
Chapter 15. Principal Component Analysis (PCA) 
 

 

1. Ecological data are often multivariate – a site is described by many biotic or abiotic 

variables. Sometimes, biotic and abiotic measures are used together to analyze the 

association between sites, but more often they are used separately, such as the 

examples shown below.  

 
> dune 
    Belper Empnig Junbuf Junart Airpra Elepal Rumace Viclat Brarut Ranfla Cirarv 
X2       3      0      0      0      0      0      0      0      0      0      0 
X13      0      0      3      0      0      0      0      0      0      2      0 
X4       2      0      0      0      0      0      0      0      2      0      2 
X16      0      0      0      3      0      8      0      0      4      2      0 
X6       0      0      0      0      0      0      6      0      6      0      0 
X1       0      0      0      0      0      0      0      0      0      0      0 
X8       0      0      0      4      0      4      0      0      2      2      0 
X5       2      0      0      0      0      0      5      0      2      0      0 
X17      0      0      0      0      2      0      0      0      0      0      0 
X15      0      0      0      3      0      5      0      0      4      2      0 
X10      2      0      0      0      0      0      0      1      2      0      0 
X11      0      0      0      0      0      0      0      2      4      0      0 
X9       0      0      4      4      0      0      2      0      2      0      0 
X18      2      0      0      0      0      0      0      1      6      0      0 
X3       2      0      0      0      0      0      0      0      2      0      0 
X20      0      0      0      4      0      4      0      0      4      4      0 
X14      0      0      0      0      0      4      0      0      0      2      0 
X19      0      2      0      0      3      0      0      0      3      0      0 
X12      0      0      4      0      0      0      2      0      4      0      0 
X7       0      0      2      0      0      0      3      0      2      0      0 
 
> dune.env 

     A1 Moisture Management      Use Manure 

1   3.5        1         BF Haypastu      2 

2   6.0        5         SF Haypastu      3 

3   4.2        2         SF Haypastu      4 

4   5.7        5         SF  Pasture      3 

5   4.3        1         HF Haypastu      2 

6   2.8        1         SF Haypastu      4 

7   4.2        5         HF  Pasture      3 

8   6.3        1         HF Hayfield      2 

9   4.0        2         NM Hayfield      0 

10 11.5        5         NM Haypastu      0 

11  3.3        2         BF Hayfield      1 
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12  3.5        1         BF  Pasture      1 

13  3.7        4         HF Hayfield      1 

14  4.6        1         NM Hayfield      0 

15  4.3        2         SF Haypastu      4 

16  3.5        5         NM Hayfield      0 

17  9.3        5         NM  Pasture      0 

18  3.7        5         NM Hayfield      0 

19  5.8        4         SF Haypastu      2 

20  2.8        1         HF  Pasture      3 

 

2. The distribution of sites in multi-dimensional spaces, showing two abiotic variables. 

The location of each site is determined by the values of the two variables. 
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This is also called Mahalanobis distance 

 

3. In order to study the relationship between sites in a multi-dimensional space, we need 

certain quantities to measure the distance between sites. Numerous indices have been 

developed to measure distance/similarity/dissimilarity/association/resemblance 
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between sites. See Chapter 7 of Legendre brothers’ Numerical Ecology (1998, 

Elsevier). 

 

Two distance measures are most important in multivariate analysis. 

(1) The Euclidean distance (metric distance) 

( ) ( )221
2

21)2,1( yyxxD −+−=  

This distance is usually applied to environmental measures. It is the distance on 

which PCA is based on. 

 

In multi-dimensional space, the Euclidean distance is: 
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(2) χ2 distance – is used to calculate distance among sites using species abundance or 

other frequency data. No negative values are allowed in the data. 
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where x1j is cell frequency in a frequency table for site 1, while x2j is cell 

frequency in a frequency table for site 2. x1+ and x2+ are row totals. x+j is column 

total. x++ is the total sum of the frequency. 
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The χ2 distance is 
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This distance is used in correspondence analysis when computing the association 

between species or between sites. More generally, it is used for computing the 

association between the rows or columns of a contingency table. This measure has 

no upper limit. 

