K(G/torsion, 2) and, therefore,
one has a fibration K(torsion(G), 2)→ K(G, 2) −→ K(G, 2)h = K(G/torsion, 2) with an
h-acyclic fiber. Thus K(G, 2)h = K(G, 2)+h. If i ≥ 3, then

F := fib
(
K(G, i) −→ K(G⊗Q, i) = K(G, i)h

)
= K(B, i)×K(C, i− 1)

with B and C torsion groups; see 7.2. Thus K(B, i) and K(C, i − 1) are h-acyclic.
Localization commutes with finite products; [18, p. 5]. Thus F is h-acyclic. �

1.9 Remark If h = H(−; Z), then the fibration AhX → X → X+h is also a cofibra-
tion; [20, 2.5]. This is not so in general, as the following example illustrates.

Take h := H(−; Z/p) and X = K(Zp∞ , 1). Then Xh = K(Z∧p , 2), because of the short
exact sequence Z∧p � Q∧

p � Zp∞ , where Z∧p denotes the p-adic integers. As Xh is 1-
connected, Xh = X+h by (1.6). The fiber of K(Zp∞ , 1) → K(Z∧p , 2) is K(Q∧

p , 1), where
Q∧
p denotes the p-adic numbers. But the cofiber C of K(Q∧

p , 1) → K(Zp∞ , 1) is not
K(Z∧p , 2), as one sees by comparing rationalizations: K(Z∧p , 2)Q = K(Q∧

p , 2), which is
different from ΣK(Q∧

p , 1) = CQ, because we have the cofiber sequence

∗ ' K(Zp∞ , 1)Q → CQ → ΣK(Q∧
p , 1)→ ΣK(Zp∞ , 1)Q ' ∗.

Thus, in general, X → X+h factors through cofib(AhX → X) =: C. But C need not be
h-acyclically reduced. �

2 hn-perfect and hn-acyclically reduced groups

Fix a homology theory h. Given an integer n and a group G, abelian if n ≥ 2, we have
the fibration

AhK(G, n)→ K(G, n) −→ K(G, n)+h.
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In order to explain the influence of the universal properties of these maps on the homotopy
groups in the long exact sequence of this fibration we introduce the groups

P h
nG := ker

(
πnK(G, n)→ πnK(G, n)+h

)
and

Qh
nG := (maximal quotient Q of G with P h

nQ trivial).

As we shall see, the higher homotopy groups of K(G, n)+h depend only on P h
nG; see (3.7).

2.1 Definition Let n ≥ 1. A group G, abelian if n ≥ 2, is called hn-perfect if
P h
nG = G. Dually, G is hn-acyclically reduced if G = Qh

nG.

2.2 Example Let us consider h = H(−; Z). Then P h
1 G is just the unique maximal

perfect subgroup of G. Moreover G is h1-perfect if and only if G is perfect. After all, G
is perfect if and only if K(G, 1)+ is simply connected. Dually G is h1-acyclically reduced
exactly when its maximal perfect subgroup is trivial. Finally, every abelian group is
hn-acyclically reduced for all n ≥ 1.

In general, G is hn-acyclically reduced if and only if P h
nG is trivial. We will discuss

the case of h = K (real or complex K-theory) below. We will show how to characterize
L := πn+1K(G, n)+h via a certain universal central extension

L � A � P h
nG.

Dually, we show how to characterize A′ := πn−1AhK(G, n) via a certain short exact
sequence

Qh
nG � L′ � A′

whose universal properties are dual to those of the L-determining extension. Hence we
speak of a universal coextension here.

Here are some basic properties of hn-perfect and hn-acyclically reduced groups, fol-
lowed by some lemmas needed to verify these properties.

2.3 Proposition Basic properties of hn-perfect groups
The following hold.

(i) The class of hn-perfect groups is closed under quotients, arbitrary colimits and weak
products.

(ii) If A is an (n− 1)-connected h-acyclic space, then πnA is hn-perfect.

(iii) For every space X, ker(π1X → π1X
+h) is h1-perfect.
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(iv) Every group G has a unique maximal hn-perfect subgroup P h
nG.

(v) If G is abelian and n ≥ 1, then P h
n (G/P h

nG) = 0.

(vi) Let h and k be homology theories such that every h-equivalence is also a k-equivalence.
Then, for each n ≥ 1, hn-perfect groups are also kn-perfect.

2.4 Proposition Basic properties of hn-acyclically reduced groups
The following hold.

(i) The class of hn-acyclically reduced groups is closed under subgroups and arbitrary
inverse limits.

(ii) Every group G has a unique maximal hn-acyclically reduced quotient Qh
nG. If G is

abelian then Qh
nG = coker(πnAhK(G, n) −→ πnK(G, n)). If n = 1, then there is

the possibly transfinite sequence of epimorphisms with

Qh
1G = lim−→ {G→ G/P h

1 G→ (G/P h
1 G)/P h

1 (G/P h
1 G)→ · · · } .

(iii) Let h and k be homology theories such that every h-equivalence is also a k-equivalence.
Then kn-acyclically reduced groups are also hn-acyclically reduced.

Here is the key lemma which is needed to understand the effect of +h-localization on
K(G, n)’s with G abelian.

2.5 Lemma For n ≥ 1 and an abelian group G, there is the natural fiber sequence

K(A′, n− 1)×K(A, n) //

'
��

K(G, n) // K(L′, n)×K(L, n+ 1)

'
��

AhK(G, n) // K(G, n) // K(G, n)+h

whose long exact sequence of homotopy groups consists of

0→ L � A→ G→ L′ � A′ → 0.

