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Chapter One 

Introduction 

 

In this chapter fundamental theories for micromagnetics will be 

outlined, with emphasis on the Landau-Lifshitz-Gilbert (LLG) 

equation and components of the effective field. Micromagnetic 

simulation is directly based on these theories. 

 

 

 

1.1 Motivation 
 

 

Magnetism and its applications present good cases in point for the technological 

trends of our time: devices get smaller, speeds increase, and complex dynamic 

systems can be better understood with the rapidly soaring capability of 

computer-based modeling. Improvements in nanoscale lithography and 

development of ultrathin multilayer films have opened new possibilities for novel 

magnetic devices [1, 2]. These exploratory developments rely heavily on 

fundamental research using creative experimental techniques, as well as high 

performance numerical simulations. 

 

This thesis focuses on micromagnetic simulations and experimental comparisons. 

The experiments are being performed in the ultrafast microscopy laboratories led 

by Prof. Freeman at the University of Alberta [3, 4, 5, 6]. In the following parts of 
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this chapter, the theories of micromagnetics will be outlined, especially those in 

two dimensional systems, because ultrathin films exhibit 2D properties. However, 

for more advanced studies a complete 3D model in multi- layer systems will be 

required, and this goes beyond what will be contained in this work. 

 

The material being investigated in this work is Ni80Fe20 Permalloy.  It is highly 

magnetized with a saturation magnetization >800(emu/cm3), but its coercivity is 

so low that a small external field is able to flip the sample’s magnetization. It also 

has other good properties such as high permeability and weak anisotropy. 

Benefiting from all these advantages, Peamalloy is used in more and more 

applications. 

 

 

 

 

1.2 Theoretical background 
 

 

1.2.1 Classical model 

 

 

1.2.1.1 Equation of motion 

 

Fundamental dynamics of magnetic materials are, to the first order approximation, 

governed by the following classical relation: the time rate of change of a magnetic 

moment m
r

is proportional to the torque applied on this momentum [7, 8], 
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 (1.1) 

where
r

H is the magnetic field applied on m
r

, and 11 -1 -1
0 1.761 10 (s T )γ = × is the 

electron’s gyromagnetic ratio (see Eq.(1.14) for definition details). 

 

It is important to note that Eq.(1.1) is a classical equation, while micromagnetic 

phenomena involve underlying quantum mechanical considerations. An 

equivalence relation supports the validity of the classical equation by showing that 

it has exactly the same form as what is derived from quantum mechanics. 

 

Quantum mechanics states that the time evolution of the expectation value of a 

spin S
r

obeys Schrödinger’s equation [9], 

 ˆ( ) [ , ( )]
d

i t t
dt

< > =< >S S H
r r

h  (1.2) 

where (̂ )tH is the spin system’s Hamiltonian. If the spin is in a time-dependent 

external field B
r

, the Hamiltonian is of Zeeman type: 

 ˆ Bgµ
− ⋅H S B=

r r
h  (1.3) 

where g is the gyromagnetic splitting factor, g=2.0x1.001159657 for free electrons; 

-24=/ 2 9.2741 10 (J/T)eB e mµ ≡ ×h is the Bohr magneton; 341.0546 10 (J s)−= × ⋅h is the 

reduced Planck constant. The x-component of Eq.(1.2)’s right-hand-side is: 
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 (1.4) 

and according to the commutation rules 
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one obtains 

 ( )ˆ, ( ) ( ) ( )B
x y z z y

g
S t i B t S B t S

µ  = − − H hh  (1.6) 

The y/z-components have a similar expression and finally the equation of the 

spin’s motion reads 

 ( ) ( ) ( )Bgd
t t t

dt
µ

< > = < > ×S S B
r r r

h  (1.7) 

 

On the other hand, consider a classical angular momentum generated by an 

orbiting electron (equivalent to a current loop) and the following relation holds [9], 

 
2

e

e

q
m

m l=
rr

 (1.8) 

where m
r is the current loop’s dipole moment, l

r
is the angular momentum, and 

qe and me are the electron’s charge and mass, respectively.  

 

In quantum mechanics, spin s
r and angular momentum l

r
are usually treated in the 

same manner [9]; a similar geometric relation with Eq.(1.8) holds for spin, and we 

can write 

 γ < >m s=r r
 (1.9) 

where γ , the gyromagnetic ratio, is equal to 

 0
2

e B

e

gq g
m

µ
γ = = <h  (1.10) 

Substituting Eq.(1.9) into Eq.(1.7) one obtains 
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d

t t t
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 (1.11) 

Now, defining the magnetization as the total dipole moment per unit volume 

 
unit volume

= ∑ m
M

rr
 (1.12) 

it follows that (in the SI system of units) 

 0( ) ( ) ( )
d

t t t
dt

µ γ  = × M M H
r r r

 (1.13) 

where 0/ µ=H B
r r

is the magnetic field (not Hamiltonian Ĥ ). 

 

Conventionally people define 

 0 0 0
Bg µ

γ µ µ γ= = −h  (1.14) 

In the SI system, 11 -1 -1
0 1.761 10 )(s Tγ = ×  

 

Now we can write the equation governing magnetization motion 

 0( ) ( ) ( )
d

t t t
dt

γ  = − × M M H
r r r

 (1.15) 

which is Eq.(1.1). 

 

In conclusion, the equivalence between dipole moment and spin (Eq.(1.9)), and 

the analogy between Eq.(1.7) and Eq.(1.15) suggests that the classical equation is 

obeyed exactly, whatever the time dependence of the magnetic field is. 

 

 

 

 

 

1.2.1.2 Magnetic order and ferromagnetic phenomena 
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Magnetic materials have different types of “magnetic order”, such as 

ferromagnetism, antiferromagnetism, and ferrimagnetism [10], illustrated in 

Fig.(1.1). In this thesis, the focus is restricted to ferromagnetic materials. 

 

The atomic-scale magnetic dipoles underlying ferromagnetism are associated with 

the orbital and spin degrees of freedom of the electrons in the material [11]. The 

exchange interaction between dipoles, which is quantum mechanical in nature, is 

the basis of magnetic ordering. Ferromagnetism occurs when a saving in 

electrostatic Coulomb energy is enabled by parallel electron spin alignment (the 

spin dependence introduced via the Pauli principle). Below a critical temperature 

(the Curie temperature), a macro-scale magnetic dipole moment is formed. 

 

In thin films, one can easily observe ferromagnetic “domains” [12, 13]. All magnetic 

dipoles have the same orientation within one domain, and can be treated as a big 

dipole moment (or “macrospin”). Magnetic properties of the whole film are then 

Fig.(1.1) Types of magnetic orders. (a), ferromagnetism: magnetic 
dipoles at each site point toward the same direction; (b), 
antiferromagnetism: neighboring dipoles align antiparellel 
and yield zero total magnetization; (c), ferrimagnetism: 
neighboring dipoles align antiparellel with different 
strength, making a net magnetization. 

(a) ferromagnetism (b) antiferromagnetism (c) ferrimagnetism 
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determined by two aspects: the properties of individual domains and the motion of 

domain walls. Magnetic quantities of single domain structures are quite stable and 

controllable, and these structures have been used in many technological 

applications. 

In numerical simulations, since most samples have a uniform distribution of 

magnetic dipoles, we can divide the sample into finite size grids, with the same 

magnitude of dipole moment for each element. Then the moment within one 

element can be expressed in spherical coordinates (shown in Fig.(1.2)): 

 ( ) (sin cos ,sin sin ,cos )sM V θ φ θ φ φ=M r
r r

 (1.16) 

where Ms is the saturation magnetization, usually with density dimension 

emu/cm3, and V is the volume of the element. Eq.(1.16) greatly simplifies the 

linearization of Eq.(1.15) and forms the basis of micromagnetic simulation. 

 

 

 

 

 

 

θ  

x 

y 

z 

O 

Fig.(1.2) Spherical coordinates. The thin film is divided 
by equal size elements, so that the magnitude of 
magnetization remains a constant. 

M
r

 

φ  
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1.2.2 Magnetization dynamics and LLG equation 

 

 

1.2.2.1 The LLG equation 

 

The Landau-Lifshitz-Gilbert (LLG) equation describes the governing mechanisms 

of motion of magnetization. It is developed from Eq.(1.15) by introducing a 

damping term which does not allow the length of the magnetization vector to 

change, consistent with the underlying assumption of ferromagnetism. One way to 

do so is replacing the field H
r

 by an effective field effH
r

 with an Ohmic type 

dissipation term [8, 10]: 

 eff
0

1

s

d
M dt

α
γ

= −
M

H H
rr r

 (1.17) 

where Ms is the saturation magnetization and α  is a phenomenological damping 

parameter. Inserting Eq.(1.17) into Eq.(1.15) yields 

 0

( ) ( )
( ) ( ) ( )

s

d t d t
t t t

dt M dt
α

γ
 

 = − × + ×  
 

M M
M H M

r rr r r
 (1.18) 

Eq.(1.18) is known as Landau-Lifshitz-Gilbert (LLG) equation of magnetization 

motion. The effect of damping is illustrated in Fig.(1.3). The second term on the 

right-hand-side of Eq.(1.18) provides a frictional force that causes the 

magnetization to spiral down until completely aligned with the actual field H
r

 

after a long enough time. 
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Eq.(1.18) has an equivalent form that is easier to handle for numerical modeling: 

 { }2 0
0

( )
(1 ) [ ( ) ( ) ] ( ) [ ( ) ( )]

s

d t
t t t t t

dt M
αγ

α γ+ = − × − × ×
M

M H M M H
r r r r r r

 (1.19) 

 

For our treatment of ferromagnetic thin films, we will assume the thickness of the 

film to be uniform. When the plane is divided into equally sized rectangular cells, 

the volume of the cells is the same and the total magnetic moment of each cell has 

equal magnitude (the  saturation magnetization, Ms, times the volume of the cell, 

V). In spherical coordinates shown in Fig.(1.2), one only needs to know the 

evolution of angles θ  and φ  to get the whole dynamics of the magnetization. 

This removes one degree of freedom in comparison to 3-component Cartesian 

coordinates (where, of course, the three components are not independent given Ms 

a constant, i.e., Mx
2+ My

2+ Mz
2= Ms

2, but this constraint is not used because the 

computation is more complicated than that in spherical coordinates). Eq.(1.19) 

H
r

 

d dt×M M
r r

 

(a) (b) 

Fig.(1.3) Magnetization precession. 
(a) no damping 
(b) damping 

H
r

 

d dtM
r

 

M
r

 M
r

 
d dtM

r
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can be rewritten as 

 
sin

d
H H

d
d

H H
d

θ φ

θ φ

θ
α

τ
φ

θ α
τ

= +

= − +
 (1.20) 

where Hθ , Hφ  are the effective field’s θ̂ , φ̂  components, respectively. τ , 

which is a dimensionless time related to the real time t by 

 
2

0

1

s

t
M
α

τ
γ
+

=  (1.21) 

Taking Permalloy as an example, 0.008α = and Ms=860(Oe), then the factor 

equals about 66(ps), which means every integer dimensionless time step in the 

simulation corresponds to 66 picoseconds. 

 

 

 

 

1.2.2.2 The effective field 

 

Eq.(1.20) has a concise form, but it is not so easy to figure out precisely what the 

angular components of the effective field should be. The effective field has 

various sources such as the external field, anisotropy, exchange, demagnetizing 

fields, and thermal fluctuations. They are discussed separately in the following 

subsections. 

 

 

 

1.2.2.2.1 External (Zeeman) term 
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The mapping between the unit vectors of a Cartesian coordinate system and those 

of a spherical coordinate system are: 

 

sin cos sin cos cos

cos cos cos sin sin

sin cos

r x y z

x y z

x y

θ

φ

θ φ θ φ θ

θ φ θ φ θ

φ φ

= + +

= + −

= − +

i i i i

i i i i

i i i

r r r r
r r r r
r r r

 (1.22) 

Assuming the external field acting at the lattice site (i, j) with magnetization 

vector i j rM=M i
rr

 (for uniform thin films, Mij = Ms=constant) 

 (ext)
x x y y z zH H H= + +H i i i
r r rr

 (1.23) 

the θ̂  and φ̂  components of the field are 

 
(ext) (ext)

(ext) (ext)

cos cos cos sin sin

sin cos

x y z

x y

H H H H

H H H

θ θ

φ φ

θ φ θ φ θ

φ φ

= ⋅ = + −

= ⋅ = − +

H i

H i

rr
r  (1.24) 

 

 

1.2.2.2.2 Uniaxial anisotropy term 

 

Assume the local axis of anisotropy has an arbitrary direction in space and is 

specified in spherical coordinates as
0ri

r
, with angular coordinates 0 0( , )θ φ . The 

magnetization vector at this site is s rM=M i
rr

, with angular coordinates ( , )θ φ . 

Define uK as the uniaxial anisotropy constant  and the anisotropy energy density 

can be written as [8, 11] 

 
( ){ }

0

2
ans

2

0 0 0

1 ( )

1 cos cos sin sin cos

u r r

u

W K

K θ θ θ θ φ φ

 = − ⋅ 

= − + −  

i i
r r

 (1.25) 

There is a simple way to obtain equivalent field H
r

 from the energy density. 
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Assume that M
r

 rotates by a small amount ( , )θ φ∆ ∆ . The change in energy 

density is then given by 

 ( ) ( sin )

sin
r r s s

s s

W

H H H M M

M H M H
θ θ φ φ θ φ

θ φ

θ θ φ

θ θ φ

∆ = − ⋅ ∆

= − + + ⋅ ∆ + ∆

= − ∆ − ∆

H M

i i i i i

r r
r r r r r

 (1.26) 

consequently, 

 

1

1
sin

s

s

W
H

M

W
H

M

θ

φ

θ

θ φ

∂
= −

∂

∂
= −

∂

 (1.27) 

Eq.(1.27) are quite general and give components of the equivalent field in terms 

of corresponding energy density. For uniaxial anisotropy, these components are 

 

(ans) 2 2 2
0 0 0

0 0

(ans) 2
0 0

0 0

{sin2 [cos sin cos ( )]

cos2 sin2 cos( )}

[sin sin sin2( )

cos sin2 sin( )]

u

s

u

s

K
H

M

K
H

M

θ

φ

θ θ θ φ φ

θ θ φ φ

θ θ φ φ

θ θ φ φ

= − − −

− −

= − −

+ −

 (1.28) 

Eq.(1.28) looks complicated, because the spatial orientations of the anisotropy 

axes are presumed to be arbitrarily distributed in the material. Nevertheless, in 

single crystals the anisotropy direction is uniform across the specimen, and even 

in polycrystalline thin films used in applications, a certain anisotropy direction 

can be induced by applying some external magnetic field during the course of film 

growth [4, 12, 13]. For example, in our patterned Permalloy films, the anisotropy 

direction lies in-plane and points to the y-axis (see Fig.(1.1) for reference), which 

is defined as the “easy axis”, and the x-axis is consequently called the “hard axis”. 

In this case, 0 0 90θ φ= = °  holds everywhere in the sample, and gives 
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(ans) 2

(ans)

sin2 sin

sin sin2

u

s

u

s

K
H

M

K
H
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φ

θ φ

θ φ

=

=
 (1.29) 

 

 

1.2.2.2.3 Exchange interaction 

 

First, the exchange energy density in terms of orientations of coupled moments 

should be expressed. Suppose M
r

 and 1M
r

 are two neighboring moments on the 

lattice with distance d between them, and let Ax represent the macroscopic 

exchange stiffness coefficient [8, 10]. The exchange energy density for this dipole 

pair is then written as [8] 

 1
xhg 2

1

2
1xA

W
d

 
 = − ⋅
 
 

M M

M M

r r
r r  (1.30) 

In 2D simulations on thin film samples, all sites have the same magnitude of 

magnetization, thus 
1 s

M= =M M
r r

. In terms of spherical coordinates, Eq.(1.30) 

is written as 

 
( )
[ ]

1xhg 2

1 1 12

2
1

2
1 cos cos sin sin cos( )

x
r r

x

A
W

d
A

d
θ θ θ θ φ φ

= − ⋅

= − − −

i i
r r

 (1.31) 

Using Eq.(1.27), the effective exchange field on M
r

 as a result of interaction 

with 1M
r

 is 

 
[ ](xhg)

1 1 12

(xhg)
1 12

2
sin cos cos sin cos( )

2
sin sin( )

x

s

x

s

A
H

M d

A
H

M d

θ

φ

θ θ θ θ φ φ

θ φ φ

= − − −

= − −
 (1.32) 
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In the numerical modeling, only the nearest neighboring sites are included in the 

calculations of the exchange term [8, 10], consistent with the short-range nature of 

the exchange interaction, e.g., in the Heisenberg Hamiltonian which sums only 

over nearest neighbor spin pairs. 

 

 

1.2.2.2.4 Demagnetizing field 

 

Demagnetization is the classical dipole-dipole magnetic interaction. In the thin 

film, suppose one dipole moment m
r

 is located at the origin (0,0) and another 

dipole, 1m
r

, has the coordinates 1 1( cos , sin )x l y lψ ψ= =  as shown in Fig.(1.4). 

1m
r

 applies a field on m
r

 with the tendency to flip it towards the opposite 

orientation, such that the total magnetization of this two dipole system would 

vanish. The accumulation of all of these dipolar interactions across a specimen is 

called the “demagnetizing field”. 

 

x 

y 

z 

( )θ φm ,
r

 

Fig.(1.4) Demagnetizing field between two 
magnetic dipoles. 

1 1 1( )θ φm ,
r

 ψ  
ln
r
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We define cos sinx yψ ψ+n i i=
r rr

, the unit vector along the line connecting the 

origin to the point (x1, y1). The demagnetizing field at the origin is [7, 8] 

 ( ) ( )dmag 1 1
3

3
l

⋅ −
=

n n m m
H

r r r rr
 (1.33) 

Using Eq.(1.22), we obtain the field’s angular components: 

 
1 1

1 1

1(dmag) (dmag)
3

1(dmag) (dmag)
3

3( )( ) ( )

3( )( ) ( )

r r

r r

H
l

H
l

θ θ θ θ

φ φ φ φ

 = ⋅ = ⋅ ⋅ − ⋅ 

 = ⋅ = ⋅ ⋅ − ⋅ 

m
H i n i n i i i

m
H i n i n i i i

rr r r r rr r r

rr r r r rr r r
 (1.34) 

or equivalently,  

 

2
(dmag)

13

1 1 1

2
(dmag)

1 1 13

{sin cos

cos sin [3cos( )cos( ) cos( )]}

sin [sin( ) 3sin( )cos( )]

s

s

hd M
H

l

hd M
H

l

θ

φ

θ θ

θ θ φ ψ φ ψ φ φ

θ φ φ φ ψ φ ψ

=

+ − − − −

= − − − −

 (1.35) 

 

The total demagnetizing field on a dipole moment in the film’s lattice is the sum 

of the demagnetizing field from all the other dipoles. The strength of (dmag)H
r

 

fades quickly with distance as 1/l3, while the number of dipoles within this 

distance increases with the factor l2, so the sum of dipole-dipole interaction drops 

with the factor 1/l when the calculation range grows. In early works [8], the 

demagnetizing term was not calculated over the entire sample in order to shorten 

the runtime of simulation programs. The current standard is to employ a series of 

FFT-based algorithms [10, 14, 15]. The basic idea is to transform Eq.(1.33) into 

Fourier space, and all calculations are performed through fast Fourier 

transformations (FFT). The calculations then become linear, leading to faster 

execution speed. 
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1.2.2.2.5 Thermal fluctuation 

 

The micromagnetic dynamics described by the LLG equation (Eq.(1.18)) is 

completely deterministic. Starting from a certain initial state, the micromagnetic 

simulation always results in unique numerical outputs, which is obviously not the 

case. A lot of work has been done on the stochastic thermal effect [16], which is 

believed to be the key factor that causes random fluctuations in magnetic samples. 

 

A simple model is to introduce a stochastic thermal magnetic field thH
r

, and add it 

to the effective field effH
r

. This treatment covers all kinds of thermal interactions 

such as phonons, conduction electrons, nuclear spins, damping dissipation, etc. 

The system has infinite degrees of freedom, in principle; thus, the thermal field 

can be assumed to be a Gaussian-distributed random process. In simulation codes, 

an array of Gaussian random numbers with mean 0 and standard deviation 1 is 

generated (denoted by rand_gauss). The Cartesian components of the thermal 

field is then given by 

 ( , , ) ( , , )
th

2
_x y z x y z B

s

k T
H rand gauss

M V t
α

γ
=

∆
 (1.36) 

where kB is the Boltzmann’s constant, T is the temperature, V is the volume of the 

cell, and t∆  is the time interval between two integration steps. 
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Chapter Two 

Micromagnetic Simulation Model 

 

In this chapter, the algorithms and code structures of the simulation 

are presented. I upgraded the simulation code from FORTRAN77 to 

FORTRAN90, because the latter version takes advantage of modern 

language features such as dynamic memory and object-oriented 

programming (OOP). I show benchmarking tests to demonstrate the 

success of both simulation codes. Finally, various visualization 

schemes are presented to display the simulated results. 

 

 

 

2.1 Simulation model 
 

 

2.1.1 Coordinate system 

 

As mentioned in Chapter One, the x-axis and y-axis are not set equivalently. The 

magnetocrystalline anisotropy, mainly generated by an external field applied 

during the film growth, makes one direction the easy axis and the other the hard 

axis. The easy axis is usually chosen to be the longer side of the rectangle, or the 

long axis of an elliptical sample. The y-axis is the sample’s easy axis then, as 

shown in Fig(2.1). Because by this setting, the primary anisotropy direction in 

spherical coordinates can be written as (900, 900), and the effective anisotropy 
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field is described by Eq.(1.29), which is a simplified form. Otherwise, if the x-axis 

is set as the easy axis, the anisotropy direction is (900,  00), requiring different 

equations to be used in the simulation. 

 

 

 

 

 

2.1.2 The “mask” 

 

A five-component array mask(–2:2, i, j) is used to control the simulation. The 

index i varies from 0 to nxmax+1, and j varies from 0 to nymax+1, where 

“nxmax” and “nymax” are the cells number of the lattice in the x and y direction. 

