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1 BIOGRAPHY

Emil Leon Post was born on February 11 1897 into an Orthodox Jewish family in
Augustów, a town at that time within the Russian empire, but after 1918 in the
province of Bia�lystok in Eastern Poland. In 1897 his father Arnold emigrated to
join his brother in America. Seven years later, in May 1904, with the success of
the family clothing and fur business in New York, his wife Pearl, together with
Emil and his sisters Anna and Ethel, joined him. The family lived in a comfortable
home in Harlem.

Figure 1. Emil Post, June 1924

As a child, Post was particularly interested in astronomy, but an accident at the
age of twelve foreclosed that choice of career. As he reached for a lost ball under a
parked car, a second car crashed into it, and he lost his left arm below the shoulder.
As a high school senior, Post wrote to several observatories inquiring whether his
handicap would prevent him pursuing a career as an astronomer. The responses
he received, though not uniformly negative, were sufficient to discourage him from
following his childhood ambition; instead, he turned towards mathematics.
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Post attended Townsend Harris High School, a free secondary school for gifted
students on the campus of City College, and received a B.S. in mathematics from
City College in 1917 (where he benefited from a college education free of tuition
fees). While still an undergraduate, he had already done a good deal of the work
for a paper on generalized differentiation, presented to the October 1923 meeting
of the American Mathematical Society, but only published in full seven years later
[Post, 1930]. Post was a graduate student at Columbia University from 1917 to
1920, and it was at Columbia that his interest in modern mathematical logic was
aroused by a seminar on the recently published Principia Mathematica [Whitehead
and Russell, 1910-13] conducted by Cassius J. Keyser. His doctoral thesis, written
under the supervision of Keyser, is a systematic study of the propositional calculus
of Principia, including a proof of completeness.

Post spent the academic year 1920-21 as a Procter Fellow at Princeton Univer-
sity, and it was during this postdoctoral year that he discovered results anticipating
the later incompleteness theorems of Kurt Gödel and the undecidability results of
Church and Turing. The excitement caused by these startling discoveries precipi-
tated his first attack of manic-depressive illness, a condition that plagued him for
the rest of his life. He recovered sufficiently from this first attack to take up an
instructorship at Cornell University, but a second attack led to a withdrawal from
university teaching, and during the 1920s, he supported himself by teaching at
George Washington High School in New York.

Under the care of a general practitioner, Dr. Levy, Post developed a routine that
was designed to avoid undue excitement leading to manic attacks. His regimen
involved strictly restricting the time spent on his research to three hours a day,
from 4 to 5 p.m. and then from 7 to 9 p.m.

In 1932, Post was appointed to the faculty of City College of New York. He left
after only one month, but returned in 1935 for the rest of his career. In spite of
restrictions on his research time due to his treatment regimen and a teaching load
of sixteen hours a week, Post was able to publish some of his most remarkable
and influential papers during this period. His marriage to Gertrude Singer in 1929
undoubtedly introduced a measure of stability into his life, and she assisted him
both by typing his papers and letters, and taking care of day to day financial
affairs. Their daughter Phyllis Goodman remarks that: “My mother . . . was the
buffer in daily life that permitted my father to devote his attention to mathematics
(as well as to his varied interests in contemporary world affairs). Would he have
accomplished so much without her? I, for one, don’t think so” [Davis, 1994, p. xii].

Post was a remarkably successful and popular teacher at City College; his un-
usual pedagogical methods are described below in §8. He continued to struggle
with manic-depressive illness, and in 1954, he succumbed once more. He died of
a heart attack on 21 April 1954 after electro-shock treatment at an upstate New
York mental hospital.
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2 INFLUENCES ON POST

To a remarkable extent, Post as a logician was a homegrown American original.
Most of the other outstanding logicians of the 1920s and 1930s, such as Gödel,
Herbrand, Bernays, Turing and Church, were influenced more or less directly by
Hilbert’s formalist program, and the problems that grew out of it. Post, on the
other hand, after the initial stimulus provided by Principia Mathematica, created
his own research project and problems more or less single handed, at a time when
logic and the foundations of mathematics were not considered respectable topics
for mathematical work in the United States.

An important early influence on his ideas about logic was the philosopher-
logician C.I. Lewis. Lewis’s monograph A Survey of Symbolic Logic [Lewis, 1918]
is an expository work largely devoted to bridging the gap between the tradition
of algebraic logic of Boole and Schröder and Principia Mathematica, but it has a
remarkable sixth chapter that had a strong effect on Post’s early thinking. Lewis
contrasts the logistic method of Whitehead and Russell with what he calls a “het-
erodox” view of the nature of mathematics and logistic.

Lewis points out that the foundational portion of Principia Mathematica falls
short of being a completely formal system. Rather, the primitive propositions of
that work are presented in terms of the intuitive meanings associated with the
notation. Thus, for example, the formation rules of the language are presented
by phrases such as “If p is an undetermined elementary proposition, “not-p” is an
elementary propositional function,” while the rule of detachment (modus ponens)
is stated as follows: “Anything implied by a true elementary proposition is true”
[Whitehead and Russell, 1910-13, Vol. 1, pp. 92, 94]. Whitehead and Russell fail
to make the basic distinction between axioms and rules of inference, since they are
lumped together under the heading of “Primitive Propositions.”

Lewis presents his heterodox view of the logistic method in the following striking
definition:

A mathematical system is any set of strings of recognizable marks in
which some of the strings are taken initially and the remainder derived
from these by operations performed according to rules which are inde-
pendent of any meaning assigned to the marks [Lewis, 1918, p. 355].

Lewis illustrates his definition by presenting the propositional calculus of Principia
Mathematica in a strictly formalist style. He uses the purposely meaningless words
“quid” and “quod” to refer to formulas and propositional connectives. With this
terminology, he restates the formation rule above as follows: “The combination of
any quid preceded immediately by the mark ∼ may be treated as a quid.” The
rules of substitution and modus ponens he states in this way:

(7) In any string in the initial set, or in any string added to the list
according to rule, any quid whatever may be substituted for p or q or r,
or for any quid consisting of only one mark. When a quid is substituted
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for any mark in a string, the same quid must also be substituted for
that same mark wherever it appears in the string.

(8) The string resulting from the substitution of a quid consisting of
more than one mark for a quid of one mark, according to (7), may be
added to the list of strings.

(9) In any string added to the list, according to (8), if that portion
of the string which precedes any mark ⊃ is identical with some other
string in the set, preceded by (, then the portion of that string which
follows the mark ⊃ referred to may be separately repeated, with the
omission of the final mark ), and added to the set [Lewis, 1918, p. 357].

Lewis’s strictly formal statement of the rule of detachment makes a striking con-
trast with the informal and inexact version of Whitehead and Russell, which in-
vokes the extraneous notion of truth in setting down the rule.

Post refers several times to the influence of Lewis’s formalistic view of logistic
systems on his early work [Post, 1921a, p. 165], [Post, 1994, pp. 23,377], and his
research at Princeton during his postdoctoral year can be seen as an attempt to
work out Lewis’s formalistic ideas in the context of the full system of Whitehead
and Russell, and to use them in obtaining general results about formal systems.

Post also acknowledged the influence of his thesis advisor, Cassius J. Keyser
(1862-1947), on his logical work. This may seem somewhat surprising, in view
of the fact that Keyser, although he took part in a debate with Bertrand Russell
on the axiom of infinity [Keyser, 1904][Russell, 1904], was best known for his
numerous books of popular essays on mathematics and mathematical philosophy.
Nevertheless, Post thanks Keyser warmly in the introduction to [Post, 1921a], and
his monograph [Post, 1941] is dedicated to Keyser, “in one of whose pedagogical
devices the author belatedly recognizes the true source of his truth-table method.”

3 THE DOCTORAL DISSERTATION

Post’s first published paper in logic [Post, 1921a] is a shortened version of his
doctoral dissertation; according to a letter from Post to Hermann Weyl of 1941,
the paper was accepted only on condition that its original length be cut by one-
third [Davis, 1994, p. xviii].

This article is outstanding for several reasons. Its main mathematical result
is the first published proof of completeness and decidability of the propositional
fragment of Principia Mathematica. (An earlier proof was given by Paul Bernays
in his Habilitationsschrift of 1918 at Göttingen, published in abbreviated form
in [Bernays, 1926].) The method of the paper is a conscious departure from the
methods of Whitehead and Russell, and Post gives a clear statement of the modern
metalogical attitude to formal systems. Furthermore, a great deal of Post’s most
significant later work in logic is present in embryo in this paper.

In the introduction to his paper, Post points out the restricted viewpoint adopted
by the authors of Principia Mathematica. The aim of Whitehead and Russell is to
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develop the logical foundations of mathematics in a fixed axiomatic system (a form
of the theory of types). The ideal of the work is to develop mathematics within a
logical formalism that is viewed as a universal language. Hence, Whitehead and
Russell eschew as far as possible any considerations about their system that go
beyond this restricted purpose. Post points out that in this way, they “gave up
the generality of outlook which characterized symbolic logic,” and goes on to say:

It is with the recovery of this generality that the first portion of our
paper deals. We here wish to emphasize that the theorems of this
paper are about the logic of propositions but are not included therein.
More particularly, whereas the propositions of ‘Principia’ are particular
assertions introduced for their interest and usefulness in later portions
of the work, those of the present paper are about the set of all such
assertions [Post, 1921a, pp. 163-4].

Post concludes his introduction with a clear explicit statement of his metalog-
ical viewpoint, saying: “We have consistently regarded the system of ‘Principia’
and the generalizations thereof as purely formal developments, and so have used
whatever instruments of logic or mathematics we found useful for a study of these
developments,” referring in a footnote to the chapter of Lewis’s book discussed
above. Post had thus arrived at a logical method similar to that of the Hilbert
school, though in his case, there is no explicit restriction to finitary methods (how-
ever, the methods he used were in fact mostly constructive).

The main part of the paper begins with a precise formulation of the propositional
calculus of Principia Mathematica, inspired by the formulation of Lewis described
above. Post then immediately introduces a truth-table development. Denoting
the truth-value of a proposition by + if it is true and by − if it is false, he gives
the now familiar truth-tables for the primitive connectives

p ∼p
+ −
− +

p, q p ∨ q
+ + +
+ − +
− + +
−− −

and goes on to provide a clear explanation of the truth-table method. He uses the
adjective “positive” for tautologies, “negative” for contradictions, and “mixed” for
contingent formulas (the terminology of “tautology” and “contradiction” is derived
from the independent development of the truth-table method in [Wittgenstein,
1921],[Wittgenstein, 1922]). In a footnote, he remarks that the truth-tables for
the primitive connectives are described by Whitehead and Russell [Whitehead and
Russell, 1910-13, Vol. 1, pp. 8,115], but not the general notion of truth-table, and
points out that the idea is implicit in the expansion technique used by the algebraic
logicians Boole, Jevons and Venn [Lewis, 1918, p. 74, p. 175f]. As we have seen
above, he later cited his thesis advisor Cassius J. Keyser as a more immediate
source of the method.
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Post now states his “Fundamental Theorem,” the result that a propositional
function is assertible in the system if and only if it is positive. This provides
both a completeness theorem as well as a decision procedure for the system (Post
emphasizes the decision procedure aspect rather than completeness). The proof
proceeds by showing that any formula in the system is provably equivalent to one
in full disjunctive normal form, that is to say, any function f(p1, . . . , pn) can be
proved equivalent to a disjunction of conjunctions of the form Q1∧· · ·∧Qn, where
each Qi is either pi or ∼pi. Post observes that if f(p1, . . . , pn) is a positive function,
then the equivalent full disjunctive normal form is easily seen to be provable (since
it must contain all possible conjunctions of the form described above), and hence
f itself is provable.

Post remarks that while the conversion to full disjunctive normal form and
the corresponding decision procedure were both implicit in the earlier literature of
algebraic logic, the significance of his theorem is quite different. Although Schröder
had given a version of the truth-table decision procedure in his treatise on the
algebra of logic, formal and informal logic are bound together in his development in
such a way as to prevent the system as a whole from being completely determined.
The paper continues by considering three different generalizations of his results,
two of which were the basis of a good deal of his later research.

The first generalization consists of generalizing the truth-table method to an
arbitrary finite set of truth-functions as primitive connectives. The basis of ∼
and ∨ chosen by Whitehead and Russell is functionally complete, since all truth-
functions can be expressed in this primitive vocabulary (a fact proved explicitly
by Post). However, not all choices of primitive connectives result in a functionally
complete system; the basis of ∼ and ≡ is an example. Post announces but does not
prove his complete classification of all possible classes of truth-functions generated
by a finite set of connectives. We discuss this result below in §5.

Post next considers “Generalization by Postulation,” a much farther-reaching
idea. He envisages sets of postulates for generalized propositional logics, with a fi-
nite set of primitive connectives, and a finite set of axioms and rules, including the
rule of unrestricted substitution, and goes on to consider generalized versions of
completeness and consistency for such systems. The usual definition of consistency
does not work here, since such systems may not have a recognizable negation con-
nective; similar remarks apply to the notion of completeness. Post replaces these
with the following broader notions. He defines a postulate system to be consistent
if not all formulas are assertible, and closed if the addition of any unprovable for-
mula as an axiom results in an inconsistent system. These notions are now usually
referred to as “Post-consistency” and “Post-completeness.” Earlier in the paper,
Post had shown the propositional calculus of Principia Mathematica to be con-
sistent and complete in these senses, as corollaries to his Fundamental Theorem.
Using his abstract definitions of consistency and completeness, he proves a few
general results about closed (Post-complete) systems, remarking of one of them
that it “begins to approximate to the truth-table method.” This remark looks
forward to the work of his postdoctoral year, in which he tried to obtain general
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decidability results using the postulational generalization.

