
 1

Chapter One

Introduction

In this chapter fundamental theories for micromagnetics will be

outlined, with emphasis on the Landau-Lifshitz-Gilbert (LLG)

equation and components of the effective field. Micromagnetic

simulation is directly based on these theories.

1.1 Motivation

Magnetism and its applications present good cases in point for the technological

trends of our time: devices get smaller, speeds increase, and complex dynamic

systems can be better understood with the rapidly soaring capability of

computer-based modeling. Improvements in nanoscale lithography and

development of ultrathin multilayer films have opened new possibilities for novel

magnetic devices [1, 2]. These exploratory developments rely heavily on

fundamental research using creative experimental techniques, as well as high

performance numerical simulations.

This thesis focuses on micromagnetic simulations and experimental comparisons.

The experiments are being performed in the ultrafast microscopy laboratories led

by Prof. Freeman at the University of Alberta [3, 4, 5, 6]. In the following parts of

 2

this chapter, the theories of micromagnetics will be outlined, especially those in

two dimensional systems, because ultrathin films exhibit 2D properties. However,

for more advanced studies a complete 3D model in multi- layer systems will be

required, and this goes beyond what will be contained in this work.

The material being investigated in this work is Ni80Fe20 Permalloy. It is highly

magnetized with a saturation magnetization >800(emu/cm3), but its coercivity is

so low that a small external field is able to flip the sample’s magnetization. It also

has other good properties such as high permeability and weak anisotropy.

Benefiting from all these advantages, Peamalloy is used in more and more

applications.

1.2 Theoretical background

1.2.1 Classical model

1.2.1.1 Equation of motion

Fundamental dynamics of magnetic materials are, to the first order approximation,

governed by the following classical relation: the time rate of change of a magnetic

moment m
r

is proportional to the torque applied on this momentum [7, 8],

 3

 0 ()
d
dt

γ= − ×
m

m H
r rr

 (1.1)

where
r

H is the magnetic field applied on m
r

, and 11 -1 -1
0 1.761 10 (s T)γ = × is the

electron’s gyromagnetic ratio (see Eq.(1.14) for definition details).

It is important to note that Eq.(1.1) is a classical equation, while micromagnetic

phenomena involve underlying quantum mechanical considerations. An

equivalence relation supports the validity of the classical equation by showing that

it has exactly the same form as what is derived from quantum mechanics.

Quantum mechanics states that the time evolution of the expectation value of a

spin S
r

obeys Schrödinger’s equation [9],

 ˆ() [, ()]
d

i t t
dt

< > =< >S S H
r r

h (1.2)

where (̂)tH is the spin system’s Hamiltonian. If the spin is in a time-dependent

external field B
r

, the Hamiltonian is of Zeeman type:

 ˆ Bgµ
− ⋅H S B=

r r
h (1.3)

where g is the gyromagnetic splitting factor, g=2.0x1.001159657 for free electrons;

-24=/ 2 9.2741 10 (J/T)eB e mµ ≡ ×h is the Bohr magneton; 341.0546 10 (J s)−= × ⋅h is the

reduced Planck constant. The x-component of Eq.(1.2)’s right-hand-side is:

()

ˆ, () , () () ()

()[,] ()[,]

B
x x x x y y z z

B
y x y z x z

g
S t S S B t S B t S B t

g
B t S S B t S S

µ

µ

   = − + +  

= − +

H h

h

 (1.4)

and according to the commutation rules

 4

[,]

[,]

[,]

x y z

y z x

z x y

S S i S

S S i S

S S i S

=

=

=

h
h
h

 (1.5)

one obtains

 ()ˆ, () () ()B
x y z z y

g
S t i B t S B t S

µ  = − − H hh (1.6)

The y/z-components have a similar expression and finally the equation of the

spin’s motion reads

 () () ()Bgd
t t t

dt
µ

< > = < > ×S S B
r r r

h (1.7)

On the other hand, consider a classical angular momentum generated by an

orbiting electron (equivalent to a current loop) and the following relation holds [9],

2

e

e

q
m

m l=
rr

 (1.8)

where m
r is the current loop’s dipole moment, l

r
is the angular momentum, and

qe and me are the electron’s charge and mass, respectively.

In quantum mechanics, spin s
r and angular momentum l

r
are usually treated in the

same manner [9]; a similar geometric relation with Eq.(1.8) holds for spin, and we

can write

 γ < >m s=r r
 (1.9)

where γ , the gyromagnetic ratio, is equal to

 0
2

e B

e

gq g
m

µ
γ = = <h (1.10)

Substituting Eq.(1.9) into Eq.(1.7) one obtains

 5

 () () ()
d

t t t
dt

γ  × m m B=
rr r

 (1.11)

Now, defining the magnetization as the total dipole moment per unit volume

unit volume

= ∑ m
M

rr
 (1.12)

it follows that (in the SI system of units)

 0() () ()
d

t t t
dt

µ γ  = × M M H
r r r

 (1.13)

where 0/ µ=H B
r r

is the magnetic field (not Hamiltonian Ĥ).

Conventionally people define

 0 0 0
Bg µ

γ µ µ γ= = −h (1.14)

In the SI system, 11 -1 -1
0 1.761 10)(s Tγ = ×

Now we can write the equation governing magnetization motion

 0() () ()
d

t t t
dt

γ  = − × M M H
r r r

 (1.15)

which is Eq.(1.1).

In conclusion, the equivalence between dipole moment and spin (Eq.(1.9)), and

the analogy between Eq.(1.7) and Eq.(1.15) suggests that the classical equation is

obeyed exactly, whatever the time dependence of the magnetic field is.

1.2.1.2 Magnetic order and ferromagnetic phenomena

 6

Magnetic materials have different types of “magnetic order”, such as

ferromagnetism, antiferromagnetism, and ferrimagnetism [10], illustrated in

Fig.(1.1). In this thesis, the focus is restricted to ferromagnetic materials.

The atomic-scale magnetic dipoles underlying ferromagnetism are associated with

the orbital and spin degrees of freedom of the electrons in the material [11]. The

exchange interaction between dipoles, which is quantum mechanical in nature, is

the basis of magnetic ordering. Ferromagnetism occurs when a saving in

electrostatic Coulomb energy is enabled by parallel electron spin alignment (the

spin dependence introduced via the Pauli principle). Below a critical temperature

(the Curie temperature), a macro-scale magnetic dipole moment is formed.

In thin films, one can easily observe ferromagnetic “domains” [12, 13]. All magnetic

dipoles have the same orientation within one domain, and can be treated as a big

dipole moment (or “macrospin”). Magnetic properties of the whole film are then

Fig.(1.1) Types of magnetic orders. (a), ferromagnetism: magnetic
dipoles at each site point toward the same direction; (b),
antiferromagnetism: neighboring dipoles align antiparellel
and yield zero total magnetization; (c), ferrimagnetism:
neighboring dipoles align antiparellel with different
strength, making a net magnetization.

(a) ferromagnetism (b) antiferromagnetism (c) ferrimagnetism

 7

determined by two aspects: the properties of individual domains and the motion of

domain walls. Magnetic quantities of single domain structures are quite stable and

controllable, and these structures have been used in many technological

applications.

In numerical simulations, since most samples have a uniform distribution of

magnetic dipoles, we can divide the sample into finite size grids, with the same

magnitude of dipole moment for each element. Then the moment within one

element can be expressed in spherical coordinates (shown in Fig.(1.2)):

 () (sin cos ,sin sin ,cos)sM V θ φ θ φ φ=M r
r r

 (1.16)

where Ms is the saturation magnetization, usually with density dimension

emu/cm3, and V is the volume of the element. Eq.(1.16) greatly simplifies the

linearization of Eq.(1.15) and forms the basis of micromagnetic simulation.

θ

x

y

z

O

Fig.(1.2) Spherical coordinates. The thin film is divided
by equal size elements, so that the magnitude of
magnetization remains a constant.

M
r

φ

 8

1.2.2 Magnetization dynamics and LLG equation

1.2.2.1 The LLG equation

The Landau-Lifshitz-Gilbert (LLG) equation describes the governing mechanisms

of motion of magnetization. It is developed from Eq.(1.15) by introducing a

damping term which does not allow the length of the magnetization vector to

change, consistent with the underlying assumption of ferromagnetism. One way to

do so is replacing the field H
r

 by an effective field effH
r

 with an Ohmic type

dissipation term [8, 10]:

 eff
0

1

s

d
M dt

α
γ

= −
M

H H
rr r

 (1.17)

where Ms is the saturation magnetization and α is a phenomenological damping

parameter. Inserting Eq.(1.17) into Eq.(1.15) yields

 0

() ()
() () ()

s

d t d t
t t t

dt M dt
α

γ
 

 = − × + ×  
 

M M
M H M

r rr r r
 (1.18)

Eq.(1.18) is known as Landau-Lifshitz-Gilbert (LLG) equation of magnetization

motion. The effect of damping is illustrated in Fig.(1.3). The second term on the

right-hand-side of Eq.(1.18) provides a frictional force that causes the

magnetization to spiral down until completely aligned with the actual field H
r

after a long enough time.

 9

Eq.(1.18) has an equivalent form that is easier to handle for numerical modeling:

 { }2 0
0

()
(1) [() ()] () [() ()]

s

d t
t t t t t

dt M
αγ

α γ+ = − × − × ×
M

M H M M H
r r r r r r

 (1.19)

For our treatment of ferromagnetic thin films, we will assume the thickness of the

film to be uniform. When the plane is divided into equally sized rectangular cells,

the volume of the cells is the same and the total magnetic moment of each cell has

equal magnitude (the saturation magnetization, Ms, times the volume of the cell,

V). In spherical coordinates shown in Fig.(1.2), one only needs to know the

evolution of angles θ and φ to get the whole dynamics of the magnetization.

This removes one degree of freedom in comparison to 3-component Cartesian

coordinates (where, of course, the three components are not independent given Ms

a constant, i.e., Mx
2+ My

2+ Mz
2= Ms

2, but this constraint is not used because the

computation is more complicated than that in spherical coordinates). Eq.(1.19)

H
r

d dt×M M
r r

(a) (b)

Fig.(1.3) Magnetization precession.
(a) no damping
(b) damping

H
r

d dtM
r

M
r

 M
r

d dtM

r

 10

can be rewritten as

sin

d
H H

d
d

H H
d

θ φ

θ φ

θ
α

τ
φ

θ α
τ

= +

= − +
 (1.20)

where Hθ , Hφ are the effective field’s θ̂ , φ̂ components, respectively. τ ,

which is a dimensionless time related to the real time t by

2

0

1

s

t
M
α

τ
γ
+

= (1.21)

Taking Permalloy as an example, 0.008α = and Ms=860(Oe), then the factor

equals about 66(ps), which means every integer dimensionless time step in the

simulation corresponds to 66 picoseconds.

1.2.2.2 The effective field

Eq.(1.20) has a concise form, but it is not so easy to figure out precisely what the

angular components of the effective field should be. The effective field has

various sources such as the external field, anisotropy, exchange, demagnetizing

fields, and thermal fluctuations. They are discussed separately in the following

subsections.

1.2.2.2.1 External (Zeeman) term

 11

The mapping between the unit vectors of a Cartesian coordinate system and those

of a spherical coordinate system are:

sin cos sin cos cos

cos cos cos sin sin

sin cos

r x y z

x y z

x y

θ

φ

θ φ θ φ θ

θ φ θ φ θ

φ φ

= + +

= + −

= − +

i i i i

i i i i

i i i

r r r r
r r r r
r r r

 (1.22)

Assuming the external field acting at the lattice site (i, j) with magnetization

vector i j rM=M i
rr

 (for uniform thin films, Mij = Ms=constant)

 (ext)
x x y y z zH H H= + +H i i i
r r rr

 (1.23)

the θ̂ and φ̂ components of the field are

(ext) (ext)

(ext) (ext)

cos cos cos sin sin

sin cos

x y z

x y

H H H H

H H H

θ θ

φ φ

θ φ θ φ θ

φ φ

= ⋅ = + −

= ⋅ = − +

H i

H i

rr
r (1.24)

1.2.2.2.2 Uniaxial anisotropy term

Assume the local axis of anisotropy has an arbitrary direction in space and is

specified in spherical coordinates as
0ri

r
, with angular coordinates 0 0(,)θ φ . The

magnetization vector at this site is s rM=M i
rr

, with angular coordinates (,)θ φ .

Define uK as the uniaxial anisotropy constant and the anisotropy energy density

can be written as [8, 11]

(){ }

0

2
ans

2

0 0 0

1 ()

1 cos cos sin sin cos

u r r

u

W K

K θ θ θ θ φ φ

 = − ⋅ 

= − + −  

i i
r r

 (1.25)

There is a simple way to obtain equivalent field H
r

 from the energy density.

 12

Assume that M
r

 rotates by a small amount (,)θ φ∆ ∆ . The change in energy

density is then given by

 () (sin)

sin
r r s s

s s

W

H H H M M

M H M H
θ θ φ φ θ φ

θ φ

θ θ φ

θ θ φ

∆ = − ⋅ ∆

= − + + ⋅ ∆ + ∆

= − ∆ − ∆

H M

i i i i i

r r
r r r r r

 (1.26)

consequently,

1

1
sin

s

s

W
H

M

W
H

M

θ

φ

θ

θ φ

∂
= −

∂

∂
= −

∂

 (1.27)

Eq.(1.27) are quite general and give components of the equivalent field in terms

of corresponding energy density. For uniaxial anisotropy, these components are

(ans) 2 2 2
0 0 0

0 0

(ans) 2
0 0

0 0

{sin2 [cos sin cos ()]

cos2 sin2 cos()}

[sin sin sin2()

cos sin2 sin()]

u

s

u

s

K
H

M

K
H

M

θ

φ

θ θ θ φ φ

θ θ φ φ

θ θ φ φ

θ θ φ φ

= − − −

− −

= − −

+ −

 (1.28)

Eq.(1.28) looks complicated, because the spatial orientations of the anisotropy

axes are presumed to be arbitrarily distributed in the material. Nevertheless, in

single crystals the anisotropy direction is uniform across the specimen, and even

in polycrystalline thin films used in applications, a certain anisotropy direction

can be induced by applying some external magnetic field during the course of film

growth [4, 12, 13]. For example, in our patterned Permalloy films, the anisotropy

direction lies in-plane and points to the y-axis (see Fig.(1.1) for reference), which

is defined as the “easy axis”, and the x-axis is consequently called the “hard axis”.

In this case, 0 0 90θ φ= = ° holds everywhere in the sample, and gives

 13

(ans) 2

(ans)

sin2 sin

sin sin2

u

s

u

s

K
H

M

K
H

M

θ

φ

θ φ

θ φ

=

=
 (1.29)

1.2.2.2.3 Exchange interaction

First, the exchange energy density in terms of orientations of coupled moments

should be expressed. Suppose M
r

 and 1M
r

 are two neighboring moments on the

lattice with distance d between them, and let Ax represent the macroscopic

exchange stiffness coefficient [8, 10]. The exchange energy density for this dipole

pair is then written as [8]

 1
xhg 2

1

2
1xA

W
d

 
 = − ⋅
 
 

M M

M M

r r
r r (1.30)

In 2D simulations on thin film samples, all sites have the same magnitude of

magnetization, thus
1 s

M= =M M
r r

. In terms of spherical coordinates, Eq.(1.30)

is written as

()
[]

1xhg 2

1 1 12

2
1

2
1 cos cos sin sin cos()

x
r r

x

A
W

d
A

d
θ θ θ θ φ φ

= − ⋅

= − − −

i i
r r

 (1.31)

Using Eq.(1.27), the effective exchange field on M
r

 as a result of interaction

with 1M
r

 is

[](xhg)

1 1 12

(xhg)
1 12

2
sin cos cos sin cos()

2
sin sin()

x

s

x

s

A
H

M d

A
H

M d

θ

φ

θ θ θ θ φ φ

θ φ φ

= − − −

= − −
 (1.32)

 14

In the numerical modeling, only the nearest neighboring sites are included in the

calculations of the exchange term [8, 10], consistent with the short-range nature of

the exchange interaction, e.g., in the Heisenberg Hamiltonian which sums only

over nearest neighbor spin pairs.

1.2.2.2.4 Demagnetizing field

Demagnetization is the classical dipole-dipole magnetic interaction. In the thin

film, suppose one dipole moment m
r

 is located at the origin (0,0) and another

dipole, 1m
r

, has the coordinates 1 1(cos , sin)x l y lψ ψ= = as shown in Fig.(1.4).

1m
r

 applies a field on m
r

 with the tendency to flip it towards the opposite

orientation, such that the total magnetization of this two dipole system would

vanish. The accumulation of all of these dipolar interactions across a specimen is

called the “demagnetizing field”.

x

y

z

()θ φm ,
r

Fig.(1.4) Demagnetizing field between two
magnetic dipoles.

1 1 1()θ φm ,
r

 ψ
ln
r

 15

We define cos sinx yψ ψ+n i i=
r rr

, the unit vector along the line connecting the

origin to the point (x1, y1). The demagnetizing field at the origin is [7, 8]

 () ()dmag 1 1
3

3
l

⋅ −
=

n n m m
H

r r r rr
 (1.33)

Using Eq.(1.22), we obtain the field’s angular components:

1 1

1 1

1(dmag) (dmag)
3

1(dmag) (dmag)
3

3()() ()

3()() ()

r r

r r

H
l

H
l

θ θ θ θ

φ φ φ φ

 = ⋅ = ⋅ ⋅ − ⋅ 

 = ⋅ = ⋅ ⋅ − ⋅ 

m
H i n i n i i i

m
H i n i n i i i

rr r r r rr r r

rr r r r rr r r
 (1.34)

or equivalently,

2
(dmag)

13

1 1 1

2
(dmag)

1 1 13

{sin cos

cos sin [3cos()cos() cos()]}

sin [sin() 3sin()cos()]

s

s

hd M
H

l

hd M
H

l

θ

φ

θ θ

θ θ φ ψ φ ψ φ φ

θ φ φ φ ψ φ ψ

=

+ − − − −

= − − − −

 (1.35)

The total demagnetizing field on a dipole moment in the film’s lattice is the sum

of the demagnetizing field from all the other dipoles. The strength of (dmag)H
r

fades quickly with distance as 1/l3, while the number of dipoles within this

distance increases with the factor l2, so the sum of dipole-dipole interaction drops

with the factor 1/l when the calculation range grows. In early works [8], the

demagnetizing term was not calculated over the entire sample in order to shorten

the runtime of simulation programs. The current standard is to employ a series of

FFT-based algorithms [10, 14, 15]. The basic idea is to transform Eq.(1.33) into

Fourier space, and all calculations are performed through fast Fourier

transformations (FFT). The calculations then become linear, leading to faster

execution speed.

 16

1.2.2.2.5 Thermal fluctuation

The micromagnetic dynamics described by the LLG equation (Eq.(1.18)) is

completely deterministic. Starting from a certain initial state, the micromagnetic

simulation always results in unique numerical outputs, which is obviously not the

case. A lot of work has been done on the stochastic thermal effect [16], which is

believed to be the key factor that causes random fluctuations in magnetic samples.

A simple model is to introduce a stochastic thermal magnetic field thH
r

, and add it

to the effective field effH
r

. This treatment covers all kinds of thermal interactions

such as phonons, conduction electrons, nuclear spins, damping dissipation, etc.

The system has infinite degrees of freedom, in principle; thus, the thermal field

can be assumed to be a Gaussian-distributed random process. In simulation codes,

an array of Gaussian random numbers with mean 0 and standard deviation 1 is

generated (denoted by rand_gauss). The Cartesian components of the thermal

field is then given by

 (, ,) (, ,)
th

2
_x y z x y z B

s

k T
H rand gauss

M V t
α

γ
=

∆
 (1.36)

where kB is the Boltzmann’s constant, T is the temperature, V is the volume of the

cell, and t∆ is the time interval between two integration steps.

 17

Chapter Two

Micromagnetic Simulation Model

In this chapter, the algorithms and code structures of the simulation

are presented. I upgraded the simulation code from FORTRAN77 to

FORTRAN90, because the latter version takes advantage of modern

language features such as dynamic memory and object-oriented

programming (OOP). I show benchmarking tests to demonstrate the

success of both simulation codes. Finally, various visualization

schemes are presented to display the simulated results.

2.1 Simulation model

2.1.1 Coordinate system

As mentioned in Chapter One, the x-axis and y-axis are not set equivalently. The

magnetocrystalline anisotropy, mainly generated by an external field applied

during the film growth, makes one direction the easy axis and the other the hard

axis. The easy axis is usually chosen to be the longer side of the rectangle, or the

long axis of an elliptical sample. The y-axis is the sample’s easy axis then, as

shown in Fig(2.1). Because by this setting, the primary anisotropy direction in

spherical coordinates can be written as (900, 900), and the effective anisotropy

 18

field is described by Eq.(1.29), which is a simplified form. Otherwise, if the x-axis

is set as the easy axis, the anisotropy direction is (900, 00), requiring different

equations to be used in the simulation.

2.1.2 The “mask”

A five-component array mask(–2:2, i, j) is used to control the simulation. The

index i varies from 0 to nxmax+1, and j varies from 0 to nymax+1, where

“nxmax” and “nymax” are the cells number of the lattice in the x and y direction.

x (i)

y (j)
z

M (i,j)

θ
φ

O

j

i

Fig.(2.1) Coordinate system used in the simulation. Integer i, j
are indices of the 2D lattice for iterative computations
across the whole sample. Note: (1), the easy axis of
the magnetic structure is set in the y-direction, see
discussions in the following paragraph. (2), the shape
of magnetic structures is not necessarily rectangular;
see discussions on the “mask” in the next section.

easy axis

 19

The simulation is performed over the whole sample, with i from 1 to nxmax and j

from 1 to nymax (a little “smaller” than the mask). If a cell (i, j) lies inside the

magnetic structure, we assign mask(0, i, j)=1; otherwise if it is outside the

magnetic structure, we set mask(0, i, j)=0. This component of the mask array is

multiplied with relevant magnetic quantities so that the magnetic sample and

non-magnetic areas are distinguished, and the electromagnetic boundary

conditions are met simultaneously.

