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0 Introduction

Special forms of the following situation are often encountered in the literature: Given a
class of Morphisms M in a category C, consider the full subcategory D of objects X ∈ C
such that, for each diagram

A
f

//

g

��

B

X

with f ∈ M, there is a unique morphism h : B → X with hf = g. The orthogonal
subcategory problem [13] asks whether D is reflective in C, i.e., under which conditions the
inclusion functor D → C admits a left adjoint E : C → D; see [17]. Many authors have
given conditions on the category C and the class of morphismsM ensuring the reflectivity
of D, sometimes even providing an explicit construction of the left adjoint E : C → D; see
for example Adams[1], Bousfield [3],[4], Deleanu-Frei-Hilton [9][10], Heller [15], Yosimura
[22], Dror-Farjoun [11], Kelly [12]. The functor E is often referred to as a localisation
functor of C at the subcategory D. Most of the known existence results of left adjoints
work well when the category C is cocomplete [12] or complete [19]. Unfortunately, these
methods cannot be directly applied to the homotopy category of CW-complexes, as it
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is neither complete nor cocomplete. This difficulty is often circumvented by resorting to
semi-simplicial techniques.

In this paper we offer a construction of localisation functors depending only on the
availability of certain weak colimits in the category C. From a technical point of view,
the existence of such weak colimits reduces our arguments essentially to the situation in
cocomplete categories. From a practical point of view, however, our result is a simple
recipe for the explicit construction of localisation functors. It unifies a number of con-
structions created for specific purposes; cf. [4][18],[20]. In fact, its scope goes beyond
these applications: For example, it can be used to show that there is a whole family of
functors extending P -localisation of nilpotent homotopy types to the homotopy category
of all CW-complexes. We deal with this issue in [7], where we discuss the geometric
significance of these functors as well as their interdependence. Section 1 of the present
paper contains background followed by the statement and proof of our main result: the
affirmative solution of the orthogonal subcategory problem in a wide range of cases. In
Section 2 we discuss extensions of a localisation functor in a category C to localisation
functors in supercategories of C. Our results allow us to give, in Section 3, a uniform
existence proof for various localisation functors and also to explain their interrelation.
The basic features of our project have been outlined in [8].

Acknowledgements. We are indebted to Emmanuel Dror-Farjoun, discussions with whom
significantly helped the present development. We are also grateful to the CRM of Barcelona
for the hospitality extended to the authors.

1 Orthogonal pairs and localisation functors

We begin by explaining the basic categorical notions we shall use. Our main sources are
[1],[3],[4],[13].

A morphism f : A→ B and an object X in a category C are said to be orthogonal if
the function

f ∗ : C(B,X ) −→ C(A,X )

is bijective, where C( , ) denotes the set of morphisms between two given objects of C.
For a class of morphisms M, we denote by M⊥ the class of objects orthogonal to each
f ∈ M. Similarly, for a class of objects O, we denote by O⊥ the class of morphisms
orthogonal to each X ∈ O.

1.1 Definition An orthogonal pair in C is a pair (S,D) consisting of a class of mor-
phisms S and a class of objects D such that D⊥ = S and S⊥ = D.
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If (E, η) is an idempotent monad [1] in C, then the classes

S = {f : A→ B|Ef : EA ∼= EB}
D = {X|ηX :S ∼= EX}

form an orthogonal pair (note that these could easily be proper classes). The morphisms
in S are then called E-equivalences and the objects in D are said to be E-local. Not
every orthogonal pair (S,D) arises from an idempotent monad in this way; cf. [19]. If
so, we call E the localisation functor associated with (S,D). Then the full subcategory
of objects in D is reflective and E is left adjoint to the inclusion D → C. The following
proposition enables us to detect localisation functors.

1.2 Proposition Let C be a category and (S,D) an orthogonal pair in C. If for each
object X there exists a morphism ηX : X → EX in S with EX in D, then

(i) ηX is terminal among the morphisms in S with domain X;

(ii) ηX is initial among the morphisms of C from X to an object of D;

(iii) The assignment X 7→ EX defines a localisation functor on C associated with S,D).

For each class of morphismsM, the pair (M⊥⊥,M⊥) is orthogonal. We say that this
pair is generated by M and call M⊥⊥ the saturation of M. If M⊥⊥ = M, then M is
said to be saturated. This terminology applies to objects as well. Note that if S,D) is
an orthogonal pair then both S and D are saturated. The next properties of saturated
classes are easily checked and well-known in a slightly more general context [3][13].