 

x (i) 

y (j) 
z 

M (i,j) 

θ  
φ  

O 

j 

i 

Fig.(2.1) Coordinate system used in the simulation. Integer i, j 
are indices of the 2D lattice for iterative computations 
across the whole sample. Note: (1), the easy axis of 
the magnetic structure is set in the y-direction, see 
discussions in the following paragraph. (2), the shape 
of magnetic structures is not necessarily rectangular; 
see discussions on the “mask” in the next section. 

easy axis 
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The simulation is performed over the whole sample, with i from 1 to nxmax and j 

from 1 to nymax (a little “smaller” than the mask). If a cell (i, j) lies inside the 

magnetic structure, we assign mask(0, i, j)=1; otherwise if it is outside the 

magnetic structure, we set mask(0, i, j)=0. This component of the mask array is 

multiplied with relevant magnetic quantities so that the magnetic sample and 

non-magnetic areas are distinguished, and the electromagnetic boundary 

conditions are met simultaneously. 

 

The other four components of the mask array are used to control the calculation 

on the exchange interaction in a similar way as mask(0, i, j), see the next section 

and the subroutine “derivs” in Appendix I for details. 

 

Generally speaking, any non-uniform or localized calculation can be treated in the 

same way, just by adding more components to the mask array, as shown in 

Fig.(2.2). For example, if a small recording head is put close to the magnetic 

sample, the external field is non-uniform across the surface (localized excitation). 

Another example is in magneto-optic recording, switching is assisted by localized 

heating, and the thermal fluctuation must be calculated in a non-uniform way. We 

can add two or more components to the mask array to take such effects into 

account. This capability (to add “customized features”) is what most strongly 

justifies continuing to work on our own codes rather than converting to 

commercial or publically available packages. 
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2.1.3 Calculation of different terms of the effective field 

 

As discussed in section 1.2.2.1, the spherical coordinates are used in the 

simulation to calculate the effective field. External field and demagnetizing field  

are calculated in Cartesian coordinates first and then converted to spherical 

coordinates using Eq.(1.22). 

 

Exchange interaction: Direct calculation in the spherical coordinates is 

performed using Eq.(1.32). Only nearest neighboring cells are taken into account 
[10, 11], i.e. the exchange term for the cell (i, j) consists of four pieces, from the 

cells (i, j+1), (i+1, j), (i–1, j), (i, j–1), respectively. The “+1” and “–1” are 

implemented by assigning mask(–2, i, j)= –1, mask(–1, i, j)= –1, mask(1, i, j)=1 

actual magnetic sample 

mask 1: define the sample 

mask 2: exchange interaction 

mask 3: localized external field 

mask 4: localized “heating” 

simulation lattice 

Fig.(2.2) Schematic layout of the mask array. Only mask1 
and mask2 are actually used in current simulations; 
mask3 and mask4 are under development for future 
projects. 
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and mask(2, i, j)=1. At sample edges where the number of interacting cells 

reduces, one or two components of the mask array above is assigned zero to meet 

the boundary conditions. At non-magnetic sites, all four components are zero so 

that no exchange term is calculated. See the subroutine “derivs” in Appendix I for 

details. 

 

Demagnetizing field: Eq.(1.35) is the general formula to calculate the 

demagnetizing field, and we use the FFT based algorithm [12, 13] to implement the 

calculation in the Cartesian coordinates. Two subroutines “DZFFT2D” and 

“ZDFFT2D” from SGI/Cray Scientific Library (SCSL) are used to do the 

transformations. In cases when the thermal fluctuation term is involved in the 

simulation, the calculation is inserted in the demagnetizing term [13, 16]. See the 

subroutine “hdem” in Appendix I for details. 

 

Anisotropy term: We consider only uniaxial anisotropy, and use Eq.(1.29) to 

calculate it 1. Since this equation is pretty simple, we use either spherical or 

Cartesian coordinates to calculate it. See the function “hanis” in Appendix I for 

details. 

 

External field: The contribution from uniform external fields is calculated in the 

Cartesian coordinates, and then added to the demagnetizing term before they are 

converted into spherical coordinates together. See the subroutine “hfun” in 

Appendix I for details. 

 

 

 

                                                 
1 See more discussion on the formula of anisotropy calculation in section 2.4.3. 
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2.1.4 The ODE integrator 

 

The summation of different terms above (i.e. the total effective field) is 

substituted into Eq.(1.20) and by integrating this differential equation the 

movement of the magnetization is obtained. The integrator that we normally use 

in the FORTRAN77 code is the “RKSUITE” package released by R.W. Brankin 

et.al [17]. In section 2.3 I present my work on an upgraded code written in 

FORTRAN90, where an integrator using Cash Karp's embedded Runge-Kutta 

algorithm [18] is used. “RKSUITE” also has a newer version written in 

FORTRAN90 [19], and to plug this into my upgraded simulation code is one of my 

future tasks. 

 

 

 

2.2 Simulation code structure 
 

In this section the basic elements of the micromagnetic simulation are discussed. 

The computing and network services (CNS) of University of Alberta hosts five 

SGI Origin parallel supercomputers. Our group uses one of them, “Aurora”, 

which has 44 processors and 11.75Gb RAM. Users submit and monitor their 

programs on Aurora through the Portable Batch System (PBS). PBS also enables 

auto-resumption of the jobs in case a running job is suspended by the system. 

 

I worked on more than one version of the simulation codes. They are written in 

either FORTRAN77 or FORTRAN90, or they use different kernel integrators. 

However, the basic ideas are the same, sharing the schematic structure in 

Fig.(2.3)). 
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The main program “sim2d” works as a universal driver. Its purposes are to: (1), 

communicate with Aurora through PBS to update the simulation’s status; (2), 

collect necessary information through certain subroutines and functions about the 

geometry of the sample, the initial magnetic configurations, random numbers, etc., 

and call the integration routines to let the job go; (3), output the simulated results 

(both temporal curves and spatial images), and store the whole workspace in 

specific files at the end of each iteration, so that if the job is terminated due to 

computer shut-down, it would be able to resume. 

 

 

 

 

 

 

 

check status  

new job: 

set initial conditions 

existing job: 

read stored data 

main program global parameters 
sent/receive job handling signals 

to/from the AURORA through PBS 

Runge-Kutta integrator equations of motion 

external field 

anisotropy term 

exchange term 

demagnetizing field 

FFT package 

output results 

spatial images average magnetizations  data and running status for next step 

Fig.(2.3) Programming structure of the simulation codes 

thermal field 
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2.3 Upgrade from FORTRAN77 to FORTRAN90 
 

The FORTRAN90 version doesn’t change the basic algorithm of the simulation. 

Below I discuss two major modifications that improve the performance. 

 

 

2.3.1 Code modularization 

 

In the old FORTRAN77 code, the main program contains many definition 

statements for variables and parameters, most of which are either global or local 

quantities used by the subroutines or functions other than the main program itself. 

In FORTRAN90, this programming style might even be rejected by the compiler. 

I have to put local variables into specific subroutines or functions and encapsulate 

them. Only global variables and explicit parameters can be visible to other parts of 

the program. Global settings are put into a “MODULE” structure, which is a new 

feature of FORTRAN90 capable of replacing the “INCLUDE” files in almost 

every FORTRAN77 program. This module is then quoted by every subroutine and 

function using the “USE” statement. Fig.(2.4) gives a comparison of the 

programming style between two codes. 

 

comparing objects FORTRAN77 FORTRAN90 

global settings “INCLUDE globals.inc” “USE globals” 

security 

unsafe: e.g., the file “include.inc” 

is not compiled, making potential 

errors on variable definition 

safe: e.g., the usage of 

“IMPLICIT NONE” 

Readability bad: with “COMMON” statements good: data encapsulation 

Fig.(2.4) Different features of FORTRAN77 and FORTRAN90 
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2.3.2 Implementation of the integrator 

 

The FORTRAN77 code uses a Runge-Kutta package which contains obsolete 

features like “COMMON”, “EQUIVALENCE” statements. I proceeded to make 

another integrator based on Cash Karp's embedded Runge-Kutta algorithm [18]. It 

is in the FORTRAN90 programming style, and has better conformity with other 

parts of the program. The performance of FORTRAN90 integrator is discussed in 

the following section. 

 

 

 

2.4 The code benchmarking 
 

Comparison with experiment is the ultimate means whereby a model and its 

numerical implementation can be validated2. On the other hand, various mature 

micromagnetic simulation codes now exist and have been tested on a series of 

standard problems (e.g. SP1~SP4 from the National Institute for Standards and 

Technology).  Therefore, it is feasible to perform initial benchmarking tests 

against some of these other programs. 

 

 

2.4.1 Description of the test problems 

 

Our test problems are chosen from Roger Koch’s [20]. In these problems, the 

sample is a 400(nm) long, 200(nm) wide rectangle with thickness 6.25(nm). It is 

                                                 
2 Some simple idealized analytical models are also used to validate the 

simulation results [8, 16, 30], but they are not covered in this thesis. 



 26 

divided into cubic cells with linear dimension 6.25(nm) to make a grid of 64x32x1 

cells. Material parameters used are saturated magnetization 4 10(kGauss)sMπ = , 

exchange constant A=10-6(erg/cm) and damping constant 0.01α = . To calculate 

an initial state, we start with all spins pointing in the negative y-direction (see 

Fig.(2.1) for reference). There is a field of 100(Gauss) in the negative y-direction 

and 100(Gauss) in the x-direction. The sample has a 5(ns) period to equilibrate. 

Then it is left in zero external fields for another 5(ns) to equilibrate. With this 

initial state, a zero risetime DC magnetic field pulse of 0, 50, 100, 150 and 

200(Gauss) is applied along y-direction and 0, 50, 100, 150 and 200(Gauss) along 

x-direction for 2(ns). Then the sample is allowed to equilibrate in zero fields for 

3(ns). 

 

Comparison between Roger Koch’s results and ours has been done previously. In 

our group’s existing results, complete sets of pictures have been shown as a 

success of the FORTRAN77 codes [13]. My benchmarking tests results, from both 

the FORTRAN77 and upgraded FORTRAN90 code, are compared with a 

commercial package from M. R. Scheinfein 3. 

 

 

2.4.2 Benchmarking without anisotropy term 

 

The standard problem described above does not include the anisotropy term, so I 

first switch off the anisotropy term in the simulations. One of the benchmarking 

results is presented in Fig.(2.5), where the DC magnetic field applied in 

x-direction is 50(Oe) and y-direction is 0(Oe). Fig.(2.5b) gives the relative 

deviations between the Scheinfein’s code and our F77/F90 codes, which are both 
                                                 
3 Online information: http://llgmicro.home.mindspring.com/ 
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well controlled. It also shows that the F77 code exhibits a better error property 

than the F90 counterpart, because the F77 RKSUITE ODE solver, as a successful 

package, involves specialized routines to optimize the step-size and control the 

error, while my Cash-Carp algorithm integrator in F90 code uses a much simpler 

scheme to do so. Nevertheless, as long as the relative errors remain in the order of 

~0.1% as shown in Fig.(2.5b), the local error property would not become a 

problem. 
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Fig.(2.5) (color) Benchmarking result when anisotropy term is 
ignored. (a), The temporal evolution of magnetization 
simulated by the FORTRAN77 and FORTRAN90 codes 
match the result from Scheinfein’s code so perfectly that I 
have to put small offset on the y-axis data to make them 
visible. (b), relative deviations between our codes and 
Scheinfein’s, based on a cubic spline interpolation. 
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-0.76
Benchmarking without anisotropy term

hard axis DC field: Hx=50(Oe)
easy axis DC field: Hy=0(Oe)

blue: Scheinfein's code
green: F77 code (offset +0.01)
red: F90 code (offset -0.01)
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t (ps)

(b) 

(a) 
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2.4.3 Benchmarking with corrected anisotropy term 

 

When uniaxial anisotropy term in the old FORTRAN77 code is inserted to do the 

benchmarking, disagreement arises, as shown in Fig.(2.6). The problem lays in the 

formula, where an easy-axis- favored magnetic field is phenomenologically treated 

as the anisotropy term. While the true anisotropy field should be calculated in 3D 

space, as Eq.(1.28-29) have shown. I modified the formula so that the anisotropy 

term is calculated in spherical coordinates, as desired in Eq.(1.29). The success of 

this correction is shown in Fig.(2.7), where the FORTRAN90 code matches 

Scheinfein’s perfectly again. 

 

0 1000 2000 3000 4000 5000
-0.94

-0.91

-0.88

-0.85

-0.82

-0.79

-0.76
Benchmarking with anisotropy term
(using the old formula)

hard axis DC field: Hx=50(Oe)
easy axis DC field: Hy=0(Oe)

blue: Scheinfein's code
red: F77 code

t (ps)

My

Fig.(2.6) (color) Benchmarking result when anisotropy term is 
included and old formula is used. The disagreement is 
accumulating and becomes significant. 
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0 1000 2000 3000 4000 5000
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-0.85
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-0.79

-0.76
Benchmarking with anisotropy term
(using corrected formula)

hard axis DC field: Hx=50(Oe)
easy axis DC field: Hy=0(Oe)

blue: Scheinfein's code
red: F90 code (offset -0.01)

My

(ps)t

(a) 

(b) 

Fig.(2.7) (color) Benchmarking result when anisotropy term is 
included and the corrected anisotropy formula is used. 
(a), average magnetization along easy axis, where 
offset has to be employed to make two curves visible. 
(b), relative deviations as a function of time computed 
by cubic spline interpolation. 
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2.5 Visualization of results 
 

I made a graphic user interface (GUI) to display the simulated images. It is written 

in Matlab graphic user interface design environment (GUIDE), and shown as a 

regular Matlab figure, see Fig.(2.8). 

 

On the GUI board, we can manually assign values for the key parameters used in 

the simulation, so that we don’t need to open those FORTRAN files and change 

them one by one. Another important usage is that the time-evolution of the 

magnetization state can be continuously displayed like a movie. Also, the average 

value of any magnetization component can be plotted as a function of time. These 

features are bundled into one window and give great convenience for data 

analysis. 

20 40 60 80 100
-1

-0.5

0

0.5

1

Fig.(2.8) The GUI. 
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Two schemes are commonly employed to display color maps showing the 

distribution of magnetization. The first is to display the x/y/z-components of the 

magnetization vector separately. Since the vector’s magnitude is a constant Ms, we 

can use normalized magnetizaiton Mx/ Ms, My/ Ms, and Mz/ Ms. To get color maps, 

we use a color bar from -1 to +1, represented by blue to red, respectively (see 

Fig.(2.9a)). The second scheme is for those problems in which the magnetization 

is mostly confined in-plane, and the φ  angle is the only variable determining the 

orientation of the magnetization. Another color bar is used to represent angles 

from 0 to 2π  (see Fig.(2.9b)). In this thesis, both methods will be used to 

display simulation results. 

 

Fig.(2.9) (color) Two schemes to display the magnetization. (a), display 
three components using a color bar from –1 to +1; (b), display 
the φ  angles using a color bar from 0 to 2π (the reference 

color wheel is shown in Appendix IV). 

(a) (b) 

0 2π  +1 –1 M/Ms 

Mx 

My 

Mz 

φ  

φ  
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The GUI consists of a number of Matlab functions. Some of them are provided by 

Matlab itself, and I wrote the others – for example, “RGBshow.m” converts data 

file to colored image in Red-Green-Blue format; “vectormap.m” displays a vector 

map for in-plane magnetization distribution. The Matlab codes are included in 

Appendix III. 
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Chapter Three 

Quasi-static problems 

 

Equilibrium states of ferromagnetic patterned particles are studied in 

this chapter. These particles are of sub-micrometer size typically,  with 

thickness 10-50(nm). Different quasi-static states will be presented, 

with comparisons between experimental measurements and simulated 

images. Selection of damping constant in the simulation will be 

discussed. Energy hierarchy is considered as the key to understand 

the different stabilities of these states. Furthermore, magnetic 

interactions between neighboring particles will be discussed. 

Simulation results confirm the existence of this long-range coupling, 

and show that the forming of quasi-static states, to some extent, is a 

probabilistic phenomenon. 

 

 

 

3.1 Introduction 
 

The first step towards investigating the dynamic behaviors of a magnetic sample 

is to study it under static conditions. Experimentally, the technique of off-axis 

electron holography offers the highest spatial resolution for quantitative magnetic 

imaging. It achieves magnetic sensitivity by simultaneously measuring the 

amplitude and the phase shift of the electron wave passing through the sample [21, 

22, 23, 24]. Magnetic induction at one site can be derived from a certain form of 
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integration of the phase shift along the direction of the incident beam [25]. Thus, 

quantitative information of magnetization at very fine spatial resolution can be 

obtained [22].  

 

It is important to compare measured data with numerical results computed by 

micromagnetic simulations. Specific comparisons between quantitative electron 

holography and numerical simulation have only been attempted a very limited 

number of times [23]. The problems discussed in this chapter are aimed at just this. 

 

 

 

3.2 Equilibrium magnetic states 
 

 

3.2.1 Introduction to magnetic states 

 

Consider a magnetic thin film fictitious ly divided into a large number of finite 

elements, each of which can be treated as a magnetic “macrospin”. Both the 

external field and the magnetic coupling with other parts of the sample contribute 

to the macrospin’s energy. The total energy of the sample is the sum (or 

integration) over all macrospins. Any magnetization distribution of the sample 

yields one total energy va lue, and we can call this configuration a magnetization 

state [9, 38]. Fig.(3.1) shows several states; they are not necessarily real, because 

some of them are simply useful to initialize a simulation problem. 

 

An infinite number of magnetic states – real or unreal – construct a continuous 

energy “landscape”. An equilibrium state that is observed in practice has to at 
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least stay in a local energy minimum, where small perturbations around the 

configuration increase the total energy and consequent dissipating motions tend to 

return the stable state. If the energy change is large enough, the energy barrier 

between two equilibrium states may be overcome and phase transitions may occur. 

Effects of energy will be discussed more intensively with a semi-quantitative 

approach in section 3.2.6. 

 

Fig.(3.1) (color) Examples of magnetic states plotted with 
Matlab. The left column shows the color-map profiles 
of the in-plane angle, and the right column shows 
corresponding vector maps. (a), uniform distribution; 
(b), random in-plane distribution; (c), a vortex state. 

(a)  

(b) 

(c) 
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Intensive experiments and theoretical modeling on thin film’s equilibrium states 

have been achieved through efforts of many research groups [23, 26, 27, 38]. There are 

several “favorite” states. Fig.(3.2) gives a list of them for a rectangular structure 

[9]. 

 

 

 

 

3.2.2 Flux-closure magnetic states 

 

When no external field is applied, the equilibrium magnetic states are dictated by 

(a) “Landau” state (b) “diamond” state 

(d) “flower” state (c) “S” state 

Fig.(3.2) Some of the equilibrium states for a 
rectangular sample. Arrows outline 
the magnetization’s orientation. 

(e) “C” state 
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minimizing the magnetic “self energy” of the thin film. Usually the “Landau” and 

“diamond” states are observed in remanence, both with some sort of vortex 

structure. I ran simulations on rectangular Permalloy thin films and successfully 

reproduced these flux-closure states, shown in Fig.(3.3), where the main 

geometric and magnetic parameters are also given. 

 

 
 

Fig.(3.3) (color) Simulated flux-closure structure of Permalloy 
rectangular platelets. Only Mx and My components 
are displayed because Mz is determined by the 
restriction Mx

2+My
2+Mz

2=Ms
2. (a), the “Landau” 

state of a 400x400x10(nm3) particle. (b), the 
“diamond” state of a 500x1000x15(nm3) particle. No 
external field is applied in both cases, and a random 
distribution is employed as the initial state. The 
damping constant is 0.008, as it is for Permalloy. 

Mx 

Mx 

My 

My 

(a) 

(b) 
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3.2.3 High remanence states: “flower” and “S” 

 

External disturbance, such as a strong enough in-plane field, would break a film’s 

vortex structure and makes a fairly uniform magnetization distribution. Then the 

magnetic platelet can be treated as an information bit standing for “0” or “1”, 

which plays a key role in technologies of data storage. A large number of studies 

are based on this application. 

 

Depending on the field’s direction, different equilibrium magnetic states will be 

obtained. If the field is exactly parallel to the easy axis, “macrospins” in the film 

will mostly align to this direction except for those close to the two ends. The 

demagnetization term forces these spins towards parallel to the short sides (i.e., 

along the hard axis direction), and form some kind of small sub-domains. This 

state is named “flower” state after its appearance, see Fig.(3.4a). 

 

Following situation occurs more generally, when the in-plane bias field is not 

parallel to the easy axis. The sub-domains in the “flower” state will then 

reassemble themselves with the easy-axis-symmetry broken, eventually leading to 

the “S” state, shown in Fig.(3.4b). The “S” configuration has higher stability, 

because a transverse bias field will break the “flower” state and reach the “S” state 

as the new equilibrium (the dynamic evolution is illustrated in Fig.(3.4c)). 
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Fig.(3.4) (color) Simulated equilibrium states with an in-plane bias field. 
The initial state is a random distribution. The damping constant is 
set to be 0.008. The size of the sample is 500x1000x10(nm3). (a), 
the “flower” state, Hx-bias=0 and Hy-bias=60(Oe); (b), the “S” state, 
Hx-bias=40(Oe) and Hy-bias=60(Oe); (c), dynamic evolution from 
the “flower” state to the “S” state, by setting the former as the 
initial state (t=0) and then applying a transverse field suddenly 
(i.e. Hx-bias=40(Oe) when t>0). Only Mx component images are 
shown to save space.  

(a) (b) 

Mx 

My 

(c) 

t=130(ps) t=265(ps) t=320(ps) 
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3.2.4 Distortion: the “C” state 

 

I ran a series of simulations on a Permalloy microstructure of dimension 

500x250x10(nm3) to investigate how its quasi-static state depends on different 

bias field configurations. Three typical situations are shown in Fig.(3.5). 

 

When bias fields are small (case (a) and (b)), the effects of the sample’s edges and 

corners become significant and a “C” state appears instead of “flower” state or 

“S” state. When the fields are strong enough (case (c)), the “S” state is restored by 

the dominance of external fields (mainly along the hard axis) against the shape 

effects. 