The other four components of the mask array are used to control the calculation

on the exchange interaction in a similar way as mask(0, i, j), see the next section

and the subroutine “derivs” in Appendix I for details.

Generally speaking, any non-uniform or localized calculation can be treated in the

same way, just by adding more components to the mask array, as shown in

Fig.(2.2). For example, if a small recording head is put close to the magnetic

sample, the external field is non-uniform across the surface (localized excitation).

Another example is in magneto-optic recording, switching is assisted by localized

heating, and the thermal fluctuation must be calculated in a non-uniform way. We

can add two or more components to the mask array to take such effects into

account. This capability (to add “customized features”) is what most strongly

justifies continuing to work on our own codes rather than converting to

commercial or publically available packages.

 20

2.1.3 Calculation of different terms of the effective field

As discussed in section 1.2.2.1, the spherical coordinates are used in the

simulation to calculate the effective field. External field and demagnetizing field

are calculated in Cartesian coordinates first and then converted to spherical

coordinates using Eq.(1.22).

Exchange interaction: Direct calculation in the spherical coordinates is

performed using Eq.(1.32). Only nearest neighboring cells are taken into account
[10, 11], i.e. the exchange term for the cell (i, j) consists of four pieces, from the

cells (i, j+1), (i+1, j), (i–1, j), (i, j–1), respectively. The “+1” and “–1” are

implemented by assigning mask(–2, i, j)= –1, mask(–1, i, j)= –1, mask(1, i, j)=1

actual magnetic sample

mask 1: define the sample

mask 2: exchange interaction

mask 3: localized external field

mask 4: localized “heating”

simulation lattice

Fig.(2.2) Schematic layout of the mask array. Only mask1
and mask2 are actually used in current simulations;
mask3 and mask4 are under development for future
projects.

 21

and mask(2, i, j)=1. At sample edges where the number of interacting cells

reduces, one or two components of the mask array above is assigned zero to meet

the boundary conditions. At non-magnetic sites, all four components are zero so

that no exchange term is calculated. See the subroutine “derivs” in Appendix I for

details.

Demagnetizing field: Eq.(1.35) is the general formula to calculate the

demagnetizing field, and we use the FFT based algorithm [12, 13] to implement the

calculation in the Cartesian coordinates. Two subroutines “DZFFT2D” and

“ZDFFT2D” from SGI/Cray Scientific Library (SCSL) are used to do the

transformations. In cases when the thermal fluctuation term is involved in the

simulation, the calculation is inserted in the demagnetizing term [13, 16]. See the

subroutine “hdem” in Appendix I for details.

Anisotropy term: We consider only uniaxial anisotropy, and use Eq.(1.29) to

calculate it 1. Since this equation is pretty simple, we use either spherical or

Cartesian coordinates to calculate it. See the function “hanis” in Appendix I for

details.

External field: The contribution from uniform external fields is calculated in the

Cartesian coordinates, and then added to the demagnetizing term before they are

converted into spherical coordinates together. See the subroutine “hfun” in

Appendix I for details.

1 See more discussion on the formula of anisotropy calculation in section 2.4.3.

 22

2.1.4 The ODE integrator

The summation of different terms above (i.e. the total effective field) is

substituted into Eq.(1.20) and by integrating this differential equation the

movement of the magnetization is obtained. The integrator that we normally use

in the FORTRAN77 code is the “RKSUITE” package released by R.W. Brankin

et.al [17]. In section 2.3 I present my work on an upgraded code written in

FORTRAN90, where an integrator using Cash Karp's embedded Runge-Kutta

algorithm [18] is used. “RKSUITE” also has a newer version written in

FORTRAN90 [19], and to plug this into my upgraded simulation code is one of my

future tasks.

2.2 Simulation code structure

In this section the basic elements of the micromagnetic simulation are discussed.

The computing and network services (CNS) of University of Alberta hosts five

SGI Origin parallel supercomputers. Our group uses one of them, “Aurora”,

which has 44 processors and 11.75Gb RAM. Users submit and monitor their

programs on Aurora through the Portable Batch System (PBS). PBS also enables

auto-resumption of the jobs in case a running job is suspended by the system.

I worked on more than one version of the simulation codes. They are written in

either FORTRAN77 or FORTRAN90, or they use different kernel integrators.

However, the basic ideas are the same, sharing the schematic structure in

Fig.(2.3)).

 23

The main program “sim2d” works as a universal driver. Its purposes are to: (1),

communicate with Aurora through PBS to update the simulation’s status; (2),

collect necessary information through certain subroutines and functions about the

geometry of the sample, the initial magnetic configurations, random numbers, etc.,

and call the integration routines to let the job go; (3), output the simulated results

(both temporal curves and spatial images), and store the whole workspace in

specific files at the end of each iteration, so that if the job is terminated due to

computer shut-down, it would be able to resume.

check status

new job:

set initial conditions

existing job:

read stored data

main program global parameters
sent/receive job handling signals

to/from the AURORA through PBS

Runge-Kutta integrator equations of motion

external field

anisotropy term

exchange term

demagnetizing field

FFT package

output results

spatial images average magnetizations data and running status for next step

Fig.(2.3) Programming structure of the simulation codes

thermal field

 24

2.3 Upgrade from FORTRAN77 to FORTRAN90

The FORTRAN90 version doesn’t change the basic algorithm of the simulation.

Below I discuss two major modifications that improve the performance.

2.3.1 Code modularization

In the old FORTRAN77 code, the main program contains many definition

statements for variables and parameters, most of which are either global or local

quantities used by the subroutines or functions other than the main program itself.

In FORTRAN90, this programming style might even be rejected by the compiler.

I have to put local variables into specific subroutines or functions and encapsulate

them. Only global variables and explicit parameters can be visible to other parts of

the program. Global settings are put into a “MODULE” structure, which is a new

feature of FORTRAN90 capable of replacing the “INCLUDE” files in almost

every FORTRAN77 program. This module is then quoted by every subroutine and

function using the “USE” statement. Fig.(2.4) gives a comparison of the

programming style between two codes.

comparing objects FORTRAN77 FORTRAN90

global settings “INCLUDE globals.inc” “USE globals”

security

unsafe: e.g., the file “include.inc”

is not compiled, making potential

errors on variable definition

safe: e.g., the usage of

“IMPLICIT NONE”

Readability bad: with “COMMON” statements good: data encapsulation

Fig.(2.4) Different features of FORTRAN77 and FORTRAN90

 25

2.3.2 Implementation of the integrator

The FORTRAN77 code uses a Runge-Kutta package which contains obsolete

features like “COMMON”, “EQUIVALENCE” statements. I proceeded to make

another integrator based on Cash Karp's embedded Runge-Kutta algorithm [18]. It

is in the FORTRAN90 programming style, and has better conformity with other

parts of the program. The performance of FORTRAN90 integrator is discussed in

the following section.

2.4 The code benchmarking

Comparison with experiment is the ultimate means whereby a model and its

numerical implementation can be validated2. On the other hand, various mature

micromagnetic simulation codes now exist and have been tested on a series of

standard problems (e.g. SP1~SP4 from the National Institute for Standards and

Technology). Therefore, it is feasible to perform initial benchmarking tests

against some of these other programs.

2.4.1 Description of the test problems

Our test problems are chosen from Roger Koch’s [20]. In these problems, the

sample is a 400(nm) long, 200(nm) wide rectangle with thickness 6.25(nm). It is

2 Some simple idealized analytical models are also used to validate the

simulation results [8, 16, 30], but they are not covered in this thesis.

 26

divided into cubic cells with linear dimension 6.25(nm) to make a grid of 64x32x1

cells. Material parameters used are saturated magnetization 4 10(kGauss)sMπ = ,

exchange constant A=10-6(erg/cm) and damping constant 0.01α = . To calculate

an initial state, we start with all spins pointing in the negative y-direction (see

Fig.(2.1) for reference). There is a field of 100(Gauss) in the negative y-direction

and 100(Gauss) in the x-direction. The sample has a 5(ns) period to equilibrate.

Then it is left in zero external fields for another 5(ns) to equilibrate. With this

initial state, a zero risetime DC magnetic field pulse of 0, 50, 100, 150 and

200(Gauss) is applied along y-direction and 0, 50, 100, 150 and 200(Gauss) along

x-direction for 2(ns). Then the sample is allowed to equilibrate in zero fields for

3(ns).

Comparison between Roger Koch’s results and ours has been done previously. In

our group’s existing results, complete sets of pictures have been shown as a

success of the FORTRAN77 codes [13]. My benchmarking tests results, from both

the FORTRAN77 and upgraded FORTRAN90 code, are compared with a

commercial package from M. R. Scheinfein 3.

2.4.2 Benchmarking without anisotropy term

The standard problem described above does not include the anisotropy term, so I

first switch off the anisotropy term in the simulations. One of the benchmarking

results is presented in Fig.(2.5), where the DC magnetic field applied in

x-direction is 50(Oe) and y-direction is 0(Oe). Fig.(2.5b) gives the relative

deviations between the Scheinfein’s code and our F77/F90 codes, which are both

3 Online information: http://llgmicro.home.mindspring.com/

 27

well controlled. It also shows that the F77 code exhibits a better error property

than the F90 counterpart, because the F77 RKSUITE ODE solver, as a successful

package, involves specialized routines to optimize the step-size and control the

error, while my Cash-Carp algorithm integrator in F90 code uses a much simpler

scheme to do so. Nevertheless, as long as the relative errors remain in the order of

~0.1% as shown in Fig.(2.5b), the local error property would not become a

problem.

 28

Fig.(2.5) (color) Benchmarking result when anisotropy term is
ignored. (a), The temporal evolution of magnetization
simulated by the FORTRAN77 and FORTRAN90 codes
match the result from Scheinfein’s code so perfectly that I
have to put small offset on the y-axis data to make them
visible. (b), relative deviations between our codes and
Scheinfein’s, based on a cubic spline interpolation.

0 1000 2000 3000 4000 5000
-0.94

-0.91

-0.88

-0.85

-0.82

-0.79

-0.76
Benchmarking without anisotropy term

hard axis DC field: Hx=50(Oe)
easy axis DC field: Hy=0(Oe)

blue: Scheinfein's code
green: F77 code (offset +0.01)
red: F90 code (offset -0.01)

My

t (ps)

(b)

(a)

 29

2.4.3 Benchmarking with corrected anisotropy term

When uniaxial anisotropy term in the old FORTRAN77 code is inserted to do the

benchmarking, disagreement arises, as shown in Fig.(2.6). The problem lays in the

formula, where an easy-axis- favored magnetic field is phenomenologically treated

as the anisotropy term. While the true anisotropy field should be calculated in 3D

space, as Eq.(1.28-29) have shown. I modified the formula so that the anisotropy

term is calculated in spherical coordinates, as desired in Eq.(1.29). The success of

this correction is shown in Fig.(2.7), where the FORTRAN90 code matches

Scheinfein’s perfectly again.

0 1000 2000 3000 4000 5000
-0.94

-0.91

-0.88

-0.85

-0.82

-0.79

-0.76
Benchmarking with anisotropy term
(using the old formula)

hard axis DC field: Hx=50(Oe)
easy axis DC field: Hy=0(Oe)

blue: Scheinfein's code
red: F77 code

t (ps)

My

Fig.(2.6) (color) Benchmarking result when anisotropy term is
included and old formula is used. The disagreement is
accumulating and becomes significant.

 30

0 1000 2000 3000 4000 5000
-0.94

-0.91

-0.88

-0.85

-0.82

-0.79

-0.76
Benchmarking with anisotropy term
(using corrected formula)

hard axis DC field: Hx=50(Oe)
easy axis DC field: Hy=0(Oe)

blue: Scheinfein's code
red: F90 code (offset -0.01)

My

(ps)t

(a)

(b)

Fig.(2.7) (color) Benchmarking result when anisotropy term is
included and the corrected anisotropy formula is used.
(a), average magnetization along easy axis, where
offset has to be employed to make two curves visible.
(b), relative deviations as a function of time computed
by cubic spline interpolation.

 31

2.5 Visualization of results

I made a graphic user interface (GUI) to display the simulated images. It is written

in Matlab graphic user interface design environment (GUIDE), and shown as a

regular Matlab figure, see Fig.(2.8).

On the GUI board, we can manually assign values for the key parameters used in

the simulation, so that we don’t need to open those FORTRAN files and change

them one by one. Another important usage is that the time-evolution of the

magnetization state can be continuously displayed like a movie. Also, the average

value of any magnetization component can be plotted as a function of time. These

features are bundled into one window and give great convenience for data

analysis.

20 40 60 80 100
-1

-0.5

0

0.5

1

Fig.(2.8) The GUI.

 32

Two schemes are commonly employed to display color maps showing the

distribution of magnetization. The first is to display the x/y/z-components of the

magnetization vector separately. Since the vector’s magnitude is a constant Ms, we

can use normalized magnetizaiton Mx/ Ms, My/ Ms, and Mz/ Ms. To get color maps,

we use a color bar from -1 to +1, represented by blue to red, respectively (see

Fig.(2.9a)). The second scheme is for those problems in which the magnetization

is mostly confined in-plane, and the φ angle is the only variable determining the

orientation of the magnetization. Another color bar is used to represent angles

from 0 to 2π (see Fig.(2.9b)). In this thesis, both methods will be used to

display simulation results.

Fig.(2.9) (color) Two schemes to display the magnetization. (a), display
three components using a color bar from –1 to +1; (b), display
the φ angles using a color bar from 0 to 2π (the reference

color wheel is shown in Appendix IV).

(a) (b)

0 2π +1 –1 M/Ms

Mx

My

Mz

φ

φ

 33

The GUI consists of a number of Matlab functions. Some of them are provided by

Matlab itself, and I wrote the others – for example, “RGBshow.m” converts data

file to colored image in Red-Green-Blue format; “vectormap.m” displays a vector

map for in-plane magnetization distribution. The Matlab codes are included in

Appendix III.

 34

Chapter Three

Quasi-static problems

Equilibrium states of ferromagnetic patterned particles are studied in

this chapter. These particles are of sub-micrometer size typically, with

thickness 10-50(nm). Different quasi-static states will be presented,

with comparisons between experimental measurements and simulated

images. Selection of damping constant in the simulation will be

discussed. Energy hierarchy is considered as the key to understand

the different stabilities of these states. Furthermore, magnetic

interactions between neighboring particles will be discussed.

Simulation results confirm the existence of this long-range coupling,

and show that the forming of quasi-static states, to some extent, is a

probabilistic phenomenon.

3.1 Introduction

The first step towards investigating the dynamic behaviors of a magnetic sample

is to study it under static conditions. Experimentally, the technique of off-axis

electron holography offers the highest spatial resolution for quantitative magnetic

imaging. It achieves magnetic sensitivity by simultaneously measuring the

amplitude and the phase shift of the electron wave passing through the sample [21,

22, 23, 24]. Magnetic induction at one site can be derived from a certain form of

 35

integration of the phase shift along the direction of the incident beam [25]. Thus,

quantitative information of magnetization at very fine spatial resolution can be

obtained [22].

It is important to compare measured data with numerical results computed by

micromagnetic simulations. Specific comparisons between quantitative electron

holography and numerical simulation have only been attempted a very limited

number of times [23]. The problems discussed in this chapter are aimed at just this.

3.2 Equilibrium magnetic states

3.2.1 Introduction to magnetic states

Consider a magnetic thin film fictitious ly divided into a large number of finite

elements, each of which can be treated as a magnetic “macrospin”. Both the

external field and the magnetic coupling with other parts of the sample contribute

to the macrospin’s energy. The total energy of the sample is the sum (or

integration) over all macrospins. Any magnetization distribution of the sample

yields one total energy va lue, and we can call this configuration a magnetization

state [9, 38]. Fig.(3.1) shows several states; they are not necessarily real, because

some of them are simply useful to initialize a simulation problem.

An infinite number of magnetic states – real or unreal – construct a continuous

energy “landscape”. An equilibrium state that is observed in practice has to at

 36

least stay in a local energy minimum, where small perturbations around the

configuration increase the total energy and consequent dissipating motions tend to

return the stable state. If the energy change is large enough, the energy barrier

between two equilibrium states may be overcome and phase transitions may occur.

Effects of energy will be discussed more intensively with a semi-quantitative

approach in section 3.2.6.

Fig.(3.1) (color) Examples of magnetic states plotted with
Matlab. The left column shows the color-map profiles
of the in-plane angle, and the right column shows
corresponding vector maps. (a), uniform distribution;
(b), random in-plane distribution; (c), a vortex state.

(a)

(b)

(c)

 37

Intensive experiments and theoretical modeling on thin film’s equilibrium states

have been achieved through efforts of many research groups [23, 26, 27, 38]. There are

several “favorite” states. Fig.(3.2) gives a list of them for a rectangular structure

[9].

3.2.2 Flux-closure magnetic states

When no external field is applied, the equilibrium magnetic states are dictated by

(a) “Landau” state (b) “diamond” state

(d) “flower” state (c) “S” state

Fig.(3.2) Some of the equilibrium states for a
rectangular sample. Arrows outline
the magnetization’s orientation.

(e) “C” state

 38

minimizing the magnetic “self energy” of the thin film. Usually the “Landau” and

“diamond” states are observed in remanence, both with some sort of vortex

structure. I ran simulations on rectangular Permalloy thin films and successfully

reproduced these flux-closure states, shown in Fig.(3.3), where the main

geometric and magnetic parameters are also given.

Fig.(3.3) (color) Simulated flux-closure structure of Permalloy
rectangular platelets. Only Mx and My components
are displayed because Mz is determined by the
restriction Mx

2+My
2+Mz

2=Ms
2. (a), the “Landau”

state of a 400x400x10(nm3) particle. (b), the
“diamond” state of a 500x1000x15(nm3) particle. No
external field is applied in both cases, and a random
distribution is employed as the initial state. The
damping constant is 0.008, as it is for Permalloy.

Mx

Mx

My

My

(a)

(b)

 39

3.2.3 High remanence states: “flower” and “S”

External disturbance, such as a strong enough in-plane field, would break a film’s

vortex structure and makes a fairly uniform magnetization distribution. Then the

magnetic platelet can be treated as an information bit standing for “0” or “1”,

which plays a key role in technologies of data storage. A large number of studies

are based on this application.

Depending on the field’s direction, different equilibrium magnetic states will be

obtained. If the field is exactly parallel to the easy axis, “macrospins” in the film

will mostly align to this direction except for those close to the two ends. The

demagnetization term forces these spins towards parallel to the short sides (i.e.,

along the hard axis direction), and form some kind of small sub-domains. This

state is named “flower” state after its appearance, see Fig.(3.4a).

Following situation occurs more generally, when the in-plane bias field is not

parallel to the easy axis. The sub-domains in the “flower” state will then

reassemble themselves with the easy-axis-symmetry broken, eventually leading to

the “S” state, shown in Fig.(3.4b). The “S” configuration has higher stability,

because a transverse bias field will break the “flower” state and reach the “S” state

as the new equilibrium (the dynamic evolution is illustrated in Fig.(3.4c)).

 40

Fig.(3.4) (color) Simulated equilibrium states with an in-plane bias field.
The initial state is a random distribution. The damping constant is
set to be 0.008. The size of the sample is 500x1000x10(nm3). (a),
the “flower” state, Hx-bias=0 and Hy-bias=60(Oe); (b), the “S” state,
Hx-bias=40(Oe) and Hy-bias=60(Oe); (c), dynamic evolution from
the “flower” state to the “S” state, by setting the former as the
initial state (t=0) and then applying a transverse field suddenly
(i.e. Hx-bias=40(Oe) when t>0). Only Mx component images are
shown to save space.

(a) (b)

Mx

My

(c)

t=130(ps) t=265(ps) t=320(ps)

 41

3.2.4 Distortion: the “C” state

I ran a series of simulations on a Permalloy microstructure of dimension

500x250x10(nm3) to investigate how its quasi-static state depends on different

bias field configurations. Three typical situations are shown in Fig.(3.5).

When bias fields are small (case (a) and (b)), the effects of the sample’s edges and

corners become significant and a “C” state appears instead of “flower” state or

“S” state. When the fields are strong enough (case (c)), the “S” state is restored by

the dominance of external fields (mainly along the hard axis) against the shape

effects.

(a) (b) (c)

Fig.(3.5) (color) Appearance of the “C” state in a Permalloy rectangular
particle with dimension of 500x250x10(nm3). The initial state
is a random distribution and the damping constant 0.008 is
used in the simulations. (a), easy axis bias field 60(Oe); note
the asymmetry against the easy axis. (b), add a transverse bias
field 40(Oe), and there is not much difference in comparison to
(a); (c), finally the “C” state is stressed into the symmetric “S”
state when a much larger bias field is applied. It is the hard axis
field that causes the anti-aligned “C-domain” to flip.

Mx

My

60(Oe) 60(Oe)

40(Oe)

200(Oe)

100(Oe)
bias field:

 42

3.2.5 Out-of-plane field

When a weak out-of-plane bias field Hz is applied, it would not be able to change

the film’s equilibrium state, since the material’s crystalline structure and the

external field applied during the film’s growth are believed to generate strong

anisotropy and bound all magnetization spins in-plane [10]. This is also verified by

experiments and simulations. Fig.(3.6) shows an interesting but reasonable

phenomenon: opposite direction of Hz will result in opposite orientation of the

vortex core. Certainly, this is not the only reason to explain why people observe

differently spiraling vortices, but one could at least know its significance.

 43

If Hz is very strong, the magnetization in thin films will be forcibly pulled away

from in-plane position. Simulations show that it will form some flux-closure

states, see Fig.(3.7). In these simulations, an “S” initial state in no field space is

Fig.(3.6) (color) “Landau” states when out-of-plane bias field
Hz=260(Oe) is applied. The size of the particle is
400x400x10(nm3); no in-plane field is applied. A
random distribution is set to be the initial state and
the damping constant 0.008 is used in the
simulations. Hz won’t break the vortex structure, but
different field directions will make opposite spiraling
directions of the vortex – see the vortex cores in
different colors in spatial image representing for Mz .