1.3 Lemma If a class of morphisms S is saturated, then

(i) S contains all isomorphisms of C.

(ii) If the composition gf of two morphisms is defined and any two of f, g, gf are in S,
then the third is also in S.

(iii) Whenever the coproduct of a family of morphisms of S exists, it is in the class S.

(iv) If the diagram

A
s //

��

B

��

C
t
// D

is a push-out in which s ∈ S, then t ∈ S.
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(v) If α is an ordinal and F : α→ C is a directed system with direct limit T , such that
for each i < α the morphism si : F (0)→ F (i) is in S, then sα : F (0)→ T is in S.

We call a class of morphisms S closed in C if it satisfies (i), (ii) and (iii) in Lemma 1.3
above. We restrict attention to closed classes from now on.

We proceed with the statement of our main result. Recall that a weak colimit of a
diagram is defined by requiring only existence, without insisting on uniqueness, in the
defining universal property [17].

1.4 Theorem Let C be a category with coproducts and let S be a closed class of
morphisms in C. Suppose that:

(C1) There is a set S0 ⊆ S with S⊥0 = S⊥.

(C2) For every diagram C
f← A

s→ B with s ∈ S there exists a weak push-out

A
s //

f
��

B

��

C
t
// Z

with t ∈ S.

(C3) There is an ordinal α such that, for every β ≤ α, every directed system f : β → C
in which the morphisms si : F (0)→ F (i) are in S for i < β admits a weak direct
limit T satisfying

(a) the morphism sβ : F (0)→ T is in S;

(b) for each s : A→ B in S0, every morphism f : A→ T factors through f ′ : A→
F (i) for some i < α;

(c) if two morphisms g1, g2 : B → T satisfy g1s = g2s with s : A → B in S0,
then they factor through g′1, g

′
2 : B → F (i) for some i < α, in such a way that

g′1s = g′2s.

Then the class S is saturated and the orthogonal pair (S,S⊥) admits a localisation functor
E. Furthermore, for each object X, the localizing morphism ηX : X → EX can be
constructed by means of a weak direct limit indexed by α.

Proof For each morphism s : A→ B in S0 fix a weak push-out

A
s //

s

��

B

t2
��

B
t1

// Zs

in which t1 ∈ S. Then also t2 ∈ S because S is closed.
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1.5 Remark With applications in mind, it is worth observing that part (c) of hypothe-
sis (C3) in Theorem 1.4 is satisfied if each map f : Zs → T factors through f ′ : Zs → F (i)
for some i < α.

Choose next a morphism us : Zs → B rendering commutative the diagram

A
s //

s

��

B

Id

��

t2
��

B

Id ..

t1
// Zs

us

��

B

and note that us ∈ S. Write D for S⊥. We shall construct, for each object X ∈ C, a
morphism ηX : X → EX with EX ∈ D and ηX ∈ S. Set X0 = X. Given i < α, assume
that Xi has been constructed, together with a morphism X → Xi belonging to S. Define
a morphism σi : Xi → Xi+1 as follows: For each s : A → B in the set S′, consider all
morphisms ϕ : A→ Xi and ψ : Zs → Xi for which no factorisation through s : A→ B,
resp. us : Zs → B, exists (if there are no such morphisms, then Xi ∈ D and we may set
EX = Xi). Choose a weak push-out

∐
s∈S0

(
(
∐

ϕA)
∐

(
∐

ψ Zs)
)

φ
//

f

��

∐
s∈S0

(
(
∐

ϕB)
∐

(
∐

ψ B)
)

��

Xi σi
// Xi+1

with σi ∈ S, in which f is the coproduct morphism and φ is the corresponding coproduct
of copies of s : A → B and us : Zs → B (which is therefore a morphism in S). Iterate
this procedure until reaching the ordinal α. If β ≤ α is a limit ordinal, define Xβ by
choosing a weak direct limit of the system {Xi, i < β}, according to (C3). Set EX = Xα.
The construction guarantees that the composite morphism ηX : X → EX is in S. We
claim that EX ∈ D. Since D = S⊥0 , it suffices to check that EX is orthogonal to each
morphism in S0. Take a diagram

A s //

f
��

B

EX

with s ∈ S0. Then f factors through f ′ : A → Xi for some i < α and hence, either f ′

5



factors through s : A→ B, or there is a commutative diagram

A
s //

f ′

��

B

g′

��

Xi σi
// Xi+1

which provides a morphism g : B → EX such that gs = f . Now suppose that there are
two maps g1, g2 : B → EX with g1s = g2s = f . Then we can choose an object Xi with
i < α, and morphisms g′1, g