 

(a) (b) (c) 

Fig.(3.5) (color) Appearance of the “C” state in a Permalloy rectangular 
particle with dimension of 500x250x10(nm3). The initial state 
is a random distribution and the damping constant 0.008 is 
used in the simulations. (a), easy axis bias field 60(Oe); note 
the asymmetry against the easy axis. (b), add a transverse bias 
field 40(Oe), and there is not much difference in comparison to 
(a); (c), finally the “C” state is stressed into the symmetric “S” 
state when a much larger bias field is applied. It is the hard axis 
field that causes the anti-aligned “C-domain” to flip. 

Mx 

My 

60(Oe) 60(Oe) 

40(Oe) 

200(Oe) 

100(Oe) 
bias field: 
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3.2.5 Out-of-plane field 

 

When a weak out-of-plane bias field Hz is applied, it would not be able to change 

the film’s equilibrium state, since the material’s crystalline structure and the 

external field applied during the film’s growth are believed to generate strong 

anisotropy and bound all magnetization spins in-plane [10]. This is also verified by 

experiments and simulations. Fig.(3.6) shows an interesting but reasonable 

phenomenon: opposite direction of Hz will result in opposite orientation of the 

vortex core. Certainly, this is not the only reason to explain why people observe 

differently spiraling vortices, but one could at least know its significance. 
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If Hz is very strong, the magnetization in thin films will be forcibly pulled away 

from in-plane position. Simulations show that it will form some flux-closure 

states, see Fig.(3.7). In these simulations, an “S” initial state in no field space is 

Fig.(3.6) (color) “Landau” states when out-of-plane bias field 
Hz=260(Oe) is applied. The size of the particle is 
400x400x10(nm3); no in-plane field is applied. A 
random distribution is set to be the initial state and 
the damping constant 0.008 is used in the 
simulations. Hz won’t break the vortex structure, but 
different field directions will make opposite spiraling 
directions of the vortex – see the vortex cores in 
different colors in spatial image representing for Mz . 

Mx 

My 

Mz 

(a) Hz= +260(Oe) (b) Hz= –260(Oe) 

negative Mz 

positive Mz 
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chosen.  Out-of-plane fields with different magnitudes are then applied suddenly 

to pull the sample to a new equilibrium. There’s no major difference even when 

Hz is as strong as 1200(Oe). Keep increasing the out-of-plane field and 

remarkable changes eventually occur. (c) and (d) of Fig.(3.7) show a “diamond” 

state and a “Landau” state, respectively. Not like those in section 2.2 of this 

chapter, the macrospins no longer stay in-plane now (note the light-blue color in 

Mz profiles). The strong external field gives a big level-up to the sample’s energy 

hierarchy, leading to transitions between different equilibrium states. The 

significance of energy will be discussed more intensively in the next section. 

 

 

 

 

Fig.(3.7) (color) Appearance of flux-closure equilibrium states 
when the out-of-plane bias field is getting stronger. 
The size of the particle is 400x400x15(nm3), and no 
in-plane field is applied. A “S” state is set to be the 
initial state – just what is shown in (a). The damping 
constant is 0.008. The Mz profiles shown in (c) and 
(d) indicate the significant effect of strong Hz. 

(a), Hz=0 

Mx 

My 

Mz 

(b), Hz=1200(Oe) (c), Hz=3600(Oe) (d), Hz=4800(Oe) 
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3.2.6 Energy hierarchies of magnetic states 

 

The total energy of a magnetic state is a valuable parameter to identify the 

selectivity and stability among different states. There are an infinite number of 

magnetic states (see discussion in section 3.2.1) with all possible energies, and 

they make some sort of energy “landscape”. Those states in local energy 

minimums are more stable, and they turn out to be the equilibrium states. Between 

them are energy “barriers”, which can be overcome by pumping extra energy into 

the system, so that transitions between different equilibrium states may occur. 

 

To calculate the energy of equilibrium states depends on so many aspects that a 

general conclusion is hard to make. Different element sizes, magnetic parameters 

or numeric algorithms may lead to different relative energy between two states. 

Below I quote some results from two groups to show this complexity.  

 

J. Miltat et al. [9] did some numerical calculations on a Permalloy rectangular 

platelet with dimension of 500x250x10(nm3). In zero external fields, the energy 

hierarchy reads 0.01695 for the “Landau” state and 0.02086 for the “diamond” 

state (in units of Ms
2V/2 or µ0Ms

2V/2 in SI units).4 Thus, the “diamond” state lies 

on a higher energy level (but still in a “local” energy minimum). Calculations also 

show that the “S” state has an energy hierarchy of 0.01910, significantly lower 

than the “flower” state’s 0.02181. This explains the transition from the “flower” 

state to the “S” state shown in Fig.(3.4c). It is also possible to see transitions 

between them and flux-closure states, which has been shown in the last section. 

                                                 
4 In this simulation, the lattice dimension is 64x32, so 

V=500x250x10/64/32=610.35(nm3)=6.1x10-27(m3); for Permalloy 
Ms=860(emu/cm3)=860(kA/m), the energy unit is 
0.5x 4π /107(N/A2)x8602(106A2/m2)x6.1x10-27(m3)=2.83x10-21(J). 
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W. Rave and A. Hubert [38] studied the “standard problem 1 (SP1)” which deals 

with a 2000x1000x20(nm3) thin-film element. From this relatively large sample, 

they got a total energy density of 0.00484 for the “Landau” state and 0.00453 for 

the “diamond” state (in unit of µ0Ms
2/2), which means the “diamond” state has 

even lower energy than the “Landau” state. They also showed that the “S” and 

“C” states have almost the same energy density of 0.00865, higher than the 

“flower” state’s 0.00980. 

 

 

 

3.3 Selection of the damping constant 
 

Using the LLG approach to calculate the equilibrium states, an artificially 

assigned (usually much larger than the truth) damping constant is often selected to 

bring the system into equilibrium more quickly, and shorten the simulation’s 

runtime [8, 23, 30]. Basically this trick is successful, but in some cases, different 

damping constants do make difference, and results in fakes on judgment of the 

sample’s equilibrium states. I present a test simulation here to show this. 

 

General information about the sample is described in Fig.(3.8). A uniform 

distribution is set as the initial state5, and a strong out-of-plane field 3600(Oe) is 

applied suddenly when t=0. In the case 1α = , the simulation converges quickly 

and forms a diamond state in both particles. Then in a period of about 4(ns), the 

“diamond” domain in the smaller particle collapses gradually, probably due to the 

                                                 
5 Usually a random distribution is set as the initial state, giving a sufficient non-equilibrium 
for the sample to relax and find its correct quasi-static state. In this simulation, however, a 
strong out-of-plane field will drive the sample away from equilibrium steeply (as shown 
before), so it doesn’t make much difference to initialize the simulation with a uniform 
distribution. 
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long range interaction with the larger particle. Eventually it sits in the lowest 

energy state – “Landau” state, while the diamond state in the larger particle 

remains very stable. In another case 0.008α =  – the experimental value for 

Permalloy samples we currently use – the simulation converges much slower, but 

it leads to a “Landau” state in both particles. Because of the weak damping and 

the magnetic coupling between two particles, the vortex cores do not quickly 

come to rest in the center of particles, but keep orbiting around the center slowly 

until t>13(ns). 

 

In conclusion, if the damping constant is set too large in simulations, the ordering 

of non-equilibrium magnetization may occur locally due to rapid convergence, 

making more complicated domain structures. Although complicated, these 

structures have sufficient low energy hierarchy (e.g. the diamond state in 

Fig.(3.8a)) to be very stable under simulation conditions. If used to predict or 

compare with experiments, errors may occur. 

 

In the following part of this thesis, the damping constant will be set 0.008 for all 

simulations on Permalloy samples, unless otherwise specified. 
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Fig.(3.8) (color) Simulated time frames of Mx profile showing the 
formation of equilibrium states. The sample’s thickness is 
15(nm), consisting of two rectangular Permalloy platelets 
in dimensions of 275x220(nm2) and 275x300(nm2), 
respectively, and the separation between them is 170(nm). 
A 3600(Oe) out-of-plane bias field is applied. The 
damping constant is set to be 1 for the left column and 
0.008 for the right. 
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3.4 Comparison with experimental results 
 

In the previous section, I compared some simulation results with published images 

from direct observations. Our group has also made some patterned Permalloy 

films on Si3N4 membrances (Belov et. al.), for analysis by electron holography at 

Brookhaven National Lab (Belleggia, Schofield, Zhu et. al.). In this section I 

present a comparison of simulation with these new measurements. 

 

 

3.4.1 Individual particles 

 

Patterned Permalloy particles are deposited on a large substrate. Separations 

between them may vary from hundreds of nanometers to a few micrometers. 

When a magnetic platelet is more than about the effective dipole size away from 

every near neighbor on the substrate (measured edge to edge), we treat it 

independently. Fig.(3.9a) is a TEM image of a square Permalloy platelet with 

dimension of ~860x840x37(nm3). One should notice that the four corners have 

finite radii of curvature. I modified the definition of the mask array in the 

simulation codes, so that the modified shape due to these round corners is taken 

into account. Fig.(3.9b-c) shows the simulation results; similar to Fig.(3.3a), it is 

also a “Landau” state. 



 50 

 

 

 

3.4.2 Particle array – long range coupling 

 

We also have samples with Permalloy particles aligning up and forming an array. 

Fig.(3.10) gives some TEM images from one of these arrays. There are five 

Fig.(3.9) (color) (a), TEM image of the Permalloy particle, 
860x840x37(nm3). There is ~260(G) out-of-plane 
remanent field in the Lorentz lens chamber. (b), 
Simulation image of the sample. Just to clarify: the 
corner areas are also displayed in green color 
because I set mask(0,i,j)=0 there. (c), the vector 
map of the structure. 

Mx 

My 

(a) (b) 

(c) 

Mz 
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square particles, with their sizes ranging from ~200x200x10(nm3) to 

~1.4x1.4(µm2)x10(nm).  

 

Fig.(3.10) Magnetic coupling of Permalloy particles in an array. 
(a), topview of the whole structure, one of them in “S” 
state. (b), zoom-in image of one of the particles in a 
“Landau” state, but the vortex core shifts off the square 
center, possibly due to the “attraction” by neighboring 
particles which produc e a small in-plane field on it. (c), 
obtained from another imaging; one particle has turned 
into a state that is more complicated than “S”. 

“S” state 

“Landau” state 
(a) 

(c) 

pseudo-“S” state that 
has even higher energy 
hierarchy 

(b) 
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The remanent magnetic field in the objective lens of the TEM is ~260(Oe) and is 

perpendicular to the film surface. Since there is almost no in-plane field, most of 

these particles are in the ground energy state with different vortex orientations, 

while a little strangely, one particle is in the “S” state (Fig.(3.10a)) or some 

distortion of that (Fig.(3.10c)). 

 

Simulation of an array can also reproduce this diversity.  It is important to keep in 

mind that this phenomenon is not deterministic, i.e. among all the particles you 

can’t predict which one will end up in a non-ground state. 

 

Since the diversity of the magnetic particles’ equilibrium states is in nature a 

probabilistic problem, I designed a test simulation to investigate it in another way. 

I put a lot of identical particles in a big frame, set a random distribution initial 

state on all of them, and let them relax under identical magnetic circumstances. 

Fig.(3.11) shows a simulated image containing 36 particles. One remarkable thing 

is the “S” state can be seen in one of the particles, which means even these small 

magnetic particles do have a finite probability to relax into a metastable “S” state. 
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Fig.(3.11) (color) Various equilibrium states in a 6x6 array. 
Each Permalloy platelet has a dimension of 
400x400x10(nm3), and the separation between 
them is 400(nm). Only a 260(Oe) out-of-plane 
external field is applied. Many of them have 
been pumped up from their ground state.  

“S” state 

a distorted 
“S” state 
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Chapter Four 

Magnetization reversal 

 

Stroboscopic microscopy based on magneto-optical Kerr effect 

(MOKE) is introduced. It is a powerful tool to investigate ultrafast 

magnetization reversal dynamics. Simulations results are presented 

and compared with the experiments. They agree with each other pretty 

well, and some unconformities are discussed through test simulations, 

showing further that the simulations on reversal problems are 

successful. 

 

 

 

4.1 Introduction 
 

 

4.1.1 In-plane dynamics of ultrathin magnetic film 

 

As discussed in Chapter One, the exchange interaction is a short-range term. Its 

characteristic range, known as the exchange length, is 

 22 s

A
L =

Mπ
 (4.1) 

where A is the exchange stiffness. For soft materials such as Permalloy, people 

usually take 61 10 (erg/cm)A −= × , and 5(nm)L = . The thickness of most thin films 

I discuss in this thesis is not far beyond this length, and can be treated in a 
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quasi- two-dimensional way [9]. In such films, the exchange interactions tend to 

make a uniform magnetization, and the stray field energy is minimized if the 

magnetization is in-plane [8, 12]. So generally, the large-angle movement of the 

magnetization is mostly in-plane. 

 

Researchers go forward on sub-nanosecond time scales and sub-micrometer 

spatial scales, because new tools enable this and industrial interests require 

advanced magnetic devices for information communication and storage, such as 

ultrahigh speed read/write heads, and magnetic random access memories 

(MRAM). 

 

 

 

4.1.2 Measurement techniques 

 

Stroboscopic microscopy for investigation of dynamics of magnetic materials 

requires combining a source of short light pulses such as a mode- locked laser, 

with a polarizing microscope for magneto-optical imaging, and synchronizing to 

repetitive magnetic response driven some form of ultrafast pulse generator [31]. 

 

Magneto-optical imaging is based primarily on the magneto-optical Kerr and 

Faraday effect(s). The Kerr effect refers to the changes in the intensity or 

polarization state of light reflected from a magnetic material. By measuring these 

changing optical signals, we are able to calculate the corresponding magnetic 

quantities, thus gain the knowledge of dynamic magnetic states of interested 

samples. 
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Depending on the relative geometry of the incoming light and the magnetization 

orientation in the material, the Kerr effect has three basic modes, illustrated in 

Fig.(4.1). For out-of-plane magnetization in the sample, it is known as the polar 

Kerr effect. For in-plane magnetization parallel to the plane of incidence of the 

reflected light, it is known as the longitudinal Kerr effect; and for in-plane 

magnetization perpendicular to the plane of incidence, it is known as the 

transverse Kerr effect [10]. 
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Fig.(4.1) Three modes of magneto-optic Kerr effect: (a), polar 
Kerr effect; (b), longitudinal Kerr effect, where (b1) 
and (b2) are different cases in which incident beam’s 
polarization is parallel or perpendicular to plane of 
incidence, respectively; (c), transverse Kerr effect. 
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Fig.(4.2) illustrates a measurement system employing time-resolved scanning 

Kerr effect microscopy. A pulse generator is used to produce a chain of identical 

current pulses. When these pulses flow through the transmission line, an in-plane 

magnetic field will be induced to drive the sample out of equilibrium. The interval 

between pulses is fixed and long enough to let the sample return to equilibrium 

after each excitation. 

 

probe beam 

pump beam 
laser source 

triggering 

photodiode 

pulse generator 

delay line 

sample 

transmission line 
I 

t 

equilibrium 1 
equilibrium 2 

t=0 (variable)t t= ∆  

beam splitter 

pump probe 

(a) 

(b) 
scanning with variable delay 

nonequilibrium response profile 

Fig.(4.2) Pump-probe measurement. (a), pump and probe beams are split 
in phase and guided to their respective destinations. The pump 
beam is used to generate the magnetic field that changes the 
sample’s magnetic states, and the probe beam is used to measure 
this change. (b), the timing information is provided by the delay 
line setting. Repeated probing with varied time delays can 
measure out the whole nonequilibrium profile. 

laser pulses 

electrical pulses 

detector (with polarization analysis) 
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Ti-sapphire laser pulses are focused to measure the sample’s Kerr signals. In the 

pump-probe scheme, the laser pulse is first split into two pieces, one pump and 

one probe. At time t=0 the pump beam triggers a photodiode to turn on the pulse 

generator, and the sample is excited (or “pumped”) by induced magnetic field. 

After a short time interval t∆ , the sample is probed by the probe beam. t∆ , the 

time delay, can be varied continuously by changing optical path length, or by 

electronic delay of the photodiode signal. 

 

When the incoming probe beam reflects from the sample surface, information 

about the magnetization components is stored in the outgoing modulated beam 

(the “Kerr signal”). In high numerical aperture microscopic imaging, quadrant 

detectors are capable of extracting the in-plane and out-of-plane Kerr signals 

simultaneously [12, 13]. The signals are output to a computer-controlled data 

acquisition system. It should be pointed out that these data represent the change of 

magnetization, not the absolute values, and therefore must be supplemented with 

separate information about the equilibrium magnetic state. 

 

 

 

4.2 Simulation results; bias-field dependence 
 

 

4.2.1 General settings 

 

Our group has performed extensive measurements on ultrafast magnetization 

reversal. The sample that I’m interested in is a rectangular Permalloy (Ni80Fe20) 

platelet with dimensions of 2x10(µm2)x15(nm). The sample design and external 
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field configuration are described in Fig.(4.3). In the 1800 reversal configuration, 

the sample is first saturated in the longitudinal bias field Hl, and then a switching 

pulse Hs is applied antiparallel to Hl in order to flip the magnetization. In some 

experiments, an in-plane transverse bias field Ht is added to manipulate different 

reversal modes [3, 33, 34]. 

 

In the simulation, the sample is divided into a lattice with 128x512 cells. I use a 

uniform distribution as the initial state, i.e., the normalized magnetization Mx=0, 

My=1, Mz=0 for each cell. The samples must have considerable time to reach their 

quasi-static states. Only the DC bias field exists during this “cool-down” period, 

transmission line 

x 

y z 

rise time: 0.5(ns) 

drop time: 1.5(ns) 

duration: ~10(ns) 

current pulse 

switching pulse 
Hs=300(Oe) 

transverse bias field 
Ht=0 – 175(Oe) 

longitudinal bias field 
Hl=0 – 400(Oe) 

easy axis 

20(µm) 

Fig.(4.3) Geometry and field configuration of the magnetization reversal 
experiments. Note the Cartesian coordinates shown here are 
different with our group’s published results [3, 4], in order to 
keep consistent with the settings in the simulation code. This 
will not affect any physics results. 

I 
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and it can be simulated as a quasi-static problem. The sample will rest in the “S” 

state, which we treat as the initial state. Then the switching pulse rises up with a 

linear profile (as sketched in Fig.(4.3)).  

 

 

 

4.2.2 No transverse bias field (Ht = 0) 

 

In this case, all external magnetic fields – the DC bias field and the transient 

switching field – are parallel to the sample’s easy axis. 

 

First let’s take Hl=60(Oe), Hs=-300(Oe). Fig.(4.4) illustrates the switching process. 

It starts from the two ends. The edge domains grow and meet in the center of the 

film, and then expand along the hard axis direction to reach saturation. The 

sample’s magnetization can be plotted in a time-resolved way (shown later). In 

this problem, a primary concern is about the switching of easy axis component 

(My), and My images are shown in common publications [3]. While in some other 

publications, spatial profiles of the spherical coordinate φ  are displayed in order 

to show the in-plane rotation of the magnetization [27]. As mentioned in section 

4.1.1 of this chapter, the dynamics is in-plane, then we simply have 

cosy sM M φ= . Since Ms is a constant, these two display schemes are equivalent. 
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Fig.(4.4) (color) Individual time frames showing the 
reversal process when Ht=0. The left column 
(a) represents for My component and the right 
column (b) represents for in-plane angle  
component. Color bars refer to section 2.5. 
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4.2.3 Transverse bias field; coherent reversal 

 

A remarkable difference in the reversal has been found by applying a transverse 

bias field Ht [3]. In the simulation, the “S” state is set to be the initial configuration; 

but in Fig.(4.5a) we can see that because of the transverse bias field, the 

magnetization has shifted away from the easy axis – the equilibrium position 

when Ht=0 – comparing to Fig.(4.4a). This means the sample is in a higher energy 

level. This is very important in understanding the different reversal modes, 

because the sample is now starting from a different initial configuration, higher on 

the potential energy landscape (which includes a “barrier” corresponding to high 

magnetostatic energy with magnetization along the hard axis direction), but also 

where there is an initial torque on the magnetization throughout the specimen [33, 

34]. 

 

The sample responds earlier to the switching pulse, and the reversal time 

decreases dramatically. Edge domains in the initial configuration will expand 

quickly along the easy axis direction and form a narrow domain parallel to the 

easy axis. The domain walls then expand transversely in the hard axis direction 

until saturation is reached. This domain wall motion dominates the whole reversal 

process, which is in nature different from Ht=0 case. The stripe-like domain 

nucleation process is avoided, thus the reversal gains a significant speed-up. 

Fig.(4.6) shows the great improvement. Since the rising time of the switching 

pulse is about 500(ps), the transverse bias field yields an almost “synchronous” 

reversal. 
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Fig.(4.5) (color) Individual time frames showing the 
reversal process when the transverse bias field 
is Ht=65.3(Oe). (a), My images; (b), in-plane 
angle images. Color bars refer to section 2.5. 
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4.3 Effects of thermal fluctuations 
 

I show here some comparisons between existing experimental data and my own 

simulation results. Different switching behaviors have been measured and typical 

results are shown in Fig.(4.7) [3]. This is the 2x10(µm2)x15(nm) Permalloy sample, 

and the field configurations and magnetic parameters are the same with those in 

my simulation. It has been shown that the simulation results match these 

processes pretty well (refer to Ref.[4] and Fig.(4.4-5)). 

Fig.(4.6) Simulated magnetization reversal as a function 
of time with or without the transverse bias 
field. The longitudinal field is fixed at ~60(Oe). 
The switching pulse is assumed to have a linear 
rising time ~500(ps), shown by the dashed line. 
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However, the simulated domain-nucleation modes are different from measured 

results, especially when no transverse bias field is applied. In simulations, small 

magnetic domains first flip from two ends of the sample, then expand and merge 

in the center; while the observed process reveals that some stripe- like domains 

arise throughout the whole sample in the early stage of reversal, showing some 

random characteristics, which implies that stochastic thermal fluctuations play a 

role in it.  