Mx

My

Mz

(a) Hz= +260(Oe) (b) Hz= –260(Oe)

negative Mz

positive Mz

 44

chosen. Out-of-plane fields with different magnitudes are then applied suddenly

to pull the sample to a new equilibrium. There’s no major difference even when

Hz is as strong as 1200(Oe). Keep increasing the out-of-plane field and

remarkable changes eventually occur. (c) and (d) of Fig.(3.7) show a “diamond”

state and a “Landau” state, respectively. Not like those in section 2.2 of this

chapter, the macrospins no longer stay in-plane now (note the light-blue color in

Mz profiles). The strong external field gives a big level-up to the sample’s energy

hierarchy, leading to transitions between different equilibrium states. The

significance of energy will be discussed more intensively in the next section.

Fig.(3.7) (color) Appearance of flux-closure equilibrium states
when the out-of-plane bias field is getting stronger.
The size of the particle is 400x400x15(nm3), and no
in-plane field is applied. A “S” state is set to be the
initial state – just what is shown in (a). The damping
constant is 0.008. The Mz profiles shown in (c) and
(d) indicate the significant effect of strong Hz.

(a), Hz=0

Mx

My

Mz

(b), Hz=1200(Oe) (c), Hz=3600(Oe) (d), Hz=4800(Oe)

 45

3.2.6 Energy hierarchies of magnetic states

The total energy of a magnetic state is a valuable parameter to identify the

selectivity and stability among different states. There are an infinite number of

magnetic states (see discussion in section 3.2.1) with all possible energies, and

they make some sort of energy “landscape”. Those states in local energy

minimums are more stable, and they turn out to be the equilibrium states. Between

them are energy “barriers”, which can be overcome by pumping extra energy into

the system, so that transitions between different equilibrium states may occur.

To calculate the energy of equilibrium states depends on so many aspects that a

general conclusion is hard to make. Different element sizes, magnetic parameters

or numeric algorithms may lead to different relative energy between two states.

Below I quote some results from two groups to show this complexity.

J. Miltat et al. [9] did some numerical calculations on a Permalloy rectangular

platelet with dimension of 500x250x10(nm3). In zero external fields, the energy

hierarchy reads 0.01695 for the “Landau” state and 0.02086 for the “diamond”

state (in units of Ms
2V/2 or µ0Ms

2V/2 in SI units).4 Thus, the “diamond” state lies

on a higher energy level (but still in a “local” energy minimum). Calculations also

show that the “S” state has an energy hierarchy of 0.01910, significantly lower

than the “flower” state’s 0.02181. This explains the transition from the “flower”

state to the “S” state shown in Fig.(3.4c). It is also possible to see transitions

between them and flux-closure states, which has been shown in the last section.

4 In this simulation, the lattice dimension is 64x32, so

V=500x250x10/64/32=610.35(nm3)=6.1x10-27(m3); for Permalloy
Ms=860(emu/cm3)=860(kA/m), the energy unit is
0.5x 4π /107(N/A2)x8602(106A2/m2)x6.1x10-27(m3)=2.83x10-21(J).

 46

W. Rave and A. Hubert [38] studied the “standard problem 1 (SP1)” which deals

with a 2000x1000x20(nm3) thin-film element. From this relatively large sample,

they got a total energy density of 0.00484 for the “Landau” state and 0.00453 for

the “diamond” state (in unit of µ0Ms
2/2), which means the “diamond” state has

even lower energy than the “Landau” state. They also showed that the “S” and

“C” states have almost the same energy density of 0.00865, higher than the

“flower” state’s 0.00980.

3.3 Selection of the damping constant

Using the LLG approach to calculate the equilibrium states, an artificially

assigned (usually much larger than the truth) damping constant is often selected to

bring the system into equilibrium more quickly, and shorten the simulation’s

runtime [8, 23, 30]. Basically this trick is successful, but in some cases, different

damping constants do make difference, and results in fakes on judgment of the

sample’s equilibrium states. I present a test simulation here to show this.

General information about the sample is described in Fig.(3.8). A uniform

distribution is set as the initial state5, and a strong out-of-plane field 3600(Oe) is

applied suddenly when t=0. In the case 1α = , the simulation converges quickly

and forms a diamond state in both particles. Then in a period of about 4(ns), the

“diamond” domain in the smaller particle collapses gradually, probably due to the

5 Usually a random distribution is set as the initial state, giving a sufficient non-equilibrium
for the sample to relax and find its correct quasi-static state. In this simulation, however, a
strong out-of-plane field will drive the sample away from equilibrium steeply (as shown
before), so it doesn’t make much difference to initialize the simulation with a uniform
distribution.

 47

long range interaction with the larger particle. Eventually it sits in the lowest

energy state – “Landau” state, while the diamond state in the larger particle

remains very stable. In another case 0.008α = – the experimental value for

Permalloy samples we currently use – the simulation converges much slower, but

it leads to a “Landau” state in both particles. Because of the weak damping and

the magnetic coupling between two particles, the vortex cores do not quickly

come to rest in the center of particles, but keep orbiting around the center slowly

until t>13(ns).

In conclusion, if the damping constant is set too large in simulations, the ordering

of non-equilibrium magnetization may occur locally due to rapid convergence,

making more complicated domain structures. Although complicated, these

structures have sufficient low energy hierarchy (e.g. the diamond state in

Fig.(3.8a)) to be very stable under simulation conditions. If used to predict or

compare with experiments, errors may occur.

In the following part of this thesis, the damping constant will be set 0.008 for all

simulations on Permalloy samples, unless otherwise specified.

 48

Fig.(3.8) (color) Simulated time frames of Mx profile showing the
formation of equilibrium states. The sample’s thickness is
15(nm), consisting of two rectangular Permalloy platelets
in dimensions of 275x220(nm2) and 275x300(nm2),
respectively, and the separation between them is 170(nm).
A 3600(Oe) out-of-plane bias field is applied. The
damping constant is set to be 1 for the left column and
0.008 for the right.

0(ps)

200(ps)

600(ps)

1(ns)

2(ns)

3(ns)

4(ns)

5(ns)

13(ns)

(a), 1α = (b), 0.008α =

 49

3.4 Comparison with experimental results

In the previous section, I compared some simulation results with published images

from direct observations. Our group has also made some patterned Permalloy

films on Si3N4 membrances (Belov et. al.), for analysis by electron holography at

Brookhaven National Lab (Belleggia, Schofield, Zhu et. al.). In this section I

present a comparison of simulation with these new measurements.

3.4.1 Individual particles

Patterned Permalloy particles are deposited on a large substrate. Separations

between them may vary from hundreds of nanometers to a few micrometers.

When a magnetic platelet is more than about the effective dipole size away from

every near neighbor on the substrate (measured edge to edge), we treat it

independently. Fig.(3.9a) is a TEM image of a square Permalloy platelet with

dimension of ~860x840x37(nm3). One should notice that the four corners have

finite radii of curvature. I modified the definition of the mask array in the

simulation codes, so that the modified shape due to these round corners is taken

into account. Fig.(3.9b-c) shows the simulation results; similar to Fig.(3.3a), it is

also a “Landau” state.

 50

3.4.2 Particle array – long range coupling

We also have samples with Permalloy particles aligning up and forming an array.

Fig.(3.10) gives some TEM images from one of these arrays. There are five

Fig.(3.9) (color) (a), TEM image of the Permalloy particle,
860x840x37(nm3). There is ~260(G) out-of-plane
remanent field in the Lorentz lens chamber. (b),
Simulation image of the sample. Just to clarify: the
corner areas are also displayed in green color
because I set mask(0,i,j)=0 there. (c), the vector
map of the structure.

Mx

My

(a) (b)

(c)

Mz

 51

square particles, with their sizes ranging from ~200x200x10(nm3) to

~1.4x1.4(µm2)x10(nm).

Fig.(3.10) Magnetic coupling of Permalloy particles in an array.
(a), topview of the whole structure, one of them in “S”
state. (b), zoom-in image of one of the particles in a
“Landau” state, but the vortex core shifts off the square
center, possibly due to the “attraction” by neighboring
particles which produc e a small in-plane field on it. (c),
obtained from another imaging; one particle has turned
into a state that is more complicated than “S”.

“S” state

“Landau” state
(a)

(c)

pseudo-“S” state that
has even higher energy
hierarchy

(b)

 52

The remanent magnetic field in the objective lens of the TEM is ~260(Oe) and is

perpendicular to the film surface. Since there is almost no in-plane field, most of

these particles are in the ground energy state with different vortex orientations,

while a little strangely, one particle is in the “S” state (Fig.(3.10a)) or some

distortion of that (Fig.(3.10c)).

Simulation of an array can also reproduce this diversity. It is important to keep in

mind that this phenomenon is not deterministic, i.e. among all the particles you

can’t predict which one will end up in a non-ground state.

Since the diversity of the magnetic particles’ equilibrium states is in nature a

probabilistic problem, I designed a test simulation to investigate it in another way.

I put a lot of identical particles in a big frame, set a random distribution initial

state on all of them, and let them relax under identical magnetic circumstances.

Fig.(3.11) shows a simulated image containing 36 particles. One remarkable thing

is the “S” state can be seen in one of the particles, which means even these small

magnetic particles do have a finite probability to relax into a metastable “S” state.

 53

Fig.(3.11) (color) Various equilibrium states in a 6x6 array.
Each Permalloy platelet has a dimension of
400x400x10(nm3), and the separation between
them is 400(nm). Only a 260(Oe) out-of-plane
external field is applied. Many of them have
been pumped up from their ground state.

“S” state

a distorted
“S” state

 54

Chapter Four

Magnetization reversal

Stroboscopic microscopy based on magneto-optical Kerr effect

(MOKE) is introduced. It is a powerful tool to investigate ultrafast

magnetization reversal dynamics. Simulations results are presented

and compared with the experiments. They agree with each other pretty

well, and some unconformities are discussed through test simulations,

showing further that the simulations on reversal problems are

successful.

4.1 Introduction

4.1.1 In-plane dynamics of ultrathin magnetic film

As discussed in Chapter One, the exchange interaction is a short-range term. Its

characteristic range, known as the exchange length, is

 22 s

A
L =

Mπ
 (4.1)

where A is the exchange stiffness. For soft materials such as Permalloy, people

usually take 61 10 (erg/cm)A −= × , and 5(nm)L = . The thickness of most thin films

I discuss in this thesis is not far beyond this length, and can be treated in a

 55

quasi- two-dimensional way [9]. In such films, the exchange interactions tend to

make a uniform magnetization, and the stray field energy is minimized if the

magnetization is in-plane [8, 12]. So generally, the large-angle movement of the

magnetization is mostly in-plane.

Researchers go forward on sub-nanosecond time scales and sub-micrometer

spatial scales, because new tools enable this and industrial interests require

advanced magnetic devices for information communication and storage, such as

ultrahigh speed read/write heads, and magnetic random access memories

(MRAM).

4.1.2 Measurement techniques

Stroboscopic microscopy for investigation of dynamics of magnetic materials

requires combining a source of short light pulses such as a mode- locked laser,

with a polarizing microscope for magneto-optical imaging, and synchronizing to

repetitive magnetic response driven some form of ultrafast pulse generator [31].

Magneto-optical imaging is based primarily on the magneto-optical Kerr and

Faraday effect(s). The Kerr effect refers to the changes in the intensity or

polarization state of light reflected from a magnetic material. By measuring these

changing optical signals, we are able to calculate the corresponding magnetic

quantities, thus gain the knowledge of dynamic magnetic states of interested

samples.

 56

Depending on the relative geometry of the incoming light and the magnetization

orientation in the material, the Kerr effect has three basic modes, illustrated in

Fig.(4.1). For out-of-plane magnetization in the sample, it is known as the polar

Kerr effect. For in-plane magnetization parallel to the plane of incidence of the

reflected light, it is known as the longitudinal Kerr effect; and for in-plane

magnetization perpendicular to the plane of incidence, it is known as the

transverse Kerr effect [10].

 57

plane of incidence

plane of incidence

M
r

plane of incidence

Kerr rotation

Kerr rotation

plane of incidence

Kerr rotation

(a)

(b1) (b2)

(c)

Fig.(4.1) Three modes of magneto-optic Kerr effect: (a), polar
Kerr effect; (b), longitudinal Kerr effect, where (b1)
and (b2) are different cases in which incident beam’s
polarization is parallel or perpendicular to plane of
incidence, respectively; (c), transverse Kerr effect.

Polar and transverse modes:
those beams with polarization
perpendicular to the plane of
incidence do NOT have Kerr
rotations.

Longitudinal modes: The Kerr
rotations always occur, no matter
what the angle between incident
beam’s polarization and the plane
of incidence.

M
r

M
r

E
r

E
r

 E
r

M
r

E
r

Kerr rotation

 58

Fig.(4.2) illustrates a measurement system employing time-resolved scanning

Kerr effect microscopy. A pulse generator is used to produce a chain of identical

current pulses. When these pulses flow through the transmission line, an in-plane

magnetic field will be induced to drive the sample out of equilibrium. The interval

between pulses is fixed and long enough to let the sample return to equilibrium

after each excitation.

probe beam

pump beam
laser source

triggering

photodiode

pulse generator

delay line

sample

transmission line
I

t

equilibrium 1
equilibrium 2

t=0 (variable)t t= ∆

beam splitter

pump probe

(a)

(b)
scanning with variable delay

nonequilibrium response profile

Fig.(4.2) Pump-probe measurement. (a), pump and probe beams are split
in phase and guided to their respective destinations. The pump
beam is used to generate the magnetic field that changes the
sample’s magnetic states, and the probe beam is used to measure
this change. (b), the timing information is provided by the delay
line setting. Repeated probing with varied time delays can
measure out the whole nonequilibrium profile.

laser pulses

electrical pulses

detector (with polarization analysis)

 59

Ti-sapphire laser pulses are focused to measure the sample’s Kerr signals. In the

pump-probe scheme, the laser pulse is first split into two pieces, one pump and

one probe. At time t=0 the pump beam triggers a photodiode to turn on the pulse

generator, and the sample is excited (or “pumped”) by induced magnetic field.

After a short time interval t∆ , the sample is probed by the probe beam. t∆ , the

time delay, can be varied continuously by changing optical path length, or by

electronic delay of the photodiode signal.

When the incoming probe beam reflects from the sample surface, information

about the magnetization components is stored in the outgoing modulated beam

(the “Kerr signal”). In high numerical aperture microscopic imaging, quadrant

detectors are capable of extracting the in-plane and out-of-plane Kerr signals

simultaneously [12, 13]. The signals are output to a computer-controlled data

acquisition system. It should be pointed out that these data represent the change of

magnetization, not the absolute values, and therefore must be supplemented with

separate information about the equilibrium magnetic state.

4.2 Simulation results; bias-field dependence

4.2.1 General settings

Our group has performed extensive measurements on ultrafast magnetization

reversal. The sample that I’m interested in is a rectangular Permalloy (Ni80Fe20)

platelet with dimensions of 2x10(µm2)x15(nm). The sample design and external

 60

field configuration are described in Fig.(4.3). In the 1800 reversal configuration,

the sample is first saturated in the longitudinal bias field Hl, and then a switching

pulse Hs is applied antiparallel to Hl in order to flip the magnetization. In some

experiments, an in-plane transverse bias field Ht is added to manipulate different

reversal modes [3, 33, 34].

In the simulation, the sample is divided into a lattice with 128x512 cells. I use a

uniform distribution as the initial state, i.e., the normalized magnetization Mx=0,

My=1, Mz=0 for each cell. The samples must have considerable time to reach their

quasi-static states. Only the DC bias field exists during this “cool-down” period,

transmission line

x

y z

rise time: 0.5(ns)

drop time: 1.5(ns)

duration: ~10(ns)

current pulse

switching pulse
Hs=300(Oe)

transverse bias field
Ht=0 – 175(Oe)

longitudinal bias field
Hl=0 – 400(Oe)

easy axis

20(µm)

Fig.(4.3) Geometry and field configuration of the magnetization reversal
experiments. Note the Cartesian coordinates shown here are
different with our group’s published results [3, 4], in order to
keep consistent with the settings in the simulation code. This
will not affect any physics results.

I

 61

and it can be simulated as a quasi-static problem. The sample will rest in the “S”

state, which we treat as the initial state. Then the switching pulse rises up with a

linear profile (as sketched in Fig.(4.3)).

4.2.2 No transverse bias field (Ht = 0)

In this case, all external magnetic fields – the DC bias field and the transient

switching field – are parallel to the sample’s easy axis.

First let’s take Hl=60(Oe), Hs=-300(Oe). Fig.(4.4) illustrates the switching process.

It starts from the two ends. The edge domains grow and meet in the center of the

film, and then expand along the hard axis direction to reach saturation. The

sample’s magnetization can be plotted in a time-resolved way (shown later). In

this problem, a primary concern is about the switching of easy axis component

(My), and My images are shown in common publications [3]. While in some other

publications, spatial profiles of the spherical coordinate φ are displayed in order

to show the in-plane rotation of the magnetization [27]. As mentioned in section

4.1.1 of this chapter, the dynamics is in-plane, then we simply have

cosy sM M φ= . Since Ms is a constant, these two display schemes are equivalent.

 62

Fig.(4.4) (color) Individual time frames showing the
reversal process when Ht=0. The left column
(a) represents for My component and the right
column (b) represents for in-plane angle
component. Color bars refer to section 2.5.

t=0

t=200ps

t=400ps

t=600ps

t=800ps

t=1000ps

t=2000ps

(a) (b)

 63

4.2.3 Transverse bias field; coherent reversal

A remarkable difference in the reversal has been found by applying a transverse

bias field Ht [3]. In the simulation, the “S” state is set to be the initial configuration;

but in Fig.(4.5a) we can see that because of the transverse bias field, the

magnetization has shifted away from the easy axis – the equilibrium position

when Ht=0 – comparing to Fig.(4.4a). This means the sample is in a higher energy

level. This is very important in understanding the different reversal modes,

because the sample is now starting from a different initial configuration, higher on

the potential energy landscape (which includes a “barrier” corresponding to high

magnetostatic energy with magnetization along the hard axis direction), but also

where there is an initial torque on the magnetization throughout the specimen [33,

34].

The sample responds earlier to the switching pulse, and the reversal time

decreases dramatically. Edge domains in the initial configuration will expand

quickly along the easy axis direction and form a narrow domain parallel to the

easy axis. The domain walls then expand transversely in the hard axis direction

until saturation is reached. This domain wall motion dominates the whole reversal

process, which is in nature different from Ht=0 case. The stripe-like domain

nucleation process is avoided, thus the reversal gains a significant speed-up.

Fig.(4.6) shows the great improvement. Since the rising time of the switching

pulse is about 500(ps), the transverse bias field yields an almost “synchronous”

reversal.

 64

Fig.(4.5) (color) Individual time frames showing the
reversal process when the transverse bias field
is Ht=65.3(Oe). (a), My images; (b), in-plane
angle images. Color bars refer to section 2.5.

(a) (b)

t=0

t=100ps

t=133ps

t=167ps

t=200ps

t=233ps

t=267ps

t=300ps

t=1000ps

t=2000ps

 65

4.3 Effects of thermal fluctuations

I show here some comparisons between existing experimental data and my own

simulation results. Different switching behaviors have been measured and typical

results are shown in Fig.(4.7) [3]. This is the 2x10(µm2)x15(nm) Permalloy sample,

and the field configurations and magnetic parameters are the same with those in

my simulation. It has been shown that the simulation results match these

processes pretty well (refer to Ref.[4] and Fig.(4.4-5)).

Fig.(4.6) Simulated magnetization reversal as a function
of time with or without the transverse bias
field. The longitudinal field is fixed at ~60(Oe).
The switching pulse is assumed to have a linear
rising time ~500(ps), shown by the dashed line.

0 200 400 600 800 1000 1200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

H t = 0

H t = 65.3(Oe)

M y
M s

(ps)

 66

However, the simulated domain-nucleation modes are different from measured

results, especially when no transverse bias field is applied. In simulations, small

magnetic domains first flip from two ends of the sample, then expand and merge

in the center; while the observed process reveals that some stripe- like domains

arise throughout the whole sample in the early stage of reversal, showing some

random characteristics, which implies that stochastic thermal fluctuations play a

role in it.

Fig.(4.7) (color) Spatial distributions of the in-plane
magnetization component in the easy axis
direction [3]. In both cases, the longitudinal
bias field is 60.3(Oe). The left volumn refers
to transverse field Ht=0, and the right volumn
Ht=65.3(Oe) (5.2 kA/m in SI unit). Note: it
uses a different display scheme from what I
use, but that will not affect the comparison.

 67

I added the thermal term in the simulation using Eq.(1.36) and obtained corrected

spatial images. Fig.(4.8a-d) shows some of them when T=300(K). The stripe- like

domains appear as desired (although a little earlier than experiment, since we

assume the DC swithing field holds a linear rising profile in simulations, while the

real magnetic pulses rise exponentially in the early stage of excitings, thus have

smaller switching field than simulations). Fig.(4.8e) is from another

“benchmarking” using Scheinfein’s code, indicating my thermal term calculation

is successful.

Fig.(4.8) (color) Simulated time frames of My spatial distributions
under room temperature T=300(K). Other sample settings
are identical with the case described in section 4.2.2. The
last frame is obtained from Scheinfein’s code that is in
agreement with (d) regardless the tiny time gap of 10(ps).

(a), t=385(ps) (b), t=420(ps)

(c), t=450(ps) (d), t=480(ps)

(e), by Scheinfein’s code, t=490(ps)

 68

Another useful comparison is about the time evolution of averaged magnetization

for the whole sample. Local energy fluctuation brought by thermal effects should

make the magnetization spins easier to break the energy barriers and shorten the

reversal time. This is shown in Fig.(4.9), which plots the easy-axis average

magnetization as a function of time under the different termperature 0(K) (i.e., to

neglect the thermal term) and 300(K). It would be valuable for both theory

advances and industrial applications (a field called “thermo-assisted switching”)

to investigate the change of reversal time as a function of temperature, which is

one of the future tasks.