 

(3) Other important association measures include: 

Jaccard’s coefficient: 
cba

aS
++

=  

Sørensen’s coefficient: 
cba

aS
++

=
2

2  

where a is the number of species present in 

both sites, b is the # of species present in B but 

absent from A, etc. 
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4. PCA is a way of coordinate system rotation 

The point M has coordinates (x1, x2) at the original 

X1-X2 coordinate system. We rotate the X system into 

Y position. What are the new coordinates for point M? 

φφ sincos 211 xxy +=  

φφ cossin 212 xxy +−=  

 

We re-express this coordinate transformation in matrix notation. 
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The principle component analysis is to find a transformed coordinate system 

(i.e., an appropriate angle φ) in which the first axis (Y1) captures the largest 

variation in the data and the second axis (Y2) captures the second largest 

variation. Furthermore, Y1 and Y2 are orthogonal. 

 

5. This can be quite easily achieved using eigenvalue analysis on dispersion (or 

correlation) matrix of the variables of interest. For the purpose of illustration, let’s 

look at a simple example (see Legendre’s Numerical Ecology, page 392). 
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(2) The dispersion matrix of X is the variance-covariance matrix, calculated as: 
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R-Code: t(XX)%*%XX/4  # XX is the centralized matrix X-X′. 

 

(3) Compute eigenvalues and eigenvectors for the dispersion matrix S. 

 

( ) 0uISuSu =−⎯→⎯= λλ . A nontrivial solution u ≠ 0 requires that 0=|I-S| λ . 

Substitute S into this determinant: 
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Solve this determinant, we have λ1 = 9 and λ2 = 5. Eigenvalues capture the variation 

in the data. The importance of axes I and II is entirely measured by the proportion of 

the eigenvalues for each axis. For example, the first principal axis describes 

%29.64
14
9
=  of variation in the data, and the second axis describes %71.35

14
5
=  of 

the variation. 

 

(4) For each eigenvalue, there are many eigenvectors (not unique) that meet 

condition: ( ) 0uIS =− 1λ . For example, for λ1 = 9, we can have 
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This leads to one equation: 21 2uu = . Given any value of u2, there is one u1, 

therefore, there is no unique solution. Because u1 and u2 are proportional, it does not 

matter which (u1, u2) pair we use. For simplicity, we can scale (u1, u2) so that  

12
2

2
1 =+ uu  (i.e., ). Therefore, under this condition we have eigenvector 

corresponding to eigenvalue of λ

1=uu'

1 = 9: 
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1
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u
 u  

 

Similarly, we have eigenvector for eigenvalue λ2 = 5: 

⎩
⎨
⎧

=
−=

=
8944.0
4472.0

2

1
2 u

u
u         (note: it is not a problem if u1 and u2 switch the sign.) 

The computation of eigenvalues and eigenvectors of S can be easily implemented 

using R-Code: 

> eigen(s) 

 

(5) Eigenvectors are called loadings in PCA, which are the coefficients in the linear 

principle axes (they are transformed axes): 

Axis I: )(4472.0)(8944.0 22111 iiiii xxxxy −+−=  
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Axis II: )(8944.0)(4472.0 22112 iiiii xxxxy −+−−=  

 

(6) The new coordinates calculated from y1i and y2i are called principal components. 

For example the principle components for the first data point are: 

576.3)6.1(4472.0)2.3(8944.011 −=−×+−×=y  

0)6.1(8944.0)2.3(4472.021 =−×+−×−=y  

 

6. R implementation 

There are a number of ways PCA analysis can be implemented using R. There are 

two major programs. One is princomp built in R, the other is a contributed package 

vegan specifically designed for analyzing ecological data (vegetation analysis). Let’s 

look at princomp first. 

 

7. > example15.pca=princomp(example15.dat) 

> summary(example15.pca) 

Importance of components: 

                          Comp.1    Comp.2 

Standard deviation     2.6832816 2.0000000 

Proportion of Variance 0.6428571 0.3571429  # eigenvalue proportions 

Cumulative Proportion  0.6428571 1.0000000 

 

> example15.pca$loadings 

 

Loadings: 

   Comp.1 Comp.2 

x1  0.894  0.447    # eigenvectors 

x2  0.447 -0.894 

 

               Comp.1 Comp.2 

SS loadings       1.0    1.0 

Proportion Var    0.5    0.5 
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Cumulative Var    0.5    1.0 

 

> example15.pca$scores   # principal components 

        

           Comp.1        Comp.2 

  site1 -3.577709 -4.090695e-16 

  site2 -1.341641 -2.236068e+00 

  site3 -1.341641  2.236068e+00 

  site4  3.130495 -2.236068e+00 

  site5  3.130495  2.236068e+00 

 

> biplot(example15.pca)   # plot outputs 

 

8. bioplot – The biplot allows one to represent both the original variables and the 

transformed observations on the principal components axes so that you can 

graphically view the relationship between those original variables and the principal 

components. 

