ON ORTHOGONAL PAIRS IN CATEGORIES AND LOCALISATION*†

Carles Casacuberta, Georg Peschke and Markus Pfenniger

In memory of Frank Adams

0 Introduction

Special forms of the following situation are often encountered in the literature: Given a class of Morphisms \mathcal{M} in a category \mathcal{C} , consider the full subcategory \mathcal{D} of objects $X \in \mathcal{C}$ such that, for each diagram

$$A \xrightarrow{f} B$$

$$\downarrow g \downarrow \\
X$$

with $f \in \mathcal{M}$, there is a unique morphism $h \colon B \to X$ with hf = g. The orthogonal subcategory problem [13] asks whether \mathcal{D} is reflective in \mathcal{C} , i.e., under which conditions the inclusion functor $\mathcal{D} \to \mathcal{C}$ admits a left adjoint $E \colon \mathcal{C} \to \mathcal{D}$; see [17]. Many authors have given conditions on the category \mathcal{C} and the class of morphisms \mathcal{M} ensuring the reflectivity of \mathcal{D} , sometimes even providing an explicit construction of the left adjoint $E \colon \mathcal{C} \to \mathcal{D}$; see for example Adams[1], Bousfield [3],[4], Deleanu-Frei-Hilton [9][10], Heller [15], Yosimura [22], Dror-Farjoun [11], Kelly [12]. The functor E is often referred to as a localisation functor of \mathcal{C} at the subcategory \mathcal{D} . Most of the known existence results of left adjoints work well when the category \mathcal{C} is cocomplete [12] or complete [19]. Unfortunately, these methods cannot be directly applied to the homotopy category of CW-complexes, as it

^{*}London Mathematical Society Lecture Note Series. 175, Adams Memorial Symposium on Algebraic Topology: 1, Manchester 1990, Edited by N. Ray and G. Walker

[†]This is a copy of the original article. For private use only

is neither complete nor cocomplete. This difficulty is often circumvented by resorting to semi-simplicial techniques.

In this paper we offer a construction of localisation functors depending only on the availability of certain weak colimits in the category \mathcal{C} . From a technical point of view, the existence of such weak colimits reduces our arguments essentially to the situation in cocomplete categories. From a practical point of view, however, our result is a simple recipe for the explicit construction of localisation functors. It unifies a number of constructions created for specific purposes; cf. [4][18],[20]. In fact, its scope goes beyond these applications: For example, it can be used to show that there is a whole family of functors extending P-localisation of nilpotent homotopy types to the homotopy category of all CW-complexes. We deal with this issue in [7], where we discuss the geometric significance of these functors as well as their interdependence. Section 1 of the present paper contains background followed by the statement and proof of our main result: the affirmative solution of the orthogonal subcategory problem in a wide range of cases. In Section 2 we discuss extensions of a localisation functor in a category \mathcal{C} to localisation functors in supercategories of \mathcal{C} . Our results allow us to give, in Section 3, a uniform existence proof for various localisation functors and also to explain their interrelation. The basic features of our project have been outlined in [8].

Acknowledgements. We are indebted to Emmanuel Dror-Farjoun, discussions with whom significantly helped the present development. We are also grateful to the CRM of Barcelona for the hospitality extended to the authors.

1 Orthogonal pairs and localisation functors

We begin by explaining the basic categorical notions we shall use. Our main sources are [1],[3],[4],[13].

A morphism $f: A \to B$ and an object X in a category \mathcal{C} are said to be *orthogonal* if the function

$$f^* \colon \mathcal{C}(\mathcal{B}, \mathcal{X}) \longrightarrow \mathcal{C}(\mathcal{A}, \mathcal{X})$$

is bijective, where $\mathcal{C}(\ ,\)$ denotes the set of morphisms between two given objects of \mathcal{C} . For a class of morphisms \mathcal{M} , we denote by \mathcal{M}^{\perp} the class of objects orthogonal to each $f \in \mathcal{M}$. Similarly, for a class of objects \mathcal{O} , we denote by \mathcal{O}^{\perp} the class of morphisms orthogonal to each $X \in \mathcal{O}$.

1.1 Definition An orthogonal pair in \mathcal{C} is a pair $(\mathcal{S}, \mathcal{D})$ consisting of a class of morphisms \mathcal{S} and a class of objects \mathcal{D} such that $\mathcal{D}^{\perp} = \mathcal{S}$ and $\mathcal{S}^{\perp} = \mathcal{D}$.

