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chapter 4, FM and J.P. Carbotte
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phonon spectral function
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B(q,v) = —;ImD(q, v+ 16).

Normal state
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form of Eq. (15) allows one to introduce the electron-phonon spectral function,
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along with a constant density of states approximation, extended over an infinite bandwidth,
one obtains for the electron self energy
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where we have used the standard definition for the electron-phonon mass enhancement pa-

rameter, A:
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which, for the Einstein spectrum used here, reduces to

A= 2N(6F)g2/wE. (21)

Performing the Matsubara sum yields
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where f(e — p) is the Fermi function and n(wg) is the Bose distribution function. The
remaining integral can also be performed [13]
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where () is the digamma function [92, 13] and the entire expression has been analytically

continued to a general complex frequency z. Because we performed the Matsubara sum first,
before replacing iw,, with z, this is the physically correct analytic continuation [93].



is the Heaviside step function), the self eiler{'gy at T =0 is
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Spectroscopic measurements yield properties as a function of real frequency; because of the
analytic properties of the Green function, this corresponds to a frequency either slightly
above or below the real axis. We will use frequencies slightly above, and designate the
infinitesmal positive imaginary part by ‘20’. Thus,
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The real and imaginary parts of this self energy are shown in Fig. 3, along with the non-
interacting inverse Green function (w — (ex —pt)) to determine the poles of the electron Green

function (see Eq. (6)) graphically. A quantity often measured in single particle spectroscopies
is the spectral function, A(k,w) defined by

Ak, w) = —%ImG(k, W+ id). (26)

With this definition, we obtain, through Eq. (6) and (25),
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Plots are shown in Fig. 4. Each spectral function displays a quasiparticle peak, whose
strength a) and frequency wy is implicitly dependent on wavevector

o= (1 ) 28)
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i | Recall:
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form of Eq. (15) allows one to introduce the electron-phonon spectral function,
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Recall:
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along with the gap equation (Eq. (43)):
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then, with the additional approximation of infinite bandwidth, Ag(m') = 1 (actually a cutoff,
O(we— | wm |), is required in Eq. (56)), and A;(m’) = 0. This last result effectively removes
Xm (and Eqgs. (55,57) ) from further consideration. An earlier review by one of us [11]



3.3 Extractio%rom Experiment

of the function a?F(v)
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4q. (26) and C'(k,w) is given by a simil:

C(k,w) = —%ImF(k, w + i)
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BCS formalism vs. Pairing Mechanism
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3.3.2 Tunneling

w]
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1sed the gap function, A(w), defined as

Alw) = ¢o(w +16)/Z(w + 6).
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eptor), and the tunneling matrix element. These are usuall’
e takes the zero temperature limit, then the derivative of t
oltage is simply proportional to the superconducting densit;

(), (), =" (\/w |—V|A2(V>) |




I. Giaever, H.R. Hart, Jr., and K. Megerle, PRB 126, 941 (1962)
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F16. 10. The relative conductance of a Pb-MgO-Mg sandwich
plotted against energy. At higher energies there are definite
divergences from the BCS density of states as can be seen from
the bumps in the experimental curve. Note that the crossover
point corresponds in energy to the Debye temperature.
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Figure 12: I-V characteristic of a Pb-I-Pb junction showing the construction used to find the
energy gap. The solid line and open circles are the current in the normal and superconducting
states, respectively. Reproduced from Ref. [52].



Elashberg Theory
A(ka w) — F[Vk,k’(wa w/)]

|

A functional of the interaction

Question: Can we invert the theory to extract the
potential uniquely from a knowledge of A(k,w) ?
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Figure 13: Conductance dI/dV of a Pb-I-Pb junction in the superconducting state nor-
malized by the conductance in the normal state vs. voltage. Also shown is the two-
superconductor conductance calculated from the BCS density of states which contains no
phonon structure. Reproduced from Ref. [52].



McMillan and Rowell, Superconductivity, ed. By R.D. Parks (1969)
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Fig. 23. Electronic density of states N(E) for lead vs. £— 4y obtained from the data of
Fig. 19. The smooth curve is the BCS density of states.

requires Eliashberg theory: 5
(2" F(£2)]

® phonon dynamics (retardation) taken into account

A(w) = F{a?F(2)}, 1]

dl W
» density of states is modified: W x N(w) = N<€F)Re{\/w2 - Az(w)

» gap is a function of frequency

t




(c) Pb

F(®): density of phonon states
from neutron scattering

Flw){mev)' AND a’lw)F (w)

o(meV)
a?F(w)
F(w)

a?(w) = ~ constant



McMillan and Rowell, in Superconductivity, ed. By R.D. Parks (1969)
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Fig. 32. Calculated (——) and measured (O O Q) electronic density of states N (E) for
Pb normalized by the BCS density of states vs. E — 4o. The measured density of states for
E — 40> 11 meV was not used in the fitting procedure and a comparison of theory and
experiment in this “multiple-phonon-emission” region is a valied tst of the theory. In the
experiment the sharp drop near 9 meV is affected by thermal smearing.



What does the theory look like?
BCS
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Figure 22: (a) A(iw,) and Z(iw,) vs wy,, the fermion Matsubara frequency, for various
temperatures, as indicated. Note that the curves are relatively smooth and featureless,
and at low temperatures little change occurs, except that more Matsubara frequencies are
present. In (a) the units of A are meV. These were produced for Pb.