The last section of the paper is given over to the final generalization, many-
valued logic. Post replaces his earlier truth-values + and − by m distinct “truth-
values” t1, t2, . . . , tm, where m is any positive integer. He generalizes classical
negation by replacing with a cyclic permutation of the m truth-values; the gen-
eralization of classical disjunction has the higher of its two inputs (assuming the
ordering t1 ≥ t2 ≥ · · · ≥ tm). Thus the truth-tables for the generalized connectives
are as follows:

p ∼mp
t1 t2
t2 t3
. . . . . .
tm t1

p, q p ∨m q
t1 t1 t1
. . . . . .
ti1 tj1 ti1
. . . . . .
ti2 tj2 tj2
tm tm tm

where i1 ≤ j1 and i2 ≥ j2.

Generalizing his earlier results for two-valued logic, Post shows that his m-
valued connectives are functionally complete. He then goes on to consider the
m-valued logical systems that result by defining the asserted functions to be those
that always take values t1, t2, . . . , tμ, where 0 < μ < m. He provides a brief
sketch of the method used to give a complete set of postulates for the result-
ing systems. —) Jan �Lukasiewicz had proposed the idea of a three-valued logic
slightly earlier than Post [�Lukasiewicz, 1920]. �Lukasiewicz was inspired by the
idea of a non-Aristotelian logic, in which the third truth-value would represent the
notion of indeterminacy, associated with propositions about future events. Post
seems mostly interested in his generalization as pure mathematics, remarking that
“whereas the highest dimensioned intuitional point space is three, the highest
dimensioned intuitional propositional space is two.” He goes on to say, though,
that just as higher dimensional spaces in geometry can be interpreted by using
some other element than point, so the higher dimensioned logical spaces can be
interpreted by using elements other than propositions. This idea is carried out in
the last section of the paper by interpreting the propositions of m-valued logic as
vectors (p1, p2, . . . , pm−1) of two-valued propositions, with the proviso that if one
proposition is true, then all those that follow are true.

Post himself did not continue his work in many-valued logic, but later math-
ematicians such as D.L. Webb, Alan Rose and A.L. Foster continued the devel-
opment of these systems. The algebraic version of Post’s systems, the theory of
“Post algebras,” is investigated in papers such as [Rosenbloom, 1942], [Epstein,
1960], [Traczyk, 1963], [Traczyk, 1964].
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4 THE POSTDOCTORAL YEAR

During the academic year 1920-21, Post held a Procter Fellowship at Princeton
University (Alan Turing also held a Procter Fellowship 1937-38). It was during
this year that he made his most dramatic discoveries in logic, anticipating by a
decade or more the work of Gödel, Church, Turing and others on incompleteness
and undecidability. Unfortunately, for reasons we discuss below, Post failed to
publish his ideas until after other authors had caught up with his groundbreaking
work.

He started from the postulational generalization of [Post, 1921a], hoping to
obtain general results about the decidability of postulate systems that are abstract
versions of the formalism of classical propositional logic. The simplicity of such
systems encouraged him in the belief that such results were obtainable, and in
addition, he had several positive results to his credit. He had solved the decision
problem in the important special case of two-valued propositional logic, and in
addition had provided a complete classification of all possible subsystems of this
logic based on two-valued connectives. Finally, he had proved the decidability of
all abstract propositional logics where all of the connectives were unary (one-place
operators), a result published in the abstract [Post, 1921b].

Post’s hope was that progress on the decision problem for such generalized
propositional calculi (which he called the “general finiteness problem”) was pos-
sible because of their simple and transparent mathematical structure. His ideas
appear nowadays wildly optimistic, but we have the benefit of hindsight; Jacques
Herbrand, in a paper surveying the work of the Hilbert school [Herbrand, 1930],
expressed a similarly optimistic view towards the decision problem for first-order
logic (known as the Entscheidungsproblem).

Post published nothing in logic between [Post, 1921b] and [Post, 1936]. Nev-
ertheless, we know of his work of 1920-21 because of the retrospective survey he
wrote in 1941 [Post, 1965], on which this section is based. This article falls into
two parts. In the first part, Post demonstrates a series of reductions through
which the decision problem, or “general finiteness problem” is reduced to a system
of an extremely simple type, which he calls a system in “normal form.” In the
second part, the application of a diagonal argument leads him to the conclusion
that the decision problem for systems in normal form is unsolvable, together with
the incompleteness results following from this conclusion.

Post defines the notion of reduction as follows: “A system S1 is reduced to a
system S2 if a 1-1 correspondence is (effectively) set up between the enunciations of
S1, and certain of the enunciations of S2, so that an enunciation of S1 is asserted
when and only when its correspondent in S2 is asserted” [Post, 1965, p. 351],
[Post, 1994, p. 382]. (This definition is in fact Post’s later interpretation of his
tacit assumptions; at the time, he did not have a formal definition.) Post uses
the word “enunciation” to denote a formula of a system. The most important
property of reduction is that if we can solve the decision problem for a system S2,
and S1 can be reduced to S2, then the decision problem for S1 is also solvable.
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Post begins from the formulation of a generalized propositional logic described
in the previous section, calling it “Canonical Form A.” He shows that any system
in canonical form A can be reduced to a second form, “Canonical Form B.” In
Canonical Form B, the unrestricted rule of substitution present in Form A is
replaced by a much weaker version. Post shows, however, that the effect of the
substitution rule can be obtained by using the idea of axiom schemes. For example,
in formulating the propositional calculus, we can take as axioms all formulas of the
form (∼A ∨ (∼B ∨ A)). This method of dispensing with the rule of substitution
is usually attributed to John von Neumann, who employed it in [von Neumann,
1927]. In the conventional formulation, this involves an infinite set of axioms. Post,
on the other hand, requires his rules to be finite, so he adds an axiomatization of
the notion of formula, or “enunciation,” in his terminology. To achieve this, he
adds a primitive function e(·) to his system, whose intended interpretation is “P
is an enunciation,” together with rules such as: e(P ), e(Q) =⇒ e((P ∨ Q)).

Post’s next reduction shows that the entire first-order fragment of Principia
Mathematica can be reduced to canonical form B. Considerable complications are
induced by the fact that different types of variable are involved here, while canon-
ical form B only allows one type of variable. A corollary of this work is that if
the decision problem for all systems in canonical form B were solvable, then the
Hilbertian Entscheidungsproblem would be solvable. More important from Post’s
point of view was the fact that it appeared that all of Principia Mathematica could
in a similar fashion be reduced to a system in canonical form B. Hence, in spite of
its apparently modest appearance, canonical form B already encapsulates the full
complexity of the whole system of Whitehead and Russell, at least as far as the
decision problem is concerned.

At this point in the narrative of his postdoctoral research, Post introduces a
digression into the combinatorial problem of ‘tag,’ a seemingly innocuous problem
that arose early in his research. Let us suppose that we are given a finite set of
primitive symbols, say the set of numerals 0, 1, . . . , μ for simplicity. Then a tag
system is given by a finite set of rules of the form 0 → σ0, . . . , μ → σμ, where
σ0, . . . , σμ is a sequence of finite strings of primitive symbols, possibly empty,
together with a positive integer ν. These rules are applied as follows. Given a
non-empty sequence B of symbols, append to the end of B the string associated
with the first symbol in B, then delete the first ν symbols (all, if there are less
than ν symbols). For example, consider the tag system with the primitive symbols
0, 1, the rules 0 → 00, 1 → 1101 and ν = 3 (a system that Post himself found
intractable). Then if we start with the sequence 10, the rules successively produce
101, 1101, 11101, 011101, . . . . The problem of tag is to decide, given an initial
string, whether or not the process terminates in the empty string or not. One can
think of this as a process in which one end of the string, advancing at a constant
rate, is trying to catch up with the other end of the string – hence the colourful
name of ‘tag,’ suggested by Post’s fellow-student and colleague B.P. Gill.

Post came upon the problem in the following way. Early in his work, he had
discovered a method that, given two formulas in a system in canonical form A



438 Alasdair Urquhart

(that is to say, two terms of first-order logic), determines whether or not there
is a set of substitutions that makes the two expressions identical. He called this
method the “the L.C.M. process” – this is Post’s name for the unification algorithm
that plays a very important part in automated theorem proving in first-order
logic, and was described in print in the groundbreaking paper on the resolution
method [Robinson, 1965]. (Post’s “least common multiple” appears to be an
alternative name for Robinson’s “most general unifier.”) In attempting to extend
the algorithm to higher-order logic, Post encountered the problem of tag. An effort
to extend the result of [Post, 1921b] to more general systems led again to the same
problem. Thus this combinatorial problem in symbol manipulation seemed like an
essential stepping stone towards his hoped-for general results on decidability, and
Post made it the major project of his postdoctoral year.

It should come as no surprise that the two problems mentioned above are unsolv-
able. The problem of tag was proved unsolvable in [Minsky, 1961] – an attractive
exposition of this result is in the book [Minsky, 1967]. As for the higher-order uni-
fication problem, the second-order case was proved unsolvable in [Goldfarb, 1981].
At the initial stage of his research, though, Post did not have an inkling of unsolv-
able problems, but instead hoped that the simple and primitive character of tag
systems would lead to equally simple decision procedures. This hope led rapidly
to disillusionment, as he found that problems of ordinary number theory cropped
up in his attempts at solving the problem of tag, disappointing his hope that “the
known difficulties of number theory would, as it were, be dissolved in the partic-
ularities of this more primitive form of mathematics” [Post, 1965, p. 373], [Post,
1994, p. 398]. Although the solution of the general problem of “tag” appeared
hopeless (and hence the entire program of the solution of decision problems), Post
had assumed that it was a very minor, if essential, stepping stone towards his
broader program. However, in the late summer of 1921, Post found a further se-
ries of reductions that led to a final canonical form very close to the apparently
special form of “tag.” We now describe this final series of reductions.

Canonical form B assumes that there are infinitely many variables, and that the
formation rules for formulas are given in terms of functional operations f(p1, . . . , pn).
Post begins his series of reductions by reducing systems in form B to systems in
canonical form C, in which all formulas are built from a finite alphabet Σ, and
the formulas consist simply of the set Σ∗ of all finite strings built from symbols in
Σ. A system in canonical form C has a finite set of strings as primitive assertions,
and a finite set of rules, or “productions” having the form σ1, . . . , σk =⇒ τ, where
σ1, . . . , σk, τ are strings composed of the symbols in Σ, together with added sym-
bols from a set of auxiliary symbols Δ = {P1, P2, . . . , Pm, . . . } disjoint from Σ,
and every auxiliary symbol in τ appears in one of σ1, . . . , σk. In an application of
the rule, the auxiliary symbols in Δ are considered as syntactic variables ranging
over arbitrary strings (possibly empty).

As an example of such a system, consider the alphabet {a, b}, and let the prim-
itive assertions consist of the strings a, b, aa, bb. The two rules of the system are:

P1 =⇒ aP1a, P1 =⇒ bP1b.
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It is easy to see that the assertions of this system consist of all palindromes in the
alphabet {a, b}, that is to say, all non-empty strings that read the same forward
as backwards.

As a second example, consider the alphabet {p,∼,∨, (, )}, with the single prim-
itive assertion p, and the rules:

P1 =⇒ ∼P1, P1, P2 =⇒ (P1 ∨ P2).

Then the assertions of this system are exactly the formulas of the propositional
calculus of Principia Mathematica containing the single variable p.

Post’s next move is to give a series of four successive reductions, in the course
of which the decision problem is reduced to that of systems of the very simple
Post normal form. A system of canonical form C is said to be in normal form if it
has a single primitive assertion, and all productions are of the form σP =⇒ Pτ .
Thus the general decision problem, even for a system as apparently complicated
as Principia Mathematica, can be reduced to that for a system of rules that can
only operate on strings by first deleting an initial substring, then tacking on a new
string at the end. This amazing result was described by Marvin Minsky as “one
of the most beautiful theorems in mathematics” [Minsky, 1967, p. 240]. Post’s
proof of the theorem is not inherently difficult, but it is rather lengthy and not
very easy to follow; a clear exposition of the theorem, following the lines of Post’s
original construction, with numerous helpful examples, is provided in Chapter 13
of [Minsky, 1967]. An alternative approach to the proof, based on the theory of
Turing machines and semi-Thue systems, is given in Chapter 6 of [Davis, 1958].

The normal form is very close to that of tag systems, since in both cases, the
rules involve removing a string of symbols at the beginning, and tacking on a
string at the end. The simplicity of the final normal form, together with his
earlier success in solving the decision problem for a simple case of canonical form
A, aroused Post’s hopes anew. However, as he said later, “just when hope was
thus renewed for a solution of the general finiteness problem, a fuller realization of
the significance of the previous reductions led to a reversal of our entire program”
[Post, 1965, p. 402][Post, 1994, p. 418].

4.1 The Anticipation

The reduction of the whole of first-order logic to canonical form B, and the subse-
quent reduction of systems in canonical form B to systems in normal form made
it seem very likely that the whole of Principia Mathematica could be reduced to a
system in normal form (although Post never in fact worked out all the details of
this reduction).

In spite of its apparently great deductive power, a system as complicated as
Principia Mathematica can be presented as a set of elementary rules for rewriting
strings of symbols. This led Post to a far-reaching generalization [Post, 1994,
p. 405], [Post, 1994, p. 420]:
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In view of the generality of the system of Principia Mathematica, and
its seeming inability to lead to any other generated sets of sequences
on a given set of letters than those given by our normal systems, we
are led to the following generalization.

Every generated set of sequences on a given set of letters a1, a2, . . . , aμ

is a subset of the set of assertions of a system in normal form with
primitive letters a1, a2, . . . , aμ, a′

1, a
′
2, . . . , a

′
μ, i.e., the subset consist-

ing of those assertions of the normal system involving only the letters
a1, a2, . . . , aμ.

The italicized statement in the quotation equates an intuitive notion, the notion
of sets of sequences that are generated by finite means, with a precisely defined
mathematical notion. It is analogous to Church’s thesis [Church, 1936] identifying
functions that are computable in the intuitive sense with general recursive (equiv-
alently, Turing-computable) functions. Post’s hypothesis, by analogy, has been
called “Post’s thesis” [Davis, 1982, p. 21]; under some plausible assumptions, it is
in fact equivalent to Church’s thesis.