If (E, η) is an idempotent monad [1] in \mathcal{C} , then the classes

$$S = \{f : A \to B | Ef : EA \cong EB \}$$

$$\mathcal{D} = \{X | \eta_X : S \cong EX \}$$

form an orthogonal pair (note that these could easily be proper classes). The morphisms in \mathcal{S} are then called E-equivalences and the objects in \mathcal{D} are said to be E-local. Not every orthogonal pair $(\mathcal{S}, \mathcal{D})$ arises from an idempotent monad in this way; cf. [19]. If so, we call E the localisation functor associated with $(\mathcal{S}, \mathcal{D})$. Then the full subcategory of objects in \mathcal{D} is reflective and E is left adjoint to the inclusion $\mathcal{D} \to \mathcal{C}$. The following proposition enables us to detect localisation functors.

1.2 Proposition Let \mathcal{C} be a category and $(\mathcal{S}, \mathcal{D})$ an orthogonal pair in \mathcal{C} . If for each object X there exists a morphism $\eta_X \colon X \to EX$ in \mathcal{S} with EX in \mathcal{D} , then

- (i) η_X is terminal among the morphisms in \mathcal{S} with domain X;
- (ii) η_X is initial among the morphisms of \mathcal{C} from X to an object of \mathcal{D} ;
- (iii) The assignment $X \mapsto EX$ defines a localisation functor on \mathcal{C} associated with \mathcal{S}, \mathcal{D}).

For each class of morphisms \mathcal{M} , the pair $(\mathcal{M}^{\perp\perp}, \mathcal{M}^{\perp})$ is orthogonal. We say that this pair is generated by \mathcal{M} and call $\mathcal{M}^{\perp\perp}$ the saturation of \mathcal{M} . If $\mathcal{M}^{\perp\perp} = \mathcal{M}$, then \mathcal{M} is said to be saturated. This terminology applies to objects as well. Note that if \mathcal{S}, \mathcal{D}) is an orthogonal pair then both \mathcal{S} and \mathcal{D} are saturated. The next properties of saturated classes are easily checked and well-known in a slightly more general context [3][13].

- 1.3 Lemma If a class of morphisms S is saturated, then
 - (i) \mathcal{S} contains all isomorphisms of \mathcal{C} .
 - (ii) If the composition gf of two morphisms is defined and any two of f, g, gf are in \mathcal{S} , then the third is also in \mathcal{S} .
- (iii) Whenever the coproduct of a family of morphisms of S exists, it is in the class S.
- (iv) If the diagram

$$\begin{array}{ccc}
A & \xrightarrow{s} & B \\
\downarrow & & \downarrow \\
C & \xrightarrow{t} & D
\end{array}$$

is a push-out in which $s \in \mathcal{S}$, then $t \in \mathcal{S}$.

(v) If α is an ordinal and $F: \alpha \to \mathcal{C}$ is a directed system with direct limit T, such that for each $i < \alpha$ the morphism $s_i : F(0) \to F(i)$ is in \mathcal{S} , then $s_{\alpha} : F(0) \to T$ is in \mathcal{S} .

We call a class of morphisms \mathcal{S} closed in \mathcal{C} if it satisfies (i), (ii) and (iii) in Lemma 1.3 above. We restrict attention to closed classes from now on.

We proceed with the statement of our main result. Recall that a *weak colimit* of a diagram is defined by requiring only existence, without insisting on uniqueness, in the defining universal property [17].

- **1.4 Theorem** Let \mathcal{C} be a category with coproducts and let \mathcal{S} be a closed class of morphisms in \mathcal{C} . Suppose that:
- (C1) There is a set $S_0 \subseteq S$ with $S_0^{\perp} = S^{\perp}$.
- (C2) For every diagram $C \stackrel{f}{\leftarrow} A \stackrel{s}{\rightarrow} B$ with $s \in \mathcal{S}$ there exists a weak push-out

$$\begin{array}{ccc}
A & \xrightarrow{s} & B \\
\downarrow & & \downarrow \\
C & \xrightarrow{t} & Z
\end{array}$$

with $t \in \mathcal{S}$.