Moreover, if n = 1, then A′ = 0.

Proof According to [14, 4.12], AhK(G, n) is a GEM whose homotopy groups above
dimension n vanish. Further, K(G, n)+h is an (n−1)-connected GEM; see [15, 1.11]. The
claim follows. �

From (2.5) we deduce the following.
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2.6 Corollary For an arbitrary groupG, abelian if n ≥ 2, the canonical mapK(G, n)→
K(G, n)+h is a homotopy equivalence if the induced map πnK(G, n) → πnK(G, n)+h is
an isomorphism.

Proof Suppose πnK(G, n) → πnK(G, n)+h is an isomorphism. If n ≥ 2 then, in the
notation of (2.5), A′ = 0 and L ∼= A. Thus the h-acyclic space K(A, n) is homotopy
equivalent to the h-local space ΩK(L, n + 1); see (0.2). Thus A = L = 0, which implies
the claim.

If n = 1, we have the equivalence

K(G, 1)
∼= //

$$IIIIIIIII
K(π1K(G, 1)+h, 1)

K(G, 1)+h

77nnnnnnnnnnnn

which exposes K(G, 1) as a retract of the +h-local space K(G, 1)+h. Thus K(G, 1) is
already +h-local, which implies the claim. �

2.7 Corollary A group G is h1-acyclically reduced iff K(G, 1) is +h-local. �

2.8 Lemma For an abelian group G and n ≥ 1 the following are equivalent.

(i) G is hn-perfect

(ii) +h-localization yields a fibration of the form

K(A, n) //

'
��

K(G, n) // K(L, n+ 1)

'
��

AhK(G, n) // K(G, n) // K(G, n)+h

Proof (i) =⇒ (ii) Since G is hn-perfect, the exact sequence of homotopy groups from

(2.5) takes the form L � A � G
0−→ L′

∼=−→ A′. Thus L′ ∼= A′, implying that the h-local
space K(L′, n − 1), see (0.2), is a retract of the h-acyclic space K(A′, n − 1)×K(A, n).
Therefore K(L′, n − 1) is h-acyclic as well. But then K(L′, n − 1) is a point, implying
that L′ = 0, as claimed.

(ii) =⇒ (i) G is hn-perfect, since πnK(G, n)+h = 0. �

2.9 Corollary If G is hn-perfect, then H1(G; Z) is h(n+ 1)-perfect.
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Proof We have the fibration AhK(G, n)→ K(G, n)→ K(G, n)+h, in which AhK(G, n)
is (n − 1)-connected and K(G, n)+h is n-connected. Suspending the first map yields the
diagram ΣAhK(G, n) → ΣK(G, n) → K(H1(G; Z), n + 1) in which all spaces are n-
connected. ΣAhK(G, n)+h is h-acyclic and πn+1ΣAhK(G, n) maps onto πn+1K(H1(G; Z), n+
1). Thus H1(G; Z) is h(n+ 1)-perfect. �

2.10 Lemma Let n ≥ 1 and G a group, abelian if n ≥ 2. Then the following are
equivalent.

(i) G is hn-acyclically reduced.

(ii) +h-localization yields a fibration of the form

K(A′, n− 1) //

'
��

K(G, n) // K(L′, n)

'
��

AhK(G, n) // K(G, n) // K(G, n)+h

Proof If n = 1, the claim follows from (2.7). Thus suppose n ≥ 2. (i) =⇒ (ii) Accord-
ing to (2.5) the +h-localization fibration of an abelian group G yields the exact sequence

of groups L
∼=−→ A

0−→ G � L′ � A′. Considering that P h
nG = 0 we find that the arrows

in this sequence behave as indicated. Thus the h-local space K(L, n) is a retract of the
h-acyclic space K(A, n)×K(A′, n− 1), implying that L = 0 = A.

(ii) =⇒ (i) In this situation, πnK(G, n) → πnK(G, n)+h is a monomorphism, implying
that G is hn-acyclically reduced. �

2.11 Corollary A group G is hn-acyclically reduced if and only if [Y,K(G, n)] = 0,
for every (n− 1)-connected h-acyclic space Y .

Proof The case n = 1 follows from (0.5). If n > 1, we have associated with every

h-acyclic space Y the isomorphism [Y,AhK(G, n)]
∼=−→ [Y,K(G, n)]. If G is hn-acyclically

reduced, then AhK(G, n) is of the formK(A′, n−1) (2.10), implying that [Y,AhK(G, n)] =
0 for (n− 1)-connected Y . Conversely, if [Y,K(G, n)] = 0 for (n− 1)-connected h-acyclic
Y then, in the notation of (2.5), K(A, n) → K(G, n) is null, implying that A = L = 0.
The claim follows from (2.10). �

2.12 Lemma For n ≥ 2, if an abelian group G is hn-acyclically reduced, then G is
h(n− 1)-acyclically reduced.

Proof The fibration AhK(G, n)→ K(G, n)→ K(G, n)+h has the form K(A′, n− 1)→
K(G, n)→ K(L′, n); see (2.10). Looping it gives us a monomorphism πn−1K(G, n−1) �
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πn−1K(L′, n−1). But K(L′, n−1) is h-local by (0.2). So L′ is h(n−1)-acyclically reduced.
G is a subgroup of L′, and the argument is complete by (2.4.i). �

Proof of proposition (2.3) (i) Closure under quotients If n = 1, we recall that the
+h-construction is a coning construction, hence induces an epimorphism of fundamental
groups, hence preserves epimorphisms of fundamental groups. Therefore the class of h1-
perfect groups is closed under quotients.