Post now observed that a simple application of Cantor’s diagonal argument
leads immediately to an apparent counter-example to his thesis. Let us represent
sets of positive integers as sets of strings on a single letter ‘a’, where a string of
length n represents the integer n. It is easy to see that we can effectively enumerate
all possible normal systems generating such sets of strings. But now the diagonal
method apparently leads to a generated set of strings that is not one of those in the
enumeration. That is to say, let the diagonal set D be defined by the prescription:
a string a . . . a of length n is in D if and only if it is not generated by the nth
normal system in the enumeration. This appears to contradict Post’s thesis.

However, a contradiction would only arise if D were in fact a generated set. D
would be generated by a finite process, if we make the assumption that the decision
problem is solvable for the class of normal systems. What we have shown, in fact,
is that this hypothesis together with Post’s thesis, leads to a contradiction. Post
already had a suspicion that there were inherent difficulties in his quest for general
decision methods, based on his difficulties with the problem of tag. However, no
difficulties appeared to stand in the way of his thesis. Hence, he held fast to
his thesis, concluding that the decision problem for normal systems was in fact
unsolvable. He recorded the philosophical influences that led him to the resolution
of the contradiction as follows [Post, 1965, p. 407],[Post, 1994, p. 421]:

In thus resolving this dilemma, the writer was greatly influenced by
having heard, not long before, of Brouwer’s rejecting the law of the
excluded middle. This revolution in the writer’s thought was largely
energized by the immediately prior reading of Poincaré’s Foundations
of Science.

The informal sketch of the unsolvability of the decision problem for normal
systems given above depends on the assumption of Post’s thesis, which, since it
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equates an informal notion with a mathematical notion, cannot be considered a
mathematical hypothesis. However, we can restate the result in such a way as to
make into a purely mathematical theorem.

Post concludes the mathematical part of his 1941 paper with a sketch of this
restatement. He begins by observing that there is a universal normal system in the
following sense. There is a normal system K that has the following property: For
every normal system S and formula P in the vocabulary of S, there is a formula
(S, P ) of K so that (S, P ) is assertible in K if and only if P is assertible in S.
Post’s system K, which he calls the complete normal system, is thus a complete
inference system for assertions of the form “The string P is assertible in the normal
system S,” and is the analogue in the realm of normal systems of Turing’s universal
computing machine [Turing, 1936].

Although the normal systems are abstract versions of formal axiomatic systems,
Post observed that we can also use them to represent decision procedures. Suppose
that we are given a normal system M , and that in addition, there is a normal
system M ′ that contains all of the primitive symbols of M , and in addition a new
letter b (possibly with some other additional symbols). Assume that if P is a
formula of M , that P is an assertion of M ′ if and only if it is an assertion of M ,
and that bP is an assertion of M ′ if and only if it is not an assertion of M . Then
there is a decision procedure for M , since to decide whether or not a formula P is
an assertion of M or not, we can systematically enumerate all of the assertions of
M ′, and observe whether P or bP is an assertion of M ′. (This idea is the source of
Post’s later theorem [Post, 1944, p. 290] that a set of positive integers is recursive
if and only if both it and its complement are recursively enumerable.) If such
a system M ′ exists, then Post says that there exists a finite-normal-test for the
system M [Post, 1965, pp. 412-413], [Post, 1994, p. 425].

In the informal sketch given above of the result that there is no general deci-
sion procedure for normal systems, we can replace the appeal to Post’s thesis by
restricting our attention to normal systems from the outset, and by replacing the
informal notion of decision procedure by the concept of finite-normal test. We can
thus prove the fundamental result: There is no finite-normal-test for the complete
system K. A rigorous proof of this result depends on a formal version of the
diagonal method sketched above.

Throughout his research of 1920-21, Post concentrated on the problem of deci-
sion procedures. However, his idea of representing decision procedures as complete
formal theories, as in his notion of “finite-normal-test,” leads immediately to in-
completeness results for formal systems.

The complete system K is able to give correct positive answers to all questions
of the form: “Is the formula P an assertion of normal system S?” Could there
be a system that in addition gives correct negative answers to all such questions?
The fundamental theorem above indicates that such a system cannot exist. Let L
be a normal system that includes all the primitive letters of the complete normal
system K among its primitive letters, together with another primitive letter b.
Furthermore, let us assume that for any normal system S and formula P of S,
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(S, P ) is an assertion of L if and only P is an assertion of S, while if b(S, P )
is an assertion of L, then P is not an assertion of S. Any such L, Post calls
a normal deductive-system adjoined to K. In other words, a normal deductive-
system adjoined to K gives a correct and complete set of positive answers to
questions of the above type, while all of the negative answers it gives to such
questions are correct.

The same argument used to prove the fundamental theorem then demonstrates
a basic incompleteness theorem: No normal deductive-system is complete, so that
if L is any such system, there is always a normal system S and formula P of S
so that P is not an assertion of S, but b(S, P ) is not an assertion of L. This is
an abstract form of Gödel’s incompleteness theorem, though stated with respect
to normal systems rather than arithmetical propositions. Post concludes with the
striking words, A complete symbolic logic is impossible, and remarks [Post, 1965,
pp. 416-417],[Post, 1994, pp. 428-429] :

This is an iconoclastic result from the formal logician’s point of view
since it means that logic must not only in some parts of its description
(as in the operations), but in its very operation be informal. Better
still, we may write

The Logical Process is Essentially Creative.

4.2 Post’s failure to publish

In view of the truly remarkable nature of the results that Post achieved in the
early 1920s during his postdoctoral year, one may well wonder why he did not
publish any of this material until fifteen years had passed. There were certainly
a number of external reasons for this. The first outbreak of his manic-depressive
illness followed immediately on his great discoveries, and the loss of his academic
position at Cornell University, together with his being forced to make a living
as a high school teacher, were hardly conducive to research and publication. In
the summer of 1924, during a year in which he had some association with Cornell
University, Post made some progress on his project, but he was never able to bring
it to completion.

Another reason given by Post in later years was the general lack of interest
in the United States in logical matters. In the covering letter that he sent in
1941 with [Post, 1965] to Hermann Weyl, the editor of the American Journal of
Mathematics, he points out that, for example, the original paper giving the results
of [Post, 1941] was returned to him by the editors of the Annals of Mathematics at
the height of his postdoctoral work “without any editorial commitment, and with
a very mixed report from the referee.” He continues:

It therefore seemed to me to be hopeless to seek publication of Part
One of the present paper. And without it, the then revolutionary Part
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Two would have seemed but idle chatter. An attempt to obtain a full
proof development was interrupted by ill health and led to a constantly
receding date of ultimate publication [Davis, 1994, p. xviii].

This last quotation hints at an internal reason for Post’s failure to stake his
claim to the incompleteness and undecidability results in time. Kurt Gödel, in the
famous incompleteness paper [Gödel, 1931] that led to most of the later research
on the limitations of formal systems, set himself a precise but restricted goal. He
showed that a powerful, but quite specific, axiomatic system for mathematics, the
simple theory of types with the natural numbers as a ground type and the Peano
axioms for number theory, was incomplete, and furthermore, that any of a very
broad class of ω-consistent extensions of this system shared this incompleteness.
At the same time, Gödel left somewhat indefinite the class of systems to which
his incompleteness results applied, and it was only later, with the publication of
[Church, 1936] and [Turing, 1936] that it became clear that the incompleteness re-
sults were completely general, applying to any formal system including a minimum
of elementary number theory.

Post, on the other hand, set himself the goal of proving his thesis, that the
mathematical concept of normal system exactly characterizes the informal notion
of a generated set of strings. In the introduction to a strange but fascinating
Appendix to [Post, 1965], he explains his plan:

While the formal reductions of Part I should make it a relatively sim-
ple matter to supply the details of the development outlined in §9 and
the beginning of §10, that development owes its significance entirely to
the universal character of our characterization of an arbitrary gener-
ated set of sequences as given in §7. Establishing this universality is
not a matter for mathematical proof, but of psychological analysis of
the mental processes involved in combinatory mathematical processes.
Because these seemed to be sufficiently simple to be exhaustively de-
scribed, the writer gave up a direct use of Principia Mathematica as a
partial verification of the characterization in question, planning rather
that the incompleteness of the logic of Principia Mathematica would be
a corollary of the more general result [Post, 1965, p. 418],[Post, 1994,
p. 429].

The remainder of the Appendix consists of quotations from a diary that Post kept
under the title “Time Accounts” from the spring of 1916 to the spring of 1922 (this
diary is not among the Post papers in Philadelphia, and may have been destroyed
or lost).

It is of course possible to provide quite convincing plausibility arguments for
Church’s thesis, as also for Post’s thesis, and [Church, 1936] and [Turing, 1936]
both contain such heuristic considerations. Turing’s arguments are more convinc-
ing than those of Church; the article [Sieg, 1997] contains an illuminating detailed
analysis of Church’s arguments and a comparison with those of Turing. Neverthe-
less, it seems hopeless to produce an argument that would establish the result with
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complete certainty, and Post’s search for such an analysis was a quixotic venture
doomed to failure. The result was that his results of 1920-21 were superseded by
the work of others, a development that undoubtedly caused Post a great deal of
anguish.

Post’s unpublished paper of 1941 was an attempt to recoup some of his losses.
However, the paper was rejected by Hermann Weyl, who explained his decision by
saying:

I have little doubt that twenty years ago your work, partly because of its
then revolutionary character, did not find its due recognition. However,
we cannot turn the clock back; in the meantime Gödel, Church and
others have done what they have done, and the American Journal is
no place for historical accounts . . . [Davis, 1994, p. xix]

The paper [Post, 1943] is a greatly shortened version of [Post, 1965], containing
only the reduction from canonical form C to normal form, although a concluding
lengthy footnote summarizes the content of the rejected paper.

On October 29 1938, Post made the acquaintance of Kurt Gödel at a regional
meeting of the American Mathematical Society in New York, and spoke with him
about his work on absolutely unsolvable problems. On the same day, he wrote
Gödel a touching letter in which he said:

I am afraid that I took advantage of you on this, I hope but our first
meeting. But for fifteen years I had carried around the thought of
astounding the mathematical world with my unorthodox ideas, and
meeting the man chiefly responsible for the vanishing of that dream
rather carried me away [Gödel, 2003, p. 169].

On the following day, Post, still excited by his meeting with Gödel, wrote a
second letter in which he summarized his work of the 1920s, following the outline
of [Post, 1965] while emphasizing the incompleteness of any formal system with
respect to the fixed subject matter of provability in normal systems. Explaining
his failure to prove Gödel’s results at the time, he said:

May I finally say that nothing that I had done could have replaced the
splendid actuality of your proof. For while corollary your theorem may
be of the existence of an absolutely unsolvable problem, the absolute
unsolvability of that problem has but a basis in the nature of phys-
ical induction at least in my work and I still think in any work. Of
course with sufficient labor that induction could have gone far enough
to include your particular system theorematically. That that could be
done for Principia Mathematica I saw then. My only excuse for not
doing so – well there are many and having written so much I might
add them. Chiefly I thought I saw a way of so analyzing “all finite
processes of the human mind” [something of the sort of thing Turing
does in his computable number paper] that I could establish the above
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conclusions in general and not just for Principia Mathematica. Sec-
ondly that the absolute unsolvability of my problem would not achieve
much recognition for others merely on the basis of an incompleteness
proof for Principia Mathematica. And lastly while the above general
analysis enticed me it seemed foolish to do all the labor involved in the
more special Principia Theorem.

Post concluded his letter by apologizing to Gödel for his excitement when they
met:

It was a real pleasure to meet you and I hope my egotistical outbursts
have spent themselves with that first meeting and this letter. Needless
to say I have the greatest admiration for your work, and after all it is
not ideas but the execution of ideas that constitute a mark of greatness
[Gödel, 2003, pp. 171-72].

In a brief reply, Gödel reassured Post that he had noticed “nothing of what you
call egotistical outbursts in your letters or in the talk I had with you in New York;
on the contrary it was a pleasure to speak with you” [Gödel, 2003, p. 173].

In spite of his disappointment in being overtaken by other logicians, Post contin-
ued to work in the area of recursion theory, and made some of his most important
and influential contributions in the period from 1936 to 1954. Before we take up
this thread again, however, it is necessary to make a digression in order to describe
Post’s work on Boolean clones. Although his fundamental results in this area were
already announced in [Post, 1921a], they were finally published twenty years later
after major changes in exposition.

5 CLASSIFYING SETS OF BOOLEAN FUNCTIONS

In this section, we discuss Post’s basic results on classes of Boolean functions
closed under composition. Although his work in this area belongs with the most
fundamental results of modern mathematical logic, it has remained somewhat
difficult of access.

When Post rewrote his research for publication, following an unfortunate sug-
gestion of a referee [Post, 1941, p. 4], [Post, 1994, p. 256] he adopted the notation
of Jevons for logical formulas (his earlier version was in terms of the more familiar
truth-tables). Jevons uses capital letters A,B,C, . . . as Boolean variables (inter-
preted as classes), while the corresponding lower case letters a, b, c, . . . represent
the complements of these variables [Jevons, 1864]. The addition symbol + repre-
sents Boolean union (inclusive disjunction), while the universal and empty classes
are symbolized by 1 and 0. As an example of Jevons’s notation, the disjunctive
normal form expression usually symbolized as (A∧B)∨ (∼A∧B ∧∼C) is written
in Jevons’s notation as AB + aBc. Post proceeds in his classification by means
of what he calls an “expansion” of a logical function, a pair α : β of expressions
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in disjunctive normal form, expressed in Jevons’s notation, the first being a dis-
junctive normal form of the function itself, the second a disjunctive normal form
of its negation. The expansion is not unique; for example, one expansion of the
implication function A ⊃ B is a + B : Ab, while another is AB + aB + ab : Ab.

