
Chapter 16. Correspondence Analysis (CA) 
 

 

1. CA was first proposed to analyze contingency table. Contingency table is a common 

form to summarize species data (e.g., a 2×2 table classified by site and species). Data 

in each cell of the table is frequency of a species. The values of the frequency must be 

nonnegative. 

 

In general, correspondence analysis may be applied to any data table that is 

dimensionally homogeneous (i.e., the physical dimensions of all variables are the 

same so that at least addition makes sense here.). Certainly, all of the values must be 

≥ 0. Site×species tables are such tables in which cell frequencies can be 

presence/absence or abundance. 

 

CA is appropriate for two situations: (1) To analyze tables with a lot of zeros because 

the χ2 distance can easily handle (remove) double-zero (see below); (2) if there is a 

long gradient. 

 

2. A typical site×species data table: 
> dune 
    Belper Empnig Junbuf Junart Airpra Elepal Rumace Viclat Brarut Ranfla Cirarv 
X2       3      0      0      0      0      0      0      0      0      0      0 
X13      0      0      3      0      0      0      0      0      0      2      0 
X4       2      0      0      0      0      0      0      0      2      0      2 
X16      0      0      0      3      0      8      0      0      4      2      0 
X6       0      0      0      0      0      0      6      0      6      0      0 
X1       0      0      0      0      0      0      0      0      0      0      0 
X8       0      0      0      4      0      4      0      0      2      2      0 
X5       2      0      0      0      0      0      5      0      2      0      0 
X17      0      0      0      0      2      0      0      0      0      0      0 
X15      0      0      0      3      0      5      0      0      4      2      0 
X10      2      0      0      0      0      0      0      1      2      0      0 
X11      0      0      0      0      0      0      0      2      4      0      0 
X9       0      0      4      4      0      0      2      0      2      0      0 
X18      2      0      0      0      0      0      0      1      6      0      0 
X3       2      0      0      0      0      0      0      0      2      0      0 
X20      0      0      0      4      0      4      0      0      4      4      0 
X14      0      0      0      0      0      4      0      0      0      2      0 
X19      0      2      0      0      3      0      0      0      3      0      0 
X12      0      0      4      0      0      0      2      0      4      0      0 
X7       0      0      2      0      0      0      3      0      2      0      0 
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(1) χ2 distance – is used to calculate distance among sites using species abundance or 

other frequency data. No negative values are allowed in the data. 
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where x1j is cell frequency in a frequency table for site 1, while x2j is cell frequency in 

a frequency table for site 2. x1+ and x2+ are row totals. x+j is column total. x++ is the 

total sum of the frequency. The χ2 distance is the difference between two profiles 

weighted by column sum (x+j) and then times a constant ++x . Or it can be 

interpreted as the difference between two profiles and then weighted by relative 

frequency (a probability) 
+++ xx j /

1 . 

  

This χ2 distance can remove the effect of double zero. 

 

3. CA is primarily a method of ordination. As such, it is similar to PCA, but it preserves, 

in principal axes (i.e., after rotation), the Euclidean distance between profiles of 

weighted conditional probabilities. This is equivalent to the χ2 distance between the 

row and columns of the contingency table. 

 

Besides the role of as an ordination and dimension reduction method, CA may be 

used for studying the proximities between rows (or columns) of a contingency table. 

 

4. CA computation – 3 major steps are involved:  

(1) Data standardization (the contingency table will be transformed into a table of 

contributions to the Pearson χ2 statistic after fitting the null model of row-column 

independence to the contingency table. 

(2) Singular value decomposition is applied in order to compute eigenvalues and 

eigenvectors, as in PCA. 

(3) Further matrix operations will lead to various tables that are needed for plotting 

useful output diagrams. 
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Steps: 

(1) Standardized contingency table using the Pearson χ2 
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CA is based on a matrix called Q (r×c) and r ≥ c. Q  is calculated as follows. 
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ijq  measures the total inertia (variation) in 

Q . It equals the sum of all the eigenvalues to be extracted by eigenanalysis of Q . 

 

Example:  
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We have: 
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(2) Apply SVD to matrix Q . We have 

WU'UQ ˆ= , where  and  are column-orthonormal matrices (i.e., column 

vectors are normalized and orthogonal to one another. “normalized” means the length 

of the eigenvector is normalized to be 1.),  is a diagonal matrix with diagonal 

values w

cr×U cc×Û

cc×W

i (nonnegative). These values wi are the singular values of Q . 

 

Because WU'UQ ˆ= , the multiplication of Q'Q  gives U)WU''U(UW'Q'Q ˆ= . 