If n ≥ 2, consider the +h-localization fibration of K(G, n) K(A, n) ↪→ K(G, n) −→
K(L, n + 1). Here we used that G is hn-perfect and (2.8),(i) =⇒ (ii). If G/H is a
quotient of G, we find a map from the h-acyclic space K(A, n) to K(G/H, n) inducing
an epimorphism on πn. The +h-localization of K(G/H, n) factors through the cofiber of
this map, implying that G/H =h

n (G/H).

Closure under colimits Every colimit of groups is a quotient of the coproduct of those
groups which occur in the colimit diagram. (If n = 1, “coproduct” means “free product”.
If n > 1, “coproduct” means “direct sum”.) Thus it suffices to show that Cn is closed under
coproducts. A coproduct tGλ of hn-perfect groups arises as πn of the wedge ∨λK(Gλ, n).
Now ∨λAλ is h-acyclic and πn(∨Aλ → ∨K(Gλ, n)) is onto. Thus πnK(tGλ, n)+h = 0,
implying that tGλ is hn-perfect.

Closure under weak products The +h-construction commutes with finite products [17,
Theorem 4], and a finite product of h-acyclic spaces is again h-acyclic. Therefore the class
Cn of hn-perfect groups is closed under finite products. The weak product is a directed
colimit of finite products. Now use that hn-perfect groups are closed under colimits.

(ii) By hypothesis, A+h ' ∗. Thus P h
nπnA = πnA.

If n > 1, the technique used in (i) shows that K(πnA, n)+h ' K(L, n + 1). Thus πnA is
hn-perfect.

(iii) ker(π1X → π1X
+h) is a quotient of the h1-perfect group π1AhX. The claim follows

from (i).

(iv) ker(πnK(G, n)→ πnK(G, n)+h) is a quotient of πn of an (n−1)-connected h-acyclic
space. By (ii) this kernel is hn-perfect. On the other hand, every hn-perfect subgroup H
of G is contained in P h

nG. This can be read off the morphism of fibrations below.

AhK(H,n) //

��

K(H,n) //

��

K(H,n)+h

��

AhK(G, n) // K(G, n) // K(G, n)+h

(v) Let K(G, n) → K(L′, n)×K(L, n + 1) be the +h-localizing map; see (2.5). In any
case B := P h

n (G/P h
nG) < L′. If B 6= 0, there exists an essential map from an h-acyclic

space into K(G, n)+h – a contradiction.
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(vi) holds because +k-localization factors through +h-localization and does not decrease
connectivity of Eilenberg-MacLane spaces. – The proof of (2.3) is complete. �

Proof of proposition (2.4) (i) If G is hn-acyclically reduced, let G′ < G be a subgroup.
Then we have a short exact sequence πnAhK(G′, n) → G′ � πnK(G′, n)+h, where the
arrow on the right is a monomorphism because im(πnAhK(G′, n) → G′) < ker(G →
Qh
nG) = 0. Thus G′ is hn-acyclically reduced.

Let G := lim←− {Gλ} be the inverse limit of a system of hn-acyclically reduced groups.
If Y is an h-acyclic space, then [Y,K(Gλ, n)] = ∗ for each λ; see (2.11). Thus

∏
Gλ is

hn-acyclically reduced. G is a subgroup of
∏
Gλ. The claim follows.

(ii) Let Q := im(πnK(G, n) → πnK(G, n)+h). For an arbitrary hn-acyclically reduced
quotient G′ of G, we have the commutative diagram below; see (2.10).

G //

����

�� ��
??

??
??

πnK(G, n)+h

��

Q
??

??�����

����

G′ // // πnK(G′, n)+h

Thus G′ is a quotient of Q. If n ≥ 2, Q is hn-acyclically reduced by (2.10), in which case
the claim follows. If n = 1, we have the tower of h1-acyclic reductions

G � G/P h
1 G � (G/P h

1 G)/P h
1 (G/P h

1 G) � . . . ,

which stabilizes, as a possibly transfinite tower, at a group R which is h1-acyclically
reduced. By design, every epimorphism G � G′, with G′ h1-acyclically reduced, factors
through R. Thus Qh

1G = R is the unique maximal h1-acyclically reduced quotient of G.

(iii) This follows from the fact that every h-acyclic space is also k-acyclic. �

2.13 Remark If X is an (n− 1)-connected space, the morphism of fibrations

AhX //

��

X //

��

X+h

��

AhK(πnX,n) // K(πnX,n) // K(πnX,n)+h

shows that, always, ker(πnX −→ πnX
+h) < P h

nπnX. If h is connective and n ≥ 2, then
the two groups are equal by (1.6) and (0.6). In general, we have no accurate description
of the relationship between the two groups.

If n = 1, we know that ker(π1X → π1X
+h) < P h

1 π1X is h1-perfect; combine (2.3.i and ii).
Should it happen that ker(π1X → π1X

+h) = P h
1 π1X, for every X, then π1X

+h depends
only upon π1X. Casacuberta-Rodriguez [11] call such a localizing functor π1-compatible.
Tai [30, 6.1] identifies the following homological plus-constructions as being π1-compatible.
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(i) h∗(pt) has elements of infinite order and Bousfield’s transitional dimension d(h) for
h is ≥ 1.

(ii) h∗(pt) is torsion.

Bousfield’s transitional dimension is defined as follows. Let P (h) denote the set of primes
p for which h∗(pt) is not uniquely p-divisible. For p ∈ P (h) set

dp(h) := max{n|K(Z∧p , n+ 1) is hZ/p-local} ≤ ∞
d(h) := min{dp(h)|p ∈ P (h)};

see [7].