- (C3) There is an ordinal α such that, for every $\beta \leq \alpha$, every directed system $f: \beta \to \mathcal{C}$ in which the morphisms $s_i: F(0) \to F(i)$ are in \mathcal{S} for $i < \beta$ admits a weak direct limit T satisfying
 - (a) the morphism $s_{\beta} \colon F(0) \to T$ is in \mathcal{S} ;
 - (b) for each $s: A \to B$ in S_0 , every morphism $f: A \to T$ factors through $f': A \to F(i)$ for some $i < \alpha$;
 - (c) if two morphisms $g_1, g_2 \colon B \to T$ satisfy $g_1 s = g_2 s$ with $s \colon A \to B$ in \mathcal{S}_0 , then they factor through $g'_1, g'_2 \colon B \to F(i)$ for some $i < \alpha$, in such a way that $g'_1 s = g'_2 s$.

Then the class S is saturated and the orthogonal pair (S, S^{\perp}) admits a localisation functor E. Furthermore, for each object X, the localizing morphism $\eta_X \colon X \to EX$ can be constructed by means of a weak direct limit indexed by α .

Proof For each morphism $s: A \to B$ in S_0 fix a weak push-out

$$\begin{array}{ccc}
A & \xrightarrow{s} & B \\
\downarrow & & \downarrow t_2 \\
B & \xrightarrow{t_1} & Z_s
\end{array}$$

in which $t_1 \in \mathcal{S}$. Then also $t_2 \in \mathcal{S}$ because \mathcal{S} is closed.

1.5 Remark With applications in mind, it is worth observing that part (c) of hypothesis (C3) in Theorem 1.4 is satisfied if each map $f: Z_s \to T$ factors through $f': Z_s \to F(i)$ for some $i < \alpha$.

Choose next a morphism $u_s: Z_s \to B$ rendering commutative the diagram

and note that $u_s \in \mathcal{S}$. Write \mathcal{D} for \mathcal{S}^{\perp} . We shall construct, for each object $X \in \mathcal{C}$, a morphism $\eta_X \colon X \to EX$ with $EX \in \mathcal{D}$ and $\eta_X \in \mathcal{S}$. Set $X_0 = X$. Given $i < \alpha$, assume that X_i has been constructed, together with a morphism $X \to X_i$ belonging to \mathcal{S} . Define a morphism $\sigma_i \colon X_i \to X_{i+1}$ as follows: For each $s \colon A \to B$ in the set \mathcal{S}_t , consider all morphisms $\varphi \colon A \to X_i$ and $\psi \colon Z_s \to X_i$ for which no factorisation through $s \colon A \to B$, resp. $u_s \colon Z_s \to B$, exists (if there are no such morphisms, then $X_i \in \mathcal{D}$ and we may set $EX = X_i$). Choose a weak push-out

$$\coprod_{s \in \mathcal{S}_0} \left(\left(\coprod_{\varphi} A \right) \coprod \left(\coprod_{\psi} Z_s \right) \right) \xrightarrow{\phi} \coprod_{s \in \mathcal{S}_0} \left(\left(\coprod_{\varphi} B \right) \coprod \left(\coprod_{\psi} B \right) \right) \\
\downarrow \\
X_i \xrightarrow{\sigma} X_{i+1}$$

with $\sigma_i \in \mathcal{S}$, in which f is the coproduct morphism and ϕ is the corresponding coproduct of copies of $s: A \to B$ and $u_s: Z_s \to B$ (which is therefore a morphism in \mathcal{S}). Iterate this procedure until reaching the ordinal α . If $\beta \leq \alpha$ is a limit ordinal, define X_{β} by choosing a weak direct limit of the system $\{X_i, i < \beta\}$, according to (C3). Set $EX = X_{\alpha}$. The construction guarantees that the composite morphism $\eta_X: X \to EX$ is in \mathcal{S} . We claim that $EX \in \mathcal{D}$. Since $\mathcal{D} = \mathcal{S}_0^{\perp}$, it suffices to check that EX is orthogonal to each morphism in \mathcal{S}_0 . Take a diagram

$$A \xrightarrow{s} B$$

$$f \downarrow \\ EX$$

with $s \in \mathcal{S}_0$. Then f factors through $f' \colon A \to X_i$ for some $i < \alpha$ and hence, either f'

factors through $s: A \to B$, or there is a commutative diagram

$$\begin{array}{ccc}
A & \xrightarrow{s} & B \\
f' \downarrow & & \downarrow g' \\
X_i & \xrightarrow{\sigma_i} & X_{i+1}
\end{array}$$

which provides a morphism $g: B \to EX$ such that gs = f. Now suppose that there are two maps $g_1, g_2: B \to EX$ with $g_1s = g_2s = f$. Then we can choose an object X_i with $i < \alpha$, and morphisms $g'_1, g'_2: B \to X_i$ such that $g'_1s = g'_2s$. Using the weak push-out property of Z_s , we obtain a morphism $h: Z_s \to X_i$ rendering commutative the diagram