Interpretation of the biplot: The x-axis represents the scores for the first principal 

component, the y-axis the scores for the second principal component. The original 

variables are represented by arrows (princomp, no arrows in vegan) which 

graphically indicate the proportion of the original variance explained by the first two 

principle components. 

 

Note: Sites-descriptor relationships are not interpreted based on their proximity, but 

on orthogonal projections of the sites on the descriptor axes. 

 

9. Assessing correlation between principal axes and original descriptors 

There are several ways to assess the contribution of each descriptor to the principal 

components. Two common practices are: 
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(1) Examine the sign of each loading. Positive loadings and negative loadings may 

represent two opposite environmental variables (e.g., wet versus dry, nutrient rich 

versus nutrient poor). 

(2) Correlate the principal components with each original descriptor. 

 

10. Let’s try a real data: tiantong.dat 

 

11. Let’s try vegan.  

>example15.rda=rda(example15.dat) 

> summary(example15.rda) 

 

Call: 

 

Partitioning of variance: 

               

Total         14 

Unconstrained 14 

 

Eigenvalues, and their contribution to the variance  

 

               PC1   PC2 

lambda      9.0000  5 

accounted for  0.6429  1 

 

Scaling 2 for species and site scores 

-- Species are scaled proportional to eigenvalues 

-- Sites are unscaled: weighted dispersion equal on all dimensions 

 

Species scores 

 

      PC1     PC2 
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x1 1.9618  0.7311 

x2 0.9809 -1.4622 

 

[Eigenvectors are not the same as the outputs of princomp because they are not 

scaled. . Scaled 1.9618 by sqrt(4.8108) leads to the same 

eigenvectors as calculated manually in the above: 

8108.49809.09618.1 22 =+

8944.08108.4/9618.1 = ,  

4472.08108.4/9809.0 = .] 

 

Site scores (weighted sums of species scores) 

 

          PC1        PC2 

site1 -1.6312  1.215e-16 

site2 -0.6117 -1.368e+00 

site3 -0.6117  1.368e+00 

site4  1.4273 -1.368e+00 

site5  1.4273  1.368e+00 

 

[The PCA scores are the same as those produced by princomp when the PC1 are 

multiplied by 1933.28108.4 = , and PC2 are multiplied by 6348.16726.2 = . 

 

12. PCA using correlation matrix 

What we have learned so far is PCA using covariance (dispersion) matrix (i.e., 

eigenvalue analysis is all based on this matrix). The alternative is PCA using 

correlation matrix. Both princomp and vegan have options for that. 

> princomp(example15.dat, cor=T) 

> rda(example15.dat, scale=T) 

 

Important note: Correlation matrix makes each descriptor variable more 

homogeneous. It actually is the z-score standardized data. 
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The outputs of PCA-correlation matrix are different from those of PCA-covariance 

matrix because the distance between sites is differently defined. Here are two general 

rules whether covariance matrix or correlation matrix should be used: 

(1) Try both, but choose the one which makes the interpretation of your results easier 

and more interesting. 

(2) If one wants to cluster the sites in the reduced space, there are two questions you 

may want to ask yourself before deciding which matrices to use for PCA. Should 

the clustering be done with respect to the original descriptors, thus preserving 

their differences in magnitude? Or, should all descriptors contribute equally to the 

clustering of sites, independently of the variance exhibited by each one? In the 

second case, you should proceed from the correlation matrix. 

 

13. Let’s try data: tiantong.dat. 

(1) Produce outputs 

(2) Plot the sites in the first two principal axes. Plot D sites and T sites in different 

colors. (D – degenerated secondary forests, T – old growth forests with some 

degree of disturbances). 
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