Because , we have: I'UUU'U == ˆˆˆˆ

WU'UW'Q'Q =  

 

It is easy to show (see page 453-454 of Legendre’s Numerical Ecology) the diagonal 

matrix , which contains squared singular values on its diagonal, is the diagonal 

matrix of the eigenvalues of 

WW'

Q'Q . Furthermore, U  is the eigenvectors of Q'Q , 

containing the loadings of the columns of the contingency table. 

 

A similar application to matrix 'QQ  (r×r) shows that the orthonormal , produced 

by the singular value decomposition is the matrix of eigenvectors of 

'Û

'QQ  , 

containing the loadings of the rows of the contingency table. 

 

R-code of singular value decomposition: > svd(Q). 

Note: This svd will produce the column and row eigenvectors (U  and  

respectively) and diagonal matrix W. Eigenvalues can then be easily calculated by 

. 

'Û

WW'
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Results identical to those of SVD can be obtained by applying to eigenvalue analysis 

either to the covariance matrix Q'Q , which would produce the matrix U  (column 

eigenvectors), or to matrix 'QQ , which would produce  (row eigenvetors). 'Û Q'Q  

and 'QQ  have the same eigenvalues which are . WW'

 

Important note: SVD or eigenvalue analysis of matrix Q'Q  or 'QQ  always 

produce one null eigenvalue. This is due to the centralization in calculating 
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Therefore, the number of eigenvalues equals min(r, c) - 1. That is the number of rows 

or columns (whoever is smaller) minus one. Furthermore, all eigenvalues must be 

smaller than one due to the nature of Q  (compare ijq  with ijχ . This difference 

makes eigenvalues < 1.). 

 

Example:  

 

(i) Data: 
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10690.0

Q . # Qbar16.dat in R  

 

(ii) SVD: 

> svd(Qbar16.dat) 

$d 

[1] 3.100518e-01 2.023462e-01 2.242471e-06 

 

$u # , normalized row eigenvectors of 'Û 'QQ . The third column has no 

meaning and should be discarded. 

           [,1]       [,2]      [,3] 
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[1,] -0.5369188  0.5583332 0.6324415 

[2,] -0.1304297 -0.7955875 0.5916321 

[3,]  0.8334904  0.2351692 0.4999891 

 

$v  # U , normalized column eigenvectors of Q'Q . Discard the third column. 

           [,1]       [,2]       [,3] 

[1,]  0.7801605  0.2033713 -0.5915993 

[2,] -0.2038383 -0.8114309 -0.5477498 

[3,] -0.5914385  0.5479233 -0.5915915 

 

(iii) Computing eigenvalues: 

> d=svd(Qbar16.dat) 

> w=diag(d) 

> w%*%t(w) 

 

Note: you can derive the above eigenvalues and eigenvectors, respectively, using 

'QQ  and Q'Q . Try it using eigen. 

 

Some programs may compute SVD based on the following matrix (without 

centralizing data). 
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The consequence of without centralization is that it will produce min(r, c) 

eigenvalues (one more than that based on Q ), with all other results being the same as 

those based on Q . This extra eigenvalues is easy to recognize because its value is 1. 

This eigenvalue (and its corresponding eigevector) has no meaning and should be 

discarded. It only reflects the distance between the centre of mass of the data points in 

the ordination space (i.e., the origin of the new coordinate system). 

 

 6



(3) Biplot (joint plot) 

Eigenvector matrices U  and  are the loadings of the “principal axes” (recall PCA 

loadings?). Using these loadings we can compute scores (i.e., positions) of the row 

and column vectors in ordination spaces (one for row, one for column, separately). 

However, to facilitate interpretation, we can scale these scores so that to plot them 

(rows and columns) together in a single ordination space. 

'Û

 

First, compute V  and  matrices: 'V̂

UV 2/1)( −
+× = jcc pdiag  # weighted by the inverse of the square roots of the 

column scores. Equivalent to the step of computing 

scores in PCA, i.e., principal axis, for the columns. 

UV ˆ)(ˆ 2/1−
+× = icr pdiag  # weighted by the inverse of the square roots of the 

row scores. Equivalent to the step of computing 

scores in PCA, i.e., principal axis, for the rows. 

Note: V  and  are the positions of columns and rows, respectively in CA space. If 

Columns and rows are ordinated in separated space, V  and  are used. However, in 

order to produce a joint plot, the following score matrices are needed. 

'V̂

'V̂

 

Second, compute F and F′ matrices: 

QVΛVF 12/1 )(ˆ −
+

−
× == icr pdiag  # This gives the positions of the rows of the 

contingency table in the CA space. Obtained 

from the transformed matrix of eigenvectors 

V, which gives the positions of the columns 

in that space. 