′
2 : B → Xi such that g′1s = g′2s. Using the weak push-out

property of Zs, we obtain a morphism h : Zs → Xi rendering commutative the diagram

A
s //

s

��

B

g′2

��

t2
��

B

u ..

g′1

// Zs

h
  

Xi

Then, either h factors through us : Zs → B and g′1 = g′2, or there is a commutative
diagram

Zs

h

��

us // B

k

��

Xi σi
// Xi+1

which yields
σig
′
1 = σiht1 = kust1 = k = kust2 = σiht2 = σig

′
2

and hence g1 = g2. This shows that EX ∈ D.
To complete the proof it remains to show that S⊥⊥ = S. The inclusion S ⊆ S⊥⊥

is trivial. For the converse, let f : A → B be orthogonal to all objects in D. Since
ηA : A→ EA is in S and EB ∈ D, there is a unique morphism Ef rendering commutative
the diagram

A
f

//

ηA
��

B

ηB
��

EA
Ef

// EB.

But ηBf is orthogonal to EA and this provides a morphism g : EB → EA which is two-
sided inverse to Ef . Hence Ef is an isomorphism and f ∈ S because S is closed. �

Given an orthogonal pair (S,D), the class S is saturated and, a fortiori, closed. There-
fore
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1.6 Corollary Let C be a category with coproducts and (S,D) an orthogonal pair in
C. Suppose that some set S0 ⊆ S generates the pair (S,D) and that the class S satisfies
conditions (C2) and (C3) in Theorem 1.4. Then the pair (S,D) admits a localisation
functor E.

Moreover, if the category C is cocomplete, then it follows from Lemma 1.3 that for each
orthogonal pair (S,D) condition (C2) and part (a) of condition (C3) are automatically
satisfied. This leads to Corollary 1.7 below. An object X has been called presentable
[14] or s-definite [3] if, for some sufficiently large ordinal α, the functor C(X , ) preserves
direct limits of directed systems F : α→ C. For example, all groups are presentable [3].
For finitely presented groups it suffices to take α to be the first infinite ordinal.

1.7 Corollary [3] Let C be a cocomplete category. Let (S,D) be the orthogonal
pair generated by an arbitrary set S′ of morphisms of C. Suppose that the domains and
codomains of morphisms in S0 are presentable. Then (S,D) admits a localisation functor.

�

Since any colimit of presentable objects is again presentable, the following definition
together with the results of [19] imply Corollary 1.9 below.

1.8 Definition A set {Eα} of objects of a category C is a cogenerator set of C if any
morphism f : X → Y of C inducing bijections f∗ : C(Eα, X) ∼= C(Eα, Y ) for each α, is
an isomorphism.

1.9 Corollary Let C be a cocomplete category. Suppose that C has a cogenerator set
whose elements are presentable. Then any orthogonal pair generated by an arbitrary set
of morphisms of C admits a localisation functor. �

2 Extending localisation functors

Let E be a localisation functor on the subcategory C ′ of C. We wish to discuss extensions
of E over C. Familiar examples include the extension of P -localisation of abelian groups to
nilpotent groups and further to all groups. Two problems arise here: existence – for which
we often refer to Theorem 1.4 – and uniqueness. An appropriate setting for discussing the
latter is obtained by partially ordering the collection of all orthogonal pairs in C as follows:
For two given orthogonal pairs (S1,D1), (S2,D2) in C we write (S1,D1) ≥ (S2,D2) if
D1 ⊇ D2 (or, equivalently, if S1 ⊆ S2).
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2.1 Remark If E1, E2 are localisation functors associated to (S1,D1) and (S2,D2)
respectively, and if (S1,D1) ≥ (S2,D2), then there is a natural transformation of functors
E1 → E2. In fact, the restriction of E2 to D1 is left adjoint to the inclusion D2 → D1.

�

An orthogonal pair (S,D) of C is said to extend the orthogonal pair (S ′,D′) of the
subcategory C ′ if both S ′ ⊆ S and D′ ⊆ D. The collection of all extensions of (S ′,D′) is
partially ordered. Moreover we have

2.2 Proposition Let C ′ be a subcategory of C and (S ′,D′) an orthogonal pair in C ′.
If (S,D) is an extension of (S ′,D′) to C, then

((S ′)⊥⊥, (S ′)⊥) ≥ (S,D) ≥ ((D′)⊥, (D′)⊥⊥),

where orthogonality is meant in C.