0 50 100 150 200 250 300 350 400 450 500
0.4

0.5

0.6

0.7

0.8

0.9

1

0(K)

300(K)

bias field: 60(Oe)
switching field: -300(Oe) t (ps)

My/Ms

Fig.(4.9) (color) Time .vs. averaged magnetization along the
easy axis, based on the same simulations discussed
in Fig(4.4) and Fig.(4.8).

 69

Chapter Five

Ferromagnetic resonance

When simulating problems of ferromagnetic resonance (FMR),

numerical faults will arise, with some checkerboard patterns

appearing. After solving this puzzle, FMR simulation results in both

time and spatial domains will be presented, and they will be compared

with experimental results and empirical formula.

5.1 Introduction

Stroboscopic measurements on the out-of-plane magnetization (Mz) offer a good

handle on the study of small angle excitations of a thin film magnetic element.

The magnetization’s small angle departure from the equilibrium orientation will

be followed by precession about the direction of local effective field, which is

largely in-plane as discussed in the last chapter. Hence the polar component Mz is

one of the oscillating transverse components of magnetization, as in magnetic

resonance. Ferromagnetic resonance (FMR), driven by an out-of-plane magnetic

pulse, exhibits typical small angle dynamics, and is the main topic of this chapter.

Ferromagnetic resonance data are collected by time domain measurements and

spatial scanning. The apparatus for an FMR experiment is similar to what is used

in reversal problems. The primary difference is the direction of the transient

 70

magnetic pulse, now out-of-plane.

The sample under experimental investigation here is a square Permalloy element

with dimensions of 4x4(µm2)x15(nm). An adjustable in-plane bias field is applied

in the easy axis direction. The excitation pulse has a bell-shaped profile, which I

have approximated by a sine function in the simulation. The pulse width is 500

picosecond, and the peak magnitude is 8(Oe).

5.2 Numerical limitation – checkerboard puzzle

A serious challenge came up when studying the simulated Mz spatial images for

very small flipping angles. I encountered some checkerboard- like “scars” without

physical meaning. Fig.(5.1) shows an example. Mz values in neighboring cells

have astonishing divergence. Suspecting all kinds of possibilities, I examined this

problem both on the real 4x4(µm2) Permalloy element and some test samples

(with smaller sizes, so that simulations run faster). Eventually I figured out that

the numerical precision setting was the main cause.

In the FORTRAN77 simulation code, there are two parameters to identify the

precision of the Runge-Kutta integrator: “TOL” (tolerance) and “THRES”

(threshold). TOL controls the relative error tolerance; THRES is an array with the

length equal to the number of equations to be solved, THRES(i) is the threshold

for the ith solution component. Usually they’re set to be 10-6 or even larger, and

this is OK for most problems. The tendency is to keep them large because the

smaller they are, the slower the simulation runs.

 71

In out-of-plane FMR problems, the situation is changed. Since the magnetization

is almost in-plane, the absolute value of Mz/Ms might be even smaller than 10-7

(see some of the points in Fig.(5.1c))! When this happens, the two parameters

become void, because numerical errors which have been permitted by them (i.e.,

tolerated errors) are even larger than the magnitude of desired data. This explains

5 10 15 20 25 30 35 40 45 50 55
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-7

cell index

Mz

(b) (a)

(c)

Fig.(5.1) (color) (a), a 56x56 cell block extracted from a
FMR simulation image; (b), grey map of (a);
(c), a scan line showing divergent data in
neighboring cells.

 72

why some data points just look like some kind of non-random noise. “Real” data

are submerged in this numerical noise.

I reset these two parameters to overcome this problem. Fig.(5.2) shows some

results from an imaginary simulation (the simulation on the real sample is too

slow to test this puzzle conveniently). This is a 640x640x10(nm3) sample, with a

64x64 grid, so every cell is a 10(nm) cube. I ran a number of simulations in

identical conditions, only changed the values of TOL and THRES. Checkerboard

patterns keep arising until TOL=10-7 and THRES=10-6. When TOL=10-6 and

THRES=10-7, checkerboard patterns still appear but look much better than the

case when TOL=THRES=10-6. When TOL=THRES=10-7, the checkerboard

patterns completely vanish. This proves that both the two parameters are related to

the numerical limitation; and by setting them properly, the problem would be

solved, although that will cost more execution time. Simulation results in the next

sections of this chapter are all obtained with safe settings.

In FORTRAN90 version simulation codes, numerical precision is determined by

just one parameter, “precision”, which limits the minimum angle change of

magnetization under a critical value. Control this parameter carefully and

checkerboard patterns would disappear.

 73

(a). TOL=THRES=10-5 (b). TOL=THRES=10-6

(d). TOL=10-7, THRES=10-6

(c). TOL=10-6, THRES=10-7

(e). TOL=THRES=10-7

Fig.(5.2) Checkerboard patterns come out if precision
settings are not good enough (a, b, c).

 74

5.3 Results – time domain analysis

The “effective field”, which would set the scale for the precession frequency of a

“test spin” dropped into a given location, varies quite strongly as a function of

position in our inhomogeneously magnetized sample. This field variation defines

a profile analogous to potential surfaces or potential wells in quantum mechanics,

and forms a landscape for magnetic excitations (eigenmodes) with varied

frequencies and wavelengths. Our broad band pulse FMR experiments can drive

and detect a variety of these modes [5, 35, 37].

As a zero-order approximation, however, we can compare the calculated FMR

response spatially averaged over the whole element to the uniform mode of

oscillation in an infinite thin film, predicted by the famous “Kittel formula” [35].

Normalized Mz (averaged over the whole sample) as a function of time, with

different easy axis bias field applied, are plotted in Fig.(5.3) separately. Larger

bias field has stronger in-plane confinement on the magnetization, thus the

out-of-plane oscillation has smaller magnitude and larger frequency as the bias

field increases.

 75

0 500 1000 1500 2000 2500 3000 3500 4000
-4

-2

0

2

4

6

8

10

12
x 10

-4

t (ps)

M
M

z

s

bias field: 45(Oe)

estimated period: 500(ps)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
-4

-2

0

2

4

6

8

10

12
x 10

-4

t (ps)

bias field: 60(Oe)

estimated period: 450(ps)

M s

M z

(b)

Fig.(5.3a-b)

 76

0 500 1000 1500 2000 2500 3000 3500 4000
-4

-2

0

2

4

6

8

10

12
x 10

-4

M z
M s

(ps) t

bias field: 75(Oe)

estimated period: 375(ps)

(c)

0 500 1000 1500 2000 2500 3000 3500 4000
-4

-2

0

2

4

6

8

10

12
x 10

-4

M z
M s

(ps) t

bias field: 200(Oe)

estimated period: 230(ps)

(d)

Fig.(5.3c-d)

 77

In Fig.(5.3d-e) we notice superimposed oscillations in the first “nonresonance”

peak, indicating that the FMR mode is established immediately after the excitation.

Fig.(5.4) shows an experiment curve and a simulation curve under the same

parameter configuration. This is not a careful comparison, but simply to show that

both of them exhibit this kind of superposition.

Fig.(5.3) also provides the simulated resonance periods for different cases. The

Fig.(5.3) FMR curves for different easy axis bias fields (Hy=45,
60, 75, 200, 1000(Oe)). When the oscillation has
sufficient high frequency, the first “nonresonace” peak
due to the original excitation has been superposed by
subsequent resonance pulses, shown in above picture
when bias field is 1000(Oe) (also when bias field is
200(Oe), but not so explicit).

(e)

 78

stronger the bias field, the high frequency mode is launched. A quantitative

comparison can be performed based on this field-frequency dependence.

The Kittel’s formula describes the relation between FMR frequency and static

external field [35], and it is fit for current simulations. The equation reads:

 ()0 ext ext 4 sH H Mω γ π= + (5.1)

Substitute Hext with the values shown in Fig.(5.3), we will get corresponding

theoretical values for FMR periods (reciprocal of the frequencies). A comparison

between the simulation results and the Kittel formula is shown in Fig.(5.5). They

agree with each other very well.

Fig.(5.4) (color) Experimental .vs. simulated FMR
curves when Hbias=1000(Oe).

0 200 400 600 800 1000 1200
-4

-2

0

2

4

6

8

10
x 10

-4

M z
M s

bias field: 1000(Oe)

(ps) t

Linear calibration is performed
on experimental data (orange)

experiment

simulation

 79

5.4 Results – spatial images

Spatial distribution of magnetization is measured by repeated pump-probe

procedures with the probe spot scanning across the whole sample surface. A new

feature to be introduced here is a round pinhole punched at the center of the

sample. This is one of the efforts to study higher order FMR modes. The pinhole

introduces a quadrapolar topography on the preciously uniform effective field or

“potential surface” background, hereby influences the symmetry of the excited

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

H(Oe)

f(GHz)

solid curve: Kittel's equation

dimonds: simulation results

Fig.(5.5) External bias field .vs. FMR frequency.

 80

eigenmode. The diameter of the pinhole is ~240(nm). In simulations, the pinhole

is implemented by a square grid mask with a staircase boundary, see Fig.(5.4).

This may cause high frequency spin waves in the simulations that would not be

present in real samples.

Fig.(5.7a-b) shows some images taken in experiments. They are spatial

distribution of z-component Kerr signals. We could notice the two 900 domain

walls, indicating that this sample is excited from the quasi-static “C” state. I use

the “C” state as the element’s initial state in the simulation, too. Fig.(5.7c) shows

all three M components after the sample has been allowed a long time to

equilibrate.

(a) (b)

Fig.(5.6) Sketch map: definition of the pinhole.
(a), real sample; (b), simulation.

 81

Preliminary FMR simulation results are shown in Fig.(5.8). The left column refers

to the no-defect sample, and the right column refers to the sample with the pinhole.

Four snapshots are taken when the resonance reaches the 1st peak, the 1st valley,

the 2nd peak and the 2nd valley, respectively. Because the cells within the pinhole

area are assigned (0, 0) in spherical coordinates, some offset and linear

expansion/retraction are applied on the data to produce good-contrast images.

This leads to different visualization effects for the two columns. A detailed

comparison between experiments and simulations is in progress.

The results in spatial profile simulation have some limitations. In the areas close

to the pinhole, some odd points and tiny domain stripes arise. Although people do

Mx

My

Mz

(a)

(b)

(c)

Fig.(5.7) (color) (a), (b), experimental images imply that the
sample’s initial state should be “C” state; (c), the
quasi-static “C” state in the simulation.

 82

observe similar structures in real samples, those in simulation results are

obviously due to numerical limitations. On the other hand, the two long domain

walls associated with the “C” state look much sharper than those in experiment

images (see Fig.(5.7a-b)). At the same time, these areas are most vulnerable by

checkerboard flaws – the numerical limitation as discussed before. These

disagreements expose some configuration differences between experiments and

simulations. In simulations, rectangular grid cells make odd boundary conditions,

as illustrated in Fig.(5.6). The sample’s corners and edges (including the pinhole)

produce topological effects. Furthermore, not all dissipating terms are involved in

the numerical model, such as laser drifts, electrical noise, mechanic vibration, etc.

Therefore, the simulated images have somewhat abrupt appearances.

 83

(a) 1st maximum

(b) 1st minimum

(c) 2nd maximum

(d) 2nd minimum

without pinhole with pinhole

easy axis direction

Fig.(5.8) (color) Spatial images for FMR study on the 4x4(µm2)
Permalloy sample. Simulation data are rescaled for
convenience of color displaying, because absolute
value of Mz/Ms is mostly as small as 10-4~10-5.

“C” state domain walls

the pinhole

 84

Epilogue

Conclusion and prospect

So far, micromagnetics in Permalloy thin film microstructures has been

investigated – from quasi-static states, to in-plane and out-of-plane dynamics.

Micromagnetic simulations show substantive success on reproducing the real

processes and predicting valuable phenomena. In principle, the micromagnetic

dynamics can be simulated to sufficiently high accuracy based on LLG model,

provided external conditions are precisely configured and numerical precisions

are good enough. On the other hand, stochastic thermal fluctuations bring random

diversities into the motions of magnetization.

The simulation’s capability of predicting may play an important role in future

applications. Many “test” simulations presented in this thesis show a way how to

do studies without real experiments, and this can help people to design future

magnetic devices. This creative prospect stimulates my enthusiasm for further

simulation works.

More calculations on the thermal term will be very interesting, possibly by doing

a large number sampling (say, ~1000 times) and finding relative probabilities for

certain processes. This also requires further improvements on the simulation code

for less execution time. Another important task is to calculate the energy of

magnetic states, which offers a quantitative method to study the stability of the

system. Finally, 3D simulation is expected to be implemented based on current 2D

version, because multi- layer magnetic samples are being researched in our group.

 85

Reference

1. C. S. Lee, H. Lee, and R. M. Westervelt, Microelectromagnets for the control of

magnetic nanoparticles, Appl. Phys. Lett., 79, 20, 2001

2. J. A. Katine, F. J. Albert, and R. A. Buhrman, Current-induced realignment of

magnetic domains in nanostructured Cu/Co multilayer pillars, Appl. Phys. Lett., 76,
3, 2000

3. B. C. Choi, M. Belov, W. K. Hiebert, G. E. Ballentine, and M. R. Freeman, Ultrafast

magnetization reversal dynamics investigated by time domain imaging, Phys. Rev.
Lett., 86, 4, 2001

4. B. C. Choi, G. E. Ballentine, M. Belov, and M. R. Freeman, Bias-field dependence of

the spatiotemporal evolution of magnetization reversal in a mesoscopic Ni80Fe20
element, Phys. Rev. B, 64, 144418, 2001

5. W. K. Hiebert, G. E. Balletine, and M. R. Freeman, Comparison of experimental and

numerical micromagnetic dynamics in coherent precessional switching and modal
oscillations, Phys. Rev. B, 65, 140404, 2002

6. M. Beleggia, M. A. Schofield, Y. Zhu, M. Malac, Z. Liu, and M. R. Freeman,

Quantitative comparison of magnetic field mapping in TEM with micromagnetic
simulations, to be published

7. J. D. Jackson, Classical electrodynamics, 3rd edition, New York Wiley, 1999

8. M. Mansuripur, Magnetization reversal dynamics in the media of magneto-optical

recording, J. Appl. Phys., 63, 12, 1988

9. Jacques Miltat, Gonçalo Albuquerque, and André Thiaville, An introduction to

micromagnetics in the dynamic regime, from Spin dynamics in confined magnetic
structures I, Topics Appl. Phys., 83, Springer, 2002

10. M. Mansuripur, The physical principles of magneto-optic recording, Cambridge

University Press, 1995

11. A. Hubert and R. Schäfer, Magnetic domains – the analysis of magnetic

 86

microstructures, Springer, 1998

12. W. K. Hiebert, Experimental Micromagnetic Dynamics: Ultrafast Magnetization

Reversal Using Time Resolved Scanning Kerr Effect Microscopy, PhD thesis,
University of Alberta, Canada, 2001

13. G. B. Ballentine, Comparison of Time-Resolved Micromagnetic Dynamics

Experiments with Permalloy and Landau-Lifshitz-Gilbert Micromagnetic
Simulation, PhD thesis, University of Alberta, Canada, 2002

14. M. E. Schabes and A. Aharoni, Magnetostatic interaction fields for a

three-dimensional array of ferromagnetic cubes, IEEE Trans. Magnetics, 23, 6, 1987

15. Hiroshi Fukushima, Yoshinobu Nakatani, and Nobuo Hayashi, Volumn average

demagnetizing tensor of rectangular prisms, IEEE Trans. Magnetics, 34, 1, 1998

16. J. L. García-Palacios and F. J. Lázaro, Langevin-dynamics study of the dynamical

properties of small magnetic particles, Phys. Rev. B, 58, 22, 1998

17. Leading authors: R. W. Brankin, I. Gladwell, and L. F. Shampine. The original rksuite

code is available at NETLIB (http://www.netlib.org/ode/rksuite/)

18. H. Gould and J. Tobochnik, An introduction to computer simulation methods –

applications to physical systems, 2nd edition, Addison-Wdsley Publishing Company
Inc., 1996

19. FORTRAN90 version of rksuite was just released in August of 2002, also available at

NETLIB (http://www.netlib.org/ode/rksuite/)

20. R. H. Koch, J. G. Deak, D. W. Abraham, P. L. Trouilloud, R. A. Altman, Y. Lu, W. J.

Gallagher, R. E. Scheuerlein, K. P. Roche, and S. S. P. Parkin, Magnetization reversal
in micron-sized magnetic thin films, Phys. Rev. Lett. 81, 20, 1998

21. P. A. Midgley, An introduction to off-axis electron holography, Micron , 32, 2001

22. R. E. Dunin-Borkowski, M. R. McCartney, and D. J. Smith, Off-axis electron

holography of nanostructured magnetic materials, Magnetic nanostructures (edited
by H. S. Nalwa), Vol. 1, 2002

23. R. E. Dunin-Borkowski, M. R. McCartney, B. Kardynal, D. J. Smith, M. R. Scheinfein,

Switching asymmetries in closely coupled magnetic nanostructure arrays, Appl.

 87

Phys. Lett., 75, 17, 1999

24. Y. Zhu, V. V. Volkov, and M. De Graef, Understanding magnetic structures in

permanent magnets via in-situ Lorentz microscopy, interferometric and
non-interferometric phase reconstruction, J. Electron Microscopy, 50, 2002

25. Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum

theory, Phys. Rev. 2nd series, 115, 3, 1959

26. C. Merton, G. D. Skidmore, J. Schmidt, E. D. Dahlberg, H. Wan, and B. Pant, Magnetic

reversal of tapered permalloy bars with holes in the center, J. Appl. Phys., 85, 8,
1999

27. R. H. Koch, J. G. Deak, D. W. Abraham, P. L. Trouilloud, R. A. Altman, Y. Lu, And W. J.

Gallagher, Magnetization reversal in micron-sized magnetic thin films, Phys. Rev.
Lett., 81, 20, 1998

28. M. Schneider, H. Hoffmann and J. Zweck, Lorentz microscopy of circular

ferromagnetic permalloy nanodisks, Appl. Phys. Lett., Vol. 77, No. 18, 2000

29. R. P. Cowburn, Property variation with shape in magnetic nanoelements, J. Phys. D,

33, R1, 2000

30. Y. Nakatani, Y. Uesaka, and N. Hayashi, Direct solution of the

Landau-Lifshitz-Gilbert equation for micromagnetics , Jpn. J. Appl. Phys., 28, 12,
1989

31. M. R. Freeman and W. K. Hiebert, Stroboscopic Microscopy of Magnetic Dynamics ,

from Spin dynamics in confined magnetic structures I, Topics Appl. Phys., 83, Springer,
2002

32. M. R. Freeman and B. C. Choi, Advances in magnetic microscopy, Science, 294, 2001

33. H. W. Schumacher, C. Chappert, R. C. Sousa, P. P. Freitas, and J. Miltat, Quasi-ballistic

magnetization reversal, Submitted to Phys. Rev. Lett.

34. H.W. Schumacher, C. Chappert, P. Crozat, R.C. Sousa, P.P. Freitas, J. Miltat, J.

Fassbender, and B. Hillebrands, Phase coherent precessional magnetization reversal
in microscopic spin valve elements, Submitted to Phys. Rev. Lett.

35. W. K. Hiebert, A. Stankiewicz, and M. R. Freeman, Direct observation of magnetic

 88

relaxation in a small Permalloy disk by time-resolved scanning Kerr microscopy,
Phys. Rev. Lett., 79, 6, 1997.

36. C. Kittel, Phys. Rev., 73, 155, 1948

37. M. Belov, Z. Liu, R. Sydora and M. R. Freeman, Modal oscillation symmetry and

indirect damping in internally patterned Ni80Fe20 thin film microstructures, to be
published

38. W. Rave and A. Hubert, Magnetic ground state of a thin-film element, IEEE Trans.

Magnetics, 36, 6, 2000

 89

Appendix I

2D Micromagnetic Simulation code

(FORTRAN77)

Below is the FORTRAN77 version of micromagnetic
simulation. The code is conventionally split into 11 files, each
containing subroutines or functions that perform certain
tasks. The code structure is illustrated in section 2.2.

1. Contents in the file “global2d.inc”:

c**

c Global definitions of parameters. Globalization is achieved by

c including this file in every subroutine and function. Be aware:

c this method does not allow for any communication between units,

c unless variables are placed in COMMON declaration.

c**

 IMPLICIT NONE

 INTEGER*4 nxmax, nymax, Nmax, nx2, ny2, kmax

 REAL*8 sizex, sizey, thick, un, Pi, dux, duy, duz, d2x, d2y, d2z

! Working array size

 PARAMETER(kmax=1000)

 PARAMETER(nxmax=64, nymax=64)

 PARAMETER(nx2=2*nxmax, ny2=2*nymax)

 PARAMETER(Nmax=2*nxmax*nymax)

! Dimensions of the rectangular grid in nm

 PARAMETER(sizex=800.d0, sizey=800.d0, thick=15.d0)

! un is a length unit in nm (=sqrt(2*A/Ms^2, where A is the exchange

! constant. Ms is the saturated magnetization. A=10-6(erg/cm), and

! 4*Pi*Ms=10.8(kGauss))

 PARAMETER(un=16.455122d0, Pi=3.14159265358979324d0)

! Relative size of the cell

 PARAMETER(dux=sizex/nxmax/un, duy=sizey/nymax/un, duz=thick/un)

 PARAMETER(d2x=1/(dux*dux), d2y=1/(duy*duy), d2z=1/(duz*duz))

 90

! Mask array: defines shape of the sample.

 INTEGER*1 mask(-2:2,0:nxmax+1,0:nymax+1)

 INTEGER*1 maskp(-2:2,-1:nxmax,-1:nymax)

 COMMON /mask1/ mask

 EQUIVALENCE (mask,maskp)

! Definition of damping constant, evaluated in "sim2d.f".

 REAL*8 alpha

 COMMON /param/ alpha

!