Then, either h factors through $u_s: Z_s \to B$ and $g'_1 = g'_2$, or there is a commutative diagram

$$Z_s \xrightarrow{u_s} B$$

$$\downarrow k$$

$$X_i \xrightarrow{\sigma_i} X_{i+1}$$

which yields

$$\sigma_i g_1' = \sigma_i h t_1 = k u_s t_1 = k = k u_s t_2 = \sigma_i h t_2 = \sigma_i g_2'$$

and hence $g_1 = g_2$. This shows that $EX \in \mathcal{D}$.

To complete the proof it remains to show that $\mathcal{S}^{\perp\perp} = \mathcal{S}$. The inclusion $\mathcal{S} \subseteq \mathcal{S}^{\perp\perp}$ is trivial. For the converse, let $f: A \to B$ be orthogonal to all objects in \mathcal{D} . Since $\eta_A: A \to EA$ is in \mathcal{S} and $EB \in \mathcal{D}$, there is a unique morphism Ef rendering commutative the diagram

But $\eta_B f$ is orthogonal to EA and this provides a morphism $g: EB \to EA$ which is two-sided inverse to Ef. Hence Ef is an isomorphism and $f \in \mathcal{S}$ because \mathcal{S} is closed. \square

Given an orthogonal pair $(\mathcal{S}, \mathcal{D})$, the class \mathcal{S} is saturated and, a fortiori, closed. Therefore

1.6 Corollary Let \mathcal{C} be a category with coproducts and $(\mathcal{S}, \mathcal{D})$ an orthogonal pair in \mathcal{C} . Suppose that some set $\mathcal{S}_0 \subseteq \mathcal{S}$ generates the pair $(\mathcal{S}, \mathcal{D})$ and that the class \mathcal{S} satisfies conditions (C2) and (C3) in Theorem 1.4. Then the pair $(\mathcal{S}, \mathcal{D})$ admits a localisation functor E.

Moreover, if the category \mathcal{C} is cocomplete, then it follows from Lemma 1.3 that for each orthogonal pair $(\mathcal{S}, \mathcal{D})$ condition (C2) and part (a) of condition (C3) are automatically satisfied. This leads to Corollary 1.7 below. An object X has been called *presentable* [14] or *s-definite* [3] if, for some sufficiently large ordinal α , the functor $\mathcal{C}(\mathcal{X}, \cdot)$ preserves direct limits of directed systems $F: \alpha \to \mathcal{C}$. For example, all groups are presentable [3]. For finitely presented groups it suffices to take α to be the first infinite ordinal.

1.7 Corollary [3] Let \mathcal{C} be a cocomplete category. Let $(\mathcal{S}, \mathcal{D})$ be the orthogonal pair generated by an arbitrary set \mathcal{S}_{l} of morphisms of \mathcal{C} . Suppose that the domains and codomains of morphisms in \mathcal{S}_{0} are presentable. Then $(\mathcal{S}, \mathcal{D})$ admits a localisation functor.

Since any colimit of presentable objects is again presentable, the following definition together with the results of [19] imply Corollary 1.9 below.

- **1.8 Definition** A set $\{E_{\alpha}\}$ of objects of a category \mathcal{C} is a cogenerator set of \mathcal{C} if any morphism $f: X \to Y$ of \mathcal{C} inducing bijections $f_*: \mathcal{C}(E_{\alpha}, X) \cong \mathcal{C}(E_{\alpha}, Y)$ for each α , is an isomorphism.
- **1.9 Corollary** Let \mathcal{C} be a cocomplete category. Suppose that \mathcal{C} has a cogenerator set whose elements are presentable. Then any orthogonal pair generated by an arbitrary set of morphisms of \mathcal{C} admits a localisation functor.