Although Jevons’s notation is concise, and not difficult to learn, Post’s use of it
leads to quite unnecessary obscurities. For example, the familiar class of monotone
functions in Post’s terminology becomes the class of functions “satisfying the [A :
a] condition” [Post, 1941, p. 35], [Post, 1994, p. 287]. This idiosyncratic phrase
derives from a characterization of monotone functions in terms of their expansions.
A Boolean function f is monotone if and only if it satisfies the [A : a] condition:
for any two terms in an expansion of f , there is a letter which is capital in the
term that is in the first expression and small in the term that is in the second
expression.

The result, unfortunately, is a monograph that modern logicians seem to find
impossible to read. Post provides a complete and painstaking proof of his ma-
jor results; reviewing the work in the Journal of Symbolic Logic, H.E. Vaughan
[Vaughan, 1941] remarked that the book is “self-contained and very clearly writ-
ten,” and noted only four serious misprints. Nevertheless, the contemporary logi-
cian Roman Murawski wrote [Murawski, 1998] of Post’s characterization of func-
tionally complete sets of connectives (proved in §26 of his monograph):

Did Post prove this theorem? In [Post, 1941] one finds no proof sat-
isfying the standards accepted today. The reason for that was Post’s
baroque notation (it was in fact an unprecise adaptation of the impre-
cise notation of Jevons from his Pure Logic, cf. [Jevons, 1864]), other
reason was the fact that Post seemed to be simultaneously pursuing
several different topics.

Although these accusations of imprecision and lack of rigour are quite unjustified,
Murawski’s remarks (which echo similar but somewhat more guarded observa-
tions in [Pelletier and Martin, 1990, p. 463]) form an eloquent testimony to the
unreadability of Post’s ill-fated monograph.

In view of the problematic nature of Post’s exposition, in most of this section
we shall expound his results in unabashedly modern terminology. The exposition
below in fact has some substantive differences from Post’s original statement of his
results; towards the end of this section, we shall return to Post’s original version
to explain where these differences lie.

5.1 A tour of Post’s lattice

Our object of study in this section is the family of all finitary functions on the
two-element set S = {0, 1}; we can identify the elements with truth-values, with 1
as “true,” and 0 as “false.” An n-place operation on S, for n > 0, maps n-tuples
of Boolean values into Boolean values. There are 22n

such functions for each n;
familiar logical operations such as ∧ and ∨ are among the sixteen 2-place Boolean
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functions. (We might also consider the constants 0 and 1 as zero-place functions,
but here we prefer to think of them as 1-place constant functions.)

The most basic n-place functions (apart from the constant functions) are the
projections πn

i , defined by the equation: πn
i (x1, . . . , xn) = xi. If we think of

functions as given by expressions involving variables x1, . . . , xi, . . . , xn, . . . , then
the projections correspond to the variables themselves. We can construct new
functions from old by the operation of composition. If f is a k-place operation,
and g1, . . . , gk a list of n-place functions, then we define an n-place function h by
composition:

h(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)).

We define a family of Boolean functions to be a clone if it contains all the projection
functions and is closed under composition (Post uses a more general notion of
“iteratively closed class,” described below in §5.2).

Figure 2 shows the inclusion diagram of all Boolean clones. Post’s results are
perhaps most easily understood in terms of a commentary on this diagram. The
first and most obvious feature of the diagram is its left-right symmetry. This
symmetry arises from the phenomenon of duality. If f(x1, . . . , xn) is a Boolean
function, then the function g defined by the equation

g(x1, . . . , xn) = ∼f(∼x1, . . . ,∼xn)

is the dual of f ; the dual of the dual of f is just f itself. Equivalently, the truth-
table of the dual of f is obtained from the truth-table of f by replacing 0 by 1
and 1 by 0. For example, ∧ is the dual of ∨, and vice versa; the dual of the
implication operator (x ⊃ y) is the subtraction operator y � x, or equivalently,
(y ∧∼x). A function is self-dual if it is equal to its dual. If C is a clone, then the
class of functions dual to those in C is also a clone, so that to every clone in our
diagram there is a corresponding dual clone, explaining the left-right symmetry.
The fourteen systems in the centre of the diagram are self-dual classes (that is to
say, they are their own duals).

There are only countably many Boolean clones, and Post’s classification gives
a complete, explicit description of all of them. Figure 2 shows a central section,
consisting of 30 “sporadic” clones, together with eight infinite descending chains,
four on the left and four on the right. The supplementary Figure 3 shows some
of the rather intricate pattern of containments in the central part of the lattice.
Every one of the clones is finitely generated, that is to say, there is an explicitly
describable finite set G of functions so that every function in the clone can be
defined from functions in G. In the remaining part of this section, we shall take a
tour of Post’s lattice, giving a description of all of the clones and their generators.

At the bottom of the lattice, we find six classes generated by negation and
constants: R1 = {∅} (the set of all projections), R4 = {∼}, R6 = {1}, R8 = {0},
R11 = {1, 0}, R13 = {∼, 1}. Here, the notation {∼, 1} (for example) denotes the
smallest clone containing the functions ∼ and 1.
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Figure 2. Post’s lattice

Proceeding up the lattice, we encounter two groups of four on left and right,
and one group of five in the middle. On the left, we have four classes generated
by disjunction and the constants: S2 = {∨}, S4 = {∨, 1}, S5 = {∨, 0} and S6 =
{∨, 0, 1}. On the right, the dual classes are: P2 = {∧}, P4 = {∧, 0}, P5 = {∧, 1},
P6 = {∧, 0, 1}. In the middle, there are five classes describable in terms of the
biconditional ≡ and its dual ⊕ (that is to say, addition modulo 2). If we write
⊕3 for the three place operation x ⊕ y ⊕ z, then we have: L1 = {≡,∼}, L2 =
{≡}, L3 = {⊕}, L4 = {⊕3}, L5 = {⊕3,∼}. The class L1 can also be described
abstractly as the set of all linear Boolean functions, that is to say, those expressible
in the form x1 ⊕ · · · ⊕ xn ⊕ c, where c is a constant (0 or 1).

At this point, it is convenient to make a digression to introduce some defini-
tions. We define two infinite sequences, c2, c3, . . . , cn, . . . and d2, d3, . . . , dn, . . . of
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Figure 3. Post’s lattice: the central part

functions, where cn and dn each have n + 1 input variables. For n ≥ 2, we define:

cn(x1, x2, . . . , xn+1) =
∧

1≤i≤n+1

(x1 ∨ · · · ∨ x̂i ∨ · · · ∨ xn+1),

dn(x1, x2, . . . , xn+1) =
∨

1≤i≤n+1

(x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn+1),

where the notation “x̂i” means that the variable xi is omitted from the term in
question. For example, function d2 is given by the definition

d2(x1, x2, x3) = (x2 ∧ x3) ∨ (x1 ∧ x3) ∨ (x1 ∧ x2).

The function dn belongs to the family of threshold functions, a family that
plays an important role in theoretical computer science [Vollmer, 1999]. The
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threshold function Tn
m, for m ≤ n, is the n-place function defined by the condition:

Tn
m(x1, . . . , xn) = 1 if and only if x1 + · · · + xn ≥ m (that is to say, at least m of

the inputs x1, . . . , xn are equal to 1). For example, (x∨y) = T 2
1 , and (x∧y) = T 2

2 .
With this definition, we have dn = Tn+1

n . The function cn satisfies the dual
condition: cn(x1, . . . , xn) = 1 if and only if x1 + · · ·+xn > 1. It is easy to see that
c2 = d2. The functions cn and dn are duals of each other, so that the function c2

is self-dual.
In the centre of the diagram is a group of three classes, D2 = {d2}, D1 =

{d2,⊕3} and D3 = {d2,⊕3,∼}. D3 is the class of all self-dual functions; hence
there are exactly seven classes consisting entirely of self-dual functions.

Immediately above D3 lies a group of four classes, A1, A2, A3 and A4. The
top element in this group, A1, is the important class of all monotone functions.
If we order the truth-values by setting 0 < 1, then n-tuples of truth-values can
be ordered by defining 〈x1, . . . , xn〉 ≤ 〈y1, . . . , yn〉 if and only if xi ≤ yi, for all i,
1 ≤ i ≤ n. An n-place function f is monotone if for all x1, . . . , xn, y1, . . . , yn,

〈x1, . . . , xn〉 ≤ 〈y1, . . . , yn〉 ⇒ f(x1, . . . , xn) ≤ f(y1, . . . , yn).

The generators of these classes are given by A1 = {∧,∨, 0, 1}, A2 = {∧,∨, 1},
A3 = {∧,∨, 0} and A4 {∧,∨}.

Proceeding to the top of the lattice, we find C1, the class of all Boolean functions,
C2, the class of all functions that preserves 1, in the sense that if f is an n-place
function in C2, then f(1, 1, . . . , 1) = 1, C3, the class of all functions preserving 0,
and C4, the class of all functions preserving both 1 and 0. For generators, we have
C1 = {∨,∼}, C2 = {∧,⊃}, C3 = {∨, �}, C4 = {x ∧ (y ∨ ∼z),∨}.

Finally, we have to describe the eight infinite descending chains arranged sym-
metrically on each side of the lattice. Starting with the four chains on the left, we
can describe them using the following sets of generators, where 2 ≤ m < ∞:

Fm
1 = {x ∨ (y � z), cm}, F∞

1 = {x ∨ (y � z)};

Fm
2 = {x ∨ (y ∧ z), cm}, F∞

2 = {x ∨ (y ∧ z)};

Fm
3 = {cm, 1}, F∞

3 = {x ∨ (y ∧ z), 1};

Fm
4 = {⊃, cm}, F∞

4 = {⊃}.
The four chains on the righthand side of the lattice are the duals of those on the

left. Thus, a set of generators for each class is given by the duals of the generators
of the corresponding dual class:

Fm
5 = {x ∧ (y ∨ ∼z), dm}, F∞

5 = {x ∧ (y ∨ ∼z)};

Fm
6 = {x ∧ (y ∨ z), dm}, F∞

6 = {x ∧ (y ∨ z)};

Fm
7 = {dm, 0}, F∞

7 = {x ∧ (y ∨ z), 0};

Fm
8 = {�, dm}, F∞

8 = {�}.
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It is possible to give a more structural description of the eight infinite chains
by giving properties that characterize the functions in each clone. We general-
ize the property of being 0-preserving that picks out the functions in the class
C3. Define a function f to be doubly 0-preserving if, given two n-tuples of truth-
values, x1, . . . , xn and y1, . . . , yn such that f(x1, . . . , xn) = f(y1, . . . , yn), there
is a j, where 1 ≤ j ≤ n, so that xj = yj = 1. More generally, define f to be
m-tuply 0-preserving if whenever x1

1, . . . , x
1
n, x2

1, . . . , x
2
n, . . . , xm

1 , . . . , xm
n is a se-

quence of length m, consisting of n-tuples of truth-values such that f(x1
1, . . . , x

1
n) =

f(x2
1, . . . , x

2
n) = · · · = f(xm

1 , . . . , xm
n ) = 1, there is a j, where 1 ≤ j ≤ n, so that

x1
j = x2

j = · · · = xm
j = 1. A function is infinitely 0-preserving if it is m-tuply

0-preserving for all m. This terminology, taken from [Pippenger, 1997, p. 22],
is justified by the fact that a function is 0-preserving just in case it is singly
0-preserving.

The class Fm
8 consists of all m-tuply 0-preserving functions, Fm

7 results by
restricting such functions to be monotone. Fm

5 consists of all m-tuply 0-preserving
functions that are also 1-preserving, while Fm

6 is the subclass of all monotone
functions in Fm

5 . Finally, the classes F∞
5 , F∞

6 , F∞
7 , F∞

8 are characterized in
exactly the same way, except that the crucial property is that of being infinitely
0-preserving.

The classes Fm
1 , Fm

2 , Fm
3 , Fm

4 and F∞
1 , F∞

2 , F∞
3 , F∞

4 are characterized in
the same way as their dual counterparts, except that the dual property, of being
m-tuply 1-preserving is employed.

The descriptions of the classes in terms of their generators is adapted from
the paper [Lyndon, 1951] (see also [Böhler et al., 2003]). In that paper, Lyndon
provides a complete axiomatization for the equational logics corresponding to each
of Post’s classes.

5.2 Post’s iterative classes

In the exposition of Post’s results, following the contemporary trend, we have
included all projection functions in our functionally closed classes. This is a natural
approach, since (for example) we can consider the formula ∼x as expressing a
function on any number of variables, simply by regarding the variables other than
x as irrelevant. In other words, when we include an n-place function in a class,
then we also include all those functions that arise from it by adding irrelevant
variables.

Post, however, did not make this assumption, and as a result, his classification
includes twenty iteratively closed classes that are not clones. We first need to
define Post’s own notion of iteratively closed class. Let π be a map from {1, . . . , n}
onto {1, . . . , k}, where k ≤ n. Define {0, 1}n/π to be the class of all x ∈ {0, 1}n

satisfying the condition that for i, j ≤ n, if π(i) = π(j) then xi = xj . If x ∈ {0, 1}k,
then there is a unique vector y = π−1(x) in x ∈ {0, 1}n/π so that for all i,
1 ≤ i ≤ n, yi = xπ(i). If f is a Boolean function defined on {0, 1}n, then we define
the function fπ on {0, 1}k by setting fπ(x) = f(π−1(x)). We now define a family
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F of Boolean function to be iteratively closed if it satisfies the conditions:

1. If f is an n-place function in F and π a map from {1, . . . , n} onto {1, . . . , k},
where k ≤ n, then fπ is in F ;

2. If f(x1, . . . , xi, . . . , xk) is a k-place function in F , and g(x1, . . . , xn) an n-
place function in F , then the k + n − 1-place function h defined by

h(x1, . . . , xk+n−1) = f(x1, . . . , g(xi, . . . , xi+k−1), xi+k, . . . , xk+n−1)

is also in F .

That is to say, Post defines a non-empty class to be iteratively closed if it is closed
under permutation and identification of variables, and also under composition. We
now give a short description of the twenty iteratively closed classes that are not
clones.