 

Fig.(4.7) (color) Spatial distributions of the in-plane 
magnetization component in the easy axis 
direction [3]. In both cases, the longitudinal 
bias field is 60.3(Oe). The left volumn refers 
to transverse field Ht=0, and the right volumn 
Ht=65.3(Oe) (5.2 kA/m in SI unit). Note: it 
uses a different display scheme from what I 
use, but that will not affect the comparison. 
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I added the thermal term in the simulation using Eq.(1.36) and obtained corrected 

spatial images. Fig.(4.8a-d) shows some of them when T=300(K). The stripe- like 

domains appear as desired (although a little earlier than experiment, since we 

assume the DC swithing field holds a linear rising profile in simulations, while the 

real magnetic pulses rise exponentially in the early stage of excitings, thus have 

smaller switching field than simulations). Fig.(4.8e) is from another 

“benchmarking” using Scheinfein’s code, indicating my thermal term calculation 

is successful. 

 

 

 

Fig.(4.8) (color) Simulated time frames of My spatial distributions 
under room temperature T=300(K). Other sample settings 
are identical with the case described in section 4.2.2. The 
last frame is obtained from Scheinfein’s code that is in 
agreement with (d) regardless the tiny time gap of 10(ps).  

(a), t=385(ps) (b), t=420(ps) 

(c), t=450(ps) (d), t=480(ps) 

(e), by Scheinfein’s code, t=490(ps) 
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Another useful comparison is about the time evolution of averaged magnetization 

for the whole sample. Local energy fluctuation brought by thermal effects should 

make the magnetization spins easier to break the energy barriers and shorten the 

reversal time. This is shown in Fig.(4.9), which plots the easy-axis average 

magnetization as a function of time under the different termperature 0(K) (i.e., to 

neglect the thermal term) and 300(K). It would be valuable for both theory 

advances and industrial applications (a field called “thermo-assisted switching”) 

to investigate the change of reversal time as a function of temperature, which is 

one of the future tasks. 
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Fig.(4.9) (color) Time .vs. averaged magnetization along the 
easy axis, based on the same simulations discussed 
in Fig(4.4) and Fig.(4.8). 
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Chapter Five 

Ferromagnetic resonance 

 

When simulating problems of ferromagnetic resonance (FMR), 

numerical faults will arise, with some checkerboard patterns 

appearing. After solving this puzzle, FMR simulation results in both 

time and spatial domains will be presented, and they will be compared 

with experimental results and empirical formula. 

 

 

 

5.1 Introduction 
 

Stroboscopic measurements on the out-of-plane magnetization (Mz) offer a good 

handle on the study of small angle excitations of a thin film magnetic element. 

The magnetization’s small angle departure from the equilibrium orientation will 

be followed by precession about the direction of local effective field, which is  

largely in-plane as discussed in the last chapter. Hence the polar component Mz is 

one of the oscillating transverse components of magnetization, as in magnetic 

resonance. Ferromagnetic resonance (FMR), driven by an out-of-plane magnetic  

pulse, exhibits typical small angle dynamics, and is the main topic of this chapter. 

 

Ferromagnetic resonance data are collected by time domain measurements and 

spatial scanning. The apparatus for an FMR experiment is similar to what is used 

in reversal problems. The primary difference is the direction of the transient 
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magnetic pulse, now out-of-plane. 

 

The sample under experimental investigation here is a square Permalloy element 

with dimensions of 4x4(µm2)x15(nm). An adjustable in-plane bias field is applied 

in the easy axis direction. The excitation pulse has a bell-shaped profile, which I 

have approximated by a sine function in the simulation. The pulse width is 500 

picosecond, and the peak magnitude is 8(Oe). 

 

 

 

5.2 Numerical limitation – checkerboard puzzle 
 

A serious challenge came up when studying the simulated Mz spatial images for 

very small flipping angles. I encountered some checkerboard- like “scars” without  

physical meaning. Fig.(5.1) shows an example. Mz values in neighboring cells 

have astonishing divergence. Suspecting all kinds of possibilities, I examined this 

problem both on the real 4x4(µm2) Permalloy element and some test samples 

(with smaller sizes, so that simulations run faster). Eventually I figured out that 

the numerical precision setting was the main cause. 

 

In the FORTRAN77 simulation code, there are two parameters to identify the 

precision of the Runge-Kutta integrator: “TOL” (tolerance) and “THRES” 

(threshold). TOL controls the relative error tolerance; THRES is an array with the 

length equal to the number of equations to be solved, THRES(i) is the threshold 

for the ith solution component. Usually they’re set to be 10-6 or even larger, and 

this is OK for most problems. The tendency is  to keep them large because the 

smaller they are, the slower the simulation runs. 
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In out-of-plane FMR problems, the situation is changed. Since the magnetization 

is almost in-plane, the absolute value of Mz/Ms might be even smaller than 10-7 

(see some of the points in Fig.(5.1c))! When this happens, the two parameters 

become void, because numerical errors which have been permitted by them (i.e., 

tolerated errors) are even larger than the magnitude of desired data. This explains 
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Fig.(5.1) (color) (a), a 56x56 cell block extracted from a 
FMR simulation image; (b), grey map of (a); 
(c), a scan line showing divergent data in 
neighboring cells. 
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why some data points just look like some kind of non-random noise. “Real” data 

are submerged in this numerical noise. 

 

I reset these two parameters to overcome this problem. Fig.(5.2) shows some 

results from an imaginary simulation (the simulation on the real sample is too 

slow to test this puzzle conveniently). This is a 640x640x10(nm3) sample, with a 

64x64 grid, so every cell is a 10(nm) cube. I ran a number of simulations in 

identical conditions, only changed the values of TOL and THRES. Checkerboard 

patterns keep arising until TOL=10-7 and THRES=10-6. When TOL=10-6 and 

THRES=10-7, checkerboard patterns still appear but look much better than the 

case when TOL=THRES=10-6. When TOL=THRES=10-7, the checkerboard 

patterns completely vanish. This proves that both the two parameters are related to 

the numerical limitation; and by setting them properly, the problem would be 

solved, although that will cost more execution time. Simulation results in the next 

sections of this chapter are all obtained with safe settings. 

 

In FORTRAN90 version simulation codes, numerical precision is determined by 

just one parameter, “precision”, which limits the minimum angle change of 

magnetization under a critical value. Control this parameter carefully and 

checkerboard patterns would disappear. 
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(a). TOL=THRES=10-5 (b). TOL=THRES=10-6 

(d). TOL=10-7, THRES=10-6 

(c). TOL=10-6, THRES=10-7 

(e). TOL=THRES=10-7 

Fig.(5.2) Checkerboard patterns come out if precision 
settings are not good enough (a, b, c). 



 74 

5.3 Results – time domain analysis 
 

 

The “effective field”, which would set the scale for the precession frequency of a 

“test spin” dropped into a given location, varies quite strongly as a function of 

position in our inhomogeneously magnetized sample. This field variation defines 

a profile analogous to potential surfaces or potential wells in quantum mechanics, 

and forms a landscape for magnetic excitations (eigenmodes) with varied 

frequencies and wavelengths. Our broad band pulse FMR experiments can drive 

and detect a variety of these modes [5, 35, 37]. 

 

As a zero-order approximation, however, we can compare the calculated FMR 

response spatially averaged over the whole element to the uniform mode of 

oscillation in an infinite thin film, predicted by the famous “Kittel formula” [35]. 

 

Normalized Mz (averaged over the whole sample) as a function of time, with 

different easy axis bias field applied, are plotted in Fig.(5.3) separately. Larger 

bias field has stronger in-plane confinement on the magnetization, thus the 

out-of-plane oscillation has smaller magnitude and larger frequency as the bias 

field increases. 
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In Fig.(5.3d-e) we notice superimposed oscillations in the first “nonresonance” 

peak, indicating that the FMR mode is established immediately after the excitation. 

Fig.(5.4) shows an experiment curve and a simulation curve under the same 

parameter configuration. This is not a careful comparison, but simply to show that 

both of them exhibit this kind of superposition. 

 

Fig.(5.3) also provides the simulated resonance periods for different cases. The 

Fig.(5.3) FMR curves for different easy axis bias fields (Hy=45, 
60, 75, 200, 1000(Oe)). When the oscillation has 
sufficient high frequency, the first “nonresonace” peak 
due to the original excitation has been superposed by 
subsequent resonance pulses, shown in above picture 
when bias field is 1000(Oe) (also when bias field is 
200(Oe), but not so explicit). 

(e) 
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stronger the bias field, the high frequency mode is launched. A quantitative 

comparison can be performed based on this field-frequency dependence. 

 

 

The Kittel’s formula describes the relation between FMR frequency and static 

external field [35], and it is fit for current simulations. The equation reads: 

 ( )0 ext ext 4 sH H Mω γ π= +  (5.1) 

Substitute Hext with the values shown in Fig.(5.3), we will get corresponding 

theoretical values for FMR periods (reciprocal of the frequencies). A comparison 

between the simulation results and the Kittel formula is shown in Fig.(5.5). They 

agree with each other very well. 

Fig.(5.4) (color) Experimental .vs. simulated FMR 
curves when Hbias=1000(Oe). 
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5.4 Results – spatial images 
 

Spatial distribution of magnetization is measured by repeated pump-probe 

procedures with the probe spot scanning across the whole sample surface. A new 

feature to be introduced here is a round pinhole punched at the center of the 

sample. This is one of the efforts to study higher order FMR modes. The pinhole 

introduces a quadrapolar topography on the preciously uniform effective field or 

“potential surface” background, hereby influences the symmetry of the excited 
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Fig.(5.5) External bias field .vs. FMR frequency.  
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eigenmode. The diameter of the pinhole is ~240(nm). In simulations, the pinhole 

is implemented by a square grid mask with a staircase boundary, see Fig.(5.4). 

This may cause high frequency spin waves in the simulations that would not be 

present in real samples. 

 

Fig.(5.7a-b) shows some images taken in experiments. They are spatial 

distribution of z-component Kerr signals. We could notice the two 900 domain 

walls, indicating that this sample is excited from the quasi-static “C” state. I use 

the “C” state as the element’s initial state in the simulation, too. Fig.(5.7c) shows 

all three M components after the sample has been allowed a long time to 

equilibrate. 

(a) (b) 

Fig.(5.6) Sketch map: definition of the pinhole. 
(a), real sample; (b), simulation. 
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Preliminary FMR simulation results are shown in Fig.(5.8). The left column refers 

to the no-defect sample, and the right column refers to the sample with the pinhole. 

Four snapshots are taken when the resonance reaches the 1st peak, the 1st valley, 

the 2nd peak and the 2nd valley, respectively. Because the cells within the pinhole 

area are assigned (0, 0) in spherical coordinates, some offset and linear 

expansion/retraction are applied on the data to produce good-contrast images. 

This leads to different visualization effects for the two columns. A detailed 

comparison between experiments and simulations is in progress. 

 

The results in spatial profile simulation have some limitations. In the areas close 

to the pinhole, some odd points and tiny domain stripes arise. Although people do 

Mx 

My 

Mz 

(a) 

(b) 

(c) 

Fig.(5.7) (color) (a), (b), experimental images imply that the 
sample’s initial state should be “C” state; (c), the 
quasi-static “C” state in the simulation. 
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observe similar structures in real samples, those in simulation results are 

obviously due to numerical limitations. On the other hand, the two long domain 

walls associated with the “C” state look much sharper than those in experiment 

images (see Fig.(5.7a-b)). At the same time, these areas are most vulnerable by 

checkerboard flaws – the numerical limitation as discussed before. These 

disagreements expose some configuration differences between experiments and 

simulations. In simulations, rectangular grid cells make odd boundary conditions, 

as illustrated in Fig.(5.6). The sample’s corners and edges (including the pinhole) 

produce topological effects. Furthermore, not all dissipating terms are involved in 

the numerical model, such as laser drifts, electrical noise, mechanic vibration, etc. 

Therefore, the simulated images have somewhat abrupt appearances. 
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(a) 1st maximum 

(b) 1st minimum 

(c) 2nd maximum 

(d) 2nd minimum 

without pinhole with pinhole 

easy axis direction 

Fig.(5.8) (color) Spatial images for FMR study on the 4x4(µm2) 
Permalloy sample. Simulation data are rescaled for 
convenience of color displaying, because absolute 
value of Mz/Ms is mostly as small as 10-4~10-5. 

“C” state domain walls 

the pinhole 
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Epilogue 

Conclusion and prospect 

 

So far, micromagnetics in Permalloy thin film microstructures has been 

investigated – from quasi-static states, to in-plane and out-of-plane dynamics. 

Micromagnetic simulations show substantive success on reproducing the real 

processes and predicting valuable phenomena. In principle, the micromagnetic 

dynamics can be simulated to sufficiently high accuracy based on LLG model, 

provided external conditions are precisely configured and numerical precisions 

are good enough. On the other hand, stochastic thermal fluctuations bring random 

diversities into the motions of magnetization. 

 

The simulation’s capability of predicting may play an important role in future 

applications. Many “test” simulations presented in this thesis show a way how to 

do studies without real experiments, and this can help people to design future 

magnetic devices. This creative prospect stimulates my enthusiasm for further 

simulation works. 

 

More calculations on the thermal term will be very interesting, possibly by doing 

a large number sampling (say, ~1000 times) and finding relative probabilities for 

certain processes. This also requires further improvements on the simulation code 

for less execution time. Another important task is to calculate the energy of 

magnetic states, which offers a quantitative method to study the stability of the 

system. Finally, 3D simulation is expected to be implemented based on current 2D 

version, because multi- layer magnetic samples are being researched in our group. 
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Appendix I 

2D Micromagnetic Simulation code 

(FORTRAN77) 

 

Below is the FORTRAN77 version of micromagnetic 
simulation. The code is conventionally split into 11 files, each 
containing subroutines or functions that perform certain 
tasks. The code structure is illustrated in section 2.2. 

 

 

1. Contents in the file “global2d.inc”: 
 

c******************************************************************** 

c Global definitions of parameters. Globalization is achieved by  

c including this file in every subroutine and function. Be aware:  

c this method does not allow for any communication between units,  

c unless variables are placed in COMMON declaration.  

c******************************************************************** 

 IMPLICIT NONE 

 INTEGER*4 nxmax, nymax, Nmax, nx2, ny2, kmax 

 REAL*8 sizex, sizey, thick, un, Pi, dux, duy, duz, d2x, d2y, d2z 

! Working array size 

 PARAMETER(kmax=1000) 

 PARAMETER(nxmax=64, nymax=64) 

 PARAMETER(nx2=2*nxmax, ny2=2*nymax) 

 PARAMETER(Nmax=2*nxmax*nymax) 

! Dimensions of the rectangular grid in nm 

 PARAMETER(sizex=800.d0, sizey=800.d0, thick=15.d0) 

! un is a length unit in nm (=sqrt(2*A/Ms^2, where A is the exchange 

! constant. Ms is the saturated magnetization. A=10-6(erg/cm), and 

! 4*Pi*Ms=10.8(kGauss)) 

 PARAMETER(un=16.455122d0, Pi=3.14159265358979324d0) 

! Relative size of the cell 

 PARAMETER(dux=sizex/nxmax/un, duy=sizey/nymax/un, duz=thick/un) 

 PARAMETER(d2x=1/(dux*dux), d2y=1/(duy*duy), d2z=1/(duz*duz)) 
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! Mask array: defines shape of the sample. 

 INTEGER*1 mask(-2:2,0:nxmax+1,0:nymax+1) 

 INTEGER*1 maskp(-2:2,-1:nxmax,-1:nymax) 

 COMMON /mask1/ mask 

 EQUIVALENCE (mask,maskp) 

! Definition of damping constant, evaluated in "sim2d.f". 

 REAL*8 alpha 

 COMMON /param/ alpha 

! 

 CHARACTER*32 datini 

 CHARACTER*32 datlast 

 CHARACTER*3 datint 

! Note: datini must be the same as datlast 

 PARAMETER(datini="data_last.dat") 

 PARAMETER(datint="xyz") 

 PARAMETER(datlast="data_last.dat") 

 

 

 

2. Contents in the file “sim2d.f”: 
 

 PROGRAM sim2d 

c****************************************************************** 

c Program traces the dynamical development of magnetization process  

c in arbitrarily shaped sample with space- and time-dependent external 

c field. The main program is a customizable driver, the code below is  

c just an example.  

c******************************************************************* 

 INCLUDE 'global2d.inc' 

c Paramaters & procedures for timing 

 CHARACTER*24 the_time 

 REAL*4 tarr(2), ttot, ETIME 

c Parameters for RKSUITE 

 INTEGER cstep 

 COMMON /cstep/ cstep 

 INTEGER*4 method, lenwrk, total, cost, stepok 

 PARAMETER(lenwrk=10*Nmax) 

 CHARACTER*1 task 

 LOGICAL errass, message, ex 

 REAL*8 work(lenwrk), thres(Nmax), wast, hnext 

 REAL*8 eps, h1 
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 EXTERNAL sigterm, sigusr1, sigusr2 

! Store angles of magnetization distribution 

 REAL*8 tp(2,nxmax,nymax) 

! Ellipse size 

 REAL*8 rx, ry 

! Range of integration 

 REAL*8 t1, t2 

! 

 INTEGER*4 kount, i, j 

 REAL*8 xm(0:kmax), ym(0:kmax), zm(0:kmax), t(0:kmax), dxsav 

 COMMON /PATH/ kount, dxsav, xm, ym, zm, t 

! 

 cstep=0 

c RKSUITE parameter initialization (see RKSUITE documentation) 

 eps=0.0000001 

c Relative accuracy 

 h1=0.0 

c Guess for initial step (0 - auto) 

 method=1 

c Method of Runge-Kutta integration 

 task='u' 

c Integration procedure 

 errass=.FALSE. 

 message=.TRUE. 

c Absolute accuracy 

 DO j=1, Nmax 

  thres(j)=0.0000001 

 END DO 

! Signal handler to catch soft kill signal. Signal number 15,16 and 17 

 CALL signal(15,sigterm,-1) 

 CALL signal(16,sigusr1,-1) 

 CALL signal(17,sigusr2,-1) 

c Evaluate the damping constant - defined here to escape 

c BLOCK DATA and still keep flexibility to change it 

 alpha=0.008 

c Period of savings 

 dxsav=2.0 

c Range of integration 

 t1=0.0 

 t2=200.0 

c Calls to timing procedures 
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 CALL FDATE(the_time) 

 WRITE(*,*) the_time 

 ttot=ETIME(tarr) 

c Initialization of demagnetizing field calculation 

 CALL initdem 

c Information on shape and initial condition are read from 

c a file. If the file does not exist it starts from a prescribed 

c initial state. If the file does exits it reads the state that 

c it got to and the time and begins from there. 

 INQUIRE(file=datini, exist=ex) 

 IF (ex .eqv. .TRUE.) THEN 

  OPEN(10,FILE=datini,FORM='unformatted') 

  READ(10) mask, tp, t1, kount 

  CLOSE(10) 

! Reset the start point if desired 

!  t1=0 

!  kount=0 

 ELSE 

  CALL shape(rx,ry) 

  CALL iniuni(tp,1) 

 END IF 

! Perform integration 

 CALL SETUP(Nmax,t1,tp,t2,eps,thres,method,task, 

     &  errass,h1,work,lenwrk,message) 

 CALL ODEINT(tp,t1,t2,work) 

! 

 CALL FDATE(the_time) 

 WRITE(*,*) the_time 

 WRITE(*,*) 'Execution time: ', ETIME(tarr), ' sec' 

 CALL STAT1(total,cost,wast,stepok,hnext) 

 WRITE(*,*) total, cost, stepok 

 WRITE(*,*) wast, hnext 

! 

 END 

 

 

 

3. Contents in the file “interupt .f”: 
 

! Signal handlers; exit and resubmit program to queue 

 SUBROUTINE sigterm() 
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 STOP 99 

 RETURN 

 END 

! 

 SUBROUTINE sigusr1() 

 STOP 99 

 RETURN 

 END 

! 

 SUBROUTINE sigusr2() 

 STOP 99 

 RETURN 

 END 

 

 

 

4. Contents in the file “init2d.f”: 
 

! Temporal-spatial profile of the external field 

        SUBROUTINE hfun(t,i,j,hx,hy,hz) 

        INCLUDE 'global2d.inc' 

! 

        REAL*8 t, hx, hy, hz 

        INTEGER*4 i, j 

! 

        REAL*8 Ms 

        PARAMETER(Ms=859.436693) 

! 

        hx=0/Ms 

        hy=0/Ms 

        hz=0/Ms 

! 

        END 

! ---------------------------------------------------------- 

        SUBROUTINE shape 

        INCLUDE 'global2d.inc' 

! 

        INTEGER*4 i, j 

! First, fill up the full rectangle 

        DO i=1, nxmax 

                DO j=1, nymax 
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                        mask(-2,i,j)=-1 

                        mask(-1,i,j)=-1 

                        mask(0,i,j)=1 

                        mask(1,i,j)=1 

                        mask(2,i,j)=1 

                END DO 

        END DO 

! Detect edges and assign boundary conditions 

        DO i=1, nxmax 

                DO j=1, nymax 

                        IF (mask(0,i,j) .eq. 1) THEN 

                                IF (mask(0,i-1,j) .eq. 0) mask(-1,i,j)=0 

                                IF (mask(0,i+1,j) .eq. 0) mask(1,i,j)=0 

                                IF (mask(0,i,j-1) .eq. 0) mask(-2,i,j)=0 

                                IF (mask(0,i,j+1) .eq. 0) mask(2,i,j)=0 

                        END IF 

                END DO 

        END DO 

        END 

! ---------------------------------------------------------- 

! ---------------------------------------------------------- 

        SUBROUTINE iniuni(tp) 

        INCLUDE 'global2d.inc' 

! 

        REAL*8 tp(2,nxmax,nymax) 

! 

        INTEGER iseed(4) 

        REAL*8 rand(nxmax*nymax) 

! 

        INTEGER*4 i, j 

! 

        iseed(1)=371 

        iseed(2)=49 

        iseed(3)=185 

        iseed(4)=229 

        CALL dlarnv(2,iseed,nxmax*nymax,rand) 

! 