2 Extending localisation functors

Let E be a localisation functor on the subcategory C' of C. We wish to discuss extensions of E over C. Familiar examples include the extension of P-localisation of abelian groups to nilpotent groups and further to all groups. Two problems arise here: existence – for which we often refer to Theorem 1.4 – and uniqueness. An appropriate setting for discussing the latter is obtained by partially ordering the collection of all orthogonal pairs in C as follows: For two given orthogonal pairs (S_1, \mathcal{D}_1) , (S_2, \mathcal{D}_2) in C we write $(S_1, \mathcal{D}_1) \geq (S_2, \mathcal{D}_2)$ if $\mathcal{D}_1 \supseteq \mathcal{D}_2$ (or, equivalently, if $S_1 \subseteq S_2$).

2.1 Remark If E_1, E_2 are localisation functors associated to (S_1, \mathcal{D}_1) and (S_2, \mathcal{D}_2) respectively, and if $(S_1, \mathcal{D}_1) \geq (S_2, \mathcal{D}_2)$, then there is a natural transformation of functors $E_1 \to E_2$. In fact, the restriction of E_2 to \mathcal{D}_1 is left adjoint to the inclusion $\mathcal{D}_2 \to \mathcal{D}_1$.

An orthogonal pair (S, \mathcal{D}) of C is said to *extend* the orthogonal pair (S', \mathcal{D}') of the subcategory C' if both $S' \subseteq S$ and $D' \subseteq D$. The collection of all extensions of (S', \mathcal{D}') is partially ordered. Moreover we have

2.2 Proposition Let C' be a subcategory of C and (S', D') an orthogonal pair in C'. If (S, D) is an extension of (S', D') to C, then

$$((\mathcal{S}')^{\perp\perp},(\mathcal{S}')^{\perp}) \geq (\mathcal{S},\mathcal{D}) \geq ((\mathcal{D}')^{\perp},(\mathcal{D}')^{\perp\perp}),$$

where orthogonality is meant in \mathcal{C} .

In this situation, we call the orthogonal pair in \mathcal{C} generated by the class \mathcal{S}' the maximal extension of $(\mathcal{S}', \mathcal{D}')$, and the one generated by \mathcal{D}' the minimal extension. A convenient tool for recognising such extremal extensions is given in the next proposition.

- **2.3 Proposition** Let C' be a subcategory of C, (S', D') an extension of (S', D') to C. Then
 - (i) (S, \mathcal{D}) is the maximal extension of (S', \mathcal{D}') if and only if there is a subclass $S_0 \subseteq S'$ such that $S_0^{\perp} \subseteq \mathcal{D}$.
- (ii) $(\mathcal{S}, \mathcal{D})$ is the minimal extension of $(\mathcal{S}', \mathcal{D}')$ if and only if there is a subclass $\mathcal{D}_0 \subseteq \mathcal{D}'$ such that $\mathcal{D}_0^{\perp} \subseteq \mathcal{S}$.

Of course (S', \mathcal{D}') admits a unique extension to C if and only if the minimal and the maximal extensions coincide.

2.4 Example Let \mathcal{C} be the category of finite groups and \mathcal{C}' the subcategory of finite nilpotent groups. Fix a prime p and consider the orthogonal pair $(\mathcal{S}', \mathcal{D}')$ in \mathcal{C}' associated to p-localisation [16]. The class \mathcal{D}' consists of all p-groups, and the orthogonal pair $(\mathcal{S}, \mathcal{D}) = ((\mathcal{D}')^{\perp}, \mathcal{D}')$ in \mathcal{C} is both the maximal and the minimal extension of $(\mathcal{S}', \mathcal{D}')$ to \mathcal{C} . The pair $(\mathcal{S}, \mathcal{D})$ admits a localisation functor – namely, mapping each finite group G onto its maximal pquotient, – which is therefore the unique extension to all finite groups of the p-localisation of finite nilpotent groups.

3 Applications of the basic existence result

Examples 3.1, 3.2 and 3.3 below discuss well-known functors, each of whose constructions may be viewed as particular cases of Theorem 1.4. Examples 3.4 and 3.7 are new.

