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Abstract

Given a connected space X, we consider the effect of Quillen’s plus construction on
the homotopy groups of X in terms of its Postnikov decomposition. Specifically,
using universal properties of the fibration sequence AX → X → X+, we explain
the contribution of πnX to πnX+, πn+1X

+ and πnAX, πn+1AX explicitly in
terms of the low dimensional homology of πnX regarded as a module over π1X. Key
ingredients developed here for this purpose are universal Π-central fibrations and
a theory of universal central extensions of modules, analogous to universal central
extensions of perfect groups. 1

Introduction Quillen’s plus construction (cf. [10]), applied to a space X, yields a
universal map η : X → X+, which is characterized by the fact that it quotients out
the maximal perfect subgroup of π1X and induces isomorphisms in all homology theories
(including homology with twisted coefficients). In general, a map between connected
spaces satisfies this homological condition if and only if its homotopy fiber is acyclic; see
[11] and compare [5]. We denote the homotopy fiber of η : X → X+ by AX.

Understanding the map π∗η : π∗X → π∗X
+ is helpful in studying the effect of homolog-

ical localization functors on homotopy groups (see 4.5) and in higher algebraic K-theory.
Such understanding was obtained early on in low dimensions and, except for special cases,
this has remained the extent of our knowledge. With the following result we clarify com-
pletely the contribution of πnX to πnX

+ and πn+1X
+, for each n ≥ 2.

Theorem A Let X be a connected CW complex. Applying the plus construction to
the Postnikov section K(πnX, n) → PnX → Pn−1X (n ≥ 2), yields the commutative
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diagram of fibrations whose properties are formulated below:

F //

¯¯

K(πnX, n) //

¯¯

Φ

¯¯

APnX //

¯¯

PnX //

¯¯

(PnX)+

¯¯

APn−1X // Pn−1X // (Pn−1X)+

(FD)

The fibers F and Φ are (n−1)-connected, and their lowest non-vanishing homotopy groups
fit into the natural commutative diagram of exact sequences in which every vertical arrow
is an isomorphism.

H1(G̃; πnX) // //

∼=
¯¯

I[G̃]⊗G̃ πnX
µ

//

∼=

¯¯

πnX // // H0(G̃; πnX)

∼=

¯¯

πn+1Φ // // πnF // πnX // // πnΦ

(UCE)

Moreover, there is an epimorphism

πn+2Φ
∼=−→ πn+1F −→→ Hn+1F

∼=←− H2(G̃; I[G̃]⊗G̃ πnX).

Here G̃ is the universal central extension of the maximal perfect subgroup G of π1X, and
I[G̃] is the augmentation ideal of the integral group ring of G̃. £

On the background of Theorem A: Our approach to Theorem A is guided by prop-
erties of the homotopy fibration sequence of η:

ΩX+ i−→ AX −→ X
η−→ X+

As noted in [9, 0.1.iv], the acyclic space AX is just the acyclization of X, as defined by
Dror in [3] (see also [4]). The following two theorems express the universal properties of the
plus construction and acyclization in a form which lends itself better to an interpretation
in terms of homotopy groups.

Theorem B [9, 7.7] The fibration ΩX+ i→ AX → X is Π-central, in the sense
that all Whitehead products [i∗α, β] vanish, where α ∈ πpΩX+ and β ∈ πqAX, p, q ≥ 1.

£

Theorem C The fibration ΩX+ → AX → X is initial amongst Π-central fibrations
in the following sense: given a solid diagram of Π-central fibrations

ΩX+ //

¯¯

AX //

¯¯

X

F // E q
// X
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in which G := im(q) is the maximal perfect subgroup of π1X, dotted maps exist making
the diagram commute. Moreover, the dotted maps are unique up to vertical homotopy.

£

To get a feel for the implications of Theorems B and C, consider first the following well
known exact sequence

π2X
+ //

¿¿ ¿¿
??

??
??

?
π1AX //

¿¿ ¿¿
??

??
??

? π1X // π1X
+

H2G
??