        DO i=1, nxmax 

                DO j=1, nymax 

                        tp(1,i,j)=mask(0,i,j)*Pi/2 

     &                          +(1-mask(0,i,j))*rand(i*j)*0.0000001 
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                        tp(2,i,j)=mask(0,i,j)*Pi/2 

!                        tp(2,i,j)=mask(0,i,j)*rand(i*j)*Pi 

                END DO 

        END DO 

! 

        END 

! ---------------------------------------------------------- 

! ---------------------------------------------------------- 

        SUBROUTINE initdem 

        INCLUDE 'global2d.inc' 

! ******************************************************************** 

! Initializes FFTW and calculates Fourier transforms of demagnetizing  

! coefficients matrices. It should be done only once per program  

! execution. 

! ******************************************************************** 

        INTEGER*4 i, j, Nnorm 

        PARAMETER(Nnorm=2*Nmax) 

! Demagnetization functions 

        REAL*8 dmxx, dmyy, dmzz, dmxy 

! Demagnetization matrices 

        REAL*8 kxx(0:nx2+1,0:ny2-1) 

        REAL*8 kyy(0:nx2+1,0:ny2-1) 

        REAL*8 kzz(0:nx2+1,0:ny2-1) 

        REAL*8 kxy(0:nx2+1,0:ny2-1) 

! Workspace 

        REAL*8 table(((15+nx2)+2*(ny2+15))) 

        REAL*8 tab2(((15+nx2)+2*(ny2+15))) 

        REAL*8 work(nx2+4*ny2) 

        COMMON /dcoef/ kxx, kyy, kzz, kxy, table, tab2, work 

! Demagnetization matrices are filled with the respective values 

! of the demagnetizing coefficients. 

        DO j=0, nymax-1 

                DO i=0, nxmax-1 

                        kxx(i,j)=dmxx(i,j,0,dux,duy,duz) 

                        kyy(i,j)=dmyy(i,j,0,dux,duy,duz) 

                        kzz(i,j)=dmzz(i,j,0,dux,duy,duz) 

                        kxy(i,j)=dmxy(i,j,0,dux,duy,duz) 

                END DO 

        END DO 

! 

        DO j=0, nymax-1 
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                DO i=nxmax+1, 2*nxmax-1 

                        kxx(i,j)=dmxx(i-2*nxmax,j,0,dux,duy,duz) 

                        kyy(i,j)=dmyy(i-2*nxmax,j,0,dux,duy,duz) 

                        kzz(i,j)=dmzz(i-2*nxmax,j,0,dux,duy,duz) 

                        kxy(i,j)=dmxy(i-2*nxmax,j,0,dux,duy,duz) 

                END DO 

        END DO 

! 

        DO j=nymax+1, 2*nymax-1 

                DO i=0, nxmax-1 

                        kxx(i,j)=dmxx(i,j-2*nymax,0,dux,duy,duz) 

                        kyy(i,j)=dmyy(i,j-2*nymax,0,dux,duy,duz) 

                        kzz(i,j)=dmzz(i,j-2*nymax,0,dux,duy,duz) 

                        kxy(i,j)=dmxy(i,j-2*nymax,0,dux,duy,duz) 

                END DO 

        END DO 

! 

        DO j=nymax+1, 2*nymax-1 

                DO i=nxmax+1, 2*nxmax-1 

                        kxx(i,j)=dmxx(i-2*nxmax,j-2*nymax,0,dux,duy,duz) 

                        kyy(i,j)=dmyy(i-2*nxmax,j-2*nymax,0,dux,duy,duz) 

                        kzz(i,j)=dmzz(i-2*nxmax,j-2*nymax,0,dux,duy,duz) 

                        kxy(i,j)=dmxy(i-2*nxmax,j-2*nymax,0,dux,duy,duz) 

                END DO 

        END DO 

! Middle planes (lines) are padded with 0 to keep 2^n size 

        DO i=0, 2*nxmax-1 

                kxx(i,nymax)=0 

                kyy(i,nymax)=0 

                kzz(i,nymax)=0 

                kxy(i,nymax)=0 

        END DO 

! 

        DO j=0, 2*nymax-1 

                kxx(nxmax,j)=0 

                kyy(nxmax,j)=0 

                kzz(nxmax,j)=0 

                kxy(nxmax,j)=0 

        END DO 

! Transform normization 

        DO j=0, ny2-1 
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                DO i=0, nx2-1 

                        kxx(i,j)=kxx(i,j)/Nnorm 

                        kyy(i,j)=kyy(i,j)/Nnorm 

                        kzz(i,j)=kzz(i,j)/Nnorm 

                        kxy(i,j)=kxy(i,j)/Nnorm 

                END DO 

        END DO 

! FFTW initialization 

        CALL DZFFT2D(0,nx2,ny2,1.d0,kxx,nx2+2,kxx,nxmax+1,table,work,0) 

        CALL ZDFFT2D(0,nx2,ny2,1.d0,kxx,nx2+2,kxx,nxmax+1,tab2,work,0) 

! Conversion to Fourier space 

        CALL DZFFT2D(1,nx2,ny2,1.d0,kxx,nx2+2,kxx,nxmax+1,table,work,0) 

        CALL DZFFT2D(1,nx2,ny2,1.d0,kyy,nx2+2,kyy,nxmax+1,table,work,0) 

        CALL DZFFT2D(1,nx2,ny2,1.d0,kzz,nx2+2,kzz,nxmax+1,table,work,0) 

        CALL DZFFT2D(1,nx2,ny2,1.d0,kxy,nx2+2,kxy,nxmax+1,table,work,0) 

! 

        END 

 

 

 

5. Contents in the file “rk2d.f”: 
 

 SUBROUTINE ODEINT(y,x1,x2,work) 

!******************************************************************** 

! Intermediate driver for RKSUITE solver. Integrates system of ODEs  

! from x1 to x2 with initial condition y, in steps of dxsav.  

! The stepping procedure do not take into account any physical  

! organization of cells.  

! See RKSUITE documentation for details of UT (or CT) usage. 

!********************************************************************  

 INCLUDE 'global2d.inc' 

! 

 REAL*8 y(Nmax), x1, x2, work(*) 

 INTEGER*4 i, j, flag, lenwrk 

 REAL*8 x, t_eff 

 PARAMETER(t_eff=66.160297d0) 

 REAL*8 xmag, ymag, zmag ! functions calculating magnetic moment 

! Arrays transfering condition of the system between UT calls 

 REAL*8 dy(Nmax), ymax(Nmax) 

! Saving parameters 

 INTEGER*4 kount 
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 REAL*8 dxsav, xm(0:kmax), ym(0:kmax), zm(0:kmax), t(0:kmax) 

 COMMON /PATH/ kount, dxsav, xm, ym, zm, t 

! 

 EXTERNAL derivs 

! 

 x=x1+dxsav 

! Initial condition statistics (kount=0) 

 t(kount)=x1*t_eff 

 xm(kount)=ymag(y)/(nxmax*nymax) 

 ym(kount)=xmag(y)/(nxmax*nymax) 

 zm(kount)=zmag(y)/(nxmax*nymax) 

! 

 OPEN(7,FILE='average.dat',FORM='formatted',ACCESS='append') 

 WRITE(7,300) kount, t(kount), xm(kount), ym(kount), zm(kount) 

 CLOSE(7) 

! 

 CALL sav(kount,y) 

! Stepping loop 

 DO WHILE (x .lt. x2) 

 CALL UT(derivs,x,x1,y,dy,ymax,work,flag) 

! Force theta phi to be in appropriate quadrants 

 DO j=1, Nmax 

  IF (y(j) .gt. 2*Pi) THEN 

   y(j)=y(j)-2*Pi 

  ELSE IF (y(j) .lt. -2*Pi) THEN 

   y(j)=y(j)+2*Pi 

  END IF 

 END DO 

! Recording of intermediate states 

 IF (kount .le. kmax-1) THEN 

  kount=kount+1 

  t(kount)=x1*t_eff 

  xm(kount)=ymag(y)/(nxmax*nymax) 

  ym(kount)=xmag(y)/(nxmax*nymax) 

  zm(kount)=zmag(y)/(nxmax*nymax) 

! 

  OPEN(7,FILE='average.dat',FORM='formatted',ACCESS='append') 

  WRITE(7,300) kount, t(kount), xm(kount), ym(kount), zm(kount) 

  CLOSE(7) 

! 

  CALL sav(kount,y) 
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! Recording of the full state of the system. Allows to  

! continue calculations if the program execution is broken 

  OPEN(1,FILE=datlast,FORM='unformatted') 

  WRITE(1) mask, y, x1, kount 

  CLOSE(1) 

! 

 END IF 

! 

 x=x1+dxsav 

! 

 END DO 

! 

 x=x2 

! Final call to UT 

 CALL UT(derivs,x,x1,y,dy,ymax,work,flag) 

! Recording of final state (see details above) 

 kount=kount+1 

 t(kount)=x1*t_eff 

 xm(kount)=ymag(y)/(nxmax*nymax) 

 ym(kount)=xmag(y)/(nxmax*nymax) 

 zm(kount)=zmag(y)/(nxmax*nymax) 

! 

 OPEN(7,FILE='average.dat',FORM='formatted',ACCESS='append') 

 WRITE(7,300) kount, t(kount), xm(kount), ym(kount), zm(kount) 

 CLOSE(7) 

! 

 CALL sav(kount,y) 

! 

 OPEN(1,FILE=datlast,FORM='unformatted') 

 WRITE(1) mask, y, x1, kount 

 CLOSE(1) 

 300FORMAT(I8,' ',F12.4,3(' ',F12.8)) 

! 

 END 

6. Contents in the file “deriv2d.f”: 
 

 SUBROUTINE derivs(x,tp,dtp) 

!********************************************************** 

! Procedure calculates theta- and phi- components 

! of the effective magnetic field and finds 

! respective time derivatives dtp(1,i,j,k) and dtp(2,i,j,k) 
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! Attention: for time-dependent field its components 

! will have to be given as functions of t. 

!********************************************************** 

 INCLUDE 'global2d.inc' 

! 

 REAL*8 x ! independent variable (time) 

 REAL*8 tp(2,nxmax,nymax), dtp(2,nxmax,nymax) 

 REAL*8 hd(2,nxmax,nymax) ! demagnetizing & external field 

 INTEGER*4 i, j 

 REAL*8 hth, hph ! exchange field; overall effective field 

! 

 CALL hdem(x,tp,hd) ! demagnetizing and external field 

! Calculation of the effective field 

 DO j=1, nymax 

  DO i=1, nxmax 

! 

   hth=-((SIN(tp(1,i,j))*COS(tp(1,i+mask(-1,i,j),j)) 

     &    -COS(tp(1,i,j))*SIN(tp(1,i+mask(-1,i,j),j)) 

     &    *COS(tp(2,i,j)-tp(2,i+mask(-1,i,j),j))) 

     &    +(SIN(tp(1,i,j))*COS(tp(1,i+mask(1,i,j),j)) 

     &    -COS(tp(1,i,j))*SIN(tp(1,i+mask(1,i,j),j)) 

     &    *COS(tp(2,i,j)-tp(2,i+mask(1,i,j),j))))*d2x 

     &    -((SIN(tp(1,i,j))*COS(tp(1,i,j+mask(-2,i,j))) 

     &    -COS(tp(1,i,j))*SIN(tp(1,i,j+mask(-2,i,j))) 

     &    *COS(tp(2,i,j)-tp(2,i,j+mask(-2,i,j)))) 

     &    +(SIN(tp(1,i,j))*COS(tp(1,i,j+mask(2,i,j))) 

     &    -COS(tp(1,i,j))*SIN(tp(1,i,j+mask(2,i,j))) 

     &    *COS(tp(2,i,j)-tp(2,i,j+mask(2,i,j)))))*d2y 

     &    +hd(1,i,j) 

! 

   hph=-(SIN(tp(1,i+mask(-1,i,j),j)) 

     &    *SIN(tp(2,i,j)-tp(2,i+mask(-1,i,j),j)) 

     &    +SIN(tp(1,i+mask(1,i,j),j)) 

     &    *SIN(tp(2,i,j)-tp(2,i+mask(1,i,j),j)))*d2x 

     &    -(SIN(tp(1,i,j+mask(-2,i,j))) 

     &    *SIN(tp(2,i,j)-tp(2,i,j+mask(-2,i,j))) 

     &    +SIN(tp(1,i,j+mask(2,i,j))) 

     &    *SIN(tp(2,i,j)-tp(2,i,j+mask(2,i,j))))*d2y 

     &    +hd(2,i,j) 

! Calculation of theta- and phi- derivatives 

   dtp(1,i,j)=(alpha*hth+hph)*mask(0,i,j) 
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   IF (SIN(tp(1,i,j)) .eq. 0) THEN 

    WRITE(*,*) 'bad coordinate system' 

   END IF 

   dtp(2,i,j)=(alpha*hph-hth)/SIN(tp(1,i,j))*mask(0,i,j) 

  END DO 

 END DO 

! 

 END 

 

 

 

7. Contents in the file “demag2d.f”: 
 

 SUBROUTINE hdem(x,tp,hd) 

!********************************************************** 

! Calculates the demagnetizing field.  

!********************************************************** 

 INCLUDE 'global2d.inc' 

! 

 REAL*8 x, hanis1, hanis2 

 REAL*8 tp(2,0:nxmax-1,0:nymax-1) !Spherical components of M 

 REAL*8 hd(2,0:nxmax-1,0:nymax-1) 

! 

 INTEGER*4 i, j, nmaxc 

 PARAMETER(nmaxc=2*(nxmax+1)*nymax) ! Transform size 

! Fourier images of demagnetizing matrices 

 COMPLEX*16 kxx(nmaxc) 

 COMPLEX*16 kyy(nmaxc) 

 COMPLEX*16 kzz(nmaxc) 

 COMPLEX*16 kxy(nmaxc) 

 REAL*8 table((nx2+15)+2*(ny2+15)) 

 REAL*8 tab2((nx2+15)+2*(ny2+15)) 

 REAL*8 work(nx2+4*ny2) 

 COMMON /dcoef/ kxx, kyy, kzz, kxy, table, tab2, work 

! Cartesian components of M 

 REAL*8 xm(0:nx2+1,0:ny2-1) 

 REAL*8 ym(0:nx2+1,0:ny2-1) 

 REAL*8 zm(0:nx2+1,0:ny2-1) 

! Fourier images of Mx, My, Mz, as calculated by real -> complex transform 

 COMPLEX*16 xmc(nmaxc) 

 COMPLEX*16 ymc(nmaxc) 
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 COMPLEX*16 zmc(nmaxc) 

! These matrices are equivalenced to save space 

 EQUIVALENCE (xm,xmc), (ym,ymc), (zm,zmc) 

! The external field components 

 REAL*8 hx, hy, hz 

! Cartesian components of Hd 

 REAL*8 xm1(0:nx2+1,0:ny2-1) 

 REAL*8 ym1(0:nx2+1,0:ny2-1) 

 REAL*8 zm1(0:nx2+1,0:ny2-1) 

! Fourier images of Hx, Hy, Hz, as calculated by real -> complex transform 

 COMPLEX*16 xm1c(nmaxc) 

 COMPLEX*16 ym1c(nmaxc) 

 COMPLEX*16 zm1c(nmaxc) 

! These matrices are equivalenced to save space 

 EQUIVALENCE (xm1,xm1c),(ym1,ym1c),(zm1,zm1c) 

! Thermal term 

 INTEGER nrand, num, iseed(4), flag 

 REAL*8 dt, dxsav, Ms, kbolts, temp, gamma, eps, t_eff, volume 

 PARAMETER(nrand=3*nxmax*nymax) ! 1 random number for each M-component 

 REAL*8 rand(nrand), idum(2) 

 REAL gasdev 

 PARAMETER(Ms=859.436693d0) ! in unit of emu/cm^3 

 PARAMETER(kbolts=1.380650d-16) ! in unit of erg/K 

 PARAMETER(temp=300.0)  ! in unit of K 

 PARAMETER(gamma=1.760860d+7) ! in unit of 1/(sec*Gauss) 

 PARAMETER(t_eff=66.082897d-12) 

 

        COMMON /PATH/ dxsav 

! The first octant (quadrant) of Cartesian M components is  

! filled with the respective values. Rest are zero-padded. 

 DO j=0, nymax-1 

  DO i=0, nxmax-1 

! 

   xm(i+nxmax,j+nymax)=0 

   ym(i+nxmax,j+nymax)=0 

   zm(i+nxmax,j+nymax)=0 

! 

   xm(i+nxmax,j)=0 

   ym(i+nxmax,j)=0 

   zm(i+nxmax,j)=0 

! 
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   xm(i,j+nymax)=0 

   ym(i,j+nymax)=0 

   zm(i,j+nymax)=0 

! 

   xm(i,j)=SIN(tp(1,i,j))*COS(tp(2,i,j))*maskp(0,i,j) 

   ym(i,j)=SIN(tp(1,i,j))*SIN(tp(2,i,j))*maskp(0,i,j) 

   zm(i,j)=COS(tp(1,i,j))*maskp(0,i,j) 

! 

  END DO 

 END DO 

! Conversion of M components to Fourier space 

 CALL DZFFT2D(1,nx2,ny2,1.d0,xm,nx2+2,xmc,nxmax+1,table,work,0) 

 CALL DZFFT2D(1,nx2,ny2,1.d0,ym,nx2+2,ymc,nxmax+1,table,work,0) 

 CALL DZFFT2D(1,nx2,ny2,1.d0,zm,nx2+2,zmc,nxmax+1,table,work,0) 

! Fourier images of M are multipled by demagnetizing  

! coefficients transform - this is a convolution in  

! the Fourier space, that produces image of Hd field. 

 DO i=1, nmaxc 

  xm1c(i)=kxx(i)*xmc(i)+kxy(i)*ymc(i) 

  ym1c(i)=kxy(i)*xmc(i)+kyy(i)*ymc(i) 

  zm1c(i)=kzz(i)*zmc(i) 

 END DO 

! Conversion of Hd to real space 

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,xm1c,nxmax+1,xm1,nx2+2,tab2,work,0) 

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,ym1c,nxmax+1,ym1,nx2+2,tab2,work,0) 

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,zm1c,nxmax+1,zm1,nx2+2,tab2,work,0) 

! Generate Gaussian random numbers 

 iseed(1)=2*(INT(10*tp(1,13,65)/tp(2,16,47)))**2+1 

 iseed(2)=2*(INT(10*tp(1,68,11)/tp(2,26,34)))**2+1 

 iseed(3)=2*(INT(10*tp(2,18,10)/tp(1,54,40)))**2+1 

 iseed(4)=2*(INT(10*tp(2,21,52)/tp(1,31,76)))**2+1 

! 

 DO num=1, nrand 

   rand(num)=gasdev(idum,iseed) 

 END DO 

! 

 dt=0.1*t_eff 

 volume=(sizex/nxmax)*(sizey/nymax)*thick*1.d-21 ! in unit of cm^3 

 eps=2.0*alpha*kbolts*temp/(gamma*volume*Ms) 

! Spherical components of demagnetizing and external fields.  

 DO j=0, nymax-1 
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  DO i=0, nxmax-1 

! The external field 

   CALL hfun(x,i+1,j+1,hx,hy,hz) 

! Combination of demagnetizing, external, and anisotropy fields 

   xm1(i,j)=xm1(i,j)+hx 

   ym1(i,j)=ym1(i,j)+hy 

   zm1(i,j)=zm1(i,j)+hz 

! Include thermal term if necessary 

   xm1(i,j)=xm1(i,j)+sqrt(eps/dt)*rand(nxmax*j+3*i+1)/Ms 

   ym1(i,j)=ym1(i,j)+sqrt(eps/dt)*rand(nxmax*j+3*i+2)/Ms 

   zm1(i,j)=zm1(i,j)+sqrt(eps/dt)*rand(nxmax*j+3*i+3)/Ms 

! Checkpoint for thermal term 

 IF (x .le. -38.0 .and. i .eq. 64 .and. j .eq. 256) THEN 

  OPEN(22,FILE='thermal.dat',FORM='formatted',ACCESS='append') 

  WRITE(22,220) eps, dt, sqrt(eps/dt)*rand(nxmax*j+3*i+1)/Ms 

  CLOSE(22) 

 220 FORMAT(3(E12.6,' ')) 

 END IF 

! Conversion to spheric coordinates 

   hd(1,i,j)=xm1(i,j)*COS(tp(1,i,j))*COS(tp(2,i,j)) 

     &    +ym1(i,j)*COS(tp(1,i,j))*SIN(tp(2,i,j)) 

     &    -zm1(i,j)*SIN(tp(1,i,j)) 

     &    +hanis1(i+1,j+1,tp) 

   hd(2,i,j)=-xm1(i,j)*SIN(tp(2,i,j)) 

     &    +ym1(i,j)*COS(tp(2,i,j)) 

     &    +hanis2(i+1,j+1,tp) 

! 

  END DO 

 END DO 

! 

 END 

! 

! Gaussian random number generator 

! 

 FUNCTION gasdev(idum,iseed) 

 REAL gasdev 

 INTEGER iset 

 INTEGER iseed(4) 

! 

 DOUBLE PRECISION idum(2) 

 REAL v1, v2, rsq, fac, gset 
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 SAVE iset, gset 

 DATA iset/0/ 

! 

 IF (iset .eq. 0) THEN 

 1  CALL dlarnv(1,iseed,2,idum) 

  v1=2*idum(1)-1 

  v2=2*idum(2)-1 

  rsq=v1**2+v2**2 

  IF (rsq .ge. 1 .or. rsq .eq. 0) GOTO 1 

  fac=sqrt(-2.*log(rsq)/rsq) 

  gset=v1*fac 

  gasdev=v2*fac 

  iset=1 

 ELSE 

  gasdev=gset 

  iset=0 

 END IF 

! 