3.1 Example Let \mathcal{H}_{∞} be the pointed homotopy category of simply-connected CW-complexes, and P a set of primes. The P-localisation functor described by Sullivan [21] is associated to the orthogonal pair $(\mathcal{S}, \mathcal{D})$ generated by the set

$$\mathcal{S}_0 = \{\rho_n^k \colon S^k \to S^k | \mathrm{deg} \rho_n^k = n, k \ge 2, n \in P'\},$$

where P' denotes the set of primes not in P. Objects in \mathcal{D} are simply connected CW-complexes whose homotopy groups are \mathbb{Z}_P -modules. Morphisms in \mathcal{S} are $H_*(\ ;\mathbb{Z}_P)$ -equivalences. The hypotheses of Corollary 1.6 are fulfilled by taking α to be the first infinite ordinal and using homotopy colimits.

3.2 Example Let \mathcal{H} denote the pointed homotopy category of connected CW-complexes and h_* an additive homology theory. Take \mathcal{S} to be the class of morphisms $f: X \to Y$ inducing an isomorphism $f_*: h_*(X) \cong h_*(Y)$. We know from [4] that \mathcal{S} satisfies the hypotheses of Theorem 1.4: Choose α to be the smallest infinite ordinal whose cardinality is bigger than the cardinality of $h_*(\text{pt})$; the collection of all CW-inclusions $\varphi: A \to B$ with $h_*(\varphi) = 0$ and $\text{card}(B) < \text{card}(\alpha)$ represents a set \mathcal{S}_0 with $\mathcal{S}_0^{\perp} = \mathcal{S}^{\perp}$.

In the case $h_* = H_*(\ ; \mathcal{Z}_{\mathcal{P}})$, the corresponding orthogonal pair $(\mathcal{S}, \mathcal{D})$ extends the pair $(\mathcal{S}', \mathcal{D}')$ associated with P-localisation of nilpotent spaces (see [4]). It is indeed the minimal extension of $(\mathcal{S}', \mathcal{D}')$, because he spaces $K(\mathbb{Z}_P, n)$, $n \geq 1$, belong to \mathcal{D}' (cf. Proposition 2.2).

3.3 Example Let \mathcal{G} be the category of groups and P a set of primes. The P-localisation functor described by Ribenboim [20] is associated to the orthogonal pair $(\mathcal{S}, \mathcal{D})$ generated by the set

$$S_0 = \{ \rho_n \colon \mathbb{Z} \to \mathbb{Z} | \rho_n(1) = n, \quad n \in P' \}.$$

Groups in \mathcal{D} are those in which P'-roots exist and are unique. Such groups have been studied for several decades (see [2][20] and the references there). The hypotheses of Theorem 1.4 are readily checked (use Corollary 1.7). We may choose α to be first infinite ordinal. We denote by $l: G \to G_P$ the P-localisation homomorphism.

If (S', \mathcal{D}') is the orthogonal pair corresponding to P-localisation of nilpotent groups, then, since $S_0 \subset S'$, Proposition 2.2 implies that (S, \mathcal{D}) is the maximal extension of (S', \mathcal{D}') . In particular, for each group G there is a natural homomorphism from G_P to the Bousfield $H\mathbb{Z}_P$ -localisation of G (cf. [5].

3.4 Example Example 3.3 can be generalised to the category \mathcal{C} of π -groups for a fixed group π ; that is, objects are groups with a π -action and morphisms are action-preserving group homomorphisms. Let $F(\xi)$ be the free π -group on one generator (it can be explicitly described as the free group on the symbols $\xi^x, x \in \pi$, with the obvious left π -action; cf. [18]. Define a π -homomorphism $\rho_{n,x} \colon F(\xi) \to F(\xi)$ for each $x \in \pi$, $n \in \mathbb{Z}$, by the rule

$$\rho_{n,x}(\xi) = \xi(x \cdot \xi)(x^2 \cdot \xi) \dots (x^{n-1} \cdot \xi)$$

and consider the set morphisms

$$S_0 = \{ \rho_{n,x} : F(\xi) \to F(\xi) | x \in \pi, \ n \in P' \}.$$

By Corollary 1.7, the orthogonal pair (S, \mathcal{D}) generated by S_0 admits a localisation functor. It again suffices to take the first infinite ordinal as α in the construction. Example 3.3 is the special case $\pi = \{1\}$.

We extend the term P-local to the π -groups in \mathcal{D} and term P-equivalences to the morphisms in \mathcal{S} . They are particularly relevant to the next example.