VQ'VΛF 12/1 )(ˆ −
+

−
× == jcc pdiag  # This gives the positions of the columns of 

the contingency table in the CA space. 

Obtained from the transformed matrix of 
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eigenvectors V , which gives the positions 

of the rows in that space. 

ˆ

 

With this scaling, matrices F and V form a pair such that the rows (given by F) are at 

the centroid (centre of mass or “barycenter”) of the columns in matrix V. Similarly, 

matrices F̂  and V  form a pair such that the columns (given by matrix ˆ F̂ ) are at the 

centroids of the rows in matrix V . ˆ

 

Note: Scaling type 1 – Draw a biplot with the rows (matrix F) at the centroids of the 

columns (matrix V). For site×species data tables where sites are rows and species 

are columns, this scaling is the most appropriate if one is interested in the 

ordination of sites. Use scaling 1 if you are interested in preserving distance, e.g., 

the distance in sites. The locations of sites are measured by distance. 

 

 Scaling type 2 – Draw a biplot with the column (matrix F̂ ) at the centroids of the 

rows (matrix V ). This scaling is the most appropriate if one is interested in the 

ordination of species. Use scaling 2 if your interest is to preserve correlation, e.g., 

correlation in species groups. 

ˆ

 

 Scaling type 3 – Not appropriate for biplot. The eigenvectors in matrix U are 

normalized as in PCA. The scaling of F is such that the Euclidean distances 

among the rows of F are equal to the χ2 distances among objects of the original 

data table.  

 

 vegan – has these three scaling options. 

 

Example: 
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In scaling type 1, the states in the rows of the data matrix, whose coordinates will be 

stored in matrix F, are to be plotted at the centroids of the columns states. The scaling 

for the columns is obtained using  
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We have: 
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To put the rows (matrix F) at the centroids of the columns (matrix V), the position of 

each row along an ordination axis is computed as the mean of the column positions, 

weighted by the relative frequencies of the observations in the various columns of 

that row. For example, consider the first row of original data: 
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The relative frequencies (i.e., conditional probabilities) of the three columns in that 

row are: 0.25 (10/40), 0.25 (10/40) and 0.5 (20/40). Multiplying matrix V by that 

vector provides the coordinates of the first row in the ordination diagram: 

[ ] [ 17862.026322.0
92612.0

48150.1
34374.0

99972.0
37215.0

31871.1
5.025.025.0 −−=
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These coordinates put the first row at the centroid of the columns in CA ordination 

space. They are stored in the first row of matrix F. The row-conditional probabilities 

for the whole data table are found using the matrix operation: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
−
−

=== −
+

−

09517.0
27211.0

17862.0

51685.0
06835.0
26322.0

)(ˆ 12/1 QVΛVF ipdiag  

 
In the plot, each site locates in the centroids of the species. Positions of the centroids 

are calculated using weights equal to the relative frequencies of the species. Because 

species frequencies are different in different sites, e.g., some species may be absent 

from a site and thus do not contribute to the position of that site, the sites do not 

crashed onto to one location (single centroid). See interpretation in 6(2)(ii) below. 

 

Using the formulae for the Euclidean distances, one can verify that the Euclidean 

distances among the rows of matrix F equal the χ2 distance among the rows of the 

original data table: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

069091.0
0

78452.0
49105.0

0
D . 

Matrix F thus provides a proper ordination of the rows of the original data matrix. 
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5. Reciprocal averaging 

Hill’s (1973) paper (Reciprocal averaging: an eigenvector method of ordination, J. 

Ecol. 61:237-249) proposes the reciprocal averaging method for site×species 

contingency table. But it became clear later on that this method actually is CA. 

 

Reciprocal averaging is derived from ecological perspective, based on the principle of 

gradient analysis. Gradient analysis uses a matrix X (site×species) and an initial 

vector v of values vj which are ascribed to the various species j as indicators of the 

physical gradient to be evidenced. For example, a (arbitrary) score (scaled from 1 to 

10) could be given to each species for its preference with respect to soil moisture. 

These coefficients are used to calculate the positions of the sites along the gradient.  

 

(i) Site scores: The score  of a site i is the average score of the species (j = 1, 2, …, 

p) present at that site, using the formula: 

iv̂

+

=
∑

=
i

p

j
jij

i x

vx

v 1ˆ . 

where xij is the abundance of species j at site i and xi+ is the sum of the species at this 

site (i.e., the sum of the values in row i of matrix X). 

 

(ii) Species scores: The scores (positions) of species can be similarly derived, but 

using v : ˆ

j

n

i
iij

j x

vx
v

+

=
∑

= 1
ˆ

, where x+j is the sum of values in column j of matrix X. 