 CHARACTER*32 datini

 CHARACTER*32 datlast

 CHARACTER*3 datint

! Note: datini must be the same as datlast

 PARAMETER(datini="data_last.dat")

 PARAMETER(datint="xyz")

 PARAMETER(datlast="data_last.dat")

2. Contents in the file “sim2d.f”:

 PROGRAM sim2d

c**

c Program traces the dynamical development of magnetization process

c in arbitrarily shaped sample with space- and time-dependent external

c field. The main program is a customizable driver, the code below is

c just an example.

c***

 INCLUDE 'global2d.inc'

c Paramaters & procedures for timing

 CHARACTER*24 the_time

 REAL*4 tarr(2), ttot, ETIME

c Parameters for RKSUITE

 INTEGER cstep

 COMMON /cstep/ cstep

 INTEGER*4 method, lenwrk, total, cost, stepok

 PARAMETER(lenwrk=10*Nmax)

 CHARACTER*1 task

 LOGICAL errass, message, ex

 REAL*8 work(lenwrk), thres(Nmax), wast, hnext

 REAL*8 eps, h1

 91

 EXTERNAL sigterm, sigusr1, sigusr2

! Store angles of magnetization distribution

 REAL*8 tp(2,nxmax,nymax)

! Ellipse size

 REAL*8 rx, ry

! Range of integration

 REAL*8 t1, t2

!

 INTEGER*4 kount, i, j

 REAL*8 xm(0:kmax), ym(0:kmax), zm(0:kmax), t(0:kmax), dxsav

 COMMON /PATH/ kount, dxsav, xm, ym, zm, t

!

 cstep=0

c RKSUITE parameter initialization (see RKSUITE documentation)

 eps=0.0000001

c Relative accuracy

 h1=0.0

c Guess for initial step (0 - auto)

 method=1

c Method of Runge-Kutta integration

 task='u'

c Integration procedure

 errass=.FALSE.

 message=.TRUE.

c Absolute accuracy

 DO j=1, Nmax

 thres(j)=0.0000001

 END DO

! Signal handler to catch soft kill signal. Signal number 15,16 and 17

 CALL signal(15,sigterm,-1)

 CALL signal(16,sigusr1,-1)

 CALL signal(17,sigusr2,-1)

c Evaluate the damping constant - defined here to escape

c BLOCK DATA and still keep flexibility to change it

 alpha=0.008

c Period of savings

 dxsav=2.0

c Range of integration

 t1=0.0

 t2=200.0

c Calls to timing procedures

 92

 CALL FDATE(the_time)

 WRITE(*,*) the_time

 ttot=ETIME(tarr)

c Initialization of demagnetizing field calculation

 CALL initdem

c Information on shape and initial condition are read from

c a file. If the file does not exist it starts from a prescribed

c initial state. If the file does exits it reads the state that

c it got to and the time and begins from there.

 INQUIRE(file=datini, exist=ex)

 IF (ex .eqv. .TRUE.) THEN

 OPEN(10,FILE=datini,FORM='unformatted')

 READ(10) mask, tp, t1, kount

 CLOSE(10)

! Reset the start point if desired

! t1=0

! kount=0

 ELSE

 CALL shape(rx,ry)

 CALL iniuni(tp,1)

 END IF

! Perform integration

 CALL SETUP(Nmax,t1,tp,t2,eps,thres,method,task,

 & errass,h1,work,lenwrk,message)

 CALL ODEINT(tp,t1,t2,work)

!

 CALL FDATE(the_time)

 WRITE(*,*) the_time

 WRITE(*,*) 'Execution time: ', ETIME(tarr), ' sec'

 CALL STAT1(total,cost,wast,stepok,hnext)

 WRITE(*,*) total, cost, stepok

 WRITE(*,*) wast, hnext

!

 END

3. Contents in the file “interupt .f”:

! Signal handlers; exit and resubmit program to queue

 SUBROUTINE sigterm()

 93

 STOP 99

 RETURN

 END

!

 SUBROUTINE sigusr1()

 STOP 99

 RETURN

 END

!

 SUBROUTINE sigusr2()

 STOP 99

 RETURN

 END

4. Contents in the file “init2d.f”:

! Temporal-spatial profile of the external field

 SUBROUTINE hfun(t,i,j,hx,hy,hz)

 INCLUDE 'global2d.inc'

!

 REAL*8 t, hx, hy, hz

 INTEGER*4 i, j

!

 REAL*8 Ms

 PARAMETER(Ms=859.436693)

!

 hx=0/Ms

 hy=0/Ms

 hz=0/Ms

!

 END

! --

 SUBROUTINE shape

 INCLUDE 'global2d.inc'

!

 INTEGER*4 i, j

! First, fill up the full rectangle

 DO i=1, nxmax

 DO j=1, nymax

 94

 mask(-2,i,j)=-1

 mask(-1,i,j)=-1

 mask(0,i,j)=1

 mask(1,i,j)=1

 mask(2,i,j)=1

 END DO

 END DO

! Detect edges and assign boundary conditions

 DO i=1, nxmax

 DO j=1, nymax

 IF (mask(0,i,j) .eq. 1) THEN

 IF (mask(0,i-1,j) .eq. 0) mask(-1,i,j)=0

 IF (mask(0,i+1,j) .eq. 0) mask(1,i,j)=0

 IF (mask(0,i,j-1) .eq. 0) mask(-2,i,j)=0

 IF (mask(0,i,j+1) .eq. 0) mask(2,i,j)=0

 END IF

 END DO

 END DO

 END

! --

! --

 SUBROUTINE iniuni(tp)

 INCLUDE 'global2d.inc'

!

 REAL*8 tp(2,nxmax,nymax)

!

 INTEGER iseed(4)

 REAL*8 rand(nxmax*nymax)

!

 INTEGER*4 i, j

!

 iseed(1)=371

 iseed(2)=49

 iseed(3)=185

 iseed(4)=229

 CALL dlarnv(2,iseed,nxmax*nymax,rand)

!

 DO i=1, nxmax

 DO j=1, nymax

 tp(1,i,j)=mask(0,i,j)*Pi/2

 & +(1-mask(0,i,j))*rand(i*j)*0.0000001

 95

 tp(2,i,j)=mask(0,i,j)*Pi/2

! tp(2,i,j)=mask(0,i,j)*rand(i*j)*Pi

 END DO

 END DO

!

 END

! --

! --

 SUBROUTINE initdem

 INCLUDE 'global2d.inc'

! **

! Initializes FFTW and calculates Fourier transforms of demagnetizing

! coefficients matrices. It should be done only once per program

! execution.

! **

 INTEGER*4 i, j, Nnorm

 PARAMETER(Nnorm=2*Nmax)

! Demagnetization functions

 REAL*8 dmxx, dmyy, dmzz, dmxy

! Demagnetization matrices

 REAL*8 kxx(0:nx2+1,0:ny2-1)

 REAL*8 kyy(0:nx2+1,0:ny2-1)

 REAL*8 kzz(0:nx2+1,0:ny2-1)

 REAL*8 kxy(0:nx2+1,0:ny2-1)

! Workspace

 REAL*8 table(((15+nx2)+2*(ny2+15)))

 REAL*8 tab2(((15+nx2)+2*(ny2+15)))

 REAL*8 work(nx2+4*ny2)

 COMMON /dcoef/ kxx, kyy, kzz, kxy, table, tab2, work

! Demagnetization matrices are filled with the respective values

! of the demagnetizing coefficients.

 DO j=0, nymax-1

 DO i=0, nxmax-1

 kxx(i,j)=dmxx(i,j,0,dux,duy,duz)

 kyy(i,j)=dmyy(i,j,0,dux,duy,duz)

 kzz(i,j)=dmzz(i,j,0,dux,duy,duz)

 kxy(i,j)=dmxy(i,j,0,dux,duy,duz)

 END DO

 END DO

!

 DO j=0, nymax-1

 96

 DO i=nxmax+1, 2*nxmax-1

 kxx(i,j)=dmxx(i-2*nxmax,j,0,dux,duy,duz)

 kyy(i,j)=dmyy(i-2*nxmax,j,0,dux,duy,duz)

 kzz(i,j)=dmzz(i-2*nxmax,j,0,dux,duy,duz)

 kxy(i,j)=dmxy(i-2*nxmax,j,0,dux,duy,duz)

 END DO

 END DO

!

 DO j=nymax+1, 2*nymax-1

 DO i=0, nxmax-1

 kxx(i,j)=dmxx(i,j-2*nymax,0,dux,duy,duz)

 kyy(i,j)=dmyy(i,j-2*nymax,0,dux,duy,duz)

 kzz(i,j)=dmzz(i,j-2*nymax,0,dux,duy,duz)

 kxy(i,j)=dmxy(i,j-2*nymax,0,dux,duy,duz)

 END DO

 END DO

!

 DO j=nymax+1, 2*nymax-1

 DO i=nxmax+1, 2*nxmax-1

 kxx(i,j)=dmxx(i-2*nxmax,j-2*nymax,0,dux,duy,duz)

 kyy(i,j)=dmyy(i-2*nxmax,j-2*nymax,0,dux,duy,duz)

 kzz(i,j)=dmzz(i-2*nxmax,j-2*nymax,0,dux,duy,duz)

 kxy(i,j)=dmxy(i-2*nxmax,j-2*nymax,0,dux,duy,duz)

 END DO

 END DO

! Middle planes (lines) are padded with 0 to keep 2^n size

 DO i=0, 2*nxmax-1

 kxx(i,nymax)=0

 kyy(i,nymax)=0

 kzz(i,nymax)=0

 kxy(i,nymax)=0

 END DO

!

 DO j=0, 2*nymax-1

 kxx(nxmax,j)=0

 kyy(nxmax,j)=0

 kzz(nxmax,j)=0

 kxy(nxmax,j)=0

 END DO

! Transform normization

 DO j=0, ny2-1

 97

 DO i=0, nx2-1

 kxx(i,j)=kxx(i,j)/Nnorm

 kyy(i,j)=kyy(i,j)/Nnorm

 kzz(i,j)=kzz(i,j)/Nnorm

 kxy(i,j)=kxy(i,j)/Nnorm

 END DO

 END DO

! FFTW initialization

 CALL DZFFT2D(0,nx2,ny2,1.d0,kxx,nx2+2,kxx,nxmax+1,table,work,0)

 CALL ZDFFT2D(0,nx2,ny2,1.d0,kxx,nx2+2,kxx,nxmax+1,tab2,work,0)

! Conversion to Fourier space

 CALL DZFFT2D(1,nx2,ny2,1.d0,kxx,nx2+2,kxx,nxmax+1,table,work,0)

 CALL DZFFT2D(1,nx2,ny2,1.d0,kyy,nx2+2,kyy,nxmax+1,table,work,0)

 CALL DZFFT2D(1,nx2,ny2,1.d0,kzz,nx2+2,kzz,nxmax+1,table,work,0)

 CALL DZFFT2D(1,nx2,ny2,1.d0,kxy,nx2+2,kxy,nxmax+1,table,work,0)

!

 END

5. Contents in the file “rk2d.f”:

 SUBROUTINE ODEINT(y,x1,x2,work)

!**

! Intermediate driver for RKSUITE solver. Integrates system of ODEs

! from x1 to x2 with initial condition y, in steps of dxsav.

! The stepping procedure do not take into account any physical

! organization of cells.

! See RKSUITE documentation for details of UT (or CT) usage.

!**

 INCLUDE 'global2d.inc'

!

 REAL*8 y(Nmax), x1, x2, work(*)

 INTEGER*4 i, j, flag, lenwrk

 REAL*8 x, t_eff

 PARAMETER(t_eff=66.160297d0)

 REAL*8 xmag, ymag, zmag ! functions calculating magnetic moment

! Arrays transfering condition of the system between UT calls

 REAL*8 dy(Nmax), ymax(Nmax)

! Saving parameters

 INTEGER*4 kount

 98

 REAL*8 dxsav, xm(0:kmax), ym(0:kmax), zm(0:kmax), t(0:kmax)

 COMMON /PATH/ kount, dxsav, xm, ym, zm, t

!

 EXTERNAL derivs

!

 x=x1+dxsav

! Initial condition statistics (kount=0)

 t(kount)=x1*t_eff

 xm(kount)=ymag(y)/(nxmax*nymax)

 ym(kount)=xmag(y)/(nxmax*nymax)

 zm(kount)=zmag(y)/(nxmax*nymax)

!

 OPEN(7,FILE='average.dat',FORM='formatted',ACCESS='append')

 WRITE(7,300) kount, t(kount), xm(kount), ym(kount), zm(kount)

 CLOSE(7)

!

 CALL sav(kount,y)

! Stepping loop

 DO WHILE (x .lt. x2)

 CALL UT(derivs,x,x1,y,dy,ymax,work,flag)

! Force theta phi to be in appropriate quadrants

 DO j=1, Nmax

 IF (y(j) .gt. 2*Pi) THEN

 y(j)=y(j)-2*Pi

 ELSE IF (y(j) .lt. -2*Pi) THEN

 y(j)=y(j)+2*Pi

 END IF

 END DO

! Recording of intermediate states

 IF (kount .le. kmax-1) THEN

 kount=kount+1

 t(kount)=x1*t_eff

 xm(kount)=ymag(y)/(nxmax*nymax)

 ym(kount)=xmag(y)/(nxmax*nymax)

 zm(kount)=zmag(y)/(nxmax*nymax)

!

 OPEN(7,FILE='average.dat',FORM='formatted',ACCESS='append')

 WRITE(7,300) kount, t(kount), xm(kount), ym(kount), zm(kount)

 CLOSE(7)

!

 CALL sav(kount,y)

 99

! Recording of the full state of the system. Allows to

! continue calculations if the program execution is broken

 OPEN(1,FILE=datlast,FORM='unformatted')

 WRITE(1) mask, y, x1, kount

 CLOSE(1)

!

 END IF

!

 x=x1+dxsav

!

 END DO

!

 x=x2

! Final call to UT

 CALL UT(derivs,x,x1,y,dy,ymax,work,flag)

! Recording of final state (see details above)

 kount=kount+1

 t(kount)=x1*t_eff

 xm(kount)=ymag(y)/(nxmax*nymax)

 ym(kount)=xmag(y)/(nxmax*nymax)

 zm(kount)=zmag(y)/(nxmax*nymax)

!

 OPEN(7,FILE='average.dat',FORM='formatted',ACCESS='append')

 WRITE(7,300) kount, t(kount), xm(kount), ym(kount), zm(kount)

 CLOSE(7)

!

 CALL sav(kount,y)

!

 OPEN(1,FILE=datlast,FORM='unformatted')

 WRITE(1) mask, y, x1, kount

 CLOSE(1)

 300FORMAT(I8,' ',F12.4,3(' ',F12.8))

!

 END

6. Contents in the file “deriv2d.f”:

 SUBROUTINE derivs(x,tp,dtp)

!**

! Procedure calculates theta- and phi- components

! of the effective magnetic field and finds

! respective time derivatives dtp(1,i,j,k) and dtp(2,i,j,k)

 100

! Attention: for time-dependent field its components

! will have to be given as functions of t.

!**

 INCLUDE 'global2d.inc'

!

 REAL*8 x ! independent variable (time)

 REAL*8 tp(2,nxmax,nymax), dtp(2,nxmax,nymax)

 REAL*8 hd(2,nxmax,nymax) ! demagnetizing & external field

 INTEGER*4 i, j

 REAL*8 hth, hph ! exchange field; overall effective field

!

 CALL hdem(x,tp,hd) ! demagnetizing and external field

! Calculation of the effective field

 DO j=1, nymax

 DO i=1, nxmax

!

 hth=-((SIN(tp(1,i,j))*COS(tp(1,i+mask(-1,i,j),j))

 & -COS(tp(1,i,j))*SIN(tp(1,i+mask(-1,i,j),j))

 & *COS(tp(2,i,j)-tp(2,i+mask(-1,i,j),j)))

 & +(SIN(tp(1,i,j))*COS(tp(1,i+mask(1,i,j),j))

 & -COS(tp(1,i,j))*SIN(tp(1,i+mask(1,i,j),j))

 & *COS(tp(2,i,j)-tp(2,i+mask(1,i,j),j))))*d2x

 & -((SIN(tp(1,i,j))*COS(tp(1,i,j+mask(-2,i,j)))

 & -COS(tp(1,i,j))*SIN(tp(1,i,j+mask(-2,i,j)))

 & *COS(tp(2,i,j)-tp(2,i,j+mask(-2,i,j))))

 & +(SIN(tp(1,i,j))*COS(tp(1,i,j+mask(2,i,j)))

 & -COS(tp(1,i,j))*SIN(tp(1,i,j+mask(2,i,j)))

 & *COS(tp(2,i,j)-tp(2,i,j+mask(2,i,j)))))*d2y

 & +hd(1,i,j)

!

 hph=-(SIN(tp(1,i+mask(-1,i,j),j))

 & *SIN(tp(2,i,j)-tp(2,i+mask(-1,i,j),j))

 & +SIN(tp(1,i+mask(1,i,j),j))

 & *SIN(tp(2,i,j)-tp(2,i+mask(1,i,j),j)))*d2x

 & -(SIN(tp(1,i,j+mask(-2,i,j)))

 & *SIN(tp(2,i,j)-tp(2,i,j+mask(-2,i,j)))

 & +SIN(tp(1,i,j+mask(2,i,j)))

 & *SIN(tp(2,i,j)-tp(2,i,j+mask(2,i,j))))*d2y

 & +hd(2,i,j)

! Calculation of theta- and phi- derivatives

 dtp(1,i,j)=(alpha*hth+hph)*mask(0,i,j)

 101

 IF (SIN(tp(1,i,j)) .eq. 0) THEN

 WRITE(*,*) 'bad coordinate system'

 END IF

 dtp(2,i,j)=(alpha*hph-hth)/SIN(tp(1,i,j))*mask(0,i,j)

 END DO

 END DO

!

 END

7. Contents in the file “demag2d.f”:

 SUBROUTINE hdem(x,tp,hd)

!**

! Calculates the demagnetizing field.

!**

 INCLUDE 'global2d.inc'

!

 REAL*8 x, hanis1, hanis2

 REAL*8 tp(2,0:nxmax-1,0:nymax-1) !Spherical components of M

 REAL*8 hd(2,0:nxmax-1,0:nymax-1)

!

 INTEGER*4 i, j, nmaxc

 PARAMETER(nmaxc=2*(nxmax+1)*nymax) ! Transform size

! Fourier images of demagnetizing matrices

 COMPLEX*16 kxx(nmaxc)

 COMPLEX*16 kyy(nmaxc)

 COMPLEX*16 kzz(nmaxc)

 COMPLEX*16 kxy(nmaxc)

 REAL*8 table((nx2+15)+2*(ny2+15))

 REAL*8 tab2((nx2+15)+2*(ny2+15))

 REAL*8 work(nx2+4*ny2)

 COMMON /dcoef/ kxx, kyy, kzz, kxy, table, tab2, work

! Cartesian components of M

 REAL*8 xm(0:nx2+1,0:ny2-1)

 REAL*8 ym(0:nx2+1,0:ny2-1)

 REAL*8 zm(0:nx2+1,0:ny2-1)

! Fourier images of Mx, My, Mz, as calculated by real -> complex transform

 COMPLEX*16 xmc(nmaxc)

 COMPLEX*16 ymc(nmaxc)

 102

 COMPLEX*16 zmc(nmaxc)

! These matrices are equivalenced to save space

 EQUIVALENCE (xm,xmc), (ym,ymc), (zm,zmc)

! The external field components

 REAL*8 hx, hy, hz

! Cartesian components of Hd

 REAL*8 xm1(0:nx2+1,0:ny2-1)

 REAL*8 ym1(0:nx2+1,0:ny2-1)

 REAL*8 zm1(0:nx2+1,0:ny2-1)

! Fourier images of Hx, Hy, Hz, as calculated by real -> complex transform

 COMPLEX*16 xm1c(nmaxc)

 COMPLEX*16 ym1c(nmaxc)

 COMPLEX*16 zm1c(nmaxc)

! These matrices are equivalenced to save space

 EQUIVALENCE (xm1,xm1c),(ym1,ym1c),(zm1,zm1c)

! Thermal term

 INTEGER nrand, num, iseed(4), flag

 REAL*8 dt, dxsav, Ms, kbolts, temp, gamma, eps, t_eff, volume

 PARAMETER(nrand=3*nxmax*nymax) ! 1 random number for each M-component

 REAL*8 rand(nrand), idum(2)

 REAL gasdev

 PARAMETER(Ms=859.436693d0) ! in unit of emu/cm^3

 PARAMETER(kbolts=1.380650d-16) ! in unit of erg/K

 PARAMETER(temp=300.0) ! in unit of K

 PARAMETER(gamma=1.760860d+7) ! in unit of 1/(sec*Gauss)

 PARAMETER(t_eff=66.082897d-12)

 COMMON /PATH/ dxsav

! The first octant (quadrant) of Cartesian M components is

! filled with the respective values. Rest are zero-padded.

 DO j=0, nymax-1

 DO i=0, nxmax-1

!

 xm(i+nxmax,j+nymax)=0

 ym(i+nxmax,j+nymax)=0

 zm(i+nxmax,j+nymax)=0

!

 xm(i+nxmax,j)=0

 ym(i+nxmax,j)=0

 zm(i+nxmax,j)=0

!

 103

 xm(i,j+nymax)=0

 ym(i,j+nymax)=0

 zm(i,j+nymax)=0

!

 xm(i,j)=SIN(tp(1,i,j))*COS(tp(2,i,j))*maskp(0,i,j)

 ym(i,j)=SIN(tp(1,i,j))*SIN(tp(2,i,j))*maskp(0,i,j)

 zm(i,j)=COS(tp(1,i,j))*maskp(0,i,j)

!

 END DO

 END DO

! Conversion of M components to Fourier space

 CALL DZFFT2D(1,nx2,ny2,1.d0,xm,nx2+2,xmc,nxmax+1,table,work,0)

 CALL DZFFT2D(1,nx2,ny2,1.d0,ym,nx2+2,ymc,nxmax+1,table,work,0)

 CALL DZFFT2D(1,nx2,ny2,1.d0,zm,nx2+2,zmc,nxmax+1,table,work,0)

! Fourier images of M are multipled by demagnetizing

! coefficients transform - this is a convolution in

! the Fourier space, that produces image of Hd field.