2.14 Corollary If +h is π1-compatible, then the following hold.

(i) For every space X, P h
1 π1(X

+h) = 1.

(ii) For every group G, P h
1 (G/P h

1 G) = 1. �

2.15 Example Let K be real or complex K-homology. Then dp(K) = 1, for all primes
p; see (1.8). Thus d(K) = 1, implying that h is π1-compatible.

Here are some basic criteria for π1-compatibility.

2.16 Lemma For a homology theory h, the following are equivalent.

(i) +h is π1-compatible.

(ii) For every space X, P h
1 (π1X

+h) = 1

(iii) For every group G, P h
1 (G/P h

1 G) = 1

(iv) For every space X, if π1X
+h is h1-perfect, then X+h is simply connected.

(v) If N and Q are h1-perfect groups, then every extension of Q by N is h1-perfect.

Proof (i)⇐⇒(ii) is (2.14).
(ii) =⇒ (iii) Choose X = K(G, 1) in (ii).
(iii) =⇒ (ii) Choose a Kan-Thurston map K(V, 1) → X; see [22]. It follows that
P h

1 π1X
+h ∼= P h

1 (V/P h
1 V ) = 1.

(iii) =⇒ (iv) Given a space X with h1-perfect fundamental group, choose a Kan-
Thurston mapK(U, 1)→ X. It follows thatK(U, 1)+HZ ' X+HZ and, hence,K(U, 1)+h '
X+h. Thus U/P h

1 U
∼= π1K(U, 1)+h ∼= π1X

+h is a quotient of the h1-perfect group π1X.
By (2.3), U/P h

1 U is again h1-perfect, hence is 1, by hypothesis (iii).
(iv) =⇒ (v) Suppose N � G � Q is an extension in which N and Q are h1-perfect.
Choose X := K(G, 1) to see that π1X

+h ∼= G/P h
1 G is a quotient of Q, hence is h1-perfect;

16



see (2.3). By hypothesis (iv), π1X
+h = 1, implying that G is h1-perfect.

(v) =⇒ (iii) A group G gives rise to the following diagram of group extensions

P h
1 G
��

��

P h
1 G

//

��

��

1

��

E // //

����

pullback

G // //

����

Q

P h
1 (G/P h

1 G) // // G/P h
1 G

// // Q

By hypothesis, E is h1-perfect. Moreover, E contains the unique maximal h1-perfect
subgroup P h

1 G of G; see (2.3.iv). Thus E = P h
1 G, implying that P h

1 (G/P h
1 G) = 1. This

completes the proof. �

Every group G is the colimit of the system of its finitely generated subgroups. Here
is an analogue of this fact within the category of hn-perfect groups.

2.17 Proposition Every hn-perfect group G is the directed colimit of the system Gλ

of hn-perfect subgroups such that card(Gλ) is less than or equal to the smallest infinite
cardinal c ≥ card(h∗(pt)).

Proof We know that G is a quotient of πnAhK(G, n). From Bousfield [5, 11] we know
that AhK(G, n) is the union of its acyclic subcomplexes Aλ such that Aλ has at most c
cells. Therefore each element of πnAhK(G, n) belongs to some πnAλ. Further πnAλ is
generated by at most c elements. Consequently, card(πnAλ) ≤ c, because c is infinite.
We find πn(AhK(G, n)→ K(G, n)) sends each πnAλ to an hn-perfect subgroup Gλ of G
with at most c elements. By design, each element of G belongs to some Gλ. The claim
follows. �

More generally, we make the following

2.18 Definition A homology theory h is πn-compatible, n ≥ 1, if, for every (n − 1)-
connected space X, πnX → πnX

+h depends only upon πnX (in particular, πnX
+h ∼=

πnK(πnX,n)+h).

By combining (0.6) with section 5 we obtain:

2.19 Proposition Every connective h is πn-compatible, for n ≥ 1.
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2.20 Remark We know of no homology theory which is not π1-compatible. However,
in general, homology theories need not be πn-compatible if n ≥ 2. To see this, we take
h = K (real or complex K-theory) and X := BSO. Now π2BSO = Z/2, which is K2-
perfect; see (1.8). On the other hand, X is K-local by Meier’s theorem [24], implying
that ker(π2BSO→ π2BSO+K) = 0. Thus K is not π2-compatible.

3 +hn-localization of abelian groups

3.1 Definition An abelian group G is +hn-local if K(G, n) = K(G, n)+h.

3.2 Remark By (2.6), G is +hn-local if and only if πnK(G, n)→ πnK(G, n)+h is an
isomorphism. Therefore, if h is πn-compatible and X is (n − 1)-connected, then πnX

+h

is +hn-local.

We write +hn-AB for the full subcategory of +hn-local groups within AB, the cat-
egory of abelian groups. We write τn : AB −→ +hn-AB for the functor defined by
πnK(G, n) 7→ πnK(G, n)+h. This is a localizing functor on AB by (2.5). From (0.2) we
see that the categories +hn-AB form a descending tower

AB =: +h0-AB ⊃ +h1-AB ⊃ . . . .

3.3 Corollary For all abelian groups G and n ≥ 1, τnG = τn(τn−1G). �

The following examples illustrate the effect of the functor τn. The proofs follow directly
from the works of Bousfield [6] and Mislin [26].