??�������

G
??

??�������

in which π1AX is the universal central extension of G.

This sequence can be nicely explained as a consequence of Theorems B and C, using
results on the universal central extension of a perfect group, due to Milnor [8, Sect. 5]
and Kervaire [6].

As another consequence of Theorems B and C, we obtain Theorem A. It depends upon a
new concept from algebra, namely the universal central extension of a perfect module:

Theorem D If G is a 2-acyclic group (that is, H1(G; Z) = 0 = H2(G; Z)), then
every G-module M fits into an exact sequence

H1(G; M) // // I[G]⊗G M
µ

// M // // H0(G; M)

whose terms have the following properties:

(i) im(µ) = I[G].M is the unique maximal perfect submodule of M ; i.e. I[G].im(µ) =
im(µ).

(ii) H1(G; M) º I[G]⊗GM ° im(µ) is a central extension of im(µ) (i.e. G acts trivially
on H1(G; M)), and it is initial amongst all such central extensions. £

Organization of the paper Section 1 supplies some facts on Π-central fibrations,
leading up to Theorem C. Section 2 develops material on universal central extensions of
a module over a group ring, leading up to Theorem D. In Section 3 we prove Theorem A,
and in Section 4 we compute the acyclic Postnikov invariants of AX (cf. [3]) in terms of
the ordinary Postnikov invariants of X.

We thank the referees of this paper for their constructive comments.
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1 Π-central fibrations with perfect target

Here we develop properties of Π-central fibrations, leading up to Theorem C which, in
turn, guides our approach towards analyzing the effect of the plus construction on ho-
motopy groups. We assume throughout that spaces, maps and homotopies are pointed.
Spaces are assumed to be path connected, except possibly those arising as homotopy
fibers.

1.1 Definition [9, Sect. 7] A fibration sequence F
i−→ E → B is called Π-central

if all Whitehead products [i∗α, β] vanish for any α ∈ πpF and β ∈ πqE with p, q ≥ 1.

Given a map q : W → Y , we refer to G := im(q∗) < π1Y as its target in homotopy
dimension 1. We say that q has perfect target (in homotopy dimension 1) if G is a perfect
group.

1.2 Lemma Let F → W
q−→ Y be a Π-central fibration, such that q has perfect

target G < π1Y , and suppose f : X → Y is a map for which G′ := (π1f)−1G is a
perfect subgroup of π1X. Then the pullback fibration

F
i′ // W ′ q′

//

f ′

¯¯

pull

back

X

f

¯¯

F
i

// W q
// Y

is Π-central, and q′ has perfect target G′.

Proof The pullback of a Π-central fibration is again Π-central by [9, 7.6]. An elemen-
tary argument shows that im(π1q

′) = G′, which is perfect by assumption. £

1.3 Example For every connected CW-space X, the sequence ΩX+ → AX
c−→ X

is a Π-central fibration, and c has perfect target equal to the maximal perfect subgroup
of π1X. £

1.4 Definition A Π-central fibration F → W
q−→ X such that q has perfect target

G is universal if, under conditions (i) and (ii) below, for every solid diagram

F //

¯¯

W
q

//

f̃

¯¯

X

f

¯¯

F1
// W1 q1

// Y
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there exists a morphism f̃ of fibrations, unique up to homotopy, which makes the diagram
commute. Diagram conditions:

(i) The bottom row is a Π-central fibration such that q1 has perfect target G1;

(ii) f∗(G), the image of G under π1f , is contained in G1.

1.5 Theorem For every connected CW-space X, the Π-central fibration ΩX+ →
AX

c−→ X is universal, and c has target G (=the maximal perfect subgroup of π1X).