 DO i=1, nmaxc

 xm1c(i)=kxx(i)*xmc(i)+kxy(i)*ymc(i)

 ym1c(i)=kxy(i)*xmc(i)+kyy(i)*ymc(i)

 zm1c(i)=kzz(i)*zmc(i)

 END DO

! Conversion of Hd to real space

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,xm1c,nxmax+1,xm1,nx2+2,tab2,work,0)

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,ym1c,nxmax+1,ym1,nx2+2,tab2,work,0)

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,zm1c,nxmax+1,zm1,nx2+2,tab2,work,0)

! Generate Gaussian random numbers

 iseed(1)=2*(INT(10*tp(1,13,65)/tp(2,16,47)))**2+1

 iseed(2)=2*(INT(10*tp(1,68,11)/tp(2,26,34)))**2+1

 iseed(3)=2*(INT(10*tp(2,18,10)/tp(1,54,40)))**2+1

 iseed(4)=2*(INT(10*tp(2,21,52)/tp(1,31,76)))**2+1

!

 DO num=1, nrand

 rand(num)=gasdev(idum,iseed)

 END DO

!

 dt=0.1*t_eff

 volume=(sizex/nxmax)*(sizey/nymax)*thick*1.d-21 ! in unit of cm^3

 eps=2.0*alpha*kbolts*temp/(gamma*volume*Ms)

! Spherical components of demagnetizing and external fields.

 DO j=0, nymax-1

 104

 DO i=0, nxmax-1

! The external field

 CALL hfun(x,i+1,j+1,hx,hy,hz)

! Combination of demagnetizing, external, and anisotropy fields

 xm1(i,j)=xm1(i,j)+hx

 ym1(i,j)=ym1(i,j)+hy

 zm1(i,j)=zm1(i,j)+hz

! Include thermal term if necessary

 xm1(i,j)=xm1(i,j)+sqrt(eps/dt)*rand(nxmax*j+3*i+1)/Ms

 ym1(i,j)=ym1(i,j)+sqrt(eps/dt)*rand(nxmax*j+3*i+2)/Ms

 zm1(i,j)=zm1(i,j)+sqrt(eps/dt)*rand(nxmax*j+3*i+3)/Ms

! Checkpoint for thermal term

 IF (x .le. -38.0 .and. i .eq. 64 .and. j .eq. 256) THEN

 OPEN(22,FILE='thermal.dat',FORM='formatted',ACCESS='append')

 WRITE(22,220) eps, dt, sqrt(eps/dt)*rand(nxmax*j+3*i+1)/Ms

 CLOSE(22)

 220 FORMAT(3(E12.6,' '))

 END IF

! Conversion to spheric coordinates

 hd(1,i,j)=xm1(i,j)*COS(tp(1,i,j))*COS(tp(2,i,j))

 & +ym1(i,j)*COS(tp(1,i,j))*SIN(tp(2,i,j))

 & -zm1(i,j)*SIN(tp(1,i,j))

 & +hanis1(i+1,j+1,tp)

 hd(2,i,j)=-xm1(i,j)*SIN(tp(2,i,j))

 & +ym1(i,j)*COS(tp(2,i,j))

 & +hanis2(i+1,j+1,tp)

!

 END DO

 END DO

!

 END

!

! Gaussian random number generator

!

 FUNCTION gasdev(idum,iseed)

 REAL gasdev

 INTEGER iset

 INTEGER iseed(4)

!

 DOUBLE PRECISION idum(2)

 REAL v1, v2, rsq, fac, gset

 105

 SAVE iset, gset

 DATA iset/0/

!

 IF (iset .eq. 0) THEN

 1 CALL dlarnv(1,iseed,2,idum)

 v1=2*idum(1)-1

 v2=2*idum(2)-1

 rsq=v1**2+v2**2

 IF (rsq .ge. 1 .or. rsq .eq. 0) GOTO 1

 fac=sqrt(-2.*log(rsq)/rsq)

 gset=v1*fac

 gasdev=v2*fac

 iset=1

 ELSE

 gasdev=gset

 iset=0

 END IF

!

 RETURN

 END

8. Contents in the file “anisot2d.f”:

c**

c This is the first version to calculate anisotropy field.

c We assume a uniaxial anisotropy with the easy axis along

c the y (actually x - we change coordinates later) axis.

c From Wayne Hiebert's data we have Hk=8-10 Oe

c a value which may change with new deposition conditions.

c In this routine Hk is normalized by Ms (not 4*Pi*Ms).

c this gives Hk=8.594366927(Oe).

c**

! Uniaxial anisotropy term

! The theta-component

 REAL*8 FUNCTION hanis1(i,j,tp)

 INCLUDE 'global2d.inc'

!

 INTEGER*4 i, j

 REAL*8 tp(1:2,1:nxmax,1:nymax), Hk

 106

!

 PARAMETER(Hk=0.01)

!

 hanis1=Hk*SIN(2*tp(1,i,j))*(SIN(tp(2,i,j)))**2*mask(0,i,j)

!

 END

! The phi-component

 REAL*8 FUNCTION hanis2(i,j,tp)

 INCLUDE 'global2d.inc'

!

 INTEGER*4 i, j

 REAL*8 tp(1:2,1:nxmax,1:nymax), Hk

!

 PARAMETER(Hk=0.01)

!

 hanis2=Hk*SIN(tp(1,i,j))*SIN(2*tp(2,i,j))*mask(0,i,j)

!

 END

9. Contents in the file “demfor2d.f”:

!***

! Functions describing demagnetizing tensor components. i,j,k

! define relative position of two cells, while dx,dy,dz define

! their sixe

! See: Y.Nakatani, Y.Uesaka, N.Hayashi, "Direct Solution of the

! Landau-Lifshitz-Gilbert equation for micromagnetics",

! Jap.J.Appl.Phys., 28 (1989) 2485-507.

!***

 REAL*8 FUNCTION dmxx(i,j,k,dx,dy,dz)

!

 INTEGER*4 i, j, k

 REAL*8 dx, dy, dz

!

 dmxx=ATAN((dy*dz*(-0.5+j)*(-0.5+k))/

 & (dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(-0.5+j)*(-0.5+k))/

 & (dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+

 107

 & dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(0.5+j)*(-0.5+k))/

 & (dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(-0.5+k)**2)))+ATAN((dy*dz*(0.5+j)*(-0.5+k))/

 & (dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(-0.5+j)*(0.5+k))/

 & (dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(0.5+k)**2)))+ATAN((dy*dz*(-0.5+j)*(0.5+k))/

 & (dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(0.5+k)**2)))+ATAN((dy*dz*(0.5+j)*(0.5+k))/

 & (dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(0.5+k)**2)))-ATAN((dy*dz*(0.5+j)*(0.5+k))/

 & (dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(0.5+k)**2)))

!

 END

! ---

 REAL*8 FUNCTION dmyy(i,j,k,dx,dy,dz)

!

 INTEGER*4 i, j, k

 REAL*8 dx, dy, dz

!

 dmyy=ATAN((dx*dz*(-0.5+i)*(-0.5+k))/

 & (dy*(-0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(0.5+i)*(-0.5+k))/

 & (dy*(-0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(-0.5+i)*(-0.5+k))/

 & (dy*(0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(-0.5+k)**2)))+ATAN((dx*dz*(0.5+i)*(-0.5+k))/

 & (dy*(0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(-0.5+i)*(0.5+k))/

 & (dy*(-0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(0.5+k)**2)))+ATAN((dx*dz*(0.5+i)*(0.5+k))/

 & (dy*(-0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(0.5+k)**2)))+ATAN((dx*dz*(-0.5+i)*(0.5+k))/

 & (dy*(0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(0.5+k)**2)))-ATAN((dx*dz*(0.5+i)*(0.5+k))/

 & (dy*(0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(0.5+k)**2)))

!

 END

! ---

 108

 REAL*8 FUNCTION dmzz(i,j,k,dx,dy,dz)

!

 INTEGER*4 i, j, k

 REAL*8 dx, dy, dz

!

 dmzz=ATAN((dx*dy*(-0.5+i)*(-0.5+j))/

 & (dz*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(-0.5+k)**2)*(-0.5+k)))-

 & ATAN((dx*dy*(0.5+i)*(-0.5+j))/

 & (dz*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(-0.5+k)**2)*(-0.5+k)))-

 & ATAN((dx*dy*(-0.5+i)*(0.5+j))/

 & (dz*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(-0.5+k)**2)*(-0.5+k)))+

 & ATAN((dx*dy*(0.5+i)*(0.5+j))/

 & (dz*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(-0.5+k)**2)*(-0.5+k)))-

 & ATAN((dx*dy*(-0.5+i)*(-0.5+j))/

 & (dz*(0.5+k)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(0.5+k)**2)))+ATAN((dx*dy*(0.5+i)*(-0.5+j))/

 & (dz*(0.5+k)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(0.5+k)**2)))+ATAN((dx*dy*(-0.5+i)*(0.5+j))/

 & (dz*(0.5+k)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(0.5+k)**2)))-ATAN((dx*dy*(0.5+i)*(0.5+j))/

 & (dz*(0.5+k)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(0.5+k)**2)))

!

 END

! ---

 REAL*8 FUNCTION dmxy(i,j,k,dx,dy,dz)

!

 INTEGER*4 i, j, k

 REAL*8 dx, dy, dz

!

 dmxy=-LOG(ABS(SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(-0.5+k)**2)+dz*(-0.5+k)))+

 & LOG(ABS(SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(-0.5+k)**2)+dz*(-0.5+k)))+

 & LOG(ABS(SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(-0.5+k)**2)+dz*(-0.5+k)))-

 & LOG(ABS(SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2+

 109

 & dz**2*(-0.5+k)**2)+dz*(-0.5+k)))+LOG(ABS(dz*(0.5+k)+

 & SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2+

 & dz**2*(0.5+k)**2)))-

 & LOG(ABS(dz*(0.5+k)+SQRT(dx**2*(0.5+i)**2+

 & dy**2*(-0.5+j)**2+

 & dz**2*(0.5+k)**2)))-LOG(ABS(dz*(0.5+k)+

 & SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2+

 & dz**2*(0.5+k)**2)))+

 & LOG(ABS(dz*(0.5+k)+SQRT(dx**2*(0.5+i)**2+

 & dy**2*(0.5+j)**2+

 & dz**2*(0.5+k)**2)))

!

 END

10. Contents in the file “output2d.f”:

 REAL*8 FUNCTION xmag(tp)

!**

! Function calculates x-component of the sample

! magnetic moment in arbitrary units

!**

 INCLUDE 'global2d.inc'

!

 REAL*8 tp(2,nxmax,nymax)

 INTEGER*4 i, j

!

 xmag=0

 DO j=1, nymax

 DO i=1, nxmax

 xmag=xmag+SIN(tp(1,i,j))*COS(tp(2,i,j))*mask(0,i,j)

 END DO

 END DO

!

 END

! ---

 REAL*8 FUNCTION ymag(tp)

!**

! Function calculates y-component of the sample

! magnetic moment in arbitrary units

 110

!**

 INCLUDE 'global2d.inc'

!

 REAL*8 tp(2,nxmax,nymax)

 INTEGER*4 i, j

!

 ymag=0

 DO j=1, nymax

 DO i=1, nxmax

 ymag=ymag+SIN(tp(1,i,j))*SIN(tp(2,i,j))*mask(0,i,j)

 END DO

 END DO

!

 END

! --

 REAL*8 FUNCTION zmag(tp)

!**

! Function calculates z-component of the sample

! magnetic moment in arbitrary units

!**

 INCLUDE 'global2d.inc'

!

 REAL*8 tp(2,nxmax,nymax)

 INTEGER*4 i, j

!

 zmag=0

 DO i=1, nxmax

 DO j=1, nymax

 zmag=zmag+COS(tp(1,i,j))*mask(0,i,j)

 END DO

 END DO

!

 END

! ---

 SUBROUTINE sav(kount,y)

 INCLUDE 'global2d.inc'

!

 INTEGER*4 kount

 REAL*8 y(2,nxmax,nymax)

 INTEGER*4 i, j

 REAL*8 xm(nxmax,nymax), ym(nxmax,nymax), zm(nxmax,nymax)

 111

!

 CHARACTER*14 itoa

!

 DO i=1, nxmax

 DO j=1, nymax

 xm(i,j)=SIN(y(1,i,j))*COS(y(2,i,j))*mask(0,i,j)

 ym(i,j)=SIN(y(1,i,j))*SIN(y(2,i,j))*mask(0,i,j)

 zm(i,j)=COS(y(1,i,j))*mask(0,i,j)

 END DO

 END DO

!

 OPEN(1,FILE="xyz."//itoa(kount),form='formatted',

& status='unknown')

!

 DO i=nxmax, 1, -1

 WRITE(1,100) (xm(i,j), j=1, nymax)

 END DO

 DO i=nxmax, 1, -1

 WRITE(1,100) (ym(i,j), j=1, nymax)

 END DO

 DO i=nxmax, 1, -1

 WRITE(1,100) (zm(i,j), j=1, nymax)

 END DO

!

 CLOSE(1)

100 FORMAT(1024(f12.8))

!

 END

! --

! Convert integer to character array (string)

 CHARACTER*14 FUNCTION itoa(value)

 IMPLICIT NONE

 INTEGER value

 INTEGER number

 CHARACTER*14 string

 LOGICAL minus

!

 number=value

 minus=.FALSE.

!

 IF (number .lt. 0) THEN

 112

 minus=.TRUE.

 number=-number

 END IF

!

 string=CHAR(ICHAR('0')+MOD(number, 10))

 number=number/10

!

 DO WHILE (number .ne. 0)

 string=CHAR(ICHAR('0')+MOD(number,10))//string

 number=number/10

 END DO

!

 IF (minus .eqv. .TRUE.) THEN

 string=CHAR(ICHAR('-'))//string

 END IF

!

 itoa=string

 RETURN

!

 END

11. Contents in the file “rksuite.f”:

See Ref.[17] for the original code.

 113

Appendix II

2D Micromagnetic Simulation code

(FORTRAN90)

Below is the FORTRAN90 version of micromagnetic
simulation. The code is conventionally split into 10 files, each
containing subroutines or functions that perform certain
tasks. The code structure is illustrated in section 2.2. Note:
the file “globals.f’ must be compiled first because it has a
module that is used widely in other parts of the code.

1. Contents in the file “globals.f”:

! Global settings.

 MODULE globals

 IMPLICIT NONE

! Name of the file for storing intermediate results

 CHARACTER(LEN=12), PARAMETER :: datapool='datapool.dat'

! Physics constants

 DOUBLE PRECISION, PARAMETER :: Pi=3.1415926535898

 DOUBLE PRECISION, PARAMETER :: Kbolts=1.3806503D-16

! Integration time range

 DOUBLE PRECISION, PARAMETER :: tmin=0.0

 DOUBLE PRECISION, PARAMETER :: tmax=200.0

 DOUBLE PRECISION, PARAMETER :: dtsav=1

! Cells numbers and actual sizes of the sample

 INTEGER, PARAMETER :: nxmax=64

 INTEGER, PARAMETER :: nymax=128

 INTEGER, PARAMETER :: isample=32

 INTEGER, PARAMETER :: jsample=64

 INTEGER, SAVE :: mask(-2:2,0:nxmax+1,0:nymax+1)

 INTEGER, PARAMETER :: Nmax=2*nxmax*nymax

 DOUBLE PRECISION, PARAMETER :: sizex=275.0

 114

 DOUBLE PRECISION, PARAMETER :: sizey=960.0

 DOUBLE PRECISION, PARAMETER :: thick=30.0

! Parameters for the sample

DOUBLE PRECISION, PARAMETER :: temp=300.0

DOUBLE PRECISION, PARAMETER :: Ms=859.436693

DOUBLE PRECISION, PARAMETER :: treduced=66.160297D-12

DOUBLE PRECISION, PARAMETER :: un=16.455122

 DOUBLE PRECISION, PARAMETER :: alpha=0.008

 DOUBLE PRECISION, PARAMETER :: gamma=1.7588D+7

! Things used in effective field calculation

 DOUBLE PRECISION, PARAMETER :: dux=sizex/nxmax/un

 DOUBLE PRECISION, PARAMETER :: duy=sizey/nymax/un

 DOUBLE PRECISION, PARAMETER :: duz=thick/un

 DOUBLE PRECISION, PARAMETER :: d2x=1/(dux*dux)

 DOUBLE PRECISION, PARAMETER :: d2y=1/(duy*duy)

 DOUBLE PRECISION, PARAMETER :: d2z=1/(duz*duz)

!

! Below are what the FFT process needs for demagnetizing calculation

!

! Transform size

 INTEGER, PARAMETER :: nmaxc=2*(nxmax+1)*nymax

 INTEGER, PARAMETER :: nx2=2*nxmax

 INTEGER, PARAMETER :: ny2=2*nymax

 INTEGER, PARAMETER :: Nrand=3*nxmax*nymax

 INTEGER, PARAMETER :: Nnorm=4*nxmax*nymax

! Fourier images of demagnetizing matrices

 DOUBLE COMPLEX, SAVE :: kxx(nmaxc)

 DOUBLE COMPLEX, SAVE :: kyy(nmaxc)

 DOUBLE COMPLEX, SAVE :: kzz(nmaxc)

 DOUBLE COMPLEX, SAVE :: kxy(nmaxc)

! Workspace

 DOUBLE PRECISION, SAVE :: table1((nx2+15)+2*(ny2+15))

 DOUBLE PRECISION, SAVE :: table2((nx2+15)+2*(ny2+15))

 DOUBLE PRECISION, SAVE :: work(nx2+4*ny2)

! Flags for FFT procedure

 INTEGER, PARAMETER :: FFTW_FORWARD=-1, FFTW_BACKWARD=1

 INTEGER, PARAMETER :: FFTW_REAL_TO_COMPLEX=-1

 INTEGER, PARAMETER :: FFTW_COMPLEX_TO_REAL=1

 INTEGER, PARAMETER :: FFTW_ESTIMATE=0, FFTW_MEASURE=1

 INTEGER, PARAMETER :: FFTW_IN_PLACE=8, FFTW_USE_WISDOM=16

!

 115

 END MODULE globals

2. Contents in the file “sim2d.f”:

 PROGRAM sim2d

 USE globals

 IMPLICIT NONE

!***

! This program traces the dynamical movement of magnetization

! in arbitrarily shaped sample with space- and time-dependent

! external field. The main procedure is a customizable driver.

! The code below is a typical example.

!***

! External subroutines/functions.

 EXTERNAL sigterm, sigusr1, sigusr2

 EXTERNAL initdem, shape, initmag, saveimage, ODE2D

!

! Spherical coordinates angles of magnetization distribution.

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax)

!

! Current temporal point, integration step and number of output.

 DOUBLE PRECISION :: tnow

 INTEGER :: nstep, noutput

!

! Auxilliary variables.

 INTEGER :: i, j

 LOGICAL :: filestatus

!

! Signal handler for (software) kill signals, signal number 15,16,17.

 CALL signal(15, sigterm, -1)

 CALL signal(16, sigusr1, -1)

 CALL signal(17, sigusr2, -1)

!

! Monitoring checkpoint.

 OPEN(999,FILE='eye.txt',ACCESS='sequential',POSITION='append')

 WRITE(999,*) '# Simulation starts:'

 WRITE(999,*)

 CLOSE(999)

!

 116

! Initialize FFT space and demagnetizing tensor coefficients.

 CALL initdem

!

! See if the job is to be resumed.

 INQUIRE(FILE=datapool,EXIST=filestatus)

!

 IF (filestatus .EQV. .FALSE.) THEN

! Set the start point.

 tnow=tmin

 nstep=0

 noutput=0

! Topological features of the sample; Initialize mask()

 CALL shape(mask)

! Initial uniform distribution of magnetizations

 CALL initmag(tp,mask)

! Save the initial distribution (1st image)

 CALL saveimage(noutput,tp)

 noutput=noutput+1

!

 ELSE

! Checkpoint

 OPEN(999,FILE='eye.txt',ACCESS='sequential',POSITION='append')

 WRITE(999,*) '# Reading data from datapool.dat:'

 CLOSE(999)

!

 OPEN(10,FILE=datapool,FORM='unformatted')

 READ(10) tnow, tp, mask, nstep, noutput

 CLOSE(10)

! Checkpoint

 OPEN(999,FILE='eye.txt',ACCESS='sequential',POSITION='append')

 WRITE(999,*) '> nstep,noutput,tnow=', nstep, noutput, tnow

 WRITE(999,*) '# Workspace refreshed.'

 WRITE(999,*)

 CLOSE(999)

!

 END IF

! Checkpoint

 OPEN(999,FILE='eye.txt',ACCESS='sequential',POSITION='append')

 WRITE(999,*) '# Integration starts:'

 117

 WRITE(999,*)

 CLOSE(999)

!

 CALL ODE2D(tp,tnow,tmax,nstep,noutput)

!

! Checkpoint

 OPEN(999,FILE='eye.txt',ACCESS='sequential',POSITION='append')

 WRITE(999,*) '# Simulation finished!'

 CLOSE(999)

!

 END PROGRAM sim2d

3. Contents in the file “interupt.f”:

! Signal handler

 SUBROUTINE sigterm()

! IMPLICIT NONE

! Exit and resubmit program to queue

 STOP 99

 RETURN

! END SUBROUTINE sigterm

 END

!

! ><><><><><><><><><><><><><><><><><><><

!

 SUBROUTINE sigusr1()

! IMPLICIT NONE

! Exit and resubmit program to queue

 STOP 99

 RETURN

! END SUBROUTINE sigusr1

 END

!

! ><><><><><><><><><><><><><><><><><><><

!

 SUBROUTINE sigusr2()

! IMPLICIT NONE

! Exit and resubmit program to queue

 STOP 99

 118

 RETURN

! END SUBROUTINE sigusr2

 END

!

4. Contents in the file “init2d.f”:

 SUBROUTINE hext(t,i,j,hx,hy,hz)

 USE globals

 IMPLICIT NONE

!**

! Space/time-dependences of the external magnetic field.