3.4 Example Here h = H(−; Z/p) for a prime p. If n ≥ 2, then τn is Ext(Zp∞ , G),
the “ext-p-completion” of the abelian group G. The maximal h1-perfect subgroup of G
is P h

1 G =
⋃
{U < G | U/pU = 1}. Thus τ1G = G/P h

1 G = im (G→ Ext(Zp∞ , G)).

3.5 Example Here h = K, real or complex K-theory. For an abelian group G we
have τ1G = G, τ2G = G/torsion(G) and τnG = Q⊗Z G if n ≥ 3.

3.6 Lemma For n ≥ 1, let ϕ :L1 → L2 be a map between +hn-local abelian groups.
Then ker(ϕ) is +hn-local and coker(ϕ) is +h(n− 1)-local.
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Proof By (7.2), we have fibK(ϕ, n) ' K(coker(ϕ), n − 1)×K(ker(ϕ), n) and is +hn-
local. The result follows. �

3.7 Theorem Let n ≥ 1 and let G be a group, abelian if n ≥ 2. Then K(P h
nG, n)+h

is the n-connected cover of K(G, n)+h.

Proof For n = 1, this follows from the definition of P h
1 G and lemma (0.3). For n > 1,

it suffices to show that K(P h
nG, n)+h → K(G, n)+h induces an isomorphism in πn+1; see

(2.5). Indeed, using the notation of lemma (2.5), we have an exact sequence

0 // L // A //

�� ��
??

??
??

??
G // L′ // A′ // 0.

P h
nG

??

??��������

By classifying the short exact sequence on the left we obtain the fibration K(A, n) →
K(P h

nG, n) −→ K(L, n+1). Apply +h-localization to obtain the fibration ∗ ' K(A, n)+h →
K(P h

nG, n)+h → K(L, n+ 1), from which the claim follows. �

4 hn-central extensions

Given a homology theory h and a group G, according to (7.7), we have the central ex-
tension πn+1K(G, n)+h � πnAhK(G, n) � P h

nG. In addition, this sequence inherits uni-
versal properties from the universal properties of the colocalization/localization-fibration
AhK(G, n)→ K(G, n)→ K(G, n)+h.

4.1 Definition A central extension of groups L � H � G is called hn-central if L is
+h(n+ 1)-local.

4.2 Definition A central extension

(C) A // // E // // G

is universal with respect to hn-central extensions if every diagram

(C) A // //

��

E // //

��

G

(ξ) L // // H // // G

with hn-central bottom row, can be filled uniquely as indicated. If, in addition, A is
+h(n+ 1)-local, then we call (C) a universal hn-central extension.
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The main objective of this section is to establish the following statements.

4.3 Theorem Every hn-perfect group G, n ≥ 1, gives rise to the central extension

(C) πn+1K(G, n)+h // // πnAhK(G, n) // // G

which is universal with respect to hn-central extensions. Moreover, (C) is a universal
hn-central extension if G is abelian or if h is π2-compatible; see (2.18).

4.4 Proposition Suppose G is abelian or h is π2-compatible. Then, for n ≥ 1, the
+h(n+ 1)-local group πn+1K(G, n)+h is a representing object for the functor

Ext(P h
nG,−) = H2(P h

nG;−) : +h(n+ 1)-AB −→ AB.

Proof This follows from (4.12). �

4.5 Remark This is very much like in the classical situation considered by Kervaire:
For any group G, π2K(G, 1)+ is the representing object for the functor on Z-modules

H2(PG;−) ∼= Hom(H2(PG; Z),−) ∼= Hom(π2K(G, 1)+,−),

where PG denotes the maximal perfect subgroup of G.

4.6 Theorem Suppose h is π2-compatible. If G is an arbitrary group, then

π3K(G, 1)+h ∼= H3(K(P̃ h
1 G, 1)+h; Z),

where P̃ h
1 G is the universal h1-central extension of P h

1 G; see (4.3).

Finally, we analyze the situation where n = 1 and h is not necessarily π2-compatible.
For an arbitrary abelian group H we have the natural isomorphism Hom(τ2H,L) ∼=
Hom(H,L) whenever L is +h2-local. Moreover, if G is any h1-perfect group, then H1G
is h1-perfect too and, therefore, K(H1G, 1)+h ∼= K(Λ, 2) for some +h2-local group Λ.
Thus, for an arbitrary group G, τ2H2(H1P

h
1 G; Z) = H2(H1P

h
1 G; Z). As a result, we can

compute the image of π2K(G, 1)+h ∼= π2K(P h
1 G, 1)+h under the functor τ2 as follows.
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4.7 Proposition Associated to an h1-perfect group G there is the natural short exact
sequence

τ2H2G
//
ϕ

// τ2H2K(G, 1)+h

ψ
oooo

λ // // H2K(H1G, 1)+h

τ2π2K(G, 1)+h π2K(H1G, 1)+h

The sequence splits, but not naturally. Moreover, τ2π2K(G, 1)+h is the kernel of the
universal h1-central extension of G.

We proceed to prove these statements and establish some related facts.

Proof of theorem (4.3) From (7.7) we know that (C) is a central extension. To
establish its universal property, let (ζ) : L � H � G be an hn-central extension. We
need to show that the identity map on G lifts to a unique morphism β :πnAhK(G, n)→ H.
To see that β exists, consider the commutative diagram below.