Proof According to Definition 1.4, suppose we are given a solid diagram

ΩX+ //

¯¯

AX
c //

f̃

¯¯

X

f

¯¯

F1
// W1 q1

// Y

We use obstruction theory to obtain the required morphism of fibrations. At the level of
fundamental groups we have the diagram of central extensions

H2G // //

¯¯

π1AX
π1c

// //

¯¯

G

π1f

¯¯

ker(π1q1) // // π1W1
// // G1

with universal top row. Thus there exists a lift f̃ 2 : (AX)2 → W1 from the 2-skeleton
of AX to W1, and its restriction to (AX)1 is homotopically unique. The existence and

homotopical uniqueness of f̃ follow because AX is acyclic and the action of π1Y on π∗F1

is trivial. £

Theorem C follows as a special case of Theorem 1.5.

2 Universal central extensions of perfect G-modules

In this section we develop the concept of perfect modules and their central extensions,
and prove Theorem D. We assume some background material on perfect groups and their
universal central extensions from [8, Sect. 5].

Given a group G and a left G-module M , we often use the exact “multiplication sequence”

H1(G; M) // // I ⊗G M
µ

// M // // H0(G; M) (MS)

5



which comes from applying Tor
Z[G]
− (−, M) to I º Z[G] ° Z. Here Z[G] is the integral

group ring of G and I is its augmentation ideal. All tensor products are over Z[G], and
µ is the multiplication map.

2.1 Definition For n ≥ 1, a group G is called n-acyclic if Hk(G; Z) = 0 for 1 ≤
k ≤ n.

Thus 1-acyclic groups are known as perfect groups. 2-acyclic groups are sometimes called
“superperfect”.

2.2 Definition Let G be a group and n ≥ 0. A G-module M is called n-acyclic if
Hk(G; M) = 0 for 0 ≤ k ≤ n.

In analogy with the group theoretic terminology, we sometimes refer to a 0-acyclic G-
module as a “perfect G-module”.

2.3 Lemma A group G is n-acyclic if and only if its augmentation ideal I is an
(n− 1)-acyclic G-module.

Proof Apply H∗(G;−) to I º Z[G] ° Z. £

2.4 Corollary A group G is 1-acyclic if and only if the multiplication map µ :
I ⊗G I → I is an epimorphism. G is 2-acyclic if and only if µ is an isomorphism.

Proof Apply Lemma 2.3 to (MS), using M = I. £

2.5 Corollary For n = 1, 2 let G be an n-acyclic group, and let M be an arbitrary
G-module; then the G-module I ⊗G M is (n− 1)-acyclic.

Proof The multiplication map µ′ for M ′ = I ⊗G M is given by the composite

I ⊗G (I ⊗G M)
∼= // (I ⊗G I)⊗G M

µI⊗M
// I ⊗G M.

Thus the claim follows from Corollary 2.4. £

2.6 Corollary If G is an n-acyclic group and A is an abelian group with trivial
G-action, then Tor

Z[G]
k (I, A) = 0, for 0 ≤ k ≤ n− 1.

Proof Use the long exact sequence obtained by applying TorZ[G]
∗ (−, A) to I º

Z[G] ° Z. £
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2.7 Definition A colocalizing functor on a category C is a functor C : C → C,
together with a natural transformation ε : C → IdC making the diagram below commu-
tative.

C ◦ C
Cε
∼=

//

ε◦C ∼=
¯¯

C

ε

¯¯

C ε
// Id

2.8 Theorem For a 2-acyclic group G, the functor E := I ⊗G−, together with the
natural transformation µ : E → Id defined by

µM : I ⊗G M
multiply
−−→ M ,

is a colocalizing functor from the category Z[G]-Mod of left G-modules onto the category
A1Z[G]-Mod of 1-acyclic G-modules.

Proof E takes values in A1Z[G]-Mod by Corollary 2.5. The colocalizing properties
of E require that

(1) the diagram

EEM
EµM

∼=
//

µEM ∼=
¯¯

EM

µM

¯¯

EM µM

// M

be commutative and natural in M ; and

(2) the designated arrows in this diagram be isomorphisms.

(1) follows from basic properties of the tensor product. For (2), use Corollary 2.4 to
deduce that µEM is an isomorphism. To see that EµM = I ⊗G µM is an isomorphism,
too, we break the sequence (MS) up into short exact sequences:

H1(G; M) º I ⊗G M
µM−→→ PM and PM º M ° H0(G; M).