!**

 DOUBLE PRECISION :: t, hx, hy, hz

 INTEGER :: i, j

! Biasing x-field

 DOUBLE PRECISION, PARAMETER :: hbiasx=0.0/Ms

! Biasing y-field

 DOUBLE PRECISION, PARAMETER :: hbiasy=0.0/Ms

! Biasing z-field

 DOUBLE PRECISION, PARAMETER :: hbiasz=-3600.0/Ms

!

 hx=hbiasx

 hy=hbiasy

 hz=hbiasz

!

 END SUBROUTINE hext

! --

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><

! --

 SUBROUTINE shape

 USE globals

 IMPLICIT NONE

!**

! Procedure prepares a mask defining the shape of

! the sample

! - interior: mask(0,i,j)=1

! - exterior: mask(0,i,j)=0

!

 119

! Other components are used for data branching in

! exchange energy calculation

! - internal sites:

! mask(-1,i,j)=-1 mask(1,i,j)=1 (for x-direction)

! mask(-2,i,j)=-1 mask(2,i,j)=1 (for y-direction)

! - boundary sites: sign changes to maintain

! proper boundary conditions

!

! Parameter rx*ry defines the shape:

! <1 - full rectangle nxmax x nymax

! >=1 - ellipse with axes 2*rx and 2*ry,

! overlapped on the original rectangle

!***

 INTEGER :: i, j

! Calculation for full rectangle

 mask=0

!

 DO i=1, nxmax

 DO j=1, nymax

 mask(-2,i,j)=-1

 mask(-1,i,j)=-1

 mask(0,i,j)=1

 mask(1,i,j)=1

 mask(2,i,j)=1

 END DO

 END DO

! Sample's outer edge

 DO i=1, nxmax

 mask(-2,i,1)=0

 mask(2,i,nymax)=0

 END DO

!

 DO j=1, nymax

 mask(-1,1,j)=0

 mask(1,nxmax,j)=0

 END DO

! The defect

 DO i=imin, imax

 DO j=jmin+1, jmax-1

 mask(-2,i,j)=0

 mask(-1,i,j)=0

 120

 mask(0,i,j)=0

 mask(1,i,j)=0

 mask(2,i,j)=0

 END DO

 END DO

!

 DO i=imin, imax

 mask(-2,i,jmax)=0

 mask(2,i,jmin)=0

 END DO

!

 END SUBROUTINE shape

! --

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><

! --

 SUBROUTINE initmag(tp)

 USE globals

 IMPLICIT NONE

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax)

!**

! Procedure fills tp matrix with in-plane uniform

! distribution (idir=0 - x-direction, idir=1 - y,

! idir=2 - z).

! Grid sites outside the sample borders are filled

! formally with z orientation.

!**

!

 INTEGER :: i, j

 DOUBLE PRECISION :: rand(1:nxmax,1:nymax)

!

 CALL RANDOM_NUMBER(rand)

!

 DO j=1, nymax

 DO i=1, nxmax

 tp(1,i,j)=mask(0,i,j)*Pi/2

 & +(1-mask(0,i,j))*(1-rand(i,j))*0.0001

 tp(2,i,j)=mask(0,i,j)*Pi/2

 END DO

 END DO

!

 END SUBROUTINE initmag

 121

! --

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><

! --

! Initialize demagnetizing field computation. Do it only once!

 SUBROUTINE initdem

 USE globals

 IMPLICIT NONE

!

 DOUBLE PRECISION, EXTERNAL :: dmxx, dmyy, dmzz, dmxy

!

 DOUBLE PRECISION :: kxxr(0:nx2+1,0:ny2-1)

 DOUBLE PRECISION :: kyyr(0:nx2+1,0:ny2-1)

 DOUBLE PRECISION :: kzzr(0:nx2+1,0:ny2-1)

 DOUBLE PRECISION :: kxyr(0:nx2+1,0:ny2-1)

! duxn(), duyn(), duzn() are noise-modified values for dux, duy, duz

 DOUBLE PRECISION :: duxn(0:2*nxmax-1,0:2*nymax-1)

 DOUBLE PRECISION :: duyn(0:2*nxmax-1,0:2*nymax-1)

 DOUBLE PRECISION :: duzn(0:2*nxmax-1,0:2*nymax-1)

 DOUBLE PRECISION :: noise(0:2*nxmax-1,0:2*nymax-1)

!

 INTEGER :: i, j

!

 CALL RANDOM_NUMBER(noise)

 DO i=0, 2*nxmax-1

 DO j=0, 2*nymax-1

 duxn(i,j)=dux*(1+0.01*(noise(i,j)-0.5))

 duyn(i,j)=duy*(1+0.01*(noise(i,j)-0.5))

 duzn(i,j)=duz*(1+0.01*(noise(i,j)-0.5))

 END DO

 END DO

! Demagnetization matrices are filled with the respective values

! of the demagnetizing coefficients.

 DO j=0, nymax-1

 DO i=0, nxmax-1

 kxxr(i,j)=dmxx(i,j,0,duxn(i,j),duyn(i,j),duzn(i,j))

 kyyr(i,j)=dmyy(i,j,0,duxn(i,j),duyn(i,j),duzn(i,j))

 kzzr(i,j)=dmzz(i,j,0,duxn(i,j),duyn(i,j),duzn(i,j))

 kxyr(i,j)=dmxy(i,j,0,duxn(i,j),duyn(i,j),duzn(i,j))

 END DO

 END DO

!

 122

 DO j=0, nymax-1

 DO i=nxmax+1, 2*nxmax-1

 kxxr(i,j)=dmxx(i-2*nxmax,j,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 kyyr(i,j)=dmyy(i-2*nxmax,j,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 kzzr(i,j)=dmzz(i-2*nxmax,j,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 kxyr(i,j)=dmxy(i-2*nxmax,j,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 END DO

 END DO

!

 DO j=nymax+1, 2*nymax-1

 DO i=0,nxmax-1

 kxxr(i,j)=dmxx(i,j-2*nymax,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 kyyr(i,j)=dmyy(i,j-2*nymax,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 kzzr(i,j)=dmzz(i,j-2*nymax,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 kxyr(i,j)=dmxy(i,j-2*nymax,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 END DO

 END DO

!

 DO j=nymax+1, 2*nymax-1

 DO i=nxmax+1, 2*nxmax-1

 kxxr(i,j)=dmxx(i-2*nxmax,j-2*nymax,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 kyyr(i,j)=dmyy(i-2*nxmax,j-2*nymax,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 kzzr(i,j)=dmzz(i-2*nxmax,j-2*nymax,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 kxyr(i,j)=dmxy(i-2*nxmax,j-2*nymax,0,

 & duxn(i,j),duyn(i,j),duzn(i,j))

 END DO

 END DO

! Middle planes (lines) are padded with 0 to keep 2^n size

 DO i=0, 2*nxmax-1

 kxxr(i,nymax)=0

 123

 kyyr(i,nymax)=0

 kzzr(i,nymax)=0

 kxyr(i,nymax)=0

 END DO

!

 DO j=0, 2*nymax-1

 kxxr(nxmax,j)=0

 kyyr(nxmax,j)=0

 kzzr(nxmax,j)=0

 kxyr(nxmax,j)=0

 END DO

! Transform normization

 DO j=0, ny2-1

 DO i=0, nx2-1

 kxxr(i,j)=kxxr(i,j)/Nnorm

 kyyr(i,j)=kyyr(i,j)/Nnorm

 kzzr(i,j)=kzzr(i,j)/Nnorm

 kxyr(i,j)=kxyr(i,j)/Nnorm

 END DO

 END DO

! FFTW initialization

 CALL DZFFT2D(0,nx2,ny2,1.d0,kxxr,nx2+2,kxx,nxmax+1,table1,work,0)

 CALL ZDFFT2D(0,nx2,ny2,1.d0,kxx,nx2+2,kxxr,nxmax+1,table2,work,0)

! Conversion to Fourier space

 CALL DZFFT2D(1,nx2,ny2,1.d0,kxxr,nx2+2,kxx,nxmax+1,table1,work,0)

 CALL DZFFT2D(1,nx2,ny2,1.d0,kyyr,nx2+2,kyy,nxmax+1,table1,work,0)

 CALL DZFFT2D(1,nx2,ny2,1.d0,kzzr,nx2+2,kzz,nxmax+1,table1,work,0)

 CALL DZFFT2D(1,nx2,ny2,1.d0,kxyr,nx2+2,kxy,nxmax+1,table1,work,0)

!

 END SUBROUTINE initdem

5. Contents in the file “ode2d.f”:

 SUBROUTINE ODE2D(y,xnow,xmax,nstep,noutput)

 USE globals

 IMPLICIT NONE

!

 DOUBLE PRECISION :: y(1:2,1:nxmax,1:nymax)

 DOUBLE PRECISION :: xnow, xmax

 124

 INTEGER :: nstep, noutput

!

 DOUBLE PRECISION, SAVE :: x, dx

 DOUBLE PRECISION, SAVE :: t, Mx, My, Mz

 LOGICAL, SAVE :: save_image

! Timing variables

 INTEGER :: clock_start, clock_end, clock_rate

 DOUBLE PRECISION :: elapsed_time

! External routines

 DOUBLE PRECISION, EXTERNAL :: xmag, ymag, zmag

 EXTERNAL :: RKLIU, derivs, saveimage

!

 clock_start=0

 clock_end=0

 CALL SYSTEM_CLOCK(COUNT_RATE=clock_rate) ! Find the timing rate

 x=xnow

 dx=0.5*dtsav ! Initial step size; factor 0.5 - just for safety

!

 DO WHILE (x<=xmax)

!

 t=x*treduced*1.0D+12 ! t in picosecond

 Mx=xmag(y)/(nxmax*nymax)

 My=ymag(y)/(nxmax*nymax)

 Mz=zmag(y)/(nxmax*nymax)

!

 elapsed_time=(clock_end-clock_start)/clock_rate

 OPEN(8,FILE='average.dat',ACCESS='sequential',POSITION='append')

 WRITE(*,100) nstep, save_image, t, Mx, My, Mz

 WRITE(8,100) nstep, save_image, t, Mx, My, Mz

 100FORMAT(I8,X,L,X,F12.4,3(X,F12.8))

 CLOSE(8)

 nstep=nstep+1

!

 save_image=.FALSE.

!

 CALL SYSTEM_CLOCK(COUNT=clock_start) ! Start timing

 CALL RK2D(derivs,x,dx,y,noutput,save_image)

 CALL SYSTEM_CLOCK(COUNT=clock_end) ! Stop timing

!

 IF (save_image .EQV. .TRUE.) THEN

 125

 CALL saveimage(noutput,y)

 noutput=noutput+1

 END IF

!

 xnow=x

!

 OPEN(11,FILE=datapool,FORM='unformatted')

 WRITE(11) xnow, y, mask, nstep, noutput

 CLOSE(11)

!

 END DO

!

 END SUBROUTINE ODE2D

6. Contents in the file “rk2d.f”:

!**

**

! Cash Karp's embedded Runge-Kutta ODE solver with adaptive stepsize

! control, designedly for 'sim2d' program, replacing previous 'UT'.

!**

**

 SUBROUTINE RK2D(derivs,x,dx,y,noutput,save_image)

 USE globals

 IMPLICIT NONE

!

 EXTERNAL :: derivs

 DOUBLE PRECISION :: x, dx, y(1:Nmax)

 INTEGER :: noutput

 LOGICAL :: save_image

!

 DOUBLE PRECISION :: dy(1:Nmax)

 INTEGER :: i, ntry

 LOGICAL :: retry

 DOUBLE PRECISION :: err0, errmax

 DOUBLE PRECISION, SAVE :: ytemp(1:Nmax), yembd(1:Nmax)

 DOUBLE PRECISION, SAVE :: k1(1:Nmax), k2(1:Nmax), k3(1:Nmax)

 DOUBLE PRECISION, SAVE :: k4(1:Nmax), k5(1:Nmax), k6(1:Nmax)

!

 126

 DOUBLE PRECISION, PARAMETER :: precision=0.00001, safety=0.9

 DOUBLE PRECISION, PARAMETER :: exp1=0.2, exp2=0.25

 DOUBLE PRECISION, PARAMETER :: a2=0.2, a3=0.3, a4=0.6, a5=1.0,

a6=0.875

 DOUBLE PRECISION, PARAMETER :: b21=0.2, b31=0.075, b32=0.225

 DOUBLE PRECISION, PARAMETER :: b41=0.3, b42=-0.9, b43=1.2

 DOUBLE PRECISION, PARAMETER :: b51=-11./54., b52=2.5

 DOUBLE PRECISION, PARAMETER :: b53=-70./27., b54=35./27.

 DOUBLE PRECISION, PARAMETER :: b61=1631./55296., b62=175./512.

 DOUBLE PRECISION, PARAMETER :: b63=575./13824.

 DOUBLE PRECISION, PARAMETER :: b64=44275./110592., b65=253./4096.

 DOUBLE PRECISION, PARAMETER :: c1=37./378., c2=0, c3=250./621.

 DOUBLE PRECISION, PARAMETER :: c4=125./594., c5=0, c6=512./1771.

 DOUBLE PRECISION, PARAMETER :: d1=2825./27648., d2=0

 DOUBLE PRECISION, PARAMETER :: d3=18575./48384., d4=13525./55296.

 DOUBLE PRECISION, PARAMETER :: d5=277./14336., d6=.25

! Initial values for self-adapting procedures

 ntry=0

 retry=.TRUE.

 errmax=0

! The precision for theta and phi

 err0=precision*Pi

!

 DO WHILE ((retry .EQV. .TRUE.) .AND. (ntry<=5))

!

 IF (x+dx>tmin+(noutput+1)*dtsav .AND. x>0) THEN

 save_image=.TRUE.

 END IF

!

 CALL derivs(x,dx,y,dy,mask)

 k1=dx*dy

 ytemp=y+b21*k1

!

 CALL derivs(x+a2*dx,dx,ytemp,dy,mask)

 k2=dx*dy

 ytemp=y+b31*k1+b32*k2

!

 CALL derivs(x+a3*dx,dx,ytemp,dy,mask)

 k3=dx*dy

 ytemp=y+b41*k1+b42*k2+b43*k3

!

 127

 CALL derivs(x+a4*dx,dx,ytemp,dy,mask)

 k4=dx*dy

 ytemp=y+b51*k1+b52*k2+b53*k3+b54*k4

!

 CALL derivs(x+a5*dx,dx,ytemp,dy,mask)

 k5=dx*dy

 ytemp=y+b61*k1+b62*k2+b63*k3+b64*k4+b65*k5

!

 CALL derivs(x+a6*dx,dx,ytemp,dy,mask)

 DO i=1, Nmax

 k6(i)=dx*dy(i)

 ytemp(i)=y(i)+c1*k1(i)+c2*k2(i)+c3*k3(i)

 & +c4*k4(i)+c5*k5(i)+c6*k6(i)

 yembd(i)=y(i)+d1*k1(i)+d2*k2(i)+d3*k3(i)

 & +d4*k4(i)+d5*k5(i)+d6*k6(i)

! Compute the largest discrepancy of ytemp and yembd

 errmax=MAX(errmax,ABS(ytemp(i)-yembd(i)))

 END DO

!

 IF (errmax<=err0) THEN

 dx=dx*safety*(err0/errmax)**exp1

 retry=.FALSE.

 ELSE

 dx=dx*safety*(err0/errmax)**exp2

 retry=.TRUE.

 ntry=ntry+1

 END IF

!

 END DO

!

 x=x+dx

 y=ytemp

!

 END SUBROUTINE rk2d

7. Contents in the file “deriv2d.f”:

 SUBROUTINE derivs(t,dt,tp0,dtp)

 USE globals

 128

 IMPLICIT NONE

!**

! Procedure calculates theta- and phi- components

! of the effective magnetic field and finds

! respective time derivatives dtp(1,i,j,k) and dtp(2,i,j,k)

! Attention: for time-dependent field its components

! will have to be given as functions of t.

!**

!

 DOUBLE PRECISION :: t, dt

 DOUBLE PRECISION :: tp0(1:2,1:nxmax,1:nymax)

DOUBLE PRECISION :: dtp(1:2,1:nxmax,1:nymax)

!

 DOUBLE PRECISION :: noise(1:nxmax,1:nymax)

 DOUBLE PRECISION :: d2xn(1:nxmax,1:nymax)

 DOUBLE PRECISION :: d2yn(1:nxmax,1:nymax)

 DOUBLE PRECISION :: d2zn(1:nxmax,1:nymax)

!

 DOUBLE PRECISION :: hdem(1:2,0:nxmax-1,0:nymax-1)

 DOUBLE PRECISION :: tp(1:2,0:nxmax+1,0:nymax+1) ! dummy array.

 INTEGER :: i, j

 DOUBLE PRECISION :: hth, hph ! Overall effective field

 DOUBLE PRECISION :: xhgth, xhgph

!

 EXTERNAL :: hdemag

!

 CALL hdemag(t,dt,tp0,hdem) ! demagnetizing and external field

!

 tp=0

 tp(1:2,1:nxmax,1:nymax)=tp0(1:2,1:nxmax,1:nymax)

!

 CALL RANDOM_NUMBER(noise)

 DO i=1, nxmax

 DO j=1, nymax

 d2xn(i,j)=d2x*(1+0.01*(noise(i,j)-0.5))

 d2yn(i,j)=d2y*(1+0.01*(noise(i,j)-0.5))

 d2zn(i,j)=d2z*(1+0.01*(noise(i,j)-0.5))

 END DO

 END DO

! Calculation of the effective field

 DO j=1, nymax

 129

 DO i=1, nxmax

! Exchange field + sum of external and demagnetizing fields

 xhgth=-((SIN(tp(1,i,j))*COS(tp(1,i+mask(-1,i,j),j))

 & -COS(tp(1,i,j))*SIN(tp(1,i+mask(-1,i,j),j))

 & *COS(tp(2,i,j)-tp(2,i+mask(-1,i,j),j)))

 & +(SIN(tp(1,i,j))*COS(tp(1,i+mask(1,i,j),j))

 & -COS(tp(1,i,j))*SIN(tp(1,i+mask(1,i,j),j))

 & *COS(tp(2,i,j)-tp(2,i+mask(1,i,j),j))))*d2xn(i,j)

 & -((SIN(tp(1,i,j))*COS(tp(1,i,j+mask(-2,i,j)))

 & -COS(tp(1,i,j))*SIN(tp(1,i,j+mask(-2,i,j)))

 & *COS(tp(2,i,j)-tp(2,i,j+mask(-2,i,j))))

 & +(SIN(tp(1,i,j))*COS(tp(1,i,j+mask(2,i,j)))

 & -COS(tp(1,i,j))*SIN(tp(1,i,j+mask(2,i,j)))

 & *COS(tp(2,i,j)-tp(2,i,j+mask(2,i,j)))))*d2yn(i,j)

!

 xhgph=-(SIN(tp(1,i+mask(-1,i,j),j))

 & *SIN(tp(2,i,j)-tp(2,i+mask(-1,i,j),j))

 & +SIN(tp(1,i+mask(1,i,j),j))

 & *SIN(tp(2,i,j)-tp(2,i+mask(1,i,j),j)))*d2xn(i,j)

 & -(SIN(tp(1,i,j+mask(-2,i,j)))

 & *SIN(tp(2,i,j)-tp(2,i,j+mask(-2,i,j)))

 & +SIN(tp(1,i,j+mask(2,i,j)))

 & *SIN(tp(2,i,j)-tp(2,i,j+mask(2,i,j))))*d2yn(i,j)

!

 hth=xhgth+hdem(1,i-1,j-1)

 hph=xhgph+hdem(2,i-1,j-1)

!

 dtp(1,i,j)=(alpha*hth+hph)*mask(0,i,j)

 dtp(2,i,j)=(alpha*hph-hth)/SIN(tp(1,i,j))*mask(0,i,j)

!

 IF (i==isample .AND. j==jsample) THEN

 OPEN(9,FILE='xhgtot.dat',ACCESS='sequential',

 & POSITION='append')

 WRITE(9,900) t, hdem(1,i-1,j-1), hdem(2,i-1,j-1),

 & xhgth,xhgph, hth, hph, dtp(1,i,j), dtp(2,i,j)

 900FORMAT(9(X,F12.6))

 CLOSE(9)

 END IF

!

 END DO

 END DO

 130

!

 END SUBROUTINE derivs

8. Contents in the file “demag2d.f”:

 SUBROUTINE hdemag(t,dt,tp,hdem)

 USE globals

 IMPLICIT NONE

!

 DOUBLE PRECISION :: t, dt

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax)

 DOUBLE PRECISION :: hdem(1:2,0:nxmax-1,0:nymax-1)

!***

! Calculates the demagnetizing field.

!***

!

 EXTERNAL :: hext

 DOUBLE PRECISION, EXTERNAL :: hanis, gasdev

!