ΩK(G, n)+h Ωv //

��

K(L, n)

��

AhK(G, n) u //

��

K(H,n)

q

��

K(G, n)

��

K(G, n)

γ

��

K(G, n)+h
v

// K(L, n+ 1)

Here γ classifies the principal fibration associated to (ζ). The universal property of the
localizing map K(G, n) → K(G, n)+h yields v uniquely such that the bottom square
commutes. Thus a map u exists, and πnu is a candidate for β. To see that β is unique, we
argue as follows. Suppose β′ :πnAhK(G, n)→ H also makes the diagram commute. Let β
denote the function obtained by following β by the group inverse operation on H. Then
β′β :πnAhK(G, n) → H is a homomorphism because L is central in H. Realize β′β by a
map u′u :AhK(G, n) → K(H,n). This is possible since AhK(G, n) is (n − 1)-connected;
see (2.8) if n ≥ 2. By design, q ◦ (u′u) ' 0. Consequently, u′u : AhK(G, n) −→ K(L, n),
which is 0 because AhK(G, n) is h-acyclic and K(L, n) is h-local. Thus β = β′.

Finally, πn+1K(G, n)+h is +h(n+1)-local if G is abelian, see (2.8), or if h is π2-compatible;
see (2.18). The proof is complete. �

4.8 Lemma Suppose h is π2-compatible. IfG is h1-perfect, thenK(π1AhK(G, 1), 1)+h

is 2-connected.
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Proof Write U := π1AhK(G, 1), the universal h1-central extension of G; see (4.3). The
cofiber sequence AhK(G, 1) → K(U, 1) → Γ has Γ 1-connected and induces in H(−; Z)
the exact sequence

H2AhK(G, 1) // // H2K(U, 1) // H2Γ // H1AhK(G, 1)
∼= // H1K(U, 1).

Thus Γ is 2-connected. But K(U, 1)→ Γ is a +h-equivalence, because AhK(G, 1)→ ∗ is.
Consequently, we get a homotopy equivalence K(U, 1)+h −→ Γ+h, with Γ+h 2-connected,
since h is π2-compatible. �

As a corollary, we obtain the

Proof of theorem (4.6) We know from (3.7) that π3K(G, 1)+h ∼= π3K(P h
1 G, 1)+h.

The universal h1-central extension C � U � P h
1 G yields the framed fibration

K(C, 1)→ K(U, 1)→ K(P h
1 G, 1)

γ−→ K(C, 2),

which is classified by γ. K(C, 2) is +h-local. Thus we obtain the fibration K(U, 1)+h →
K(P h

1 G, 1)+h → K(C, 2); see [18, p. 74]. In the long exact sequence of homotopy groups
of this fibration, we find the isomorphism π3K(U, 1)+h → π3K(P h

1 G, 1)+h. The first group
is isomorphic to H3K(U, 1)+h, by (4.8). This completes the proof. �

4.9 Lemma Let (ζ) : L � U � G be a universal hn-central extension, and let
(ζ ′) : L′ � H � G be an hn-central extension. If H is hn-perfect, then the unique map
β :U → H is onto.

Proof The universal property of (ζ) yields uniquely the commutative diagram below.

(ζ) L // //

α

��

U // //

β

��

G

(ζ ′) L′ // // H // // G

An arbitrary element of H differs from im(β) by an element of L, implying that im(β) is
normal in H. Therefore, coker(α) ∼= coker(β). But coker(β) is hn-perfect by (2.3.i), and
coker(α) is hn-local by (3.6). Thus both groups are trivial, implying that β is onto. �

The following facts are needed in order to bring methods from homological algebra to
bear on hn-central extensions.

4.10 Lemma If G is an abelian hn-perfect group, n ≥ 1, then every hn-central ex-
tension of G is abelian.
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Proof For a central extension L � E � G, the commutator map γ : E×E −→ E,
γ(t, x) := txt−1x−1, factors to a bilinear map γ̂ :G×G → L. Now γ̂ is trivial because
G×G is hn-perfect, (2.3.i), and L is hn-local; see (0.2). The claim follows. �

4.11 Proposition To an h1-perfect group G, there is associated the universal h1-
central extension (ζG), given by the pushout construction below.

(CG) π2(BG)+h // //

τ2

��

pushout

π1AhBG

��

// // G

(ζG) ChG // // UhG // // G

Here ChG := τ2(π2K(G, 1)+h); see section 3.

Proof (ζG) is h1-central by design. To establish its universal property, consider the
commutative diagram.

(CG) π2K(G, 1)+h // //

α

&&LLLLLLLLLLLL

τ2

��

π1AhK(G, 1) // //

β

&&MMMMMMMMMMMM

��

G

AA
AA

AA
AA

A

AA
AA

AA
AA

A

(ζ) L // // H // G

(ζG) ChG // //

α′

88

UhG // //

β′
88

G

}}}}}}}}}

}}}}}}}}}

(ζ) is hn-central. Therefore we are entitled to the unique morphism (CG) → (ζ), by
(4.3). The unique map α′ comes from the universal property of the localizing map τ2.
The unique map β′ over IdG comes from the pushout construction of UhG. This completes
the proof. �

4.12 Corollary Given an abelian +hn-perfect group G, n ≥ 1, let (ζG) : L � E �
G be the universal hn-central extension of G; see (4.3). If L′ is an arbitrary +h(n + 1)-
local group, then there is the natural equivalence Hom(L,L′)→ Ext(G,L′). �

4.13 Proposition For an hn-perfect group G and a +h(n+1)-local group L, there is
a natural short exact sequence

Ext(H1G,L) //
αL //

∼=
��

H2(G;L)
βL // //

∼=
��

Hom(H2G,L)

Hom(πn+1K(H1G, n)+h, L) // // Hom(πn+1K(G, n)+h, L) // // Hom(H2G,L)