There are nine classes consisting entirely of 1-place functions. These are O1 =
{π1

1}, O2 = {1}, O3 = {0}, O4 = {π1
1 ,∼}, O5 = {π1

1 , 1}, O6 = {π1
1 , 0}, O7 = {1, 0},

O8 = {π1
1 , 1, 0} and O9 = {π1

1 , 1, 0,∼}. Since Post does not consider the empty
class to be iteratively closed, his containment diagram has no least element, and
hence is not a lattice, since O1, O2 and O3 are incomparable minimal elements.

Seven classes consist of sets of functions reducible to 1-place functions, that is
to say, all functions in these classes are obtained by adding irrelevant variables to
1-place functions. Let 1∗ be the class of all n-place constant functions taking the
value 1, and 0∗ the class of all n-place constant functions taking the value 0. Then
we have the additional iterative classes R2 = {1∗}, R3 = {0∗}, R5 = {π1

1 , 1∗},
R7 = {π1

1 , 0∗}, R9 = {1∗, 0∗}, R10 = {π1
1 , 1∗, 0∗} and R12 = {π1

1 , 1∗, 0∗,∼}.
Finally, there are four classes defined in terms of conjunction and disjunction.

S1 = {π1
1 ,∨}, S3 = {π1

1 , 1∗,∨}, P1 = {π1
1 ,∧} and P3 = {π1

1 , 0∗,∧}.

5.3 Applications of Post’s classification

Post’s classification, together with the accompanying containment diagram, en-
codes an enormous quantity of information. Many results, some of them far from
obvious, can be read off immediately from the diagram.

As an example of such a result, consider the following assertion: If S is an infinite
set of Boolean functions, then there is a finite set S0 contained in S so that every
function in S can be defined from functions in S0, together with the projection
functions. This does not seem at all obvious. However, it follows immediately
by inspecting Post’s lattice. The lattice, although it contains infinite descending
chains, contains no infinite ascending chains, and the result follows easily from
this fact.

Post’s lattice also makes it easy to see which class is generated by a given finite
set of Boolean functions. In particular, we can readily give a criterion for a set of
functions F to be functionally complete, so that all functions are definable from
F . To see how this works, let us examine the top element C1 of Post’s lattice. The
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class C1 covers exactly five other classes; that is to say, exactly five classes, namely
C2, C3, L1, A1,D3, lie immediately below C1 in the diagram. It follows from this
that if F is a set of Boolean functions, then it is functionally complete if and only
if for every one of these five classes, there is a function in F that is not in the class.

The last sentence of the previous paragraph can be rephrased to give Post’s
criterion for functional completeness. A set of functions is functionally complete if
and only if it contains (a) a function that does not preserve 0, (b) a function that
does not preserve 1, (c) a non-monotone function, (d) a non-linear function, (e) a
function that is not self-dual. Since each one of these conditions is easy to check,
given the truth-table for a function, the criterion leads to a simple algorithm to
determine whether or not a given finite set of functions is functionally complete. A
self-contained proof of Post’s theorem on functional completeness can be found in
[Pelletier and Martin, 1990]. Similar criteria can be given for all the other classes
in Post’s diagram.

For several decades after the publication of [Post, 1941], Post’s classification was
consigned to a backwater of logic, and was almost forgotten. However, with the
increasing interest in Boolean functions and propositional logic, this situation has
changed, and his fundamental results are now frequently employed by theoretical
computer scientists. A survey of some of these applications of Post’s classification
can be found in the excellent expository article [Böhler et al., 2003].

6 RECURSION THEORY AND DECISION PROBLEMS

Although he had been overtaken by the work of other logicians, Post was well
placed to contribute to the newly developing fields stemming from the discovery
of the incompleteness of formal systems by Gödel, and of an exact mathematical
definition of computable functions by Church and Turing. His point of view was
substantially different from the approach followed by other logicians, so that his
papers of the 1930s and 1940s are highly original, breaking new ground in several
directions.

Most of the work in recursion theory in the mid-1930s emphasized computable
functions on the natural numbers. Post’s earlier work differed in its overall thrust,
since he was mainly concerned with formal axiomatic systems, expressed as rules
for manipulating strings of symbols. Consequently, Post was able to develop the
theory in new directions, emphasizing both generated sets of numbers and prob-
lems involving rules for symbolic manipulation.

6.1 Post machines

Post’s first publication in logic after a fifteen year gap was [Post, 1936], a short
paper in which he describes a computational model very similar to that of the
Turing machine. Turing’s article was received for publication on May 28 1936,
while Post’s was received October 7 1936; a footnote to Post’s article by the editor,
Alonzo Church, informs the reader that “the present article, however, although
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bearing a later date, was written entirely independently of Turing’s.” Post, on
the other hand, unlike Turing, had the advantage of having read [Church, 1936],
while Turing’s logical influences seem to have been confined to the incompleteness
results [Gödel, 1931], the Cambridge lectures of Max Newman and the textbook
[Hilbert and Ackermann, 1928].

Unlike Turing, Post does not use the word “machine,” but instead speaks of a
“problem solver or worker” (however, the term “Post machine” [Uspensky, 1983]
is now standard terminology for the model). The analogue of a Turing machine’s
“tape” is provided by a “symbol space” consisting of a two way infinite sequence
of spaces or boxes, each of which is either empty or unmarked. The worker is
assumed to be performing the following primitive acts:

(a) Marking the box he is in (assumed empty),

(b) Erasing the mark in the box he is in (assumed marked),

(c) Moving to the box on his right,

(d) Moving to the box on his left,

(e) Determining whether the box he is in, is or is not marked.

The set of directions for the worker consists of a sequence of numbered instruc-
tions, each instruction having one of the following forms:

(A) Perform operation (a), (b), (c) or (d) and then follow direction j,

(B) Perform operation (e) and according as the answer is yes or no correspond-
ingly follow direction number i or direction number j,

(C) Stop.

One box is to be singled out and called the starting point. A problem is given in
symbolic form by a finite number of boxes being marked with a stroke, and the
output is given in the same form. With these conventions, a set of instructions
serves to define a computable function, where the positive integer n is symbolized
by a sequence of n consecutive marked boxes.

Post conjectures (correctly) but does not prove that his formulation is equiva-
lent to Church’s definition of computable functions. His formulation is strikingly
similar to Turing’s earlier definition, though Turing’s notion of machine configu-
rations or “m-configurations” does not appear in Post’s development. This role
is played by the numbers assigned to the instructions in Post’s sets of directions.
Although Turing’s notion of computing machine, rather than Post’s, has become
the standard model in theoretical computer science, Post’s formulation is a little
more like standard machine code (since programs typically do consist of numbered
instructions). To put the matter in computer science terms: Post shows that a
computer that can only perform the primitive acts of reading, writing, moving and
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following jump instructions conditional on a zero test is a universal computational
model.

Post evidently had plans to continue in a series of articles on the topic (as
appears in the title of his paper) showing how “Formulation 1” could be extended
to broader computational models. He must have been discouraged from this by
the appearance of the more elaborate development in [Turing, 1936], and one can
sense his disappointment in a remark recorded in a notebook in February 1938:

Turing: In large measure removed what was left in my point of view.
His Finite number of mental states hypothesis I did not have, and
if verified should be a cornerstone in the finite process development
[Grattan-Guinness, 1990, p. 82].

Post’s notebooks in Philadelphia (see §8) contain some of his work on “Formula-
tion 2.” In it, he considered rules operating in a two-dimensional symbol space,
somewhat reminiscent of later work on cellular automata, such as Conway’s Game
of Life [Berlekamp et al., 1982, Chapter 25] [Wolfram, 2002].

Post ends his paper with some remarks on the significance of Church’s thesis.
He says of his conjecture that his formulation 1 is equivalent to the Gödel-Church
development: “We offer this conclusion at the present moment as a working hy-
pothesis. And to our mind such is Church’s identification of effective calculability
with recursiveness.” To this last sentence he adds a footnote, in which he says:
“Actually the work done by Church and others carries this identification consider-
ably beyond the working hypothesis stage. But to mask this identification under
a definition hides the fact that a fundamental discovery in the limitations of the
mathematicizing power of Homo Sapiens has been made and blinds us to the need
of its continual verification” [Post, 1936, p. 105].

6.2 Recursively Enumerable Sets

In February 1944, Post gave an invited address to the New York meeting of the
American Mathematical Society, and the published version of his talk [Post, 1944]
is his most influential paper. In it, he sets forth a program to determine the relative
complexity of undecidable problems, based on abstract notions of reducibility. As
part of this program, he poses a problem, later known as “Post’s problem” that
was one of the driving forces behind the rapid development of recursion theory in
the decades following Post’s address.

Since he was addressing a general mathematical audience, Post adopted an
informal mode of presentation that contrasts with the rather formal exposition
that was standard in the field of recursive functions at that time. He remarks:

We must emphasize that, with a few exceptions explicitly so noted, we
have obtained formal proofs of all the consequently mathematical the-
orems here developed informally. Yet the real mathematics involved
must lie in the informal development. For in every instance the infor-
mal “proof” was first obtained; and once gotten, transforming it into
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the formal proof turned out to be a routine chore [Post, 1944, p. 284]
[Davis, 1965, p. 305][Post, 1994, p. 462].

Although Post seems to have felt that publication of final results required a more
formal mode, in fact his informal expository style has now become the norm in
presentations of research in recursion theory.

Post begins his article with a beautifully written survey of the area, stating
Church’s thesis as the identification of the intuitive concept of effectively calculable
function with the technical concept of recursive function. He goes on to explain
the intuitive concept of a generated set of positive integers, and asserts his own
thesis as the identity of this concept with that of recursively enumerable set. The
technical definition of recursively enumerable set is given in terms of his own
concept of normal system, a set of positive integers being recursively enumerable
if it is generated by a normal system with the alphabet {1, b}, the positive integer
n being represented by a string of n 1’s; if a set of integers is generated by a set
of rules B, then we say that B is a basis for the set generated by these rules.
He goes on to point out the generality of this concept, since the assertions of an
arbitrary formal system of formal logic can (by numerical encoding) be regarded
as a recursively enumerable set.

With this identification, the decision problem for a formal system can be seen
as the decision problem for a recursively enumerable set. A corollary of Church’s
thesis is that the intuitive concept of a set with a solvable decision problem is
coextensive with the notion of recursive set. Hence, questions of algorithmic de-
cidability can be placed in the abstract framework of recursively enumerable sets of
positive integers and their decision problems. The basic result on the existence of
unsolvable problems (for which Post references [Church, 1936], [Rosser, 1936] and
[Kleene, 1936]) is stated as: There exists a recursively enumerable set of positive
integers which is not recursive.

Post continues with a version of Gödel’s incompleteness theorem, a reworked
version of his earlier incompleteness results from [Post, 1965]. The set of all bases
B1, B2, . . . can be effectively enumerated, and hence so can the set T of all pairs
(B,n), where n is in the set generated by the basis B. This set T is thus the same
set as is generated by the complete normal system described in §4.1. If we define
T as the set of all pairs (B,n) not in T , then T is not recursively enumerable,
by a diagonal argument. Thus there is no formal logical system that proves a
proposition of the form “The integer n is not in the set generated by the basis
B” if and only if it is true. Post concludes with words echoing his earlier remarks
from his unpublished manuscript of 1941 [Post, 1944, p. 295] [Davis, 1965, p. 316]:

The conclusion is unescapable that even for such a fixed, well defined
body of mathematical propositions, mathematical thinking is, and must
remain, essentially creative. To the writer’s mind, this conclusion must
inevitably result in at least a partial reversal of the entire axiomatic
trend of the late nineteenth and early twentieth centuries, with a return
to meaning and truth as being of the essence of mathematics.
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With these words, Post sums up his earlier work on undecidability and incom-
pleteness. The remainder of his paper sets out a program of research that was
to determine a great deal of the direction of the new field of recursion theory.
The emphasis is now on the classification of recursively enumerable sets, with the
measure of complexity provided by notions of reducibility.

In his postdoctoral work at Princeton, Post had used an informal notion of
reducibility in relating systems in his various canonical forms. If we translate Post’s
earlier notion of reducibility, cited above in §4, into the language of set theory, then
it amounts to that of one-one reducibility. If S and T are sets of positive integers,
then S is many-one reducible to T if there is a computable function f defined on
the positive integers so that n is in S if and only if f(n) is in T . S is one-one
reducible to T if the function f is injective (one-one).

The intuitive idea of reducibility is that it measures the degree of difficulty of a
problem. If a problem P is reducible to a problem Q, then a solution to Q would
also lead to a solution of P . Different notions of reducibility arise, depending on the
complexity of the reduction process. The reducibility relation is always assumed
to be transitive and reflexive, so that we can classify sets in a partial ordering of
degrees of unsolvability, where two sets are equivalent under the ordering if and
only they are reducible to each other (in this case, they are said to be of the same
degree). The most restrictive notion of reducibility defined by Post is that of one-
one reducibility; later he introduces more and more general notions of reducibility,
the most general notion being that of Turing reducibility.

Because the complete set K encodes positive answers to all questions of the
form “Is the integer n in the set generated by the basis B?”, it is not hard to
see that every recursively enumerable set is one-one reducible to K. Conversely,
it is easy to prove that if a set is many-one reducible to K, then it is recursively
enumerable. Hence, the complete set K is of the highest degree of unsolvability
relative to one-one reducibility (1-complete), and consequently also relative to
many-one reducibility (m-complete).

Are there degrees of unsolvability of recursively enumerable sets strictly between
the degree of recursive sets and that of K? This is the general problem addressed
by Post in the later parts of his paper; he answers the question for some of the
stronger (that is, more restrictive) concepts of reducibility, but not for the most
general notion, Turing reducibility. As an initial step in his quest for intermediate
degrees, Post begins by singling out a key property of the complete set K.