(iii) Iteration: Use  calculated from step (ii) to update  in step (i). Alternating 

between steps (i) and (ii) defines an iterative procedure of “reciprocal averaging”. 

This iteration eventually will converge to a unique unidimensional ordination of the 

species and sites, which is independent of initial values given to ’s. 

jv̂ iv̂

jv
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iv̂  and  are the scores (positions) of sites and species on the first axis. Hill (1973) 

also shows how to calculate the first eigenvalue corresponding to this first axis 

coordinate system. He also shows how to find other eigenvalues and eigenvectors.  

jv

 

6. CA interpretation. The purposes of CA include: data reduction and pattern detection 

(site/species clustering classification and correlation between sites and species). 

(1) Eigenvalues iλ  (equivalent to R2) measures the correlation between column 

scores (V ) and row scores (V ) at the iˆ th principal axis. For example, in our 

example16.dat, the eigenvalue of the first axis is 0.096. Methods are available to 

test for the significance of R2 = λ. In many CA programs, the test can be done 

using permutation test. (Remember a central question in contingency table 

analysis is to test for row and column independence. The eigenvalues measure 

that.) 

(2) Biplot allows one to conclude about the ecological relationships displayed by the 

data. With scaling type 1, we have: 

(i) The Euclidean distance among sites in reduced space approximate their 

χ2 distances. 

(ii) The sites (rows) are at the centroids of the species (column). Positions of 

the centroids are calculated using weights equal to the relative 

frequencies of the species. Species that are absent from a site do not 

contribute to the position of that site. 

(iii) Therefore, any site found near the point representing a species is likely 

to receive a high contribution of that species; for binary data, the species 

is more likely to be present in that site. (Similar interpretation applies to 

the ordination of scaling type 2.) 

(3) Niche interpretation: If species are distributed in unimodal (i.e., bell-shapped) 

response curve along environmental gradient, the use CA is justified.  

(i) The position of a species in the ordination space is largely the optimum 

of the distribution of that species. Spatial proximity between site and 

species represents association between them. 
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(ii) Species that are not associated with most sites (absent from most sites) 

often appear at the edge of the scatter plot, near the point representing a 

site where the species occur by chance (or because they are favored by 

some rare condition occurring at the sites). 

(iii) Species that lie near the centre of the ordination diagram may have their 

optimum in this area of the plot, or have two or several optima (bi- or 

multi-modal species), or be unrelated to the pair of axes under 

consideration. 

 

7. Detrended correspondence analysis (DCA) 

Species that are controlled by environmental factors often have unimodal bell-shaped 

distributions along the environmental gradient. The effect of gradients on the 

relationship among sites, calculated on species presence-absence or abundance data, 

is necessarily nonlinear. Ordination methods aim at rendering this nonlinear 

phenomenon in a Euclidean space, in particular as two-dimensional plots. In such 

plots, nonlinearities end up being represented by curves, called arches or horseshoes.  

This horseshoe effect causes problem in interpreting ordination results. 

 
The result of CA, showing horseshoe effect: 
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Two approaches to remove the horseshoe effect: 

(i) Detrending by segments – Axis I is divided into a number of “segments” and, 

within each segment the mean of the scores along axis II is made equal to 

zero. In other words, data points in each segment are moved along axis II to 

make their mean coincide with the abscissa. 
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(ii) Detrending by polynomials – This method follows from the fact that an arch is 

produced when a gradient of sufficient length is present in data. When a 

sufficient number of species are present and replace each other along the 

gradient, the second CA axis approaches a quadratic form of first one. The 

horseshoe effect can be removed by fitting a quadratic form the arch. This 

method is not widely use because real data do not usually have an ideal 

quadratic shape. 

 

8. In vegan, DCA is implemented using decorana. 

 

9. Try dune data – use both CA and DCA. 

 

10. Some common ordination (indirect gradient analysis) methods: 

 

Method Distance Variables 

Principal component analysis 

Euclidean 

distance 

Quantitative data, linear relationships (beware of double zeros. 

Use CA for lot of zeros.) 

Principal coordinate analysis 

Any distance 

measure Quantitative data, semiquantitative, qualitative, or mixed 

Nonmetric multidimensional 

scaling (NMDS, MDS) 

Any distance 

measure 

Quantitative data, semiquantitative, qualitative, or mixed. 

Computing intensive, always obtains a Euclidean representation. 

Correspondence analysis χ2 

distance χ2 distance 

Non-negative, dimensionally homogeneous quantitative or 

binary data, species presence/absence, abundance data 
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