Moreover, αL is an isomorphism whenever G is abelian.
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Proof The top row is the universal coefficient sequence. H2(G;L) classifies central
extensions of G by L. Such extensions are in natural bijective correspondence with
Hom(πn+1K(G, n)+h, L), using (4.3). Further, Ext(H1G,L) consists of abelian extensions
of the h1-perfect group H1G by L. According to (4.10), all central extensions of H1G by
L are automatically abelian. The map Hom(πn+1K(H1G, n)+h, L) → Ext(H1G,L) is a
natural isomorphism by (4.3). The claim follows. �

4.14 Corollary If G is abelian, then Hom(H2G,L) = 0, whenever G is hn-perfect
and L is +h(n+ 1)-local. �

4.15 Corollary If G is abelian and hn-perfect, then H2(G; Z) is h(n+ 1)-perfect.

Proof From (4.14) we see that Hom(H2G,L) = 0, whenever L is +h(n+ 1)-local. But

Hom(H2G,L) = [K(H2G, n+ 1), K(L, n+ 1)]

= [K(H2G, n+ 1)+h, K(L, n+ 1)]

Choosing L := πn+1K(H2G, n+ 1)+h shows that H2G is +h(n+ 1)-perfect. �

Proof of (4.7) From (4.13) we get, for each +h2-local L, the natural short exact
sequence

Hom(H2K(H1G, 1)+h, L) //
αL // Hom(τ2H2K(G, 1)+h, L)

βL // // Hom(τ2H2G,L).

This yields the split short exact sequence in question for formal reasons; see (6.1). The
identification of τ2π2K(G, 1)+h as the kernel of the universal h1-central extension of G
follows from (4.11). �

5 Examples

Here we consider the two cases where h = H(−,ZP ), P a set of primes, or h = H(−,Z/p),
p a prime.

5.1 Example Let h = H(−; ZP ). In this case, each Moore space M(Z/p, 1), p /∈ P , is
h-acyclic. Thus +h-localization factors through Anderson’s localization; see [1], compare
[10]. Consequently a +h-local space X has higher homotopy groups which are ZP -modules
and, for p /∈ P , the p-th power function on π1X is injective. If X is simply connected then
X is +h-local if and only if X is h-local, which holds if and only if all homotopy groups of
X are ZP -modules; compare (1.6). In particular, h is πn-compatible, for all n ≥ 1. Also,
a group is h1-perfect if and only if H1(G; ZP ) = 0. Generalizing Kervaire’s results, see
[23], compare [3, Chap. 8], we conclude at the level of fundamental groups that
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(i) For every group G, P h
1 π1K(G, 1)+h = 1; i.e. h is π1-compatible.

(ii) π2K(G, 1)+h � π1AhK(G, 1) � P h
1 G is the universal h1-central extension of P h

1 G.

(iii) In view of the discussion preceding (4.7), we have

π2K(G, 1)+h ∼= π2K(P h
1 G, 1)+h ∼= H2(K(P h

1 G, 1)+h; Z).

The latter object is a ZP -module, hence is isomorphic to H2(P
h
1 G; ZP ).

(iv) π3K(G, 1)+h ∼= H3(K(P̃ h
1 G, 1)+h; Z) ∼= H3(P̃ h

1 G; ZP ), where P̃ h
1 G denotes the uni-

versal h1-central extension of P h
1 G; see (4.6).

At the level of higher Eilenberg-MacLane spaces we conclude that K(G, n) is +hn-perfect
if and only if G is P ′ torsion. In this case K(G, n) is h-acyclic. For an arbitrary abelian
group G, the +h-construction yields the fibration

K(TP ′G, n)×K(coker(G→ ZP ⊗G), n− 1) → K(G, n) −→ K(ZP ⊗G, n),

where TP ′G denotes the P ′-torsion subgroup of G. �

5.2 Example Let h = H(−; Z/p), where p is a prime. On simply connected spaces
we know that +h-localization agrees with h-localization; see (1.7). Further, on p-good
spaces, h-localization agrees with p-completion in the sense of Bousfield-Kan [9].

Thus, for an abelian group G and n ≥ 2, [5, 4.3] yields the short exact sequence

1 // Ext(Zp∞ , πiK(G, n)) // // πiK(G, n)+h // // Hom(Zp∞ , πi−1K(G, n)).

Therefore G is hn-perfect if and only if Ext(Zp∞ , G) = 0. According to [9, p. 166], this
happens exactly when lim←−

1{Hom(Z/pn, G)} = 0 = lim←− {G/p
kG}.

Turning to the effect of +h-localization on K(G, 1)’s, we begin by identifying h1-perfect
groups.

5.3 Lemma For h = H(−; Z/p), a group G is h1-perfect if and only ifH1(G; Z/p) = 0.

Proof If G is h1-perfect, then K(G, 1)+h is 1-connected. Thus H1(G; Z/p) = 0 because
K(G, 1) → K(G, 1)+h induces an h-isomorphism. Conversely, if H1(G; Z/p) = 0, then
K(G, 1)h is 1-connected. To see this, recall [6] that π1K(G, 1)h is an h-local group, and
such a group Γ vanishes exactly when H1(Γ; Z/p) = 0. By (1.6), K(G, 1)h ' K(G, 1)+h,
implying that G is h1-perfect. �

We know from (2.3.v) that every group G has a unique maximal HZ/p-perfect subgroup
P h

1 G; i.e. P h
1 G is maximal in G with Z/p ⊗ H1(P

h
1 G; Z) = 0. HZ/p is seen to be π1-

compatible, either by [30, 6.1], or by showing that h1-perfect groups are closed under
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extensions (Serre spectral sequence) and invoking (2.16). Also, if X is (n− 1)-connected
and n ≥ 2, then (cf. Bousfield [5, 4.3]) πnX → πnX

h agrees with πnX → Ext(Zp∞ , πnX)
and h is thus πn-compatible for n ≥ 2 as well. This, in conjunction with the discussion
in (5.1), extablishes the claim (2.19).