Fix a numerical encoding of all of the pairs (B,n). Then the image K of the
set T under this encoding is a recursively enumerable set that is not recursive.
The diagonal method that proves K not to be recursive is constructive. In Post’s
terminology, the set K is a creative set, that is to say, a recursively enumerable
set C for which there exists a recursive function f giving a unique positive integer
n = f(i) for each basis Bi for a recursively enumerable set Wi of positive integers
such that whenever Wi is a subset of C (the complement of C), then n is also in C,
but not in Wi. This key property of the complete set K is an abstract version of
the Gödel incompleteness theorem, in the sense that Gödel’s construction provides



458 Alasdair Urquhart

a constructive method that given a formal system for arithmetic in which only true
statements are provable, produces another statement (the Gödel sentence for the
system) that is also true, but unprovable in the system.

If S is a creative set, then its complement S contains an infinite recursively
enumerable subset. This follows from the fact that starting from the empty set, we
can construct successively larger subsets of S using the function f(i) to obtain an
infinite recursively enumerable subset of S. If A and B are recursively enumerable,
A is creative, and A is many-one reducible to B, then B is also creative. It follows
that if B is an m-complete recursively enumerable set, that B contains an infinite
recursively enumerable subset.

This last result motivates Post’s next definition: a recursively enumerable set
S of positive integers is simple if S is infinite, but does not contain any infinite
recursively enumerable subset. A simple set cannot be recursive, for if it were, S
would be an infinite recursively enumerable subset of itself. Post’s next result is a
clever diagonalization that proves that a simple set exists. For every basis Bi, his
construction guarantees that a member of Wi (the set generated by Bi) is placed
in S, provided Wi is infinite, so that this member is a witness to the fact that Wi

is not a subset of S. At the same time, Post constrains the number of witnesses
that can be added so that S is infinite.

The existence of a simple set shows that there is a recursively enumerable set
of intermediate degree in the ordering according to many-one reducibility. In fact,
this result can be strengthened by defining a more general notion of reducibility.
If a set A is reducible to a set B, then we can think of the reduction as being given
in terms of membership queries. So, for example, if A is many-one reducible to B,
we put an integer n in A if the answer to the query “Is f(n) in B?” is positive,
otherwise we leave it out. However, we could just as well leave n out if the answer
is positive, and otherwise put it in. In other words, it is quite reasonable to say
that the complement S of a set is reducible to the set S itself. This idea leads
immediately to the more general notion of truth-table reducibility.

Define a Boolean query to a set B to be a propositional formula built out of
the Boolean connectives ∧,∨,∼, in which the atomic formulas are all of the form
(m ∈ B), where m is a positive integer; for example, the formula

[(5 ∈ B) ∧ ∼(67 ∈ B)] ∨ [∼(42 ∈ B) ∧ (87 ∈ B)].

We define a set A to be truth-table reducible to a set B if there is a recursive
function f so that for all n, f(n) is a Boolean query to B, and n is in A if and
only if B satisfies the query f(n). If, in addition, there is a fixed upper bound on
the number of atomic formulas in the Boolean queries f(n), then we say that A is
bounded truth-table reducible to B.

Post is able to show that if S is a simple set, then a creative set cannot be
reduced to S by bounded truth-table reductions. However, this result does not
generalize to unbounded truth-table reductions, since he proves that if C is any
creative set, then there is a simple set S so that C is reducible to S by unbounded
truth-table reductions.
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This last result leads Post to generalize the notion of simplicity to that of a
hyper-simple set. A hyper-simple set H is defined to be a recursively enumerable
set of positive integers so that H is infinite, but there is no infinite recursively
enumerable set of mutually exclusive finite sequence of positive integers so that
each sequence has at least one member in H (“mutually exclusive” means that
the sequences have no elements in common). The notion of hyper-simplicity is
powerful enough to show that there are intermediate degrees of unsolvability in
the truth-table ordering, since Post proves, first that a hyper-simple set exists, and
second that no creative set can be reduced to a hyper-simple set by a truth-table
reduction.

Although the notion of truth-table reducibility is fairly broad, it is far from the
most general notion of reducibility that can be defined. Let us imagine that we are
trying to decide whether or not an integer belongs to a set A, while having access
to information about the answers to all possible queries of the form: “Is integer
n in set B?” Alan Turing, in his doctoral thesis [Turing, 1939, §4], [Davis, 1965,
p. 166] suggested the picturesque metaphor of having access to an “oracle” for the
set B, a terminology that is now standard. Then we say that A is Turing-reducible
to B if we can decide whether or not an integer is in A, using a computer that has
access to an oracle for B.

The definition given in the previous paragraph is not mathematically precise,
but it can be made so in a variety of ways. The method usually adopted is to
define a Turing machine with an auxiliary tape on which numbers can be written
as queries to the oracle. When the machine enters a query of the form “Is the
integer n in the set B?”, the computation continues in one of two different ways,
depending on the answer from the oracle (the oracle’s answers are considered to
be instantaneous, so that a query counts as a single computational step). Post
himself described an alternative approach [Post, 1948] based on a generalization
of his canonical sets to S-canonical sets, in which primitive assertions representing
propositions of the form “Integer n is in S” and “Integer n is not in S” are added
to a canonical system.

Post was unable to solve the problem of whether there exist intermediate degrees
of unsolvability for the most general notion of reducibility, Turing-reducibility.
This became known as “Post’s problem,” and work towards its solution drove a
great deal of the research stimulated by his paper. He expressed some doubts
as to whether hyper-simple sets would provide examples of intermediate degrees,
but was not able to decide the question. The matter was not fully clarified until
after Post’s problem itself had been solved. The paper [Jockusch and Soare, 1973]
shows that if H is Post’s original example of a hyper-simple set, then it may
or may not be Turing-complete, depending on the precise enumeration of bases
B1, B2, . . . , Bn, . . . adopted.

Post’s program of research aimed at solving the problem of the existence of
intermediate degrees was to define recursively enumerable sets with “sparse” com-
plements, an idea implemented in the definition of simple and hypersimple sets.
However, although this approach succeeded in the case of the strong reducibilities,



460 Alasdair Urquhart

he was not able to make it work for Turing reducibility. The solution to the prob-
lem was finally achieved by a different approach, the priority method of Friedberg
and Muchnik, discussed below in §6.5.

6.3 The Post Correspondence Problem

In his brief note [Post, 1946], Post provided an addendum to [Post, 1943], in
which he presents an unsolvable problem of striking simplicity. He considers
strings composed of the two symbol alphabet {a, b}. An instance of the corre-
spondence problem is given by a finite list (g1, h1), (g2, h2), . . . , (gm, hm) of pairs of
non-empty strings, for example, the list (bb, b), (ab, ba), (b, bb). A solution to such
a problem consists of a finite sequence σ = σ1, . . . , σk, where 1 ≤ σi ≤ k, so that
gσ1gσ2 . . . gσk

= hσ1hσ2 . . . hσk
; a solution to the example just given is provided by

the sequence 1223, since in this case g1g2g2g3 = bbababb = h1h2h2h3.
The preceding example has a very simple solution. Much more difficult instances

of the correspondence problem can be constructed. As a challenge to the reader,
here are two instances that are known to be solvable, but whose solutions are very
difficult:

Instance 1: [Lorentz, 2001] (abb, a), (b, abb), (a, b);

Instance 2: [Zhao, 2002] (aaba, a), (baab, aa), (a, aab).

Post proves unsolvability of his correspondence problem by reducing the decision
problem for normal systems to it. He does not give any applications of the problem.
However, because of its simplicity, it later turned out to be an ideal problem
for proving undecidability results in formal language theory. Bar-Hillel, Perles
and Shamir [Bar-Hillel et al., 1961] applied the correspondence problem to show
that several problems in the theory of formal languages are undecidable. Among
the problems they prove undecidable is that of deciding whether two context-
free languages have a non-empty intersection (that is, given two phrase structure
grammars, determining whether or not the languages generated by the grammars
have a word in common). The Post correspondence problem is now a standard tool
of formal language theory – see for example the textbook [Hopcroft and Ullman,
1979].

6.4 The Word Problem for Semigroups

By the 1940s, the broad significance of the concept of recursive, or computable
functions was already clear. The universality and robustness of the concept of
computability, and its applicability to the classical decision problems in logic was
well known to the logical community. Nevertheless, the applications had remained
within the realm of logic, and the fruitfulness of the idea outside this area remained
to be shown. Post provided a major step in this direction by demonstrating that
a decision problem that had arisen outside the area of logic and foundations was
unsolvable.
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The Norwegian mathematician Axel Thue in his paper [Thue, 1914] had posed
the word problem for finitely presented semigroups. The word problem for such a
semigroup is given as follows. There is a finite set of primitive letters, representing
the generators of the semigroup, from which words can be formed using a binary
associative operation. For example, if the generators of the semigroup are a, b, c,
then the words ((ab)c)a and a(b(ca)) are considered to be the same, so that the
words are treated as strings of letters. Then a presentation of a semigroup with
these generators is given by a finite set of equations, for example, the equations
ab = ba and abc = bcaa. The word problem is, given such a presentation, to
determine whether or not a given equation is derivable using the standard rules
for reasoning with equations, where the generators are treated as constants.

Alonzo Church suggested to Post that Thue’s problem, might be proved unsolv-
able as an application of [Post, 1946]. In fact, however, Post solved the problem
not by using his correspondence problem, but by translating the formalism of
Turing machines into the notation of his canonical systems. A presentation of a
semigroup can be rewritten as a set of production rules of the form PσQ =⇒ PτQ,
where σ and τ are strings over a finite alphabet. A set of production rules of this
form Post defines as a semi-Thue system. A Thue system, which corresponds to
a semigroup presentation, has the added property that whenever the production
PσQ =⇒ PτQ is in the set, so is its inverse PτQ =⇒ PσQ. For example, the
presentation given above can be rewritten as the set of productions

PabQ =⇒ PbaQ,PbaQ =⇒ PabQ,PabcQ =⇒ PbcaaQ,PbcaaQ =⇒ PabcQ.

The decision problem for a semi-Thue system is the problem of determining
whether or not a word τ can be derived from a given word σ using the production
rules of the system. The word problem of Thue is equivalent to the decision
problem for Thue systems. Post’s strategy to prove unsolvability of this problem
is to reduce the decision problem for a special class of semi-Thue systems to the
decision problem for Thue systems.

This proof strategy is most easily carried out for rules that are deterministic,
in the sense that at most one rule is applicable to any string derivable from an
initial assertion. This is why canonical systems derived from Turing machines are
ideal for this problem. A configuration of a Turing machine can be described as
a string consisting of an endmarker h, followed by a sequence of tape symbols,
followed by a symbol for an internal state of the machine, then another string, and
finally another endmarker symbol h. For example, the string h110q301h represents
a configuration of a machine in which the internal state of the machine is q3, and
the machine is scanning the fourth symbol of the string 11001 on an otherwise
blank tape. The rules of the Turing machine are then easily rewritten as Post
production rules, for example, the rule Pq31Q =⇒ P1q3Q represents the Turing
machine instruction “In state q3, if you are scanning a 1, then move right.”

Post starts from an unsolvable problem in the theory of Turing machines. It
is an unsolvable problem to determine whether or not a Turing machine, with
internal states q1, . . . , qr, started in its initial state q1, reading the first symbol in
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a binary string σ on its input tape, halts in its highest-numbered state qr on a
blank tape. Rewriting the machine instructions as a semi-Thue system T ′, this
decision problem becomes: Is there a derivation in the system T ′ of the string
hqrh from the initial string hq1σh? Let T ′′ be the system consisting of all the
inverses of the productions in T ′. Then hqrh is derivable in T ′ from hq1σh if and
only if hq1σh is derivable from hqrh in T ′. Now let T be the system that has
all the rules of T ′, together with all the rules of T ′′ (that is, all the rules of T ′

and their inverses). Then because of the deterministic character of Turing machine
rules, exactly the same strings are derivable from the initial string hqrh in T as are
derivable in T ′′. This reduces the Turing machine problem to the decision problem
for a Thue system, and so shows Thue’s problem of 1914 to be unsolvable.

Very simple unsolvable cases of Thue’s problem are known. Building on Novikov’s
proof of the unsolvability of the word problem for groups (see below), [Tseitin,
1958] shows that the word problem for the semigroup with five generators {a, b, c, d, e}
and defining relations ac = ca, ad = da, bc = cb, bd = db, eca = ce, edb = de, cca =
ccae is unsolvable.

The formulation of Turing machines used by Post is not the original formulation
of Turing, but a simplified and clarified version due to Post himself. It is in
fact Post’s version of the Turing machine that is the standard “Turing machine”
presented in introductory texts on logic and computer science. Post includes an
appendix to his paper providing a detailed critique of Turing’s original paper.

The Russian logician Markov proved the same result independently and almost
at the same time as Post [Markov, 1947]. These results of Post and Markov
were just the beginning of a host of mathematical problems proved undecidable
by the technique of reducing known unsolvable problems to them. A notable
result achieved somewhat later is the unsolvability of the word problem for finitely
presented groups, proved by the Russian logician P.S. Novikov in [Novikov, 1955],
and independently though somewhat later by the American logician William Boone
[Boone, 1957a][Boone, 1957b].

A few years later, Post showed that another concrete decision problem (though
of a logical nature) was undecidable, in joint work with Samuel Linial (who later
changed his name to Samuel Gulden). Linial and Post showed that there is an
undecidable subsystem of classical propositional logic by showing how to encode
a system of normal productions in a propositional calculus with detachment as a
primitive rule. This research was published only as an abstract [Linial and Post,
1949]; an exposition of their results is to be found in [Davis, 1958, pp. 137-142].

6.5 Degrees of unsolvability

The joint paper [Kleene and Post, 1954] is an important landmark in the develop-
ment of recursion theory. It had its origins in an encounter between Kleene and
Post at the meeting of the American Mathematical Society at which Post presented
[Post, 1944] on February 26 1944. In an interview of 1984, Kleene recalled:

I was in the Navy when he presented his paper “Recursively Enumer-
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able Sets . . . ” at a meeting of the American Mathematical Society. I
was teaching midshipmen in the U.S.S. John Jay. That’s not a ship,
it’s a Columbia dormitory. But when midshipmen entered, they said
“Request your permission to come aboard, sir.” I only had to walk 200
yards to go to the lecture. After the lecture I had Post over to my
apartment. I had an apartment just off the Columbia campus. There I
presented to him – I think it was already in press, if it wasn’t, it was in
manuscript – my paper, “Recursive Predicates and Quantifiers,” which
had a very close relation to what he was doing. That’s the first he knew
of that [Aspray, 1984].