Apply Tor
Z[G]
− (I,−) to these sequences, and use Corollary 2.6 to see that I ⊗G µM is the

composite of the two isomorphisms

I ⊗G (I ⊗G M)
∼=−→ I ⊗G PM and I ⊗G PM

∼=−→ I ⊗G M.

The claim follows. £
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2.9 Definition The center of a G-module N is the submodule of elements on which
G acts trivially. A central extension of a G-module M is a short exact sequence of G-
modules A º N ° M so that A maps into the center of N .

In analogy with universal central extensions of perfect groups we prove

2.10 Theorem Given a 2-acyclic group G, a central extension A º M̃ ° M of
G-modules is initial amongst all central extensions of M if and only if M̃ is 1-acyclic .

Proof Assume M̃ is 1-acyclic. In the diagram below, we assume the solid part of the
front face is given.

0

����
��

��
��

//

¿
¿
¿

¯¯
¿
¿
¿

M̃
∼= //

��
��

��

��
��

��

¿
¿
¿

¯¯
¿
¿
¿

EM

����
��

��
��

A // //

¯¯

M̃
// //

¯¯

M

0

����
��

��
��

// EN

����
��

��
��

∼= // EM

����
��

��
��

B // // N q
// // M

The solid part of the back face results from applying the colocalizing functor E. We
find EA = 0 = EB by Corollary 2.6. Thus the back rows are exact, being the ends of
TorZ[G]

∗ (I,−)-long exact sequences. So there is a map M̃ → EN which makes the right

hand back square commute. This yields a map f : M̃ → N making the vertical square
in the center, as well as the right front face, commute. To see that it is unique, assume
g : M̃ → N is another such map. Then q ◦ (f − g) : M̃ → M is the zero map, so (f − g)
lifts to B. This implies that (f − g) = 0, because H0(G; M) = 0 and G acts trivially
on B. Thus f = g, implying that the sequence is initial amongst all central extensions of
M .

To see the converse, we invoke Theorem (2.11) which, of course, does not depend on the
part of (2.10) we are going to prove now: Part (ii) shows that M is 0-acyclic. Part (i)

implies that M̃ ∼= EM which is 1-acyclic. £

We call a sequence of G-modules, as in Theorem 2.10, the universal central extension of
M .

2.11 Theorem Given a 2-acyclic group G, the following hold:

(i) For every 0-acyclic G-module M

H1(G; M) º I ⊗G M = EM ° M

is a universal central extension of M .
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(ii) A G-module M has a universal central extension if and only if M is 0-acyclic;
compare [8, 5.7].

Proof (i) The given sequence is (MS), taking into account that M is 0-acyclic. EM
is 1-acyclic by Corollary 2.5. So the claim follows from Theorem 2.10.

(ii) Suppose M is not 0-acyclic, and A º N ° M is a universal central extension of
M . Then M , and hence N , have H0(G; M) 6= 0 as a G-trivial quotient. Therefore there
are at least two distinct morphisms from the assumed universal central extension to the
central extension

H0(G; M) // // H0(G; M)⊕M // // M,

a contradiction. £

We remark that [7, Thm. 1] can be regarded as a precursor of Theorem 2.11.

Proof of Theorem D (i) The module I ⊗G M is 1-acyclic by Corollary 2.5. So
PM = im(µ) is 0-acyclic by 2.12. It is a maximal 0-acyclic submodule of M because
any module N with PM < N < M yields a quotient N/PM < H0(G; M) with trivial
G-action. However, N/PM is again perfect by Proposition 2.12 below. So N = PM .
That PM is the unique maximal perfect submodule of M also follows from Proposition
2.12.

(ii) follows from Theorem 2.10. £

We conclude this section by formulating some closure properties of the classes of n-acyclic
modules:

2.12 Proposition For any group G, and n ≥ 0, the class of perfect G-modules is
closed under quotients and arbitrary colimits.