5.4 Proposition For h = H(−; Z/p), the group π2K(G, 1)+h fits into the natural
short exact sequence

Ext(Zp∞ , H2(P
h
1 G; Z)) // // π2K(G, 1)+h // // Hom(Zp∞ , H1(P

h
1 G; Z)).

The sequence splits, but not naturally.

Proof From (4.7) we get the natural short exact sequence τ2H2(P
h
1 G; Z) � π2K(G, 1)+h

� π2K(H1(P
h
1 G; Z), 1)+h, which splits. The terms at the end are homotopy groups of

h-localizations of abelian Eilenberg-MacLane spaces. Further, [9, p. 183], τ2H2(P
h
1 G; Z)

∼= Ext(Zp∞ , H2(P
h
1 G; Z)) and π2K(H1P

h
1 G, 1)+h ∼= Hom(Zp∞ , H1(P

h
1 G; Z)). �

6 An algebraic lemma

Let C be a class of abelian groups with the following properties
(i) C is closed under products

(ii) if A ∈ C and A ∼= B×C, then B,C ∈ C.

The sole purpose of this section is to formulate the following lemma which we need in the
proof of (4.7).

6.1 Lemma Suppose for groups A,B,C ∈ C there is, for each L ∈ C, a natural short
exact sequence

Hom(A,L) //
αL // Hom(B,L)

βL // // Hom(C,L). (Hom-S)

Then there is a natural short exact sequence

A B
λoooo

ψ
44 44
C,oo

ϕ
oo (S)

which induces (Hom-S). Further, (S) splits, but not naturally.

Proof We obtain maps λ, φ and ψ as follows: Choose L := B to find the map
βB(IdB) =: ϕ :C → B. It induces βL for arbitrary L. Next choose L := C. Since βL is
onto there exists some ψ :B → C such that βL(ψ) = IdC . It follows that ψ ◦ ϕ = IdC
and, therefore, φ is a split monomorphism and ψ is onto. Next choose L := A to find the
map λ := αA(IdA) : B −→ A. The proof that these maps satisfy the required properties
is a bit tedious but entirely elementary. We omit it. �
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7 Some Fiber Lemmas

The lemma and its corollary below are presumably known, even though we are unable to
find a reference. They are included here as the corollary is needed in the proof of (3.6).

7.1 Lemma Given a based continuous map f :E → B, let E ′ = {(e, α) ∈ E×BI|f(e) =
α(0)} and let f ′ :E ′ → B, (e, α) 7→ α(1), be the homotopy theoretical replacement of f by
the fibration f ′. Then the following hold. If f is a homomorphism of topological monoids
(topological groups, abelian topological groups), then fib(f) is a topological submonoid
(topological subgroup, abelian topological subgroup) of E ′.

Proof Since E and B are topological monoids (topological groups, topological abelian
groups), so is E ′ via the operation E ′×E ′ −→ E ′, (e, α) · (e1, α1) = (ee1, αα1), from this
the claim can be read. �

7.2 Corollary Let f : K(A, n) → K(B, n) be a continuous map between abelian
Eilenberg-MacLane spaces, n ≥ 1. Then

fib(f) ' K(ker(πnf), n)×K(coker(πnf), n− 1).

Proof We may assume that f is a homomorphism of abelian topological groups. By
(7.1), fib(f) is an abelian topological group. Thus fib(f) is a retract of the infinite
symmetric product SP∞fib(f) and, hence, is a product of Eilenberg-MacLane spaces

fib(f) '
∏
k≥1

K(πkfib(f), k);

see [13], compare [14, p. 88f]. The claim follows. �

The proposition below is the key to all centrality phenomena which are associated
with fibrations of the form AhX −→ X −→ X+h. It constitutes a strengthened version
of [20, A.2].

7.3 Proposition Let f :E → B be a morphism of topological monoids which have a

homotopy inverse. Then ΩB
j−→ fib(f) −→ E is a homotopy central extension; i.e. the

commutator map

γ :ΩB×fib(f)
j×Id
−−→ fib(f)×fib(f)

[−,−]

−−→ fib(f)

is null homotopic. �
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It is possible to give a direct proof of this claim. It follows, in spirit, the classical
argument that higher homotopy groups are commutative; see e.g. [33, p.125]. An alternate
argument can be based on unpublished work of M. Arkowitz [2]. However, for our present
purposes, it will suffice to establish the following corollary (7.7) which only depends upon
the much simpler self contained development below.

7.4 Definition A based fibration F
i→ E → X is called Π-central if all Whitehead

products [i∗α, β] vanish, where α ∈ πpF , β ∈ πqE and p, q ≥ 1.

7.5 Example The path fibration over any based space X is Π-central.

7.6 Lemma Any pullback of a Π-central fibration along a based map is Π-central.

Proof Given a pullback diagram of a Π-central fibration,

F
i // E

u // Y

pullback

F
i′

// W

f ′

OO

u′
// X

f

OO

we need to check that [i′∗α, β] = 0 whenever α ∈ πpF and β ∈ πqW . Writing W as the
appropriate subspace of E ×X, we find i′∗α = (f ′i′α, u′i′α) = (iα, 0) and β = (f ′β, u′β).
Therefore, [i∗α, β] = ([iα, f ′β], 0) = (0, 0), since F → E → Y is a Π-central fibration.

�

7.7 Corollary If f : Y → X is a based map, then ΩX → fib(f) → Y is a Π-central
fibration. �
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