In this situation, we call the orthogonal pair in C generated by the class S ′ the maximal
extension of (S ′,D′), and the one generated by D′ the minimal extension. A convenient
tool for recognising such extremal extensions is given in the next proposition.

2.3 Proposition Let C ′ be a subcategory of C, (S ′,D′) an extension of (S ′,D′) to C.
Then

(i) (S,D) is the maximal extension of (S ′,D′) if and only if there is a subclass S0 ⊆ S ′
such that S⊥0 ⊆ D.

(ii) (S,D) is the minimal extension of (S ′,D′) if and only if there is a subclass D0 ⊆ D′
such that D⊥0 ⊆ S.

Of course (S ′,D′) admits a unique extension to C if and only if the minimal and the
maximal extensions coincide.

2.4 Example Let C be the category of finite groups and C ′ the subcategory of finite
nilpotent groups. Fix a prime p and consider the orthogonal pair (S ′,D′) in C ′ associated
to p-localisation [16]. The class D′ consists of all p-groups, and the orthogonal pair
(S,D) = ((D′)⊥,D′) in C is both the maximal and the minimal extension of (S ′,D′) to
C. The pair (S,D) admits a localisation functor – namely, mapping each finite group G
onto its maximal pquotient, – which is therefore the unique extension to all finite groups
of the p-localisation of finite nilpotent groups.
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3 Applications of the basic existence result

Examples 3.1, 3.2 and 3.3 below discuss well-known functors, each of whose constructions
may be viewed as particular cases of Theorem 1.4. Examples 3.4 and 3.7 are new.

3.1 Example Let H∞ be the pointed homotopy category of simply-connected CW-
complexes, and P a set of primes. The P -localisation functor described by Sullivan [21]
is associated to the orthogonal pair (S,D) generated by the set

S0 = {ρkn : Sk → Sk|degρkn = n, k ≥ 2, n ∈ P ′},

where P ′ denotes the set of primes not in P . Objects in D are simply connected CW-
complexes whose homotopy groups are ZP -modules. Morphisms in S are H∗( ;ZP )-
equivalences. The hypotheses of Corollary 1.6 are fulfilled by taking α to be the first
infinite ordinal and using homotopy colimits.

3.2 Example LetH denote the pointed homotopy category of connected CW-complexes
and h∗ an additive homology theory. Take S to be the class of morphisms f : X → Y
inducing an isomorphism f∗ : h∗(X) ∼= h∗(Y ). We know from [4] that S satisfies the hy-
potheses of Theorem 1.4: Choose α to be the smallest infinite ordinal whose cardinality
is bigger than the cardinality of h∗(pt); the collection of all CW-inclusions ϕ : A → B
with h∗(ϕ) = 0 and card(B) < card(α) represents a set S0 with S⊥0 = S⊥.

In the case h∗ = H∗( ;ZP), the corresponding orthogonal pair (S,D) extends the
pair (S ′,D′) associated with P -localisation of nilpotent spaces (see [4]). It is indeed the
minimal extension of (S ′,D′), because he spaces K(ZP , n), n ≥ 1, belong to D′ (cf.
Proposition 2.2).

3.3 Example Let G be the category of groups and P a set of primes. The P -
localisation functor described by Ribenboim [20] is associated to the orthogonal pair
(S,D) generated by the set

S0 = {ρn : Z→ Z|ρn(1) = n, n ∈ P ′}.

Groups in D are those in which P ′-roots exist and are unique. Such groups have been
studied for several decades (see [2][20] and the references there). The hypotheses of
Theorem 1.4 are readily checked (use Corollary 1.7). We may choose α to be first infinite
ordinal. We denote by l : G→ GP the P -localisation homomorphism.

If (S ′,D′) is the orthogonal pair corresponding to P -localisation of nilpotent groups,
then, since S0 ⊂ S ′, Proposition 2.2 implies that (S,D) is the maximal extension of
(S ′,D′). In particular, for each group G there is a natural homomorphism from GP to
the Bousfield HZP -localisation of G (cf. [5].
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3.4 Example Example 3.3 can be generalised to the category C of π-groups for a fixed
group π; that is, objects are groups with a π-action and morphisms are action-preserving
group homomorphisms. Let F (ξ) be the free π-group on one generator (it can be explicitly
described as the free group on the symbols ξx, x ∈ π, with the obvious left π-action; cf.
[18]. Define a π-homomorphism ρn,x : F (ξ)→ F (ξ) for each x ∈ π, n ∈ Z, by the rule

ρn,x(ξ) = ξ(x · ξ)(x2 · ξ) . . . (xn−1 · ξ)

and consider the set morphisms

S0 = {ρn,x :F (ξ)→ F (ξ)|x ∈ π, n ∈ P ′}.