 INTEGER :: i, j

 DOUBLE PRECISION :: eps

 DOUBLE PRECISION :: hextx, hexty, hextz ! External field

 DOUBLE PRECISION :: rand_Gauss(1:Nrand)

 DOUBLE PRECISION :: rseed(4)

 INTEGER :: iseed(4)

 DOUBLE PRECISION :: idum(2)

! Cartesian components of Mx, My, Mz

 DOUBLE PRECISION :: xm(0:nx2+1,0:ny2-1)

 DOUBLE PRECISION :: ym(0:nx2+1,0:ny2-1)

 DOUBLE PRECISION :: zm(0:nx2+1,0:ny2-1)

! Fourier images of Mx,My,Mz, as calculated by real->complex transform

 DOUBLE COMPLEX :: xmc(nmaxc)

 DOUBLE COMPLEX :: ymc(nmaxc)

 DOUBLE COMPLEX :: zmc(nmaxc)

! Cartesian components of Hd

 DOUBLE PRECISION :: xm1(0:nx2+1,0:ny2-1)

 DOUBLE PRECISION :: ym1(0:nx2+1,0:ny2-1)

 DOUBLE PRECISION :: zm1(0:nx2+1,0:ny2-1)

! Fourier images of Hx,Hy,Hz, as calculated by real->complex transform

 131

 DOUBLE COMPLEX :: xm1c(nmaxc)

 DOUBLE COMPLEX :: ym1c(nmaxc)

 DOUBLE COMPLEX :: zm1c(nmaxc)

! Timing variables

 INTEGER :: clock_start, clock_end, clock_rate

 DOUBLE PRECISION :: elapsed_time

!

 eps=2.0*alpha*Kbolts*temp/((un*1.d-7)**3*Ms*gamma*dux*duy*duz)

! The first octant (quadrant) of Cartesian M components is

! filled with the respective values. The rest are zero-padded.

 xm=0

 ym=0

 zm=0

 DO j=1, nymax

 DO i=1, nxmax

 xm(i-1,j-1)=SIN(tp(1,i,j))*COS(tp(2,i,j))*mask(0,i,j)

 ym(i-1,j-1)=SIN(tp(1,i,j))*SIN(tp(2,i,j))*mask(0,i,j)

 zm(i-1,j-1)=COS(tp(1,i,j))*mask(0,i,j)

 END DO

 END DO

! Timing routine

 CALL SYSTEM_CLOCK(COUNT_RATE=clock_rate) ! Find the timing rate

 CALL SYSTEM_CLOCK(COUNT=clock_start) ! Start timing

! Conversion of M components to Fourier space

 CALL DZFFT2D(1,nx2,ny2,1.d0,xm,nx2+2,xmc,nxmax+1,table1,work,0)

 CALL DZFFT2D(1,nx2,ny2,1.d0,ym,nx2+2,ymc,nxmax+1,table1,work,0)

 CALL DZFFT2D(1,nx2,ny2,1.d0,zm,nx2+2,zmc,nxmax+1,table1,work,0)

! Fourier images of M are multipled by demagnetizing

! coefficients transform - this is a convolution in

! the Fourier space, that produces image of Hd field.

 DO i=1, nmaxc

 xm1c(i)=kxx(i)*xmc(i)+kxy(i)*ymc(i)

 ym1c(i)=kxy(i)*xmc(i)+kyy(i)*ymc(i)

 zm1c(i)=kzz(i)*zmc(i)

 END DO

! Conversion of Hd to real space

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,xm1c,nxmax+1,xm1,nx2+2,table2,work,0)

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,ym1c,nxmax+1,ym1,nx2+2,table2,work,0)

 CALL ZDFFT2D(-1,nx2,ny2,1.d0,zm1c,nxmax+1,zm1,nx2+2,table2,work,0)

!

 CALL SYSTEM_CLOCK(COUNT=clock_end) ! Stop timing

 132

 elapsed_time=(clock_end-clock_start)/clock_rate

 OPEN(4,FILE='FFTtime.dat',ACCESS='sequential',POSITION='append')

 WRITE(4,400) t, elapsed_time

 400FORMAT(2(X,F12.6))

 CLOSE(4)

! Prepare Guassian-type random numbers for thermo-term

 CALL RANDOM_NUMBER(rseed)

 iseed=INT(rseed*100+100)

 iseed(4)=iseed(4)*2-1 ! the last random seed must be ODD.

 DO i=1, Nrand

 rand_Gauss(i)=gasdev(idum,iseed)

 END DO

! Calculation of spherical components of demagnetizing and external

fields.

 DO j=0, nymax-1

 DO i=0, nxmax-1

! External field

 CALL hext(t,i+1,j+1,hextx,hexty,hextz)

!

 IF (i==isample-1 .AND. j==jsample-1) THEN

 OPEN(7,FILE='demext.dat',ACCESS='sequential',POSITION='append')

 WRITE(7,700) t, xm1(i,j), ym1(i,j), zm1(i,j),

 & hextx, hexty, hextz, hanis(i+1,j+1,tp),

 & SQRT(eps*dt*treduced)*rand_Gauss(nxmax*j+3*i+1)/Ms

 700FORMAT(9(X,F12.6))

 CLOSE(7)

 END IF

!

 xm1(i,j)=xm1(i,j)+hextx+SQRT(eps*dt*treduced)

 & *rand_Gauss(nxmax*j+3*i+1)/Ms

 ym1(i,j)=ym1(i,j)+hexty

 & +SQRT(eps*dt*treduced)*rand_Gauss(nxmax*j+3*i+2)/Ms

 zm1(i,j)=zm1(i,j)+hextz+SQRT(eps*dt*treduced)

 & *rand_Gauss(nxmax*j+3*i+3)/Ms

! Conversion to spheric coordinates

 hdem(1,i,j)=xm1(i,j)*COS(tp(1,i+1,j+1))*COS(tp(2,i+1,j+1))

 & +ym1(i,j)*COS(tp(1,i+1,j+1))*SIN(tp(2,i+1,j+1))

 & -zm1(i,j)*SIN(tp(1,i+1,j+1))

 hdem(2,i,j)=-xm1(i,j)*SIN(tp(2,i+1,j+1))

 & +ym1(i,j)*COS(tp(2,i+1,j+1))

 133

!

 END DO

 END DO

!

 END SUBROUTINE hdemag

! --

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><

! --

! Anisotropy component of effective field

 DOUBLE PRECISION FUNCTION hanis(i,j,tp)

 USE globals

 IMPLICIT NONE

 INTEGER :: i, j

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax)

!

! Anisotropy constant, y-direction only

 DOUBLE PRECISION, PARAMETER :: Hky=0.01

!

 hanis = Hky*(SIN(tp(1,i,j))*SIN(tp(2,i,j))*mask(0,i,j))**2

 & *SIN(tp(1,i,j))*SIN(tp(2,i,j))

 & /ABS(SIN(tp(1,i,j))*SIN(tp(2,i,j)))

!

 END FUNCTION hanis

! --

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><

! --

 FUNCTION gasdev(idum,iseed)

 IMPLICIT NONE

 DOUBLE PRECISION :: gasdev

 DOUBLE PRECISION :: idum(2)

 INTEGER :: iseed(4)

!

 INTEGER, SAVE :: iset

 DOUBLE PRECISION, SAVE :: gset

 DOUBLE PRECISION :: v1, v2, rsq, fac

 DATA iset/0/

!

 IF (iset==0) THEN

 1 CALL dlarnv(1,iseed,2,idum)

 v1=2*idum(1)-1

 v2=2*idum(2)-1

 134

 rsq=v1**2+v2**2

 IF (rsq>=1 .or. rsq==0) GOTO 1

 fac=SQRT(-2.*LOG(rsq)/rsq)

 gset=v1*fac

 gasdev=v2*fac

 iset=1

 ELSE

 gasdev=gset

 iset=0

 END IF

!

 END FUNCTION gasdev

9. Contents in the file “functions.f”:

!***

! Demagnetizing tensor components. i,j,k define relative position

! of two cells, while dx,dy,dz define their size.

! See: Y.Nakatani, Y.Uesaka, N.Hayashi, "Direct Solution of the

! Landau-Lifshitz-Gilbert equation for micromagnetics",

! Jap.J.Appl.Phys., 28 (1989) 2485-507.

!***

 FUNCTION dmxx(i,j,k,dx,dy,dz)

 IMPLICIT NONE

!

 DOUBLE PRECISION :: dmxx

 INTEGER :: i, j, k

 DOUBLE PRECISION :: dx, dy, dz

!

 dmxx=ATAN((dy*dz*(-0.5+j)*(-0.5+k))

 & /(dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(-0.5+j)*(-0.5+k))

 & /(dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(0.5+j)*(-0.5+k))

 & /(dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(-0.5+k)**2)))+ATAN((dy*dz*(0.5+j)*(-0.5+k))

 & /(dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(-0.5+k)**2)))-ATAN((dy*dz*(-0.5+j)*(0.5+k))

 & /(dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2

 135

 & +dz**2*(0.5+k)**2)))+ATAN((dy*dz*(-0.5+j)*(0.5+k))

 & /(dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(0.5+k)**2)))+ATAN((dy*dz*(0.5+j)*(0.5+k))

 & /(dx*(-0.5+i)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(0.5+k)**2)))-ATAN((dy*dz*(0.5+j)*(0.5+k))

 & /(dx*(0.5+i)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(0.5+k)**2)))

!

 END FUNCTION dmxx

! --

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><

! --

 FUNCTION dmyy(i,j,k,dx,dy,dz)

 IMPLICIT NONE

!

 DOUBLE PRECISION :: dmyy

 INTEGER :: i, j, k

 DOUBLE PRECISION :: dx, dy, dz

!

 dmyy=ATAN((dx*dz*(-0.5+i)*(-0.5+k))

 & /(dy*(-0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(0.5+i)*(-0.5+k))

 & /(dy*(-0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(-0.5+i)*(-0.5+k))

 & /(dy*(0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(-0.5+k)**2)))+ATAN((dx*dz*(0.5+i)*(-0.5+k))

 & /(dy*(0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(-0.5+k)**2)))-ATAN((dx*dz*(-0.5+i)*(0.5+k))

 & /(dy*(-0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(0.5+k)**2)))+ATAN((dx*dz*(0.5+i)*(0.5+k))

 & /(dy*(-0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(0.5+k)**2)))+ATAN((dx*dz*(-0.5+i)*(0.5+k))

 & /(dy*(0.5+j)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(0.5+k)**2)))-ATAN((dx*dz*(0.5+i)*(0.5+k))

 & /(dy*(0.5+j)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(0.5+k)**2)))

!

 END FUNCTION dmyy

! --

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><

! --

 136

 FUNCTION dmzz(i,j,k,dx,dy,dz)

 IMPLICIT NONE

!

 DOUBLE PRECISION :: dmzz

 INTEGER :: i, j, k

 DOUBLE PRECISION :: dx, dy, dz

!

 dmzz=ATAN((dx*dy*(-0.5+i)*(-0.5+j))

 & /(dz*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(-0.5+k)**2)*(-0.5+k)))

 & -ATAN((dx*dy*(0.5+i)*(-0.5+j))

 & /(dz*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(-0.5+k)**2)*(-0.5+k)))

 & -ATAN((dx*dy*(-0.5+i)*(0.5+j))

 & /(dz*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(-0.5+k)**2)*(-0.5+k)))

 & +ATAN((dx*dy*(0.5+i)*(0.5+j))

 & /(dz*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(-0.5+k)**2)*(-0.5+k)))

 & -ATAN((dx*dy*(-0.5+i)*(-0.5+j))

 & /(dz*(0.5+k)*SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(0.5+k)**2)))+ATAN((dx*dy*(0.5+i)*(-0.5+j))

 & /(dz*(0.5+k)*SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(0.5+k)**2)))+ATAN((dx*dy*(-0.5+i)*(0.5+j))

 & /(dz*(0.5+k)*SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(0.5+k)**2)))-ATAN((dx*dy*(0.5+i)*(0.5+j))

 & /(dz*(0.5+k)*SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(0.5+k)**2)))

!

 END FUNCTION dmzz

! --

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><><><

! --

 FUNCTION dmxy(i,j,k,dx,dy,dz)

 IMPLICIT NONE

!

 DOUBLE PRECISION :: dmxy

 INTEGER :: i, j, k

 DOUBLE PRECISION :: dx, dy, dz

!

 dmxy=-LOG(ABS(SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2

 137

 & +dz**2*(-0.5+k)**2)+dz*(-0.5+k)))

 & +LOG(ABS(SQRT(dx**2*(0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(-0.5+k)**2)+dz*(-0.5+k)))

 & +LOG(ABS(SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(-0.5+k)**2)+dz*(-0.5+k)))

 & -LOG(ABS(SQRT(dx**2*(0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(-0.5+k)**2)+dz*(-0.5+k)))+LOG(ABS(dz*(0.5+k)

 & +SQRT(dx**2*(-0.5+i)**2+dy**2*(-0.5+j)**2

 & +dz**2*(0.5+k)**2)))

 & -LOG(ABS(dz*(0.5+k)+SQRT(dx**2*(0.5+i)**2

 & +dy**2*(-0.5+j)**2

 & +dz**2*(0.5+k)**2)))-LOG(ABS(dz*(0.5+k)

 & +SQRT(dx**2*(-0.5+i)**2+dy**2*(0.5+j)**2

 & +dz**2*(0.5+k)**2)))

 & +LOG(ABS(dz*(0.5+k)+SQRT(dx**2*(0.5+i)**2

 & +dy**2*(0.5+j)**2

 & +dz**2*(0.5 + k)**2)))

!

 END FUNCTION dmxy

!

!**

! Functions that calculate x/y/z-component of the

! sample's magnetic moment in arbitrary units

!**

!

 DOUBLE PRECISION FUNCTION xmag(tp)

 USE globals

 IMPLICIT NONE

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax)

!

 INTEGER i, j

!

 xmag=0

 DO j=1, nymax

 DO i=1, nxmax

 xmag=xmag+SIN(tp(1,i,j))*COS(tp(2,i,j))*mask(0,i,j)

 END DO

 END DO

!

 END FUNCTION xmag

! --

 138

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><

! --

 DOUBLE PRECISION FUNCTION ymag(tp)

 USE globals

 IMPLICIT NONE

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax)

!

 INTEGER i, j

!

 ymag=0

 DO j=1, nymax

 DO i=1, nxmax

 ymag=ymag+SIN(tp(1,i,j))*SIN(tp(2,i,j))*mask(0,i,j)

 END DO

 END DO

!

 END FUNCTION ymag

! --

! ><><><><><><><><><><><><><><><><><><><><><><><><><><><

! --

 DOUBLE PRECISION FUNCTION zmag(tp)

 USE globals

 IMPLICIT NONE

 DOUBLE PRECISION :: tp(1:2,1:nxmax,1:nymax)

!

 INTEGER i, j

!

 zmag=0

 DO i=1, nxmax

 DO j=1, nymax

 zmag=zmag+COS(tp(1,i,j))*mask(0,i,j)

 END DO

 END DO

!

 END FUNCTION zmag

10. Contents in the file “saveimage.f”:

 139

 SUBROUTINE saveimage(noutput,y)

 USE globals

 IMPLICIT NONE

!

 INTEGER :: noutput

 DOUBLE PRECISION :: y(1:2,1:nxmax,1:nymax)

!***

! Procedure saves a current distribution of Mx, My and Mz

! components so that Matlab's 'imshow' command can apply.

!***

!

 INTEGER :: i, j

 INTEGER, PARAMETER :: Ndigit=3

 DOUBLE PRECISION, SAVE :: mx(1:nxmax,1:nymax)

 DOUBLE PRECISION, SAVE :: my(1:nxmax,1:nymax)

 DOUBLE PRECISION, SAVE :: mz(1:nxmax,1:nymax)

! Note: number of image files must be less than 999!

 CHARACTER :: digit(1:Ndigit)

! Digit pool

 CHARACTER :: a(0:10)

! int is equal to noutput at the beginning

 INTEGER :: int, index

!

 DO i=1, nxmax

 DO j=1, nymax

 mx(i,j)=SIN(y(1,i,j))*COS(y(2,i,j))*mask(0,i,j)

 my(i,j)=SIN(y(1,i,j))*SIN(y(2,i,j))*mask(0,i,j)

 mz(i,j)=COS(y(1,i,j))*mask(0,i,j)

 END DO

 END DO

!

 a(0)='0'; a(1)='1'; a(2)='2'; a(3)='3'; a(4)='4';

 a(5)='5'; a(6)='6'; a(7)='7'; a(8)='8'; a(9)='9';

!

 digit='0'

 int=noutput

!

 DO i=1, Ndigit

 index=MOD(int,10)

 digit(4-i)=a(index)

 int=FLOOR(int/10.0)

 140

 END DO

! Making image file's name

 IF (noutput<10) THEN

 OPEN(1,FILE='xyz.'//digit(3),

 & FORM='formatted',RECL=6144,STATUS='unknown')

 ELSE IF (noutput<100) THEN

 OPEN(1,FILE='xyz.'//digit(2)//digit(3),

 & FORM='formatted',RECL=6144,STATUS='unknown')

 ELSE IF (noutput<1000) THEN

 OPEN(1,FILE='xyz.'//digit(1)//digit(2)//digit(3),

 & FORM='formatted',RECL=6144,STATUS='unknown')

 END IF

! Saving data

 DO i=nxmax, 1, -1

 WRITE(1,100)(mx(i,j), j=1, nymax)

 END DO

!

 DO i=nxmax, 1, -1

 WRITE(1,100)(my(i,j), j=1, nymax)

 END DO

!

 DO i=nxmax, 1, -1

 WRITE(1,100)(mz(i,j), j=1, nymax)

 END DO

!

 CLOSE(1)

!

100 FORMAT(512(F12.8))

!

 END SUBROUTINE saveimage

 141

Appendix III

Visualization of simulation results

(Matlab programs)

Below are some Matlab programs I wrote to perform
visualization tasks. Brief introduction and direction are
included in their comment scripts.

11. Contents in the file “RGBshow.m”:

% This function reads a 2D array from the file “file”,

% and display it by RGB color scheme. The purpose is to

% display spatial profiles of normalized magnetization,

% thus the elements of the array must be within [-1,+1].

function output=RGBshow(file)

% Define colors

 colormap= ...

 [0,0,1;0,0.2,1;0,0.4,1;0,0.6,1;0,0.8,1;0,1,1;0,1,0.8; ...

 0,1,0.6;0,1,0.4;0,1,0.2;0,1,0;0.2,1,0;0.4,1,0;0.6,1,0; ...

 0.8,1,0;1,1,0;1,0.8,0;1,0.6,0;1,0.4,0;1,0.2,0;1,0,0];

% Load the image file

 imagedata=load(file);

 imagesize=size(imagedata);

% Customize the area to be displayed

 imin=1;

 imax=imagesize(1);

 jmin=1;

 jmax=imagesize(2);

% Define the color array to be displayed

 imbin=imagedata(imin:imax,jmin:jmax);

 imbmp=zeros(imax-imin+1,jmax-jmin+1,3);

% Fill the color array

 for i=1:imagesize(1)

 142

 for j=1:imagesize(2)

%

 index=floor(10*imbin(i,j)+10)+1;

 if index<=1

 index=1;

 end

 if index>=21

 index=21;

 end

%

 imbmp(i,j,1)=colormap(index,1);

 imbmp(i,j,2)=colormap(index,2);

 imbmp(i,j,3)=colormap(index,3);

%

 end

 end

% Display the color array

 imshow(imbmp);

% Output

 output=imbmp;

 fclose('all');

%

12. Contents in the file “xy2phi.m”:

% This function read a 2D array from the file “file”,

% and convert the 3D magnetization components into an

% array whose elements represent for the in-plane “phi”

% angles. It is used by the function “RGBshow_angles”.

function output=xy2phi(file)

%

xyz=load(file);

dim=size(xyz);

sizex=dim(1)/3;

sizey=dim(2);

phi=zeros(sizex,sizey);

%

x=xyz(1:sizex,1:sizey);

y=xyz((sizex+1):(2*sizex),1:sizey);

 143

%

for i=1:sizex

 for j=1:sizey

%

 mx=x(i,j);

 my=y(i,j);

 if mx==0

 mx=0.00000001;

 end

 angle=atan(abs(my/mx));

%

 if mx<0 & my>0

 angle=pi-angle;

 elseif mx<0 & my<0

 angle=pi+angle;

 elseif mx>0 & my<0

 angle=2*pi-angle;

 else

 angle=angle;

 end

%

 phi(i,j)=angle*180/pi;

%

 end

end

%

output=phi;

fclose('all');%

%

13. Contents in the file “RGBshow_angles.m”:

% This function does the similar work with “RGBshow”,

% except that the in-plane angles “phi” are displayed

% and the elements in the array “imagedata” must be

% within [0,2*Pi].

function output=RGBshow_angles(imagedata)

% The color map

colormap=[255,255, 0; 255,226, 0; 255,197, 0; 255,159, 0; ...

255,119, 0; 255, 76, 0; 255, 0, 0; 255, 57, 62; ...

 144

255, 45,103; 255, 35,136; 255, 26,164; 255, 18,193; ...

255, 0,255; 230, 0,255; 201, 0,255; 169, 0,255; ...

145, 0,255; 104, 0,255; 0, 0,255; 0, 36,255; ...

0, 89,255; 0,130,255; 0,174,255; 0,218,255; ...

0,255,255; 0,255,195; 0,255,176; 0,255,143; ...

0,255,115; 0,255, 86; 0,255, 0; 98,255, 0; ...

149,255, 0; 170,255, 0; 191,255, 0; 214,255, 0];

colormap=colormap/256;

%

imagesize=size(imagedata);

% Define the color image array

image=zeros(imagesize(1),imagesize(2),3);

% Fill the color array

for i=1:imagesize(1)

 for j=1:imagesize(2)

%

 index=floor(imagedata(i,j)/10)+1;

 if index<=1

 index=1;

 end

 if index>=36

 index=36;

 end

%

 image(i,j,1)=colormap(index,1);

 image(i,j,2)=colormap(index,2);

 image(i,j,3)=colormap(index,3);

%

 end

end

% Display the color image and output

imshow(image);

output=image;

%

fclose('all');

%

14. Contents in the file “vectormap.m”:

 145

% This function displays the spatial profile of in-plane

% magnetization as arrows pointing to proper directions.

% ‘x’/’y’ refer to Mx/My components arrays;

% ‘nx’/’ny’ are the cell numbers along x/y-axis;

% ‘narrowx’/’narrowy’ are the arrow numbers along x/y-axis.

% ‘nx’ must be an integer times of ‘narrowx’, so is ‘ny’.

function output=vectormap(x,y,nx,ny,narrowx,narrowy)

%

vx=zeros(narrowx,narrowy);

vy=zeros(narrowx,narrowy);

xfactor=floor(nx/narrowx);

yfactor=floor(ny/narrowy);

% Fill the vector array

for i=1:narrowx

 for j=1:narrowy

 vx(i,j)=x((i-0.5)*xfactor,(j-0.5)*yfactor);

 vy(i,j)=y((i-0.5)*xfactor,(j-0.5)*yfactor);

 end

end

% Display the vector map

quiver(vx,vy);

axis equal;

axis off;

%

output=xfactor;

%

 146

Appendix IV

Standard RGB Color Wheel

This color wheel (available online) is used to calibrate

different colors representing for orientations of the

magnetization. For example, if the magnetization of a cell

points upward, the cell is painted by yellow (color code 1); if

it points downward, the cell is painted by blue (color code

19), and so on.