 RETURN 

 END 

 

 

 

8. Contents in the file “anisot2d.f”: 
 

c********************************************************** 

c This is the first version to calculate anisotropy field. 

c We assume a uniaxial anisotropy with the easy axis along  

c the y (actually x - we change coordinates later) axis. 

c From Wayne Hiebert's data we have Hk=8-10 Oe 

c a value which may change with new deposition conditions. 

c In this routine Hk is normalized by Ms (not 4*Pi*Ms). 

c this gives Hk=8.594366927(Oe). 

c********************************************************** 

! Uniaxial anisotropy term 

! The theta-component 

 REAL*8 FUNCTION hanis1(i,j,tp) 

 INCLUDE 'global2d.inc' 

! 

 INTEGER*4 i, j 

 REAL*8 tp(1:2,1:nxmax,1:nymax), Hk 
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! 

 PARAMETER(Hk=0.01) 

! 

 hanis1=Hk*SIN(2*tp(1,i,j))*(SIN(tp(2,i,j)))**2*mask(0,i,j) 

! 

 END 

 

! The phi-component 

 REAL*8 FUNCTION hanis2(i,j,tp) 

 INCLUDE 'global2d.inc' 

! 

 INTEGER*4 i, j 

 REAL*8 tp(1:2,1:nxmax,1:nymax), Hk 

! 

 PARAMETER(Hk=0.01) 

! 

 hanis2=Hk*SIN(tp(1,i,j))*SIN(2*tp(2,i,j))*mask(0,i,j) 

! 

 END 

 

 

 

9. Contents in the file “demfor2d.f”: 
 

!***************************************************************** 

! Functions describing demagnetizing tensor components. i,j,k  

! define relative position of two cells, while dx,dy,dz define  

! their sixe 

! See: Y.Nakatani, Y.Uesaka, N.Hayashi, "Direct Solution of the  

! Landau-Lifshitz-Gilbert equation for micromagnetics",  

! Jap.J.Appl.Phys., 28 (1989) 2485-507.  

!***************************************************************** 

 REAL*8 FUNCTION dmxx(i,j,k,dx,dy,dz) 

! 

 INTEGER*4 i, j, k 

 REAL*8 dx, dy, dz 

! 

 dmxx=ATAN((dy*dz*(-0.5+j)*(-0.5+k))/ 

     &  (dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(-0.5+j)*(-0.5+k))/ 

     &  (dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+ 
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     &  dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(0.5+j)*(-0.5+k))/ 

     &  (dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)))+ATAN((dy*dz*(0.5+j)*(-0.5+k))/ 

     &  (dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(-0.5+j)*(0.5+k))/ 

     &  (dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))+ATAN((dy*dz*(-0.5+j)*(0.5+k))/ 

     &  (dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))+ATAN((dy*dz*(0.5+j)*(0.5+k))/ 

     &  (dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))-ATAN((dy*dz*(0.5+j)*(0.5+k))/ 

     &  (dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(0.5+k)**2))) 

! 

 END 

! ------------------------------------------------------- 

 REAL*8 FUNCTION dmyy(i,j,k,dx,dy,dz) 

! 

 INTEGER*4 i, j, k 

 REAL*8 dx, dy, dz 

! 

 dmyy=ATAN((dx*dz*(-0.5+i)*(-0.5+k))/ 

     &  (dy*(-0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(0.5+i)*(-0.5+k))/ 

     &  (dy*(-0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(-0.5+i)*(-0.5+k))/ 

     &  (dy*(0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)))+ATAN((dx*dz*(0.5+i)*(-0.5+k))/ 

     &  (dy*(0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(-0.5+i)*(0.5+k))/ 

     &  (dy*(-0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))+ATAN((dx*dz*(0.5+i)*(0.5+k))/ 

     &  (dy*(-0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))+ATAN((dx*dz*(-0.5+i)*(0.5+k))/ 

     &  (dy*(0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))-ATAN((dx*dz*(0.5+i)*(0.5+k))/ 

     &  (dy*(0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(0.5+k)**2))) 

! 

 END 

! --------------------------------------------------------- 
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 REAL*8 FUNCTION dmzz(i,j,k,dx,dy,dz) 

! 

 INTEGER*4 i, j, k 

 REAL*8 dx, dy, dz 

! 

 dmzz=ATAN((dx*dy*(-0.5+i)*(-0.5+j))/ 

     &  (dz*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)*(-0.5+k)))- 

     &  ATAN((dx*dy*(0.5+i)*(-0.5+j))/ 

     &  (dz*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)*(-0.5+k)))- 

     &  ATAN((dx*dy*(-0.5+i)*(0.5+j))/ 

     &  (dz*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)*(-0.5+k)))+ 

     &  ATAN((dx*dy*(0.5+i)*(0.5+j))/ 

     &  (dz*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)*(-0.5+k)))- 

     &  ATAN((dx*dy*(-0.5+i)*(-0.5+j))/ 

     &  (dz*(0.5+k)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))+ATAN((dx*dy*(0.5+i)*(-0.5+j))/ 

     &  (dz*(0.5+k)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))+ATAN((dx*dy*(-0.5+i)*(0.5+j))/ 

     &  (dz*(0.5+k)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))-ATAN((dx*dy*(0.5+i)*(0.5+j))/ 

     &  (dz*(0.5+k)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(0.5+k)**2))) 

! 

 END 

! ------------------------------------------------------------- 

 REAL*8 FUNCTION dmxy(i,j,k,dx,dy,dz) 

! 

 INTEGER*4 i, j, k 

 REAL*8 dx, dy, dz 

! 

 dmxy=-LOG(ABS(SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)+dz*(-0.5+k)))+ 

     &  LOG(ABS(SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)+dz*(-0.5+k)))+ 

     &  LOG(ABS(SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(-0.5+k)**2)+dz*(-0.5+k)))- 

     &  LOG(ABS(SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+ 
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     &  dz**2*(-0.5+k)**2)+dz*(-0.5+k)))+LOG(ABS(dz*(0.5+k)+ 

     &  SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))- 

     &  LOG(ABS(dz*(0.5+k)+SQRT(dx**2*(0.5+i)**2+ 

     &  dy**2*(-0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))-LOG(ABS(dz*(0.5+k)+ 

     &  SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+ 

     &  dz**2*(0.5+k)**2)))+ 

     &  LOG(ABS(dz*(0.5+k)+SQRT(dx**2*(0.5+i)**2+ 

     &  dy**2*(0.5+j)**2+ 

     &  dz**2*(0.5+k)**2))) 

! 

 END 

 

 

 

10. Contents in the file “output2d.f”: 
 

 REAL*8 FUNCTION xmag(tp) 

!****************************************************** 

! Function calculates x-component of the sample 

! magnetic moment in arbitrary units 

!****************************************************** 

 INCLUDE 'global2d.inc' 

! 

 REAL*8 tp(2,nxmax,nymax) 

 INTEGER*4 i, j 

! 

 xmag=0 

 DO j=1, nymax 

  DO i=1, nxmax 

   xmag=xmag+SIN(tp(1,i,j))*COS(tp(2,i,j))*mask(0,i,j) 

  END DO 

 END DO 

! 

 END 

! ------------------------------------------------------- 

 REAL*8 FUNCTION ymag(tp) 

!****************************************************** 

! Function calculates y-component of the sample 

! magnetic moment in arbitrary units 
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!****************************************************** 

 INCLUDE 'global2d.inc' 

! 

 REAL*8 tp(2,nxmax,nymax) 

 INTEGER*4 i, j 

! 

 ymag=0 

 DO j=1, nymax 

  DO i=1, nxmax 

   ymag=ymag+SIN(tp(1,i,j))*SIN(tp(2,i,j))*mask(0,i,j) 

  END DO 

 END DO 

! 

 END 

! ---------------------------------------------------- 

 REAL*8 FUNCTION zmag(tp) 

!****************************************************** 

! Function calculates z-component of the sample 

! magnetic moment in arbitrary units 

!****************************************************** 

 INCLUDE 'global2d.inc' 

! 

 REAL*8 tp(2,nxmax,nymax) 

 INTEGER*4 i, j 

! 

 zmag=0 

 DO i=1, nxmax 

  DO j=1, nymax 

   zmag=zmag+COS(tp(1,i,j))*mask(0,i,j) 

  END DO 

 END DO 

! 

 END 

! ------------------------------------------------------- 

 SUBROUTINE sav(kount,y) 

 INCLUDE 'global2d.inc' 

! 

 INTEGER*4 kount 

 REAL*8 y(2,nxmax,nymax) 

 INTEGER*4 i, j 

 REAL*8 xm(nxmax,nymax), ym(nxmax,nymax), zm(nxmax,nymax) 
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! 

 CHARACTER*14 itoa 

! 

 DO i=1, nxmax 

  DO j=1, nymax 

   xm(i,j)=SIN(y(1,i,j))*COS(y(2,i,j))*mask(0,i,j) 

   ym(i,j)=SIN(y(1,i,j))*SIN(y(2,i,j))*mask(0,i,j) 

   zm(i,j)=COS(y(1,i,j))*mask(0,i,j) 

  END DO 

 END DO 

! 

 OPEN(1,FILE="xyz."//itoa(kount),form='formatted', 

&  status='unknown') 

! 

 DO i=nxmax, 1, -1 

  WRITE(1,100) (xm(i,j), j=1, nymax) 

 END DO 

 DO i=nxmax, 1, -1 

  WRITE(1,100) (ym(i,j), j=1, nymax) 

 END DO 

 DO i=nxmax, 1, -1 

  WRITE(1,100) (zm(i,j), j=1, nymax) 

 END DO 

! 

 CLOSE(1) 

100 FORMAT(1024(f12.8)) 

! 

 END 

! -------------------------------------------- 

! Convert integer to character array (string) 

 CHARACTER*14 FUNCTION itoa(value) 

 IMPLICIT NONE 

 INTEGER value 

 INTEGER number 

 CHARACTER*14 string 

 LOGICAL minus 

! 

 number=value 

 minus=.FALSE. 

! 

 IF (number .lt. 0) THEN 
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  minus=.TRUE. 

  number=-number 

 END IF 

! 

 string=CHAR(ICHAR('0')+MOD(number, 10)) 

 number=number/10 

! 

 DO WHILE (number .ne. 0) 

  string=CHAR(ICHAR('0')+MOD(number,10))//string 

  number=number/10 

 END DO 

! 

 IF (minus .eqv. .TRUE.) THEN 

  string=CHAR(ICHAR('-'))//string 

 END IF 

! 

 itoa=string 

 RETURN 

! 

 END 

 

 

 

11. Contents in the file “rksuite.f”: 
 

See Ref.[17] for the original code. 
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Appendix II 

2D Micromagnetic Simulation code 

(FORTRAN90) 

 

Below is the FORTRAN90 version of micromagnetic 
simulation. The code is conventionally split into 10 files, each 
containing subroutines or functions that perform certain 
tasks. The code structure is illustrated in section 2.2. Note: 
the file “globals.f’ must be compiled first because it has a 
module that is used widely in other parts of the code. 

 

 

 

1. Contents in the file “globals.f”: 
 

! Global settings. 

 MODULE globals 

 IMPLICIT NONE 

! Name of the file for storing intermediate results 

 CHARACTER(LEN=12), PARAMETER :: datapool='datapool.dat' 

! Physics constants 

 DOUBLE PRECISION, PARAMETER :: Pi=3.1415926535898 

 DOUBLE PRECISION, PARAMETER :: Kbolts=1.3806503D-16 

! Integration time range 

 DOUBLE PRECISION, PARAMETER :: tmin=0.0 

 DOUBLE PRECISION, PARAMETER :: tmax=200.0 

 DOUBLE PRECISION, PARAMETER :: dtsav=1 

! Cells numbers and actual sizes of the sample 

 INTEGER, PARAMETER :: nxmax=64 

 INTEGER, PARAMETER :: nymax=128 

 INTEGER, PARAMETER :: isample=32 

 INTEGER, PARAMETER :: jsample=64 

 INTEGER, SAVE :: mask(-2:2,0:nxmax+1,0:nymax+1) 

 INTEGER, PARAMETER :: Nmax=2*nxmax*nymax 

 DOUBLE PRECISION, PARAMETER :: sizex=275.0 



 114 

 DOUBLE PRECISION, PARAMETER :: sizey=960.0 

 DOUBLE PRECISION, PARAMETER :: thick=30.0 

! Parameters for the sample 

DOUBLE PRECISION, PARAMETER :: temp=300.0 

DOUBLE PRECISION, PARAMETER :: Ms=859.436693 

DOUBLE PRECISION, PARAMETER :: treduced=66.160297D-12 

DOUBLE PRECISION, PARAMETER :: un=16.455122 

 DOUBLE PRECISION, PARAMETER :: alpha=0.008 

 DOUBLE PRECISION, PARAMETER :: gamma=1.7588D+7 

! Things used in effective field calculation 

 DOUBLE PRECISION, PARAMETER :: dux=sizex/nxmax/un 

 DOUBLE PRECISION, PARAMETER :: duy=sizey/nymax/un 

 DOUBLE PRECISION, PARAMETER :: duz=thick/un 

 DOUBLE PRECISION, PARAMETER :: d2x=1/(dux*dux) 

 DOUBLE PRECISION, PARAMETER :: d2y=1/(duy*duy) 

 DOUBLE PRECISION, PARAMETER :: d2z=1/(duz*duz) 

! 

! Below are what the FFT process needs for demagnetizing calculation 

! 

! Transform size 

 INTEGER, PARAMETER :: nmaxc=2*(nxmax+1)*nymax 

 INTEGER, PARAMETER :: nx2=2*nxmax 

 INTEGER, PARAMETER :: ny2=2*nymax 

 INTEGER, PARAMETER :: Nrand=3*nxmax*nymax 

 INTEGER, PARAMETER :: Nnorm=4*nxmax*nymax 

! Fourier images of demagnetizing matrices 

 DOUBLE COMPLEX, SAVE :: kxx(nmaxc) 

 DOUBLE COMPLEX, SAVE :: kyy(nmaxc) 

 DOUBLE COMPLEX, SAVE :: kzz(nmaxc) 

 DOUBLE COMPLEX, SAVE :: kxy(nmaxc) 

! Workspace 

 DOUBLE PRECISION, SAVE :: table1((nx2+15)+2*(ny2+15)) 

 DOUBLE PRECISION, SAVE :: table2((nx2+15)+2*(ny2+15)) 

 DOUBLE PRECISION, SAVE :: work(nx2+4*ny2) 

! Flags for FFT procedure 

 INTEGER, PARAMETER :: FFTW_FORWARD=-1, FFTW_BACKWARD=1 

 INTEGER, PARAMETER :: FFTW_REAL_TO_COMPLEX=-1 

 INTEGER, PARAMETER :: FFTW_COMPLEX_TO_REAL=1 

 INTEGER, PARAMETER :: FFTW_ESTIMATE=0, FFTW_MEASURE=1 

 INTEGER, PARAMETER :: FFTW_IN_PLACE=8, FFTW_USE_WISDOM=16 

! 
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 END MODULE globals 

 

 

 

2. Contents in the file “sim2d.f”: 
 

 PROGRAM sim2d 

 USE globals 

 IMPLICIT NONE 

!*************************************************************** 

! This program traces the dynamical movement of magnetization  

! in arbitrarily shaped sample with space- and time-dependent 

! external field. The main procedure is a customizable driver. 

! The code below is a typical example.  

!*************************************************************** 

! External subroutines/functions. 

 EXTERNAL sigterm, sigusr1, sigusr2 

 EXTERNAL initdem, shape, initmag, saveimage, ODE2D 

! 

! Spherical coordinates angles of magnetization distribution. 

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax) 

! 

! Current temporal point, integration step and number of output. 

 DOUBLE PRECISION :: tnow 

 INTEGER :: nstep, noutput 

! 

! Auxilliary variables. 

 INTEGER :: i, j 

 LOGICAL :: filestatus 

! 

! Signal handler for (software) kill signals, signal number 15,16,17. 

 CALL signal(15, sigterm, -1) 

 CALL signal(16, sigusr1, -1) 

 CALL signal(17, sigusr2, -1) 

! 

! Monitoring checkpoint. 

 OPEN(999,FILE='eye.txt',ACCESS='sequential',POSITION='append') 

 WRITE(999,*) '# Simulation starts:' 

 WRITE(999,*) 

 CLOSE(999) 

! 
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! Initialize FFT space and demagnetizing tensor coefficients. 

 CALL initdem 

! 

! See if the job is to be resumed. 

 INQUIRE(FILE=datapool,EXIST=filestatus) 

! 

 IF (filestatus .EQV. .FALSE.) THEN 

! Set the start point. 

  tnow=tmin 

  nstep=0 

  noutput=0 

! Topological features of the sample; Initialize mask() 

  CALL shape(mask) 

! Initial uniform distribution of magnetizations 

  CALL initmag(tp,mask) 

! Save the initial distribution (1st image) 

  CALL saveimage(noutput,tp) 

  noutput=noutput+1 

! 

 ELSE 

! Checkpoint 

 

 OPEN(999,FILE='eye.txt',ACCESS='sequential',POSITION='append') 

  WRITE(999,*) '# Reading data from datapool.dat:' 

  CLOSE(999) 

! 

  OPEN(10,FILE=datapool,FORM='unformatted') 

  READ(10) tnow, tp, mask, nstep, noutput 

  CLOSE(10) 

! Checkpoint 

 

 OPEN(999,FILE='eye.txt',ACCESS='sequential',POSITION='append') 

  WRITE(999,*) '> nstep,noutput,tnow=', nstep, noutput, tnow 

  WRITE(999,*) '# Workspace refreshed.' 

  WRITE(999,*) 

  CLOSE(999) 

! 

 END IF 

! Checkpoint 

 OPEN(999,FILE='eye.txt',ACCESS='sequential',POSITION='append') 

 WRITE(999,*) '# Integration starts:' 
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 WRITE(999,*) 

 CLOSE(999) 

! 

 CALL ODE2D(tp,tnow,tmax,nstep,noutput) 

! 

! Checkpoint 

 OPEN(999,FILE='eye.txt',ACCESS='sequential',POSITION='append') 

 WRITE(999,*) '# Simulation finished!' 

 CLOSE(999) 

! 

 END PROGRAM sim2d 

 

 

 

3. Contents in the file “interupt.f”: 
 

! Signal handler 

 SUBROUTINE sigterm() 

! IMPLICIT NONE 

! Exit and resubmit program to queue 

  STOP 99 

 RETURN 

! END SUBROUTINE sigterm 

 END 

! 

! ><><><><><><><><><><><><><><><><><><>< 

! 

 SUBROUTINE sigusr1() 

! IMPLICIT NONE 

! Exit and resubmit program to queue 

  STOP 99 

 RETURN 

! END SUBROUTINE sigusr1 

 END 

! 

! ><><><><><><><><><><><><><><><><><><>< 

! 

 SUBROUTINE sigusr2() 

! IMPLICIT NONE 

! Exit and resubmit program to queue 

  STOP 99 
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 RETURN 

! END SUBROUTINE sigusr2 

 END 

! 

 

 

 

4. Contents in the file “init2d.f”: 
 

 SUBROUTINE hext(t,i,j,hx,hy,hz) 

 USE globals 

 IMPLICIT NONE 

!******************************************************************** 

! Space/time-dependences of the external magnetic field.  

!******************************************************************** 

 DOUBLE PRECISION :: t, hx, hy, hz 

 INTEGER :: i, j 

! Biasing x-field  

 DOUBLE PRECISION, PARAMETER :: hbiasx=0.0/Ms 

! Biasing y-field 

 DOUBLE PRECISION, PARAMETER :: hbiasy=0.0/Ms 

! Biasing z-field 

 DOUBLE PRECISION, PARAMETER :: hbiasz=-3600.0/Ms 

! 

 hx=hbiasx 

 hy=hbiasy 

 hz=hbiasz 

! 

 END SUBROUTINE hext 

! ---------------------------------------------------------------- 

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>< 

! ---------------------------------------------------------------- 

 SUBROUTINE shape 

 USE globals 

 IMPLICIT NONE 

!************************************************** 

! Procedure prepares a mask defining the shape of 

! the sample 

! - interior:  mask(0,i,j)=1 

! - exterior:  mask(0,i,j)=0 

! 
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! Other components are used for data branching in 

! exchange energy calculation 

! - internal sites: 

!     mask(-1,i,j)=-1  mask(1,i,j)=1 (for x-direction) 

!     mask(-2,i,j)=-1  mask(2,i,j)=1 (for y-direction) 

! - boundary sites: sign changes to maintain 

!   proper boundary conditions 

! 

! Parameter rx*ry defines the shape: 

! <1 - full rectangle nxmax x nymax 

! >=1 - ellipse with axes 2*rx and 2*ry,  

! overlapped on the original rectangle 

!*************************************************** 

 INTEGER :: i, j 

! Calculation for full rectangle 

 mask=0 

! 

 DO i=1, nxmax 

  DO j=1, nymax 

   mask(-2,i,j)=-1 

   mask(-1,i,j)=-1 

   mask(0,i,j)=1 

   mask(1,i,j)=1 

   mask(2,i,j)=1 

  END DO 

 END DO 

! Sample's outer edge 

 DO i=1, nxmax 

  mask(-2,i,1)=0 

  mask(2,i,nymax)=0 

 END DO 

! 

 DO j=1, nymax 

  mask(-1,1,j)=0 

  mask(1,nxmax,j)=0 

 END DO 

! The defect 

 DO i=imin, imax 

  DO j=jmin+1, jmax-1 

   mask(-2,i,j)=0 

   mask(-1,i,j)=0 
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   mask(0,i,j)=0 

   mask(1,i,j)=0 

   mask(2,i,j)=0 

  END DO 

 END DO 

! 

 DO i=imin, imax 

  mask(-2,i,jmax)=0 

  mask(2,i,jmin)=0 

 END DO 

! 

 END SUBROUTINE shape 

! ------------------------------------------------------------ 

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>< 

! ------------------------------------------------------------ 

 SUBROUTINE initmag(tp) 

 USE globals 

 IMPLICIT NONE 

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax) 

!************************************************** 

! Procedure fills tp matrix with in-plane uniform 

! distribution (idir=0 - x-direction, idir=1 - y, 

! idir=2 - z). 

! Grid sites outside the sample borders are filled 

! formally with z orientation. 

!************************************************** 

! 

 INTEGER :: i, j 

 DOUBLE PRECISION :: rand(1:nxmax,1:nymax) 

! 