This paper [Kleene, 1943] is a fundamental contribution in which the arithmeti-
cal hierarchy is introduced. The bottom level of Kleene’s hierarchy is the family
of recursive sets of natural numbers, denoted by Σ0 = Π0. For n > 0, a set B of
natural numbers is in Σn if there is a recursive relation R(x, y1, . . . , yn) so that for
any natural number x,

x ∈ B ⇐⇒ ∃y1∀y2∃y3 . . . QynR(x, y1, . . . , yn),

where Q is ∃ if n is odd, and ∀ if n is even. Similarly, a set B of natural numbers
is in Πn if there is a recursive relation R(x, y1, . . . , yn) so that for any natural
number x,

x ∈ B ⇐⇒ ∀y1∃y2∀y3 . . . QynR(x, y1, . . . , yn),

where Q is ∃ or ∀ according as n is even or odd. This hierarchy of sets generalizes
the classification of sets as recursive and recursively enumerable, since the family of
recursively enumerable sets is identical with Σ1, while the complements of such sets
(co-r.e. sets) constitute Π1. By generalizing the diagonal argument that shows the
existence of recursively enumerable but non-recursive sets, Kleene proves that this
hierarchy is proper. That is to say, the obvious inclusions Σn ⊆ Σn+1, Πn ⊆ Πn+1,
Σn ⊆ Πn+1 and Πn ⊆ Σn+1 are all proper.

Post was stimulated by Kleene’s work to generalize his work on reducibilities
between recursively enumerable sets to a much broader theory of degrees of un-
solvability in work reported in the abstract [Post, 1948]. Recall from §4.1 Post’s
notion of “finite-normal-test” – a set M of integers is decidable just in case there
is a finite-normal-test for it, that is, a normal system that has assertions exactly
representing which integers are and are not elements of M . Post generalizes his
earlier notion of canonical sets to S-canonical sets by adding to his canonical
systems primitive assertions representing membership and non-membership of in-
tegers in S, where S is an arbitrary set of integers. Using this broader concept,
he generalizes his earlier characterization of decidable sets by showing that a set
S1 is Turing-reducible to a set S if and only if both S1 and its complements are
S-canonical sets.

Furthermore, the existence of the complete set K generalizes to the relativized
world of oracle computations. If A is an arbitrary set of integers, then there is a set
A′ = KA that has the property: KA can be enumerated by a machine employing



464 Alasdair Urquhart

an oracle for A, and furthermore, any set of integers that can be enumerated by a
machine employing an oracle for A (an A-canonical set) is reducible to KA. If a is
the Turing degree of the set A, define a′ (the jump of a) to be the degree of the set
A′ = KA. As a generalization of the theorem proving the existence of recursively
enumerable sets that are not recursive, we can show that a is reducible to a′, but
a′ is not reducible to a.

This definition results in a hierarchy of degrees of unsolvability, with respect
to Turing reducibility. If 0 is the degree of ∅ (the degree of the recursive sets),
then 0′ is the degree of the complete set K, and this is the beginning of a strictly
ascending chain of degrees 0,0′,0′′, . . . that can be extended to transfinite levels.
The results of Post just quoted imply a relationship between the arithmetical
hierarchy of Kleene and Post’s hierarchy of degrees, a result usually called Post’s
Theorem. Post’s theorem says that Σn+1 ∩ Πn+1 is exactly the sets of integers
reducible to 0(n), where 0(0) = 0, and 0(n+1) = (0(n))′. Hence, Post’s degree
hierarchy is interleaved between the levels of Kleene’s hierarchy.

Post’s theorem is the main completed result reported in the abstract [Post,
1948]. However, he hints at further results. “Work is in progress on further
equivalence proofs, further applications of the Kn-scale, incomparable degrees of
unsolvability related to the Kn-scale, extension of the main theorem to Mostowski,
Fund. Math. vol. 34, and extension of the Kn-scale into the constructive transfi-
nite.” These later results, though, did not appear in print, and Kleene had occasion
to remonstrate with Post on this score. Kleene tells the story in a conversa-
tion (also involving Andrzej Mostowski, Gerald Sacks, Michael Morley and Anil
Nerode) recorded in [Crossley, 1975, pp. 18-20].

Mostowski: I must raise a protest against this habit of not publishing.
That is all right here, because you meet every second month to collab-
orate at a conference here or there, but people like me are completely
cut off.

Kleene: Yes.

Sacks: I agree completely.

Morley: It should lapse.

Sacks: And anyone who does not publish his work should be penalized.

Kleene: This is just what I wrote to Emil Post, on construction of
incomparable degrees and things like that, and he made some remarks
and hinted at having some results and I said (in substance): “Well,
when you leave it this way, you say you have these results, you don’t
publish them. The fact that you have them prevents anyone else who
has heard of them from doing anything on it.” So he said (in substance):
“You have sort of pricked my conscience and I shall write something
out,” and he wrote some things out, in a very disorganized form, and
he suggested that I give them to a graduate student to turn into a
paper. As I recall, I think I did try them on a graduate student, and
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the graduate student did not succeed in turning them into a paper,
and then I got interested in them myself, and the result was eventually
the Post-Kleene paper [Kleene and Post, 1954].

Morley: You mean one of your graduate students could have had the
Post-X paper?

Nerode: You mean one that wanted to work hard.

Kleene: I suppose, maybe it was not good for a graduate student,
because a graduate student needs a thesis he can publish under his
own name, and this would have had to be joint, or maybe . . .

Morley: Oh, I don’t know. I think he could have borne having a
Post-X paper.

Kleene: As a matter of fact, it could have – if a graduate student had
picked it up. There were things that Post did not know, like that there
was no least upper bound. 1 You see, Post did not know whether it
was an upper semi-lattice or a lattice. I was the one who settled that
thing.

Sacks: What are you talking about? The degrees of the arithmetic
sets?

Kleene: No. The upper semi-lattice of degrees of unsolvability.

The paper [Kleene and Post, 1954] was written by Kleene, and its precise but
very formal style forms a stark contrast with Post’s own rather discursive math-
ematical prose. In it, the degree hierarchy is defined in terms of Kleene’s own
formalism of general recursive functions [Kleene, 1936], [Kleene, 1952a, Chapter
XI]. The notion of reducibility is that of a function being general recursive in cer-
tain other functions, to which various earlier notions of reducibility were known to
be equivalent. Post had proved in unpublished work [Post, 1948] that his own no-
tion of canonical reducibility was equivalent to Turing reducibility [Turing, 1939],
Martin Davis had proved in his Princeton doctoral thesis [Davis, 1950] that canon-
ical reducibility is equivalent to general recursive reducibility, while Kleene had
given a direct proof of the equivalence of Turing reducibility and general recursive
reducibility [Kleene, 1952a, §68, §69].

The relation “A is recursive in B” is reflexive and transitive, so the relation
“A is recursive in B and B is recursive in A” is an equivalence relation. Hence,
this equivalence relation partitions the family of all sets of natural numbers into
equivalence classes, or degrees of unsolvability. There are ℵ0 sets in each equiv-
alence class and hence 2ℵ0 degrees, since there are 2ℵ0 sets of natural numbers.
The family of degrees forms an upper semi-lattice, that is, given degrees a and b,
there is a least upper bound a ∪ b in the degree ordering. This is because, given
any two sets A and B of degrees a and b, we can define a set C (for example,

1There seems to be an error in the transcript here. Presumably “greatest lower bound” is
meant.
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{2a : a ∈ A} ∪ {2b + 1 : b ∈ B}) so that A and B are both recursive in C, while C
is recursive in A,B.

The main result for which [Kleene and Post, 1954] is remembered is the proof
of the existence of incomparable degrees between a degree a and its jump a′. The
technique employed by Kleene and Post involves a countable set of conditions,
or “requirements,” as they are usually called today. Given a set B, there are a
countable number of Turing machines M0,M1, . . . ,Mk, . . . that use an oracle for
B. Hence, we can give an effective list of requirements of the form: “The set C
is not identical with the set computed by Turing machine Mk with an oracle for
B,” and a similar list with C and B interchanged. Any such condition can be
fulfilled by ensuring the presence or absence of a particular integer in B or C,
so Kleene and Post’s construction consists in constructing B and C step by step,
while ensuring that all such conditions are eventually fulfilled. Their construction
of A and B, however, requires an oracle for the set KA (where A has the degree
a) and so it does not provide an answer to Post’s problem.

The paper contains a rich collection of additional results. The construction of
intermediate degrees sketched in the preceding paragraph is generalized to show
that between the degrees a and a′, there is an infinite linearly ordered sequence
of degrees that is dense, that is to say, if c,d are degrees in the sequence, where
c < d, there is a degree e so that c < e < d. The paper also shows that the
degree ordering is not a lattice, by showing that there are degrees a and b with
no greatest lower bound in the degree ordering (this is the result to which Kleene
alludes in the transcript above). Although the paper made considerable inroads
into determining the fine structure of degrees, it also left many open problems,
and provided a powerful stimulus for further work by later logicians.

It also provided an essential stepping stone in the solution of Post’s problem
by two young mathematicians, the first an American [Friedberg, 1957] and the
second a Russian [Muchnik, 1956]. Both Friedberg and Muchnik followed Kleene
and Post in constructing a pair of incomparable degrees by the technique of listing
an infinite set of requirements that are all fulfilled at the end of the construction.
To avoid the use of an oracle, however, requires a more subtle technique. In the
original Kleene-Post method, a requirement, once fulfilled, remains fulfilled per-
manently and requires no further attention. In the constructions of Friedberg and
Muchnik, however, a requirement can be violated, or “injured,” at an intermediate
stage. To ensure that a requirement is eventually fulfilled in spite of these injuries,
Friedberg and Muchnik impose a priority ordering on their requirements, ensur-
ing that only finitely many injuries can happen to a given requirement, so that
it is eventually satisfied. Consequently, this new technique, which is one of the
fundamental methods in recursion theory, is now known as the “priority method.”

Since the original solution of Post’s problem, recursion theory has become a
discipline of extraordinary depth and richness, and the priority method has been
used in more and more complex settings. Excellent expositions of the resulting
theory are available in the books [Rogers, 1967], [Shoenfield, 1971], [Soare, 1987],
[Odifreddi, 1989] and [Odifreddi, 1999].
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7 PROVABILITY AND DEFINABILITY

The last major project of Post’s career grew out of his early interest in the question
of absolutely undecidable propositions. Logical developments in the early twenti-
eth century had apparently shown that notions of provability and definability are
not absolute. In the case of provability, the incompleteness theorems demonstrate
that any consistent formal axiomatic theory for elementary number theory can be
consistently extended by the addition of an unprovable sentence, so that it seems
that we can not identify any fixed or absolute notion of provability. Similarly, it
would appear that the diagonal method, applied to any constructively defined col-
lection of definable notions, allows us to find a new definable concept not included
in the original list.

Post was very impressed by the absolute character of the concept of computable
function, since the extent of the computable functions does not depend on the for-
malism chosen, a point that he emphasized repeatedly. This led him to hope that
a similar absolute notion of provability might be attainable, leading to absolutely
undecidable propositions.

Already in the early 1920s, Post was interested in the question of the existence
of propositions that are absolutely undecidable in some sense. He describes “A
Probably Fallacious Suggestion for a Non-Provable Theorem” in the Appendix to
his unpublished manuscript of 1941 [Post, 1965, pp. 421-422] [Post, 1994, p. 432].
He considers the enunciation: “For each deductive system of the normal form
and enunciation in it there exists a finite method of proving or disproving the
derivability of the enunciation in the system,” and attempts to argue that if it
were provable or disprovable, this would contradict the unsolvability of the decision
problem for normal systems.

The preceding attempt proved abortive; Tarski pointed out to Post that his at-
tempted argument was invalid because the supposed proof might be non-constructive.
However, he continued his attempts along these lines, and in a footnote to the 1941
manuscript [Post, 1965, pp. 341-342][Post, 1994, p. 376] says that “since February
1938 we have given an occasional week to a continuation of this work, and largely
in the spirit of the Appendix. Our goal, however, is now an analysis of proof,
perhaps leading to an absolutely undecidable proposition, rather than an analysis
of finite process.”

The question of the existence of absolutely undecidable propositions was one
of the topics that he discussed with Gödel at their meeting in October 1938, as
appears from an entry of 4 November 1940 in one of Post’s notebooks:

In first meeting with Gödel (about a year ago or more [probably spring
1939]) 2 suggested to him abs. undec. prob. He said perhaps Cont.
Hyp. I said this more like parallel axiom, i.e. would merely mean
different theories of classes. Wanted rather abs. undec. arith. prop.
where analyse all possible methods of proof & perhaps find a property

2In fact the meeting was on October 29 1938, as described above.
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of all such which would lead to abs. und. arith. prob. Gödel poo-
poohed idea. Said (roughly) it was absurd [Grattan-Guinness, 1990,
pp. 82-83].

It appears that Post continued this discussion with Gödel at a second meeting, for
his diary entry continues:

In second meeting, Oct. 1940, I asked him what he was working on
now . . . Said to prove negative of con. hyp. consistent with rest of set
theory. Said he hadn’t succeeded yet, but if so would be abs. undec.
prob. Raised ‖ axiom analogy again. But he said no, that axioms of
set theory categorical for all models [Grattan-Guinness, 1990, p. 83].