3.5 Example This example is extracted from [7]. Let \mathcal{H} be the pointed homotopy category of connected CW-complexes and P a set of primes. We consider the class \mathcal{D} of those spaces X in \mathcal{H} for which the power map $\rho_n \colon \Omega X \to \Omega X$, $\rho_n(\omega) = \omega^n$ is a homotopy equivalence for all $n \in P'$. Then there exists a set of morphisms \mathcal{S}_0 such that $\mathcal{S}_0^{\perp} = \mathcal{D}$, namely

$$\mathcal{S}_0 = \{ \rho_n^k \colon S^1 \wedge (S^k \cup \mathrm{pt}) \to S^1 \wedge (S^k \cup \mathrm{pt}) | K \ge 0, \ n \in P' \},$$

where $\rho_n^k = \rho_n \wedge \operatorname{Id}$, $\rho_n \colon S^1 \to S^1$ denotes the standard map of degree n, and pt denotes a disjoint basepoint. Morphisms in $\mathcal{S} = \mathcal{D}^{\perp}$ turn out to be those $f \colon X \to Y$ for which $f_* \colon \pi_1(X) \to \pi_1(Y)$ is a P-equivalence of groups and $f_* \colon H_*(X;A) \to H_*(Y;A)$ is an isomorphism for each abelian $\pi_1(Y)_P$ -group A which is P-local in the sense of Example 3.4. The conditions of Corollary 1.6 are satisfied. One can take α to be the first infinite ordinal. Spaces in \mathcal{D} will be called P-local and maps in \mathcal{S} will be called P-equivalences. We denote the P-localisation map by $l \colon X \to X_P$. The pair $(\mathcal{S}, \mathcal{D})$ extends the pair $(\mathcal{S}', \mathcal{D}')$ corresponding to P-localisation of nilpotent spaces.

Since the orthogonal pair corresponding to $H_*(\ ;\mathbb{Z}_P)$ -localisation is minimal among those pairs extending P-localisation of nilpotent spaces (see Example 3.2), for each space X there is a natural map from X_P to the $H_*(\ ;\mathbb{Z}_P)$ -localisation of X.

3.6 Example Let \mathcal{H} denote the pointed homotopy category of connected CW-complexes and P a set of primes. Consider the orthogonal pair $(\mathcal{S}, \mathcal{D})$ generated by the set

$$S_0 = \{ \rho_n^k \colon S^k \to S^k | \deg \rho_n^k = n, \ k \ge 1, \ n \in P' \}.$$

The class \mathcal{D} consists of spaces whose homotopy groups are P-local, and one finds, with the same methods as in [7],[9], that \mathcal{S} consists of morphisms $f: X \to Y$ such that $f_*: \pi_1(X) \to \pi_1(Y)$ is a P-equivalence of groups and $f^*: H^k(Y; A) \to H^k(X; A)$ is an isomorphism for $k \geq 2$ and every $\mathbb{Z}_P[\pi_1(Y)_P]$ -module A. This class \mathcal{S} is not closed under homotopy colimits, because the natural map from \mathcal{S}^1 to $K(\mathbb{Z}_P, 1)$, which is the homotopy colimit of a certain direct system of maps ρ_n^1 , $n \in P'$, fails to induce an isomorphism in H^2 with coefficients in the group ring $\mathbb{Z}_P[\mathbb{Z}_P]$, and hence does not belong to \mathcal{S} . Thus, Corollary 1.6 does not apply in this case. In fact, the orthogonal pair $(\mathcal{S}, \mathcal{D})$ does not admit a localisation functor [7].

On the other hand, if we delete from S_0 the maps ρ_n^1 , $n \in P'$, then the resulting class \mathcal{D} consists of spaces whose higher homotopy groups are P-local, and S consists of morphisms $f: X \to Y$ inducing an isomorphism of fundamental groups and such that $f^* \colon H^k(Y; A) \to H^k(X; A)$ is an isomorphism for all k and every $\mathbb{Z}_P[\pi_1(Y)]$ -module A. This orthogonal pair (S, \mathcal{D}) is the maximal extension to \mathcal{H} of the pair described in Example 3.1. Now Corollary 1.6 provides a localisation functor associated to (S, \mathcal{D}) . This functor induces an isomorphism of fundamental groups and P-localises the higher homotopy groups, i.e., corresponds to fibrewise localisation with respect to the universal covering fibration $\tilde{X} \to X \to K(\pi_1(X), 1)$.