 CALL RANDOM_NUMBER(rand) 

! 

 DO j=1, nymax 

  DO i=1, nxmax 

   tp(1,i,j)=mask(0,i,j)*Pi/2 

     &    +(1-mask(0,i,j))*(1-rand(i,j))*0.0001 

   tp(2,i,j)=mask(0,i,j)*Pi/2 

  END DO 

 END DO 

! 

 END SUBROUTINE initmag 
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! ------------------------------------------------------------ 

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>< 

! ------------------------------------------------------------ 

! Initialize demagnetizing field computation. Do it only once! 

 SUBROUTINE initdem 

 USE globals 

 IMPLICIT NONE 

! 

 DOUBLE PRECISION, EXTERNAL :: dmxx, dmyy, dmzz, dmxy 

! 

 DOUBLE PRECISION :: kxxr(0:nx2+1,0:ny2-1) 

 DOUBLE PRECISION :: kyyr(0:nx2+1,0:ny2-1) 

 DOUBLE PRECISION :: kzzr(0:nx2+1,0:ny2-1) 

 DOUBLE PRECISION :: kxyr(0:nx2+1,0:ny2-1) 

! duxn(), duyn(), duzn() are noise-modified values for dux, duy, duz 

 DOUBLE PRECISION :: duxn(0:2*nxmax-1,0:2*nymax-1) 

 DOUBLE PRECISION :: duyn(0:2*nxmax-1,0:2*nymax-1) 

 DOUBLE PRECISION :: duzn(0:2*nxmax-1,0:2*nymax-1) 

 DOUBLE PRECISION :: noise(0:2*nxmax-1,0:2*nymax-1) 

! 

 INTEGER :: i, j 

! 

 CALL RANDOM_NUMBER(noise) 

 DO i=0, 2*nxmax-1 

  DO j=0, 2*nymax-1 

   duxn(i,j)=dux*(1+0.01*(noise(i,j)-0.5)) 

   duyn(i,j)=duy*(1+0.01*(noise(i,j)-0.5)) 

   duzn(i,j)=duz*(1+0.01*(noise(i,j)-0.5)) 

  END DO 

 END DO 

! Demagnetization matrices are filled with the respective values 

! of the demagnetizing coefficients. 

 DO j=0, nymax-1 

  DO i=0, nxmax-1 

   kxxr(i,j)=dmxx(i,j,0,duxn(i,j),duyn(i,j),duzn(i,j)) 

   kyyr(i,j)=dmyy(i,j,0,duxn(i,j),duyn(i,j),duzn(i,j)) 

   kzzr(i,j)=dmzz(i,j,0,duxn(i,j),duyn(i,j),duzn(i,j)) 

   kxyr(i,j)=dmxy(i,j,0,duxn(i,j),duyn(i,j),duzn(i,j)) 

  END DO 

 END DO 

! 
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 DO j=0, nymax-1 

  DO i=nxmax+1, 2*nxmax-1 

   kxxr(i,j)=dmxx(i-2*nxmax,j,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

   kyyr(i,j)=dmyy(i-2*nxmax,j,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

   kzzr(i,j)=dmzz(i-2*nxmax,j,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

   kxyr(i,j)=dmxy(i-2*nxmax,j,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

  END DO 

 END DO 

! 

 DO j=nymax+1, 2*nymax-1 

  DO i=0,nxmax-1 

   kxxr(i,j)=dmxx(i,j-2*nymax,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

   kyyr(i,j)=dmyy(i,j-2*nymax,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

   kzzr(i,j)=dmzz(i,j-2*nymax,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

   kxyr(i,j)=dmxy(i,j-2*nymax,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

  END DO 

 END DO 

! 

 DO j=nymax+1, 2*nymax-1 

  DO i=nxmax+1, 2*nxmax-1 

   kxxr(i,j)=dmxx(i-2*nxmax,j-2*nymax,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

   kyyr(i,j)=dmyy(i-2*nxmax,j-2*nymax,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

   kzzr(i,j)=dmzz(i-2*nxmax,j-2*nymax,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

   kxyr(i,j)=dmxy(i-2*nxmax,j-2*nymax,0, 

     &    duxn(i,j),duyn(i,j),duzn(i,j)) 

  END DO 

 END DO 

! Middle planes (lines) are padded with 0 to keep 2^n size 

 DO i=0, 2*nxmax-1 

  kxxr(i,nymax)=0 
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  kyyr(i,nymax)=0 

  kzzr(i,nymax)=0 

  kxyr(i,nymax)=0 

 END DO 

! 

 DO j=0, 2*nymax-1 

  kxxr(nxmax,j)=0 

  kyyr(nxmax,j)=0 

  kzzr(nxmax,j)=0 

  kxyr(nxmax,j)=0 

 END DO 

! Transform normization 

 DO j=0, ny2-1 

  DO i=0, nx2-1 

   kxxr(i,j)=kxxr(i,j)/Nnorm 

   kyyr(i,j)=kyyr(i,j)/Nnorm 

   kzzr(i,j)=kzzr(i,j)/Nnorm 

   kxyr(i,j)=kxyr(i,j)/Nnorm 

  END DO 

 END DO 

! FFTW initialization 

 CALL DZFFT2D(0,nx2,ny2,1.d0,kxxr,nx2+2,kxx,nxmax+1,table1,work,0) 

 CALL ZDFFT2D(0,nx2,ny2,1.d0,kxx,nx2+2,kxxr,nxmax+1,table2,work,0) 

! Conversion to Fourier space 

 CALL DZFFT2D(1,nx2,ny2,1.d0,kxxr,nx2+2,kxx,nxmax+1,table1,work,0) 

 CALL DZFFT2D(1,nx2,ny2,1.d0,kyyr,nx2+2,kyy,nxmax+1,table1,work,0) 

 CALL DZFFT2D(1,nx2,ny2,1.d0,kzzr,nx2+2,kzz,nxmax+1,table1,work,0) 

 CALL DZFFT2D(1,nx2,ny2,1.d0,kxyr,nx2+2,kxy,nxmax+1,table1,work,0) 

! 

 END SUBROUTINE initdem 

 

 

 

5. Contents in the file “ode2d.f”: 
 

 SUBROUTINE ODE2D(y,xnow,xmax,nstep,noutput) 

 USE globals 

 IMPLICIT NONE 

! 

 DOUBLE PRECISION :: y(1:2,1:nxmax,1:nymax) 

 DOUBLE PRECISION :: xnow, xmax 
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 INTEGER :: nstep, noutput 

! 

 DOUBLE PRECISION, SAVE :: x, dx 

 DOUBLE PRECISION, SAVE :: t, Mx, My, Mz 

 LOGICAL, SAVE :: save_image 

! Timing variables 

 INTEGER :: clock_start, clock_end, clock_rate 

 DOUBLE PRECISION :: elapsed_time 

! External routines 

 DOUBLE PRECISION, EXTERNAL :: xmag, ymag, zmag 

 EXTERNAL :: RKLIU, derivs, saveimage 

! 

 clock_start=0 

 clock_end=0 

 CALL SYSTEM_CLOCK(COUNT_RATE=clock_rate) ! Find the timing rate 

 x=xnow 

 dx=0.5*dtsav ! Initial step size; factor 0.5 - just for safety 

! 

 DO WHILE (x<=xmax) 

! 

  t=x*treduced*1.0D+12 ! t in picosecond 

  Mx=xmag(y)/(nxmax*nymax) 

  My=ymag(y)/(nxmax*nymax) 

  Mz=zmag(y)/(nxmax*nymax) 

! 

  elapsed_time=(clock_end-clock_start)/clock_rate 

 

 OPEN(8,FILE='average.dat',ACCESS='sequential',POSITION='append') 

  WRITE(*,100) nstep, save_image, t, Mx, My, Mz 

  WRITE(8,100) nstep, save_image, t, Mx, My, Mz 

 100FORMAT(I8,X,L,X,F12.4,3(X,F12.8)) 

  CLOSE(8) 

  nstep=nstep+1 

! 

  save_image=.FALSE. 

! 

  CALL SYSTEM_CLOCK(COUNT=clock_start) ! Start timing 

  CALL RK2D(derivs,x,dx,y,noutput,save_image) 

  CALL SYSTEM_CLOCK(COUNT=clock_end) ! Stop timing 

! 

  IF (save_image .EQV. .TRUE.) THEN 
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   CALL saveimage(noutput,y) 

   noutput=noutput+1 

  END IF 

! 

  xnow=x 

! 

  OPEN(11,FILE=datapool,FORM='unformatted') 

  WRITE(11) xnow, y, mask, nstep, noutput 

  CLOSE(11) 

! 

 END DO 

! 

 END SUBROUTINE ODE2D 

 

 

 

6. Contents in the file “rk2d.f”: 
 

!********************************************************************

** 

! Cash Karp's embedded Runge-Kutta ODE solver with adaptive stepsize 

! control, designedly for 'sim2d' program, replacing previous 'UT'. 

!********************************************************************

** 

 SUBROUTINE RK2D(derivs,x,dx,y,noutput,save_image) 

 USE globals 

 IMPLICIT NONE 

! 

 EXTERNAL :: derivs 

 DOUBLE PRECISION :: x, dx, y(1:Nmax) 

 INTEGER :: noutput 

 LOGICAL :: save_image 

! 

 DOUBLE PRECISION :: dy(1:Nmax) 

 INTEGER :: i, ntry 

 LOGICAL :: retry 

 DOUBLE PRECISION :: err0, errmax 

 DOUBLE PRECISION, SAVE :: ytemp(1:Nmax), yembd(1:Nmax) 

 DOUBLE PRECISION, SAVE :: k1(1:Nmax), k2(1:Nmax), k3(1:Nmax) 

 DOUBLE PRECISION, SAVE :: k4(1:Nmax), k5(1:Nmax), k6(1:Nmax) 

! 
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 DOUBLE PRECISION, PARAMETER :: precision=0.00001, safety=0.9 

 DOUBLE PRECISION, PARAMETER :: exp1=0.2, exp2=0.25 

 DOUBLE PRECISION, PARAMETER :: a2=0.2, a3=0.3, a4=0.6, a5=1.0, 

a6=0.875 

 DOUBLE PRECISION, PARAMETER :: b21=0.2, b31=0.075, b32=0.225 

 DOUBLE PRECISION, PARAMETER :: b41=0.3, b42=-0.9, b43=1.2 

 DOUBLE PRECISION, PARAMETER :: b51=-11./54., b52=2.5 

 DOUBLE PRECISION, PARAMETER :: b53=-70./27., b54=35./27. 

 DOUBLE PRECISION, PARAMETER :: b61=1631./55296., b62=175./512. 

 DOUBLE PRECISION, PARAMETER :: b63=575./13824. 

 DOUBLE PRECISION, PARAMETER :: b64=44275./110592., b65=253./4096. 

 DOUBLE PRECISION, PARAMETER :: c1=37./378., c2=0, c3=250./621. 

 DOUBLE PRECISION, PARAMETER :: c4=125./594., c5=0, c6=512./1771. 

 DOUBLE PRECISION, PARAMETER :: d1=2825./27648., d2=0 

 DOUBLE PRECISION, PARAMETER :: d3=18575./48384., d4=13525./55296. 

 DOUBLE PRECISION, PARAMETER :: d5=277./14336., d6=.25 

! Initial values for self-adapting procedures 

 ntry=0 

 retry=.TRUE. 

 errmax=0 

! The precision for theta and phi 

 err0=precision*Pi 

! 

 DO WHILE ((retry .EQV. .TRUE.) .AND. (ntry<=5)) 

! 

  IF (x+dx>tmin+(noutput+1)*dtsav .AND. x>0) THEN 

   save_image=.TRUE. 

  END IF 

! 

  CALL derivs(x,dx,y,dy,mask) 

  k1=dx*dy 

  ytemp=y+b21*k1 

! 

  CALL derivs(x+a2*dx,dx,ytemp,dy,mask) 

  k2=dx*dy 

  ytemp=y+b31*k1+b32*k2 

! 

  CALL derivs(x+a3*dx,dx,ytemp,dy,mask) 

  k3=dx*dy 

  ytemp=y+b41*k1+b42*k2+b43*k3 

! 
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  CALL derivs(x+a4*dx,dx,ytemp,dy,mask) 

  k4=dx*dy 

  ytemp=y+b51*k1+b52*k2+b53*k3+b54*k4 

! 

  CALL derivs(x+a5*dx,dx,ytemp,dy,mask) 

  k5=dx*dy 

  ytemp=y+b61*k1+b62*k2+b63*k3+b64*k4+b65*k5 

! 

  CALL derivs(x+a6*dx,dx,ytemp,dy,mask) 

  DO i=1, Nmax 

   k6(i)=dx*dy(i) 

   ytemp(i)=y(i)+c1*k1(i)+c2*k2(i)+c3*k3(i) 

     &    +c4*k4(i)+c5*k5(i)+c6*k6(i) 

   yembd(i)=y(i)+d1*k1(i)+d2*k2(i)+d3*k3(i) 

     &    +d4*k4(i)+d5*k5(i)+d6*k6(i) 

! Compute the largest discrepancy of ytemp and yembd 

   errmax=MAX(errmax,ABS(ytemp(i)-yembd(i))) 

  END DO 

! 

  IF (errmax<=err0) THEN 

   dx=dx*safety*(err0/errmax)**exp1 

   retry=.FALSE. 

  ELSE 

   dx=dx*safety*(err0/errmax)**exp2 

   retry=.TRUE. 

   ntry=ntry+1 

  END IF 

! 

 END DO 

! 

 x=x+dx 

 y=ytemp 

! 

 END SUBROUTINE rk2d 

 

 

 

7. Contents in the file “deriv2d.f”: 
 

 SUBROUTINE derivs(t,dt,tp0,dtp) 

 USE globals 
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 IMPLICIT NONE 

!********************************************************** 

! Procedure calculates theta- and phi- components 

! of the effective magnetic field and finds 

! respective time derivatives dtp(1,i,j,k) and dtp(2,i,j,k) 

! Attention: for time-dependent field its components 

! will have to be given as functions of t. 

!********************************************************** 

! 

 DOUBLE PRECISION :: t, dt 

 DOUBLE PRECISION :: tp0(1:2,1:nxmax,1:nymax) 

DOUBLE PRECISION :: dtp(1:2,1:nxmax,1:nymax) 

! 

 DOUBLE PRECISION :: noise(1:nxmax,1:nymax) 

 DOUBLE PRECISION :: d2xn(1:nxmax,1:nymax) 

 DOUBLE PRECISION :: d2yn(1:nxmax,1:nymax) 

 DOUBLE PRECISION :: d2zn(1:nxmax,1:nymax) 

! 

 DOUBLE PRECISION :: hdem(1:2,0:nxmax-1,0:nymax-1) 

 DOUBLE PRECISION :: tp(1:2,0:nxmax+1,0:nymax+1) ! dummy array. 

 INTEGER :: i, j 

 DOUBLE PRECISION :: hth, hph ! Overall effective field 

 DOUBLE PRECISION :: xhgth, xhgph 

! 

 EXTERNAL :: hdemag 

! 

 CALL hdemag(t,dt,tp0,hdem) ! demagnetizing and external field 

! 

 tp=0 

 tp(1:2,1:nxmax,1:nymax)=tp0(1:2,1:nxmax,1:nymax) 

! 

 CALL RANDOM_NUMBER(noise) 

 DO i=1, nxmax 

  DO j=1, nymax 

   d2xn(i,j)=d2x*(1+0.01*(noise(i,j)-0.5)) 

   d2yn(i,j)=d2y*(1+0.01*(noise(i,j)-0.5)) 

   d2zn(i,j)=d2z*(1+0.01*(noise(i,j)-0.5)) 

  END DO 

 END DO 

! Calculation of the effective field 

 DO j=1, nymax 
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  DO i=1, nxmax 

! Exchange field + sum of external and demagnetizing fields 

   xhgth=-((SIN(tp(1,i,j))*COS(tp(1,i+mask(-1,i,j),j)) 

     &    -COS(tp(1,i,j))*SIN(tp(1,i+mask(-1,i,j),j)) 

     &    *COS(tp(2,i,j)-tp(2,i+mask(-1,i,j),j))) 

     &    +(SIN(tp(1,i,j))*COS(tp(1,i+mask(1,i,j),j)) 

     &    -COS(tp(1,i,j))*SIN(tp(1,i+mask(1,i,j),j)) 

     &    *COS(tp(2,i,j)-tp(2,i+mask(1,i,j),j))))*d2xn(i,j) 

     &    -((SIN(tp(1,i,j))*COS(tp(1,i,j+mask(-2,i,j))) 

     &    -COS(tp(1,i,j))*SIN(tp(1,i,j+mask(-2,i,j))) 

     &    *COS(tp(2,i,j)-tp(2,i,j+mask(-2,i,j)))) 

     &    +(SIN(tp(1,i,j))*COS(tp(1,i,j+mask(2,i,j))) 

     &    -COS(tp(1,i,j))*SIN(tp(1,i,j+mask(2,i,j))) 

     &    *COS(tp(2,i,j)-tp(2,i,j+mask(2,i,j)))))*d2yn(i,j) 

! 

   xhgph=-(SIN(tp(1,i+mask(-1,i,j),j)) 

     &    *SIN(tp(2,i,j)-tp(2,i+mask(-1,i,j),j)) 

     &    +SIN(tp(1,i+mask(1,i,j),j)) 

     &    *SIN(tp(2,i,j)-tp(2,i+mask(1,i,j),j)))*d2xn(i,j) 

     &    -(SIN(tp(1,i,j+mask(-2,i,j))) 

     &    *SIN(tp(2,i,j)-tp(2,i,j+mask(-2,i,j))) 

     &    +SIN(tp(1,i,j+mask(2,i,j))) 

     &    *SIN(tp(2,i,j)-tp(2,i,j+mask(2,i,j))))*d2yn(i,j) 

! 

   hth=xhgth+hdem(1,i-1,j-1) 

   hph=xhgph+hdem(2,i-1,j-1) 

! 

   dtp(1,i,j)=(alpha*hth+hph)*mask(0,i,j) 

   dtp(2,i,j)=(alpha*hph-hth)/SIN(tp(1,i,j))*mask(0,i,j) 

! 

   IF (i==isample .AND. j==jsample) THEN 

    OPEN(9,FILE='xhgtot.dat',ACCESS='sequential', 

     &     POSITION='append') 

    WRITE(9,900) t, hdem(1,i-1,j-1), hdem(2,i-1,j-1), 

     &     xhgth,xhgph, hth, hph, dtp(1,i,j), dtp(2,i,j) 

 900FORMAT(9(X,F12.6)) 

    CLOSE(9) 

   END IF 

! 

  END DO 

 END DO 
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! 

 END SUBROUTINE derivs 

 

 

 

8. Contents in the file “demag2d.f”: 
 

 SUBROUTINE hdemag(t,dt,tp,hdem) 

 USE globals 

 IMPLICIT NONE 

! 

 DOUBLE PRECISION :: t, dt 

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax) 

 DOUBLE PRECISION :: hdem(1:2,0:nxmax-1,0:nymax-1) 

!************************************************************* 

! Calculates the demagnetizing field.  

!************************************************************* 

! 

 EXTERNAL :: hext 

 DOUBLE PRECISION, EXTERNAL :: hanis, gasdev 

! 

 INTEGER :: i, j 

 DOUBLE PRECISION :: eps 

 DOUBLE PRECISION :: hextx, hexty, hextz ! External field 

 DOUBLE PRECISION :: rand_Gauss(1:Nrand) 

 DOUBLE PRECISION :: rseed(4) 

 INTEGER :: iseed(4) 

 DOUBLE PRECISION :: idum(2) 

! Cartesian components of Mx, My, Mz 

 DOUBLE PRECISION :: xm(0:nx2+1,0:ny2-1) 

 DOUBLE PRECISION :: ym(0:nx2+1,0:ny2-1) 

 DOUBLE PRECISION :: zm(0:nx2+1,0:ny2-1) 

! Fourier images of Mx,My,Mz, as calculated by real->complex transform 

 DOUBLE COMPLEX :: xmc(nmaxc) 

 DOUBLE COMPLEX :: ymc(nmaxc) 

 DOUBLE COMPLEX :: zmc(nmaxc) 

! Cartesian components of Hd 

 DOUBLE PRECISION :: xm1(0:nx2+1,0:ny2-1) 

 DOUBLE PRECISION :: ym1(0:nx2+1,0:ny2-1) 

 DOUBLE PRECISION :: zm1(0:nx2+1,0:ny2-1) 

! Fourier images of Hx,Hy,Hz, as calculated by real->complex transform 
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 DOUBLE COMPLEX :: xm1c(nmaxc) 

 DOUBLE COMPLEX :: ym1c(nmaxc) 

 DOUBLE COMPLEX :: zm1c(nmaxc) 

! Timing variables 

 INTEGER :: clock_start, clock_end, clock_rate 

 DOUBLE PRECISION :: elapsed_time 

! 

 eps=2.0*alpha*Kbolts*temp/((un*1.d-7)**3*Ms*gamma*dux*duy*duz) 

! The first octant (quadrant) of Cartesian M components is  

! filled with the respective values. The rest are zero-padded. 

 xm=0 

 ym=0 

 zm=0 

 DO j=1, nymax 

  DO i=1, nxmax 

   xm(i-1,j-1)=SIN(tp(1,i,j))*COS(tp(2,i,j))*mask(0,i,j) 

   ym(i-1,j-1)=SIN(tp(1,i,j))*SIN(tp(2,i,j))*mask(0,i,j) 

   zm(i-1,j-1)=COS(tp(1,i,j))*mask(0,i,j) 

  END DO 

 END DO 

! Timing routine 

 CALL SYSTEM_CLOCK(COUNT_RATE=clock_rate) ! Find the timing rate 

 CALL SYSTEM_CLOCK(COUNT=clock_start) ! Start timing 

! Conversion of M components to Fourier space 

 CALL DZFFT2D(1,nx2,ny2,1.d0,xm,nx2+2,xmc,nxmax+1,table1,work,0) 

 CALL DZFFT2D(1,nx2,ny2,1.d0,ym,nx2+2,ymc,nxmax+1,table1,work,0) 

 CALL DZFFT2D(1,nx2,ny2,1.d0,zm,nx2+2,zmc,nxmax+1,table1,work,0) 

! Fourier images of M are multipled by demagnetizing 

! coefficients transform - this is a convolution in 

! the Fourier space, that produces image of Hd field. 