Gödel expressed an opinion in print around this time related to those reported by
Post (though considerably more cautious). In his first announcement of his consis-
tency proof [Gödel, 1938], he wrote about the axiom of constructibility (“proposi-
tion A”), from which the generalized continuum hypothesis can be deduced within
the system T of set theory without the axiom of choice:

The proposition A added as a new axiom seems to give a natural com-
pletion of the axioms of set theory, in so far as it determines the vague
notion of an arbitrary infinite set in a definite way. In this connection
it is important that the consistency proof for A does not break down if
stronger axioms of infinity (e.g., the existence of inaccessible numbers)
are adjoined to T . Hence the consistency of A seems to be absolute in
some sense, although it is not possible in the present state of affairs to
give a precise meaning to this phrase.

Later, of course, he changed his mind on this point, and in [Gödel, 1947] espoused
the view that new axioms of set theory would be found that would decide the
continuum hypothesis (most likely in a negative sense).

Post, however, was not looking for absolutely undecidable propositions in the
realm of set theory, where he appears to have thought that alternative set theories
were possible, in analogy with alternative theories of geometry. His own goal was
to find such problems in the realm of arithmetic. In his paper of 1943, he refers
again to the problem in a footnote to a passage in which he states that the decision
problem for normal systems is unsolvable:

Absolutely unsolvable, that is, to use a phrase due to Church. By
contrast, the undecidable propositions of Gödel’s epoch making paper
of 1931 . . . are but relatively undecidable, the very proof of their un-
decidability in the given logic leading to an extension of that logic in
which they are, indeed, proved to be true. A fundamental problem is
the question of the existence of absolutely undecidable propositions,
that is, propositions which in some a priori fashion can be said to have
a determined truth-value, and yet cannot be proved or disproved by
any valid logic [Post, 1943, p. 200], [Post, 1994, p. 445].
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Even though Post reported that Gödel had “poo-poohed” his idea of absolutely
undecidable propositions in 1938, it is significant that in his Gibbs lecture of 1951,
Gödel asserted the possibility of absolutely undecidable arithmetical propositions,
though only as one half of a disjunction. The lecture is devoted to the philosophical
consequences of the incompleteness theorems. Gödel considers arguments some-
what resembling those given in [Lucas, 1961] and [Penrose, 1989], but (unlike these
later writers) drawing not an absolute but a disjunctive conclusion:

Either mathematics is incompletable in this sense, that its evident
axioms can never be comprised in a finite rule, that is to say, the
human mind (even within the realm of pure mathematics) infinitely
surpasses the powers of any finite machine, or else there exist absolutely
unsolvable diophantine problems of the type specified [Gödel, 1995,
p. 310].

Post continued to work along the lines suggested by the footnote to his 1943
paper, searching for a concept of provability in arithmetic that could play a similar
role in the theory of numbers as recursivity in the theory of algorithms. The only
remaining published record of his thought on this subject in the late 1940s is in
the brief abstract [Post, 1953b], in which he says:

In 1947, in a lost letter to Tarski via Church, the author proposed
a formulation of “Primitive Inductive-Reflective Proof” involving, be-
sides the elementary, only mathematical induction and “Gödelization.”
But representation theory for Gödel’s system P (1931) failed to ma-
terialize due to P ’s Axiom of Reducibility. Indeed, Kleene’s Example
(Proceedings of the International Congress of Mathematicians, 1950,
vol. II, p. 683) offers hope of an impossibility proof.

In his Princeton doctoral thesis [Turing, 1939] [Feferman, 1995] Turing studied the
possibility of overcoming arithmetical incompleteness by the successive adjunction
of unprovable sentences, given by Gödel’s construction – this is presumably the
process that Post describes as “Gödelization.” Post seems to have hoped to show
that the adjunction of axioms involving higher types was in some sense conserva-
tive with respect to first-order arithmetical sentences, but encountered insuperable
difficulties in connection with the type-theoretical comprehension axiom, or “Ax-
iom of Reducibility,” as he calls it. The result of Kleene to which Post alludes is
a theorem in [Kleene, 1952b] showing that Brouwer’s fan theorem [Brouwer, 1924]
fails if “choice sequence” is interpreted to mean “recursive function.” In classical
terms, he shows that there is an infinite recursive binary tree with no infinite
recursive branch [Odifreddi, 1989, p. 506].

The conclusion that Post drew from his abortive attempts towards constructing
an absolute notion of provability is that he was attacking the problem in the wrong
order. The right order, he now thought, was: solvability, definability, provability.
The immediately succeeding abstract [Post, 1953a] reports his success in finding
a candidate for the role of an absolute notion of definability.
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An obvious difficulty that arises in attempting to give an absolute notion of
definability is this: if not all ordinals are definable, then there must be a least
indefinable ordinal (this will certainly be true if we have only countably many
definitions). But if our notion of definability is itself definable, then a contradiction
(Richard’s paradox) results immediately, since the least indefinable ordinal would
then be definable.

A possible way out of this impasse is to take the notion of definability to be
highly non-constructive, so that the definable sets form a proper class, and all
ordinal numbers are definable. Post carries out this idea by extending the simple
theory of types of order ω, as formulated in [Gödel, 1931], to transfinite levels, with
a type level for all ordinals α. Thus Gödel’s system P is extended to a system P (α),
with variables x

(α)
0 , x

(α)
1 , . . . ranging over sets of type α in the type hierarchy, and

the usual apparatus of connectives and quantifiers. Post remarks: “The present
thesis is that every definable set is given by some α-formula” (his intention was to
give a necessary condition for definability, rather than a full-fledged explication,
as in the case of computability).

Post was unaware that a closely related absolute concept of definability had been
proposed earlier by Gödel, in his remarks at the Princeton Bicentennial Conference
on Problems in Mathematics held in 1946. Gödel’s paper was not published at
the time, and the full text of his address first appeared in print in the collection
edited by Martin Davis [Gödel, 1965, pp. 84-88].

Gödel’s remarks strikingly parallel Post’s own thinking on these topics. Com-
menting on an earlier lecture by Tarski, he remarks that the great importance
of the concept of general recursiveness is largely due to the fact that “with this
concept one has for the first time succeeded in giving an absolute definition of
an interesting epistemological notion, i.e., one not depending on the formalism
chosen.” Contrasting the situation with that for provability and definability, he
says:

By a kind of miracle it is not necessary to distinguish orders, and the
diagonal procedure does not lead outside the defined notion. This, I
think, should encourage one to expect the same thing to be possible
also in other cases (such as demonstrability or definability) [Gödel,
1965, p. 84].

Gödel goes on to make a very tentative suggestion about an absolute concept
of provability, conjecturing that any set-theoretical assertion can be decided by a
sufficiently powerful axiom of infinity, so that “every proposition expressible in set
theory is decidable from the present axioms plus some true assertion about the
largeness of the universe of all sets.”

He continues with “somewhat more definite suggestions,” proposing definability
in terms of ordinals as an absolute notion of definability in set theory. His pro-
posal is to extend the usual language of Zermelo-Fraenkel set theory by including
primitive names for all ordinal numbers (so that the formulas of the extended lan-
guage form a proper class); ordinal definable sets are those specified by a formula
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from this extended language. This concept of definable set is broader than his ear-
lier notion of constructible set, used in proving the consistency of the generalized
continuum hypothesis with the axioms of set theory, since the quantifiers in the
extended language range over all sets, whereas constructible sets are defined by
quantifiers restricted to the constructible universe.

Post’s own notion is slightly more restrictive than that of Gödel, and is now
known as that of “hereditary ordinal definability”; a set is hereditarily ordinal
definable if it is not only ordinal definable, but its members, members of members
. . . etc. are also ordinal definable. The notion of ordinal definability was redis-
covered again independently during the 1960s [Takeuti, 1961], [Myhill and Scott,
1971].

Because of Post’s untimely death, there is no other published record of his last
logical project. However, two notebooks on “Definability” written in 1952-1954
remain in the archives of the American Philosophical Society in Philadelphia, and
may still repay investigation.

8 POST’S LEGACY

The remarkable fertility of Post’s ideas, particularly in the areas of recursion the-
ory and computer science, is attested by the number of concepts and results named
after him: “Post-completeness,” “Post’s problem,” “Post productions,” “Post cor-
respondence problem,” “Post’s classification theorem” are some of the more promi-
nent examples. His influence on computer science is most remarkable, considering
that he seemingly never had any contact with computing machinery or computer
programming.

Post’s ideas also bore fruit in the area of formal linguistics. The early work
of Noam Chomsky on phrase structure grammars was influenced by the ideas of
Post; Chomsky formulates basic notions such as that of a context-free language
in terms of rules closely akin to Post productions [Chomsky, 1956]. He seems
to have known of these ideas indirectly through the unusual textbook of Paul
Rosenbloom [Rosenbloom, 1950], in which Post’s production systems are given a
starring role, particularly in the last chapter. Seymour Ginsburg, an important
early contributor to formal language theory, and author of a well known monograph
giving a comprehensive overview of early work on context-free languages [Ginsburg,
1966], was a student with Martin Davis in an honors mathematics class taught by
Post [Gleiser, 1980]. All five of the students in this course, described by Davis as
a “pressure cooker experience,” became mathematicians.

Post also exerted influence through the students who were inspired by him and
his remarkable classes. Martin Davis has described Post’s teaching methods:

Post’s classes were tautly organized tense affairs. Each period would
begin with student recitations covering problems and proofs of theo-
rems from the day’s assignment. These were handed out apparently
at random and had to be put on the blackboard without the aid of
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textbook or notes. Woe betide the hapless student who was unpre-
pared. He (or rarely she) would have to face Post’s “more in sorrow
than anger” look. In turn, the students would recite on their work.
Afterwards, Post would get out his 3 by 5 cards and explain various
fine points. The class would be a success if he completed his last card
just as the bell rang. Questions from the class were discouraged: there
was no time. Surprisingly, these inelastic pedagogic methods were ex-
tremely successful, and Post was a very popular teacher [Davis, 1994,
p. xxv].

David Hilbert, in his address before the International Congress of Mathemati-
cians in Paris in 1900, had posed a series of problems to challenge mathematicians
in the new century. Hilbert’s tenth problem reads as follows:

Given a diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: To devise a process
according to which it can be determined by a finite number of operations
whether the equation is solvable in rational integers [Hilbert, 1902].

A diophantine equation is any algebraic polynomial equation with whole number
coefficients, for example: 31x2 + 41y3 − 17x = 0. Hilbert’s problem asks for
an algorithm to determine whether or not an arbitrary diophantine equation is
solvable (in line with his rationalistic and optimistic outlook, he seems to have
expected a positive solution). In his address of 1944, Post remarked that Hilbert’s
problem “begs for an unsolvability proof” [Post, 1944, p. 289]. The challenge was
taken up by Post’s student Martin Davis, who was one of the key contributors to
the proof of unsolvability, together with Hilary Putnam and Julia Robinson. The
final step completing the proof was provided by the young Russian mathematician
Yuri Matiyasevich [Matiyasevich, 1970]. The reader will find excellent and very
readable accounts of the history of this problem in [Reid, 1996] and [Yandell, 2002].
A fully detailed account of the proof, together with much else, is in the beautifully
written book [Matiyasevich, 1993].

8.1 Post’s Papers

Post’s papers are housed at the American Philosophical Society in Philadelphia.
They include correspondence, unpublished manuscripts, research notes, and pho-
tographs documenting Post’s career. The notebooks were donated by Martin Davis
in 1986; the remaining papers were donated by Phyllis Post Goodman in 1992. The
correspondence includes letters from Paul Bernays, Alonzo Church, Martin Davis,
Frederic Fitch, Abraham Fraenkel, Kurt Gödel, Stephen Kleene, W.V. Quine
and Alfred Tarski. Ivor Grattan-Guinness has given a description of the papers
[Grattan-Guinness, 1990], and has transcribed an unpublished manuscript from
1935 [Post, 1990]. This manuscript is a somewhat sketchy essay on Russell’s para-
dox, in which Post works out the idea that the class of existing classes may not be
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fixed, but rather can expand through the process of thinking about existing ob-
jects. This vision of mathematical objects as processes that evolve through time is
of course one of the fundamental ideas that runs through all of Post’s work, start-
ing from his dissertation, where he introduces the class of elementary propositions
by describing “the vision of the totality of these functions streaming out from the
unmodified variable p through forms of ever growing complexity . . . ” [Post, 1921a,
p. 165].

This obsession with time also manifests itself throughout the surviving note-
books. There are four major numbered series, five volumes on “Closed Truth Sys-
tems: Towards a new presentation,” written in 1929-1931 when Post was working
out the new version of his results on closed system of truth functions published as
[Post, 1941], a series of eighteen volumes on “Creative Logic” written 1938-1952,
a series of seventeen volumes on “Theory of Finite Processes” (Volume IV is miss-
ing), written 1944-1951, and two volumes on “Definability,” written 1952-1954. In
addition, there are notebooks on “Calculus of Finite Processes” 1944, “Complete
Equivalence of Normal Set and Recursive Function Development” 1942-1945 and
“The Logic of Mathematics.”

In his notebooks, Post frequently makes a meticulous record of clock times and of
time spent working. An example quoted by Grattan-Guinness is of a manuscript on
the Laplace transform. Post noted that he was writing the paper on 19 September
1923, starting at 10:08 AM, and ending at 12:28 PM, with three running times
noted within the text [Grattan-Guinness, 1990, p. 79]. Post’s original attack of
mania occurred when he was enormously excited about his new ideas in logic in
1921, and subsequently he attempted to avoid periods of great mental excitement
both by severely restricting the time he spent on research, and by alternating
between one research project and another. Martin Davis has described the onset
of one of his manic episodes in 1947:

With another student, I had begun an “honors” reading course on
mathematical logic under Post’s tutelage. We had just reached the
“deduction theorem” in propositional calculus, when Post met us full of
excitement about his new work. We did not meet again with Post that
semester; we had witnessed the beginning of one of his manic episodes.
Apparently it was precisely excitement that had the potential to push
him over the edge [Davis, 1994, p. xxiv].

It is impossible not to feel deep admiration for Post’s remarkable achievements in
mathematical logic, accomplished while labouring under such a severe handicap.
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