Proof The natural isomorphism H∗(G;⊕λ∈ΛMλ) ∼= ⊕λ∈ΛH∗(G; Mλ) shows that the
class of perfect G-modules is closed under direct sums. Further, any quotient M of a
perfect G-module N is again perfect because 0 = H0(G; N) ° H0(G; M). £

2.13 Proposition Given a 2-acyclic group G, the class of 1-acyclic G-modules is
closed under extensions and arbitrary colimits.

Proof If M ′ º M ° M ′′ is an extension of G-modules with M ′ and M ′′ 1-acyclic,
then inspection of the associated long exact sequence in homology shows that M is 1-
acyclic as well. By Corollary 2.5 I ⊗G− takes values in the class of 1-acyclic G-modules.
Moreover, I ⊗G − commutes with arbitrary colimits. £
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3 Proof of Theorem A

By passing to the appropriate covering space of X, if necessary, we can assume that π1X
is perfect. So X+ and each Postnikov section (PnX)+ (n ≥ 1) are simply connected.

3.1 Lemma For n ≥ 2, Φ is (n− 1)-connected.

Proof This follows from the fact that, for k ≤ n,

0 = Hk(Pn−1X, PnX; Z)
∼=−→ Hk((Pn−1X)+, (PnX)+; Z). £

3.2 Lemma For n ≥ 2, F is (n− 1)-connected.

Proof F is at least (n−2)-connected because K(πnX, n) and Φ are (n−1)-connected.
We must show that πn−1F = 0 as well. First of all, we have an epimorphism πnΦ °

πn−1F . So πn−1F is abelian, and the Hurewicz map πn−1F
∼=−→ Hn−1F is an isomorphism

even for n = 2. Next, by applying the Serre spectral sequence to the fibration APnX →
APn−1X, we see that Hn−1F is a 1-acyclic G̃-module. Furthermore, the commutative
diagram

πn−1ΩΦ // //

¯¯

πn−1F

¯¯

πn−1Ω(PnX)+ // πn−1APnX

tells us that G̃ acts trivially on the image of πn−1F → πn−1APnX. But the class of 0-
acyclic modules is closed under quotients by Proposition 2.12. So this image is trivial, and
we have an epimorphism ∂ : πnAPn−1X ° πn−1F . On the other hand, G̃ acts trivially

on πkAPn−1X for k ≥ n, because we have isomorphisms πkΩ(Pn−1X)+
∼=−→ πkAPn−1X

in the Π-central fibration Ω(Pn−1X)+ → APn−1X → Pn−1X. Now ∂ is a morphism of

G̃-modules, implying that G̃ acts trivially on the 1-acyclic G̃-module πn−1F . Therefore
πn−1F = 0, as claimed. £

Thus we have established the first part of Theorem A. We now turn to diagram (UCE)
of the Theorem and its properties:

The bottom row comes from the fibration F → K(πnX, n) → Φ, using Lemma 3.2. The

terms πn+1Φ and πnΦ are trivial G̃-modules and πn+1Φ is contained in the center of πnF .
Further, πnF ∼= HnF is seen to be a 1-acyclic G̃-module, by using the Serre spectral
sequence of the fibration F → APnX → APn−1X. Thus N := im(πnF → πnX) =

I[G̃].πnX = im(µ) is the maximal perfect submodule of πnX; see Theorem D(i). From
Theorem 2.10 we see that πn+1Φ º πnF ° N is the universal central extension of N . So
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the vertical arrows on the left are isomorphisms by Theorem D(ii). The vertical arrow on
the right is an isomorphism by the Five Lemma.