By Corollary 1.7, the orthogonal pair (S,D) generated by S0 admits a localisation functor.
It again suffices to take the first infinite ordinal as α in the construction. Example 3.3 is
the special case π = {1}.

We extend the term P -local to the π-groups in D and term P -equivalences to the
morphisms in S. They are particularly relevant to the next example.

3.5 Example This example is extracted from [7]. Let H be the pointed homotopy
category of connected CW-complexes and P a set of primes. We consider the class D of
those spaces X in H for which the power map ρn : ΩX → ΩX, ρn(ω) = ωn is a homotopy
equivalence for all n ∈ P ′. Then there exists a set of morphisms S0 such that S⊥0 = D,
namely

S0 = {ρkn : S1 ∧ (Sk ∪ pt)→ S1 ∧ (Sk ∪ pt)|K ≥ 0, n ∈ P ′},

where ρkn = ρn∧ Id, ρn : S1 → S1 denotes the standard map of degree n, and pt denotes
a disjoint basepoint. Morphisms in S = D⊥ turn out to be those f : X → Y for which
f∗ : π1(X) → π1(Y ) is a P -equivalence of groups and f∗ : H∗(X;A) → H∗(Y ;A) is an
isomorphism for each abelian π1(Y )P -group A which is P -local in the sense of Example
3.4. The conditions of Corollary 1.6 are satisfied. One can take α to be the first infinite
ordinal. Spaces in D will be called P -local and maps in S will be called P -equivalences.
We denote the P -localisation map by l : X → XP . The pair (S,D) extends the pair
(S ′,D′) corresponding to P -localisation of nilpotent spaces.

Since the orthogonal pair corresponding to H∗( ;ZP )-localisation is minimal among
those pairs extending P -localisation of nilpotent spaces (see Example 3.2), for each space
X there is a natural map from XP to the H∗( ;ZP )-localisation of X.

3.6 Example LetH denote the pointed homotopy category of connected CW-complexes
and P a set of primes. Consider the orthogonal pair (S,D) generated by the set

S0 = {ρkn : Sk → Sk|degρkn = n, k ≥ 1, n ∈ P ′}.
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The class D consists of spaces whose homotopy groups are P -local, and one finds, with
the same methods as in [7],[9], that S consists of morphisms f : X → Y such that
f∗ : π1(X) → π1(Y ) is a P -equivalence of groups and f ∗ : Hk(Y ;A) → Hk(X;A) is an
isomorphism for k ≥ 2 and every ZP [π1(Y )P ]-module A. This class S is not closed under
homotopy colimits, because the natural map from S1 to K(ZP , 1), which is the homotopy
colimit of a certain direct system of maps ρ1n, n ∈ P ′, fails to induce an isomorphism in
H2 with coefficients in the group ring ZP [ZP ], and hence does not belong to S. Thus,
Corollary 1.6 does not apply in this case. In fact, the orthogonal pair (S,D) does not
admit a localisation functor [7].

On the other hand, if we delete from S0 the maps ρ1n, n ∈ P ′, then the resulting
class D consists of spaces whose higher homotopy groups are P -local, and S consists of
morphisms f : X → Y inducing an isomorphism of fundamental groups and such that
f ∗ : Hk(Y ;A) → Hk(X;A) is an isomorphism for all k and every ZP [π1(Y )]-module
A. This orthogonal pair (S,D) is the maximal extension to H of the pair described
in Example 3.1. Now Corollary 1.6 provides a localisation functor associated to (S,D).
This functor induces an isomorphism of fundamental groups and P -localises the higher
homotopy groups, i.e., corresponds to fibrewise localisation with respect to the universal
covering fibration X̃ → X → K(π1(X), 1).

3.7 Example Fix a group G and let H(G) be the category whose objects are maps
X → K(G, 1) in H and whose morphisms are homotopy commutative triangles. Given
an abelian G-group A, let S(A) be the class of morphisms f such that f∗ : H∗(X;A)→
H∗(H;A) is an isomorphism. Then S(A) satisfies the conditions of Theorem 1.4. Example
3.2 corresponds to the particular case G = {1}. In [7] we show that several idempotent
functors on H extending P -localisation of nilpotent spaces can be obtained by splicing
localisation functors with respect to twisted homology in a suitable way. In fact, Example
3.5 can be alternatively obtained as a special case of this procedure.
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