3.7 Example Fix a group G and let $\mathcal{H}(G)$ be the category whose objects are maps $X \to K(G,1)$ in \mathcal{H} and whose morphisms are homotopy commutative triangles. Given an abelian G-group A, let $\mathcal{S}(A)$ be the class of morphisms f such that $f_* \colon H_*(X;A) \to H_*(H;A)$ is an isomorphism. Then $\mathcal{S}(A)$ satisfies the conditions of Theorem 1.4. Example 3.2 corresponds to the particular case $G = \{1\}$. In [7] we show that several idempotent functors on \mathcal{H} extending P-localisation of nilpotent spaces can be obtained by splicing localisation functors with respect to twisted homology in a suitable way. In fact, Example 3.5 can be alternatively obtained as a special case of this procedure.

References

- [1] J.F. Adams. Localisation and Completion. Univ. of Chicago Press 1975. 1, 2, 3
- [2] G. Baumslag. Some Aspects of Groups with Unique Roots. *Acta Math.* $\mathbf{104}$ (1960) 217-303. 9
- [3] A.K. Bousfield. Construction of factorization systems in categories. *J. Pure Appl. Algebra* **9** (1977) 207 220. 1, 2, 3, 7
- [4] A.K. Bousfield. The localization of spaces with respect to homology. *Topology* **14** no. 2 (1975) 135 150. 1, 2, 9

- [5] A.K. Bousfield. Homological localization towers for groups and Π-modules. AMS Memoirs 10 no. 186 (1977). 9
- [6] A.K. Bousfield, D.M. Kan. *Homotopy limits, Completions, and Localizations*. Springer-Verlag LNM 304, Berlin New York 1972.
- [7] C. Casacuberta, G. Peschke. Localizing with respect to self maps of the circle. Trans. AMS 339 (1993) 117 – 140. 2, 10, 11
- [8] C. Casacuberta, G. Peschke, M. Pfenniger. Sur la localisation dans les catégories avec un apllication à la théorie de l'homotopie. C. R. Acad. Sci., Paris, Sér. I, Math. 310 (1990) 207 210. 2
- [9] A. Deleanu, P.J. Hilton. On Postnikov-true families of complexes and the Adams completion. Fund. Math. 106 no. 1 (1980) 53 65. 1, 11
- [10] A. Deleanu, A. Frei, P.J. Hilton. Generalized Adams completion. *Cahiers Top. Géom. Diff.* **15** (1974) 61 82. 1
- [11] E. Dror-Farjoun. Homotopical localization and periodic spaces (unpublished manuscript, 1988). 1
- [12] G.M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. *Bull. Austral. Math. Soc.* **22** (1980) 1 83. 1
- [13] P.J. Freyd, G.M. Kelly. Categories of continuous functors (I). J. Pure Appl. Algebra 2 (1972) 169 191. 1, 2, 3
- [14] P. Gabriel, F. Ulmer *Lokal präsentierbare Kategorien*.. Springer-Verlag Lect. N. Math. 221, Berlin New York 1971. 7
- [15] A. Heller. Homotopy theories. AMS Memoirs 71, Amer. Math. Soc. (1988). 1
- [16] P. Hilton, G. Mislin, J. Roitberg. Localization of Nilpotent Groups and Spaces North-Holland, Amsterdam 1975 8
- [17] S. Mac Lane. Categories for the Working Mathematician. Springer Verlag, GTM 5, New York-Heidelberg-Berlin 1971. 1, 4
- [18] G. Peschke. Localizing groups with action. *Publ. Matem.* **33** (1989) 227 234. 2, 10
- [19] M. Pfenniger. Remarks related to the Adams spectral sequence. *U.C.N.W. Maths Preprint* **91.19** Bangor (1991). 1, 3, 7

- [20] P. Ribenboim. Torsion et localisation de groupes arbitraires. Springer-Verlag Lect. N. Math. **740** (1978) 444 456. 2, 9
- [21] D. Sullivan. Genetics of homotopy theory and the Adams conjecture. Ann. of Math. ${\bf 100}~(1974)~1-79.~9$
- [22] Z.I. Yosimura. Localization of Eilenberg-Mac Lane G-spaces with respect to homology. Osaka J. Math. **20** (1983) 521 527. 1