As to πn+1F , it is a trivial G̃-module because it fits into the exact sequence πn+2APn−1X →
πn+1F → πn+1APnX, where G̃ acts trivially on the outside terms. The Hurewicz map
πn+1F ° Hn+1F is onto and is a G̃-module map. Thus G̃ acts trivially on Hn+1F as well.
Now the Serre spectral sequence yields an isomorphism

H2(G̃; I ⊗G̃ πnX)
∼=−→ H0(G̃; Hn+1F ) ∼= Hn+1F,

which proves the claim, and completes the proof of Theorem A. £

3.3 Remark By chasing the diagram of homotopy groups coming from the fibration
diagram (FD) one can deduce further that the maximal perfect submodule of πnX is
always contained in ker(πnPnX → πn(PnX)+). Moreover, the two modules are equal
exactly when πn+1(PnX)+ → πn+1(Pn−1X)+ is onto. £

4 The acyclic Postnikov tower of AX

Already in the early 1970’s Dror showed how to use the acyclic Postnikov tower [3] to
analyze an acyclic space Z. The acyclic Postnikov n-stage of Z is simply the acyclization
APnZ of the usual Postnikov section. The acyclic Postnikov n-stage need not have
trivial homotopy groups above dimension n. Instead, the only requirement is that the
fundamental group must act trivially on these higher homotopy groups.

When passing from an (n − 1)-stage Zn−1 to an n-stage, one splices into π∗Zn−1 a 1-
acyclic π1Z-module αn, and there is a corresponding “acyclic Postnikov invariant” κn ∈
Hn+1(Zn−1; M). In addition, in dimensions greater than n, one splices into π∗Zn−1 certain
π1Z-modules with trivial action.

In general, starting with an arbitrary space X, Dror’s acyclic Postnikov tower of AX has
APnAX as its n-th acyclic Postnikov stage. In Theorem A, we were working with a tower
whose n-th stage is APnX. Below, we establish explicitly a natural equivalence between
these towers. With the aid of Theorem A, we express the acyclic Postnikov invariants of
AX in terms of the ordinary Postnikov invariants of X.

4.1 Lemma Let X be a connected CW-space. Applying successively the appropri-
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ate functors to the map AX → X yields the commutative cube

APnAX //

¯¯

un

((PPPPPPPPPP PnAX

''NNNNNNNNN

¯¯

APnX //

¯¯

PnX

¯¯

APn−1AX

un−1 ''PPPPPPPPPP
// Pn−1AX

&&NNNNNNNNN

APn−1X // Pn−1X

whose left hand face is a homotopy equivalence of acyclic Postnikov towers.

Proof To see that each un is a homotopy equivalence, we argue as follows. Applying
A to the commutative diagram

AX //

¯¯

X

¯¯

yields

AAX
∼= //

¯¯

AX

¯¯

PnAX // PnX APnAX un
// APnX

For k ≤ n, the right hand square induces πk-isomorphisms because the maps on the top
and the sides do. This follows from Lemma 3.2. By [3, 3.4], un is a homotopy equivalence.

£

4.2 Corollary The functors APnA and APn are naturally equivalent. £

In order to determine the acyclic Postnikov invariants of AX, we require the following
cohomological recognition tool for acyclic spaces:

4.3 Lemma A connected CW-space X is acyclic if and only if its fundamental
group G is 2-acyclic and, for every G-module M , the morphism µ : I⊗G M → M induces
isomorphisms

µ∗ : Hr(X; I ⊗G M)
∼=−→ Hr(X; M) for r ≥ 2.

Proof If X is acyclic, then G is 2-acyclic; see [3, 4.1]. To see that µ∗ is an isomorphism,
we split the sequence (MS) up into short exact sequences

H1(G; M) º I ⊗G M ° PM and PM º M ° H0(G; M),
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where PM denotes the maximal perfect submodule of M ; see Theorem D. We then get
coefficient sequences of the form

Hr(X; H1(G; M)) → Hr(X; I ⊗G M) // Hr(X; PM) // Hr+1(X; H1(G; M))

Hr−1(X; H0(G; M)) // Hr(X; PM) // Hr(X; M) → Hr(X; H0(G; M))

The coefficient map µ∗ appears as a composite in the middle of the diagram. If X is
acyclic, then the end terms of both rows are 0. So µ∗ is an isomorphism.