 DO i=1, nmaxc 

  xm1c(i)=kxx(i)*xmc(i)+kxy(i)*ymc(i) 

  ym1c(i)=kxy(i)*xmc(i)+kyy(i)*ymc(i) 

  zm1c(i)=kzz(i)*zmc(i) 

 END DO 

! Conversion of Hd to real space 

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,xm1c,nxmax+1,xm1,nx2+2,table2,work,0) 

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,ym1c,nxmax+1,ym1,nx2+2,table2,work,0) 

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,zm1c,nxmax+1,zm1,nx2+2,table2,work,0) 

! 

 CALL SYSTEM_CLOCK(COUNT=clock_end) ! Stop timing 
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 elapsed_time=(clock_end-clock_start)/clock_rate 

 OPEN(4,FILE='FFTtime.dat',ACCESS='sequential',POSITION='append') 

 WRITE(4,400) t, elapsed_time 

 400FORMAT(2(X,F12.6)) 

 CLOSE(4) 

! Prepare Guassian-type random numbers for thermo-term 

 CALL RANDOM_NUMBER(rseed) 

 iseed=INT(rseed*100+100) 

 iseed(4)=iseed(4)*2-1 ! the last random seed must be ODD. 

 DO i=1, Nrand 

   rand_Gauss(i)=gasdev(idum,iseed) 

 END DO 

! Calculation of spherical components of demagnetizing and external 

fields. 

 DO j=0, nymax-1 

  DO i=0, nxmax-1 

! External field 

  CALL hext(t,i+1,j+1,hextx,hexty,hextz) 

! 

  IF (i==isample-1 .AND. j==jsample-1) THEN 

 

 OPEN(7,FILE='demext.dat',ACCESS='sequential',POSITION='append') 

  WRITE(7,700) t, xm1(i,j), ym1(i,j), zm1(i,j), 

     &   hextx, hexty, hextz, hanis(i+1,j+1,tp), 

     &   SQRT(eps*dt*treduced)*rand_Gauss(nxmax*j+3*i+1)/Ms 

 700FORMAT(9(X,F12.6)) 

  CLOSE(7) 

  END IF 

! 

  xm1(i,j)=xm1(i,j)+hextx+SQRT(eps*dt*treduced) 

     &   *rand_Gauss(nxmax*j+3*i+1)/Ms 

  ym1(i,j)=ym1(i,j)+hexty 

     &   +SQRT(eps*dt*treduced)*rand_Gauss(nxmax*j+3*i+2)/Ms 

  zm1(i,j)=zm1(i,j)+hextz+SQRT(eps*dt*treduced) 

     &   *rand_Gauss(nxmax*j+3*i+3)/Ms 

! Conversion to spheric coordinates 

  hdem(1,i,j)=xm1(i,j)*COS(tp(1,i+1,j+1))*COS(tp(2,i+1,j+1)) 

     &   +ym1(i,j)*COS(tp(1,i+1,j+1))*SIN(tp(2,i+1,j+1)) 

     &   -zm1(i,j)*SIN(tp(1,i+1,j+1)) 

  hdem(2,i,j)=-xm1(i,j)*SIN(tp(2,i+1,j+1)) 

     &   +ym1(i,j)*COS(tp(2,i+1,j+1)) 
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! 

  END DO 

 END DO 

! 

 END SUBROUTINE hdemag 

! ------------------------------------------------------------------ 

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>< 

! ------------------------------------------------------------------ 

! Anisotropy component of effective field 

 DOUBLE PRECISION FUNCTION hanis(i,j,tp) 

 USE globals 

 IMPLICIT NONE 

 INTEGER :: i, j 

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax) 

! 

! Anisotropy constant, y-direction only 

 DOUBLE PRECISION, PARAMETER :: Hky=0.01 

! 

 hanis = Hky*(SIN(tp(1,i,j))*SIN(tp(2,i,j))*mask(0,i,j))**2 

     &  *SIN(tp(1,i,j))*SIN(tp(2,i,j)) 

     &  /ABS(SIN(tp(1,i,j))*SIN(tp(2,i,j))) 

! 

 END FUNCTION hanis 

! ------------------------------------------------------------------ 

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>< 

! ------------------------------------------------------------------ 

 FUNCTION gasdev(idum,iseed) 

 IMPLICIT NONE 

 DOUBLE PRECISION :: gasdev 

 DOUBLE PRECISION :: idum(2) 

 INTEGER :: iseed(4) 

! 

 INTEGER, SAVE :: iset 

 DOUBLE PRECISION, SAVE :: gset 

 DOUBLE PRECISION ::  v1, v2, rsq, fac 

 DATA iset/0/ 

! 

 IF (iset==0) THEN 

 1  CALL dlarnv(1,iseed,2,idum) 

  v1=2*idum(1)-1 

  v2=2*idum(2)-1 
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  rsq=v1**2+v2**2 

  IF (rsq>=1 .or. rsq==0) GOTO 1 

  fac=SQRT(-2.*LOG(rsq)/rsq) 

  gset=v1*fac 

  gasdev=v2*fac 

  iset=1 

 ELSE 

  gasdev=gset 

  iset=0 

 END IF 

! 

 END FUNCTION gasdev 

 

 

 

9. Contents in the file “functions.f”: 
 

!*************************************************************** 

! Demagnetizing tensor components. i,j,k define relative position 

! of two cells, while dx,dy,dz define their size. 

! See: Y.Nakatani, Y.Uesaka, N.Hayashi, "Direct Solution of the 

! Landau-Lifshitz-Gilbert equation for micromagnetics", 

! Jap.J.Appl.Phys., 28 (1989) 2485-507. 

!*************************************************************** 

 FUNCTION dmxx(i,j,k,dx,dy,dz) 

 IMPLICIT NONE 

! 

 DOUBLE PRECISION :: dmxx 

 INTEGER :: i, j, k 

 DOUBLE PRECISION :: dx, dy, dz 

! 

 dmxx=ATAN((dy*dz*(-0.5+j)*(-0.5+k)) 

     & /(dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(-0.5+j)*(-0.5+k)) 

     & /(dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(0.5+j)*(-0.5+k)) 

     & /(dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(-0.5+k)**2)))+ATAN((dy*dz*(0.5+j)*(-0.5+k)) 

     & /(dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(-0.5+j)*(0.5+k)) 

     & /(dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2 
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     & +dz**2*(0.5+k)**2)))+ATAN((dy*dz*(-0.5+j)*(0.5+k)) 

     & /(dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(0.5+k)**2)))+ATAN((dy*dz*(0.5+j)*(0.5+k)) 

     & /(dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(0.5+k)**2)))-ATAN((dy*dz*(0.5+j)*(0.5+k)) 

     & /(dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(0.5+k)**2))) 

! 

 END FUNCTION dmxx 

! ---------------------------------------------------------- 

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><>< 

! ---------------------------------------------------------- 

 FUNCTION dmyy(i,j,k,dx,dy,dz) 

 IMPLICIT NONE 

! 

 DOUBLE PRECISION :: dmyy 

 INTEGER :: i, j, k 

 DOUBLE PRECISION :: dx, dy, dz 

! 

 dmyy=ATAN((dx*dz*(-0.5+i)*(-0.5+k)) 

     & /(dy*(-0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(0.5+i)*(-0.5+k)) 

     & /(dy*(-0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(-0.5+i)*(-0.5+k)) 

     & /(dy*(0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(-0.5+k)**2)))+ATAN((dx*dz*(0.5+i)*(-0.5+k)) 

     & /(dy*(0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(-0.5+i)*(0.5+k)) 

     & /(dy*(-0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(0.5+k)**2)))+ATAN((dx*dz*(0.5+i)*(0.5+k)) 

     & /(dy*(-0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(0.5+k)**2)))+ATAN((dx*dz*(-0.5+i)*(0.5+k)) 

     & /(dy*(0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(0.5+k)**2)))-ATAN((dx*dz*(0.5+i)*(0.5+k)) 

     & /(dy*(0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(0.5+k)**2))) 

! 

 END FUNCTION dmyy 

! ---------------------------------------------------------- 

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><>< 

! ---------------------------------------------------------- 
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 FUNCTION dmzz(i,j,k,dx,dy,dz) 

 IMPLICIT NONE 

! 

 DOUBLE PRECISION :: dmzz 

 INTEGER :: i, j, k 

 DOUBLE PRECISION :: dx, dy, dz 

! 

 dmzz=ATAN((dx*dy*(-0.5+i)*(-0.5+j)) 

     & /(dz*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(-0.5+k)**2)*(-0.5+k))) 

     & -ATAN((dx*dy*(0.5+i)*(-0.5+j)) 

     & /(dz*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(-0.5+k)**2)*(-0.5+k))) 

     & -ATAN((dx*dy*(-0.5+i)*(0.5+j)) 

     & /(dz*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(-0.5+k)**2)*(-0.5+k))) 

     & +ATAN((dx*dy*(0.5+i)*(0.5+j)) 

     & /(dz*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(-0.5+k)**2)*(-0.5+k))) 

     & -ATAN((dx*dy*(-0.5+i)*(-0.5+j)) 

     & /(dz*(0.5+k)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(0.5+k)**2)))+ATAN((dx*dy*(0.5+i)*(-0.5+j)) 

     & /(dz*(0.5+k)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(0.5+k)**2)))+ATAN((dx*dy*(-0.5+i)*(0.5+j)) 

     & /(dz*(0.5+k)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(0.5+k)**2)))-ATAN((dx*dy*(0.5+i)*(0.5+j)) 

     & /(dz*(0.5+k)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(0.5+k)**2))) 

! 

 END FUNCTION dmzz 

! ---------------------------------------------------------- 

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><>< 

! ---------------------------------------------------------- 

 FUNCTION dmxy(i,j,k,dx,dy,dz) 

 IMPLICIT NONE 

! 

 DOUBLE PRECISION :: dmxy 

  INTEGER :: i, j, k 

 DOUBLE PRECISION :: dx, dy, dz 

! 

 dmxy=-LOG(ABS(SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2 
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     & +dz**2*(-0.5+k)**2)+dz*(-0.5+k))) 

     & +LOG(ABS(SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(-0.5+k)**2)+dz*(-0.5+k))) 

     & +LOG(ABS(SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(-0.5+k)**2)+dz*(-0.5+k))) 

     & -LOG(ABS(SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(-0.5+k)**2)+dz*(-0.5+k)))+LOG(ABS(dz*(0.5+k) 

     & +SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2 

     & +dz**2*(0.5+k)**2))) 

     & -LOG(ABS(dz*(0.5+k)+SQRT(dx**2*(0.5+i)**2 

     & +dy**2*(-0.5+j)**2 

     & +dz**2*(0.5+k)**2)))-LOG(ABS(dz*(0.5+k) 

     & +SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2 

     & +dz**2*(0.5+k)**2))) 

     & +LOG(ABS(dz*(0.5+k)+SQRT(dx**2*(0.5+i)**2 

     & +dy**2*(0.5+j)**2 

     & +dz**2*(0.5 + k)**2))) 

! 

 END FUNCTION dmxy 

! 

!****************************************************** 

! Functions that calculate x/y/z-component of the 

! sample's magnetic moment in arbitrary units 

!****************************************************** 

! 

 DOUBLE PRECISION FUNCTION xmag(tp) 

 USE globals 

 IMPLICIT NONE 

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax) 

! 

 INTEGER i, j 

! 

 xmag=0 

 DO j=1, nymax 

  DO i=1, nxmax 

   xmag=xmag+SIN(tp(1,i,j))*COS(tp(2,i,j))*mask(0,i,j) 

  END DO 

 END DO 

! 

 END FUNCTION xmag 

! ------------------------------------------------------ 
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! ><><><><><><><><><><><><><><><><><><><><><><><><><><>< 

! ------------------------------------------------------ 

 DOUBLE PRECISION FUNCTION ymag(tp) 

 USE globals 

 IMPLICIT NONE 

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax) 

! 

 INTEGER i, j 

! 

 ymag=0 

 DO j=1, nymax 

  DO i=1, nxmax 

   ymag=ymag+SIN(tp(1,i,j))*SIN(tp(2,i,j))*mask(0,i,j) 

  END DO 

 END DO 

! 

 END FUNCTION ymag 

! ------------------------------------------------------ 

! ><><><><><><><><><><><><><><><><><><><><><><><><><><>< 

! ------------------------------------------------------ 

 DOUBLE PRECISION FUNCTION zmag(tp) 

 USE globals 

 IMPLICIT NONE 

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax) 

! 

 INTEGER i, j 

! 

 zmag=0 

 DO i=1, nxmax 

  DO j=1, nymax 

   zmag=zmag+COS(tp(1,i,j))*mask(0,i,j) 

  END DO 

 END DO 

! 

 END FUNCTION zmag 

 

 

 

10. Contents in the file “saveimage.f”: 
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 SUBROUTINE saveimage(noutput,y) 

 USE globals 

 IMPLICIT NONE 

! 

 INTEGER :: noutput 

 DOUBLE PRECISION :: y(1:2,1:nxmax,1:nymax) 

!********************************************************* 

! Procedure saves a current distribution of Mx, My and Mz 

! components so that Matlab's 'imshow' command can apply. 

!********************************************************* 

! 

 INTEGER :: i, j 

 INTEGER, PARAMETER :: Ndigit=3 

 DOUBLE PRECISION, SAVE :: mx(1:nxmax,1:nymax) 

 DOUBLE PRECISION, SAVE :: my(1:nxmax,1:nymax) 

 DOUBLE PRECISION, SAVE :: mz(1:nxmax,1:nymax) 

! Note: number of image files must be less than 999! 

 CHARACTER :: digit(1:Ndigit) 

! Digit pool 

 CHARACTER :: a(0:10) 

! int is equal to noutput at the beginning 

 INTEGER :: int, index 

! 

 DO i=1, nxmax 

  DO j=1, nymax 

   mx(i,j)=SIN(y(1,i,j))*COS(y(2,i,j))*mask(0,i,j) 

   my(i,j)=SIN(y(1,i,j))*SIN(y(2,i,j))*mask(0,i,j) 

   mz(i,j)=COS(y(1,i,j))*mask(0,i,j) 

  END DO 

 END DO 

! 

 a(0)='0'; a(1)='1'; a(2)='2'; a(3)='3'; a(4)='4'; 

 a(5)='5'; a(6)='6'; a(7)='7'; a(8)='8'; a(9)='9'; 

! 

 digit='0' 

 int=noutput 

! 

 DO i=1, Ndigit 

  index=MOD(int,10) 

  digit(4-i)=a(index) 

  int=FLOOR(int/10.0) 
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 END DO 

! Making image file's name 

 IF (noutput<10) THEN 

  OPEN(1,FILE='xyz.'//digit(3), 

     &   FORM='formatted',RECL=6144,STATUS='unknown') 

 ELSE IF (noutput<100) THEN 

  OPEN(1,FILE='xyz.'//digit(2)//digit(3), 

     &   FORM='formatted',RECL=6144,STATUS='unknown') 

 ELSE IF (noutput<1000) THEN 

  OPEN(1,FILE='xyz.'//digit(1)//digit(2)//digit(3), 

     &   FORM='formatted',RECL=6144,STATUS='unknown') 

 END IF 

! Saving data 

 DO i=nxmax, 1, -1 

  WRITE(1,100)(mx(i,j), j=1, nymax) 

 END DO 

! 

 DO i=nxmax, 1, -1 

  WRITE(1,100)(my(i,j), j=1, nymax) 

 END DO 

! 

 DO i=nxmax, 1, -1 

  WRITE(1,100)(mz(i,j), j=1, nymax) 

 END DO 

! 

 CLOSE(1) 

! 

100 FORMAT(512(F12.8)) 

! 

 END SUBROUTINE saveimage 
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Appendix III 

Visualization of simulation results 

(Matlab programs) 

 

Below are some Matlab programs I wrote to perform 
visualization tasks. Brief introduction and direction are 
included in their comment scripts. 

 

 

 

11. Contents in the file “RGBshow.m”: 
 

% This function reads a 2D array from the file “file”, 

% and display it by RGB color scheme. The purpose is to 

% display spatial profiles of normalized magnetization, 

% thus the elements of the array must be within [-1,+1]. 

function output=RGBshow(file) 

% Define colors 

 colormap= ... 

  [0,0,1;0,0.2,1;0,0.4,1;0,0.6,1;0,0.8,1;0,1,1;0,1,0.8; ... 

  0,1,0.6;0,1,0.4;0,1,0.2;0,1,0;0.2,1,0;0.4,1,0;0.6,1,0; ... 

  0.8,1,0;1,1,0;1,0.8,0;1,0.6,0;1,0.4,0;1,0.2,0;1,0,0]; 

% Load the image file 

 imagedata=load(file); 

 imagesize=size(imagedata); 

% Customize the area to be displayed 

 imin=1; 

 imax=imagesize(1); 

 jmin=1; 

 jmax=imagesize(2); 

% Define the color array to be displayed 

 imbin=imagedata(imin:imax,jmin:jmax); 

 imbmp=zeros(imax-imin+1,jmax-jmin+1,3); 

% Fill the color array 

 for i=1:imagesize(1) 
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  for j=1:imagesize(2) 

% 

   index=floor(10*imbin(i,j)+10)+1; 

   if index<=1 

    index=1; 

   end 

   if index>=21 

    index=21; 

   end 

% 

   imbmp(i,j,1)=colormap(index,1); 

   imbmp(i,j,2)=colormap(index,2); 

   imbmp(i,j,3)=colormap(index,3); 

% 

  end 

 end 

% Display the color array 

 imshow(imbmp); 

% Output 

 output=imbmp; 

 fclose('all'); 

% 

 

 

 

12. Contents in the file “xy2phi.m”: 
 

% This function read a 2D array from the file “file”, 

% and convert the 3D magnetization components into an 

% array whose elements represent for the in-plane “phi” 

% angles. It is used by the function “RGBshow_angles”. 

function output=xy2phi(file) 

% 

xyz=load(file); 

dim=size(xyz); 

sizex=dim(1)/3; 

sizey=dim(2); 

phi=zeros(sizex,sizey); 

% 

x=xyz(1:sizex,1:sizey); 

y=xyz((sizex+1):(2*sizex),1:sizey); 
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% 

for i=1:sizex 

  for j=1:sizey 

% 

   mx=x(i,j); 

   my=y(i,j); 

   if mx==0 

    mx=0.00000001; 

   end 

   angle=atan(abs(my/mx)); 

% 

   if mx<0 & my>0 

    angle=pi-angle; 

   elseif mx<0 & my<0 

    angle=pi+angle; 

   elseif mx>0 & my<0 

    angle=2*pi-angle; 

   else 

    angle=angle; 

   end 

% 

   phi(i,j)=angle*180/pi; 

% 

  end 

end 

% 

output=phi; 

fclose('all');% 

% 

 

 

13. Contents in the file “RGBshow_angles.m”: 
 

% This function does the similar work with “RGBshow”, 

% except that the in-plane angles “phi” are displayed 

% and the elements in the array “imagedata” must be 

% within [0,2*Pi]. 

function output=RGBshow_angles(imagedata) 

% The color map 

colormap=[255,255,  0; 255,226,  0; 255,197,  0; 255,159,  0; ... 

255,119,  0; 255, 76,  0; 255,  0,  0; 255, 57, 62; ... 
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255, 45,103; 255, 35,136; 255, 26,164; 255, 18,193; ... 

255,  0,255; 230,  0,255; 201,  0,255; 169,  0,255; ... 

145,  0,255; 104,  0,255;   0,  0,255;   0, 36,255; ... 

0, 89,255;   0,130,255;   0,174,255;   0,218,255; ... 

0,255,255;   0,255,195;   0,255,176;   0,255,143; ... 

0,255,115;   0,255, 86;   0,255,  0;  98,255,  0; ... 

149,255,  0; 170,255,  0; 191,255,  0; 214,255,  0]; 

colormap=colormap/256; 

% 

imagesize=size(imagedata); 

% Define the color image array 

image=zeros(imagesize(1),imagesize(2),3); 

% Fill the color array 

for i=1:imagesize(1) 

  for j=1:imagesize(2) 

% 

   index=floor(imagedata(i,j)/10)+1; 

   if index<=1 

    index=1; 

   end 

   if index>=36 

    index=36; 

   end 

% 

   image(i,j,1)=colormap(index,1); 

   image(i,j,2)=colormap(index,2); 

   image(i,j,3)=colormap(index,3); 

% 

  end 

end 

% Display the color image and output 

imshow(image); 

output=image; 

% 

fclose('all'); 

% 

 

 

 

14. Contents in the file “vectormap.m”: 
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% This function displays the spatial profile of in-plane 

% magnetization as arrows pointing to proper directions. 

% ‘x’/’y’ refer to Mx/My components arrays; 

% ‘nx’/’ny’ are the cell numbers along x/y-axis; 

% ‘narrowx’/’narrowy’ are the arrow numbers along x/y-axis. 

% ‘nx’ must be an integer times of ‘narrowx’, so is ‘ny’. 

function output=vectormap(x,y,nx,ny,narrowx,narrowy) 

% 

vx=zeros(narrowx,narrowy); 

vy=zeros(narrowx,narrowy); 

xfactor=floor(nx/narrowx); 

yfactor=floor(ny/narrowy); 

% Fill the vector array 

for i=1:narrowx 

  for j=1:narrowy 

   vx(i,j)=x((i-0.5)*xfactor,(j-0.5)*yfactor); 

   vy(i,j)=y((i-0.5)*xfactor,(j-0.5)*yfactor); 

  end 

end 

% Display the vector map 

quiver(vx,vy); 

axis equal; 

axis off; 

% 

output=xfactor; 

% 
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Appendix IV 

Standard RGB Color Wheel 

 

This color wheel (available online) is used to calibrate 

different colors representing for orientations of the 

magnetization. For example, if the magnetization of a cell 

points upward, the cell is painted by yellow (color code 1); if 

it points downward, the cell is painted by blue (color code 

19), and so on. 

 