Figure 21: (a) The temperature dependence of the BCS order parameter, and (b) the result-
ing densities of states at various temperatures below T,.. The only effect of finite temperatures

on these latter curves is a reduced gap.
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Figure 23: The (a) real and (b) imaginary parts of the gap function (in meV) on the real
frequency axis, for Pb, for various temperatures, as in the previous figure. Note the consid-
erable structure present on the real axis. Also shown is the (c) real and (d) imaginary part
of the renormalization function, Z(w) vs w.



Eliashberg Theory

Density of states at finite temperature
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Figure 24: Calculated densities of states of Pb for various temperatures. In contrast to the
BCS case (Fig. (21b), at high temperatures there is considerable smearing.
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Figure 21: (a) The temperature dependence of the BCS order parameter, and (b) the result-
ing densities of states at various temperatures below T,.. The only effect of finite temperatures

on these latter curves is a reduced gap.
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Figure 25: The ratio 2Aq/kgT, vs T,/ws,. The solid dots represent results from the full
numerical solutions of the Eliashberg equations. Experiment tends to agree to within 10%.
In increasing order of T,/we,, the dots correspond to the following systems: A, V., Ta,
Sn, T¢, Tty ¢Big1, In, Nb (Butler), Nb (Arnold), V35i(1), V3Si (Kihl.), Nb (Rowell), Mo,
Pby 4Ty 6, La, VaGa, Nb3AL(2), NbsGe(2), Pby 6Tl 4, Pb, Nb3 Al(3), PbysTly 2, Hg, Nb3Sn,
Pbo,gB'L'o,l, NbgAf(l), NbgGe(l), PbolgBZ.o_Q7 PbojBZ’o.g, and Pbo.esBio.g,s. The drawn curve
corresponds to 2A¢/kpT. = 3.53[1 + 12.5(T%./wen)2¢n(wen/2T.)]. The insert shows results for
different scaled o®F(w) spectra. They all correspond to the same value of T, and of wy, as
Pb. They serve to show that some deviation from the general trend is possible. Reproduced
from Ref. [11].



The Specific Heat Jump at Tc
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Figure 26: Specific heat of aluminium as a function of temperature in the superconducting
state and the normal state (applied field of 300 Gauss). Data taken from Ref. [237]. The
BCS prediction, given the normal state data, is given by the solid curve.



Figure 27: The specific heat ratio, AC(T.)/(yT.) vs T,/ws,. The dots represent results from
the full numerical solutions of the Eliashberg equations. Experiment tends to agree to within
10%. In increasing order of T./wy,, the dots correspond to the following systems: A/, V|
Ta, Sn, T¢, Tly4Biyq, In, Nb (Butler), Nb (Arnold), V3Si 1, V3Si (Kihl.), Nb (Rowell),
Mo, Pby,Ttys, La, VaGa, Nb3Al(2), NbsGe(2), PbyeTly4, Pb, NbsAl(3), PbysT¥y 5, Hg,
Nngn, Pbo_gBio‘l, NbgAg(l), Nb3G€(1), Pbo.gB’io_Q, Pb0.7B’I:0_3, and Pb0.65B’L'0_35. The drawn
curve corresponds to AC(T.) /YT, = 1.43(1 + 53(T./wen)*#n(wen/3T.)). Adapted from Ref.
[221].
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Figure 28: (a) o1(v) vs. v in the zero temperature BCS superconducting state for the
various impurity scattering rates indicated. The absorption onset at 2A(0) remains sharp
independent of the scattering rate. A delta-function contribution (not shown) is also present
at the origin. (b) Same as in (a) except for the frequency times the imaginary part of the
conductivity. The optical gap is a little less evident in the dirty limit. The conductivity is

given in units of ne?/m = wb/4w). Taken frdhf Ref. [181].
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Figure 34: The real part (a,b) and the imaginary part (c,d) of the conductivity at essentially
zero temperature (7'/T, = 0.3) with 1/7 = 2 meV (a,c) and 1/7 = 25 meV (b,d). In all
cases we have used the BKBO spectrum scaled to give the designated value of, A, while T, is
held fixed at 29 K by adjusting p*. Increased coupling strength suppresses both o(r) and
vos(v) and broadens the minimum in the latter at 2A. Note that 2A increases slightly as
the coupling strength is increased. The conductivity is given in units of ne?/m = w?/4).
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PHYSICAL REVIEW VOLUME 165, NUMBER 2 10 JANUARY 1968

Far-Infrared Absorption in Thin Superconducting Lead Films*

Leca Hunt PALMER}
Department of Physics, University of California, Berkeley, California
AND
M. Tinkuami
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F1G. 6. Smoothed results of measurements of the imaginary part
of the normalized conductivity of three lead films (A, B, and C)
at 2°K. Curve labeled BCS is the weak-coupling result of Mattis
and Bardeen, while that labeled Nam presents a revised version of
a curve shown in Ref. 5.In both cases, the gap frequency was taken
to be 22.5 cm™,



Eliashberg Theory

» Extension of BCS formalism to include
dynamical electron-phonon interaction

* builds on Migdal theory 1n the normal state

* loosely modrled in BCS theory
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¢ Poor man’s Scaling (Tolmachev et al.,
Morel and Anderson)
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Measurement of a?F (w)

1) measure structure in dI/dV accurately

2) “guess’ a’F(w)

dI(w)
dVv

3) compute, using Eliashberg theory,
4) correct trial o?F(w), using functional derivatives

5) iterate until calculated dI/dV agrees with experimen-
tal one

Sstructure beyond phonon region

agrees fairly well with phonon density of states

gap ratio comes out right

mass enhancement comes out right

agrees with thermodynamics

BUT, complexity of Coulomb repulsion is buried
in one number, u*