Now suppose G is 2-acyclic and µ∗ is an isomorphism for all M and r ≥ 2. With M = Z[G]

we have H1(G; M) = 0 and, consequently, isomorphisms Hr(X; I)
∼=−→ Hr(X; PM) for

all r ≥ 2. So Hr(X; PM)
∼=−→ Hr(X; Z[G]) are isomorphisms for r ≥ 2 as well. We have

H1(X; Z) = H1(G; Z) = 0. But then Hr(X; Z) = 0 for r ≥ 1. So X is acyclic. £

4.4 Proposition Let X be a connected CW-space with n-th k-invariant kn in
Hn+1(Pn−1X; πnX). Then the n-th acyclic k-invariant of AX (see [3]) is µ−1 ◦ cn−1(kn):

Hn+1(Pn−1X; πnX)
cn−1−→ Hn+1(APn−1X; πnX)

µ−1

−→ Hn+1(APn−1X; I ⊗G πnX).

Here cn−1 : APn−1X → Pn−1X is the colocalizing map, G is π1AX, I is the augmentation
ideal of Z[G], and µ−1 is the coefficient isomorphism of Lemma 4.3.

Sketch of Proof Consider the fibration Y → APn−1X obtained from the proposed
acyclic k-invariant. There is a morphism of fibrations ϕ : APnX → Y over APn−1X.
With the methods supplied in the previous discussion it is possible to show that
(1) πrϕ is an isomorphism for 1 ≤ r ≤ n;

(2) πr(AY → Y ) is an isomorphism for 1 ≤ r ≤ n;

(3) the unique lift f : APnX → AY of ϕ is a weak homotopy equivalence.

This implies the claim. £

4.5 Remark In many situations our work can be used to clarify the effect on homo-
topy groups of plus constructions and localizations with respect to more general homology
theories h. For example, let h be connective. Note first that X → Xh (the h-homology
localization of X) factors through X → X+. If X+ is simply connected, then the canon-
ical map X+h → Xh is a homotopy equivalence; see [9, 1.7]. Now X → X+h agrees with
X → X+HR for a suitable ring R of the form ZP or ⊕p∈P Z/p, where P is a set of primes;
see [1, 1.1] and compare [12, Sect. 4].

Consequently, the four localization maps

X → Xh, X → X+h, X → XHR, X → X+HR

all agree and factor as X
u−→ X+ v−→ (X+)HR. The map π∗v is completely understood

by [2], and here we provide new information on π∗u.
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Georges de Rham (1903- ), Springer-Verlag, Berlin-New York, 1970, 212–225.

[7] W. Meier, R. Strebel, “Homotopy Groups of Acyclic Spaces”, Quart. J. Math.
Oxford 32 (1981) 81–95.

[8] J.W. Milnor, Introduction to Algebraic K-Theory. Ann. Math. Studies 72, Princeton
Univ. Press, Princeton, NJ 1971.

[9] G. Mislin, G. Peschke. “Central extensions and generalized plus constructions”.
Trans. AMS 353 No. 2 (2001) 585–608.

[10] D.G. Quillen, “Cohomology of groups” In Actes du Congrès International des
Mathématiciens (Nice, 1970), volume II, Gauthier Villars 1971, 47–51.

[11] D.G. Quillen, “Higher K-theory for categories with exact sequences”, in New de-
velopments in topology (Proc. Sympos. Algebraic Topology, Oxford 1972, London
Math. Soc. Lect. Notes 11, Cambridge Univ. Press 1972, 95–103.

[12] J.-Y. Tai, “Generalized plus-constructions and fundamental groups”. J. Pure Appl.
Alg. 132 (1998) 207–220.

David Blanc George Peschke
Department of Mathematics Department of Mathematical Sciences
University of Haifa University of Alberta
31905 Haifa Edmonton
Israel Canada T6G 2G1
e-mail: blanc@math.haifa.ac.il e-mail: George.Peschke@ualberta.ca

14


	-central fibrations with perfect target
	Universal central extensions of perfect G-modules
	Proof of Theorem A
	The acyclic Postnikov tower of AX

