
Chapter 13. Logistic regression 
 

 

1. The models have been investigated so far is of the form: 

 

y = X β + ε  

 

with assumption that εi follows iid N(0, σ2). 

 

This means response variable y must be a continuous and normal random variable. 

 

2. In reality, many response variables are not continuous variable and do not follow 

normal distribution. Examples? What do we do if we still want to model these 

variables by standard linear regression models? 

 

3. Generalized linear models (GLM) 

 

εβ += )(xgy  

In linear regression, the error ε follows a normal distribution and g is an identity 

function, i.e., ββ xxg =)( . 

 

In GLMs, g basically can be any function and the error ε will not normally follow the 

normal distribution. 

 

4. Logistic regression is a special type of the GLMs. It deals with binary (dichotomous) 

variable. The log-linear regression introduced in the next chapter is another type of 

GLM which deals with count data. 

 

5. For the logistic regression, the value of the binary variable y given x is 
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επ += )(xy  

where the error ε assumes one of the two possible values: 
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Therefore,  [ ] [ ] εππε ππε −−+ − )(1)( )(1)(~ xx xx

 

6. All GLMs consist of three components: 

 

(1). Random component – Identify the response variable y and assumes a probability 

distribution for it. 

(2). Systematic component – Specify the explanatory variables used as regressors in 

the model. 

(3). Link function – Describe the functional relationship between the systematic 

component and the expected value µ = E(y) of the random component. 

 

7. Exponential family of distributions 

 
)()()()();( θθθ byaetysyf =  

 

or 

 

)]()()()(exp[);( ydcbyayf ++= θθθ  

 

If a(y) = y, the pdf is said to be in the canonical form, and b(θ) is called the natural 

parameter. Natural parameter is typically used as a link function. 

 

If there are other parameters in addition to θ (the parameter of interest), they are 

regarded as nuisance parameters. 
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8. Many pdfs belong to the exponential family: Normal, Poisson, Binomial, Geometric, 

NBD, Gamma dist. etc. 

 

Example 1 – Normal distribution: 
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 σ2 is a nuisance parameter which is assumed to be known. 

 

Example 2 – Poisson distribution: 
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Example 3 – Binomial distribution: 
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9. As an example, let’s model the distribution of species Ocotea whitei (ocotwh) in BCI 

using explanatory variable slope: 

 

(1). Data – The 50 ha plot is divided into a 20×20 m grid system 

(2). Random component – Identify the probability model for the occurrence (y) of the 

species in a particular cell. Obviously, y is a Bernoulli trial: 
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(3). Systematic component – Specify the slope x (explanatory variable) as 

x10 ββ +  

(4). Define a link function – In GLM, it is most typical to use the natural parameter as 

a link function 

xb 10)( ββθ +=  

 

In our case, the natural parameter is (called logit): 
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 or expressed as 

  x

x

e
exy

10

10

1
)|1( ββ

ββ

π
+

+

+
==  

(Note: This can be viewed as the conditional probability that y equals 1 given an x. It 

follows that )|0(1 xy =− π  is the conditional probability that y equals 0 given an x.) 

 

10. Maximized likelihood estimators (MLE) 

 

For normal data, MLEs and LSEs are the same. However, for GLMs maximum 

likelihood method is the best method for parameter estimation. 

 

Given a set of observations: 

 

i y x 

1 0 x1

2 1 x2

3 1 x3

… … … 

n 0 xn

 

Assume y follows distribution: 
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yyyf −−= 1)1();( πππ  

 

The likelihood function is the probability that a set of data is observed, defined as 
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(Note: Likelihood function is a function of parameters, not data. Data here are 

considered as random variables.) 

  

11. Maximum likelihood principle: The best explanation of a set of data is provided by 

the values of (β0, β1) that maximize the likelihood function. 

 

12. Log-likelihood function 
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13. R-code: 

 

ocotwh.glm=glm(y~slope,family=binomial(link=logit),data=ocotwh.dat) 

 

> summary(ocotwh.glm)  #view the outputs 
 

Call: 

glm(formula = y ~ slope, family = binomial(link = logit), data = ocotwh.dat) 

 

Deviance Residuals:  
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    Min       1Q   Median       3Q      Max   

-2.1134  -0.5213  -0.4005  -0.3117   2.4726   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) -3.33010    0.16935  -19.66   <2e-16 *** 

slope        0.30488    0.02174   14.03   <2e-16 *** 

--- 

Signif. codes:  0  `***'  0.001  `**'  0.01  `*'  0.05  `.'  0.1  ` '  1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 1196.49  on 1249  degrees of freedom 

Residual deviance:  948.64  on 1248  degrees of freedom 

AIC: 952.64 

 

Number of Fisher Scoring iterations: 4 
 

Note:  1. The test on Intercept and slope are called Wald statistic (see 16). 

2. Null deviance is the deviance for the model including intercept term 

only, whereas the Residual deviance is for the model including 

intercept and slope terms (see 14). Large residual deviance suggests the 

model is a poor model. 

 

14. Deviance (likelihood ratio statistic): 
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Note: 

(1). The current model is the model of interest. 

(2). The saturated model is the full model that considers observed data as parameters, 

thus there are as many parameters as data points (the full model gives a perfect 
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fit to the data). Under this model, the maximum of the likelihood is achieved as 

much as we can. 

(3). If the current model is a good model, the ratio in the bracket will be close to 1. 

Otherwise, the ratio will be small. 

(4). Therefore, large D suggests the current model is a poor description of the data. 

(5). The deviance for logistic regression plays the same role as the residual sum of 

squares in linear regression. 

 

15. Test for the significance of coef. H0: β1 = 0 

 

Scaled deviance (similar to the extra-sum-of squares): 

 

G = D(for the model without β1) – D(for the model with β1) 
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2
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Note: G measures the contribution of the explanatory variable x to the model given β0 

already in the model. This scaled deviance (G) can be read from the outputs of 

anova(object.glm). 

 

> anova(ocotwh.glm)   #view outputs, if test is desired, use option test = “Chisq” 
Analysis of Deviance Table 

 

Model: binomial, link: logit 

 

Response: y 

 

Terms added sequentially (first to last) 

 

 7



 

        Df Deviance Resid. Df Resid. Dev 

NULL                     1249    1196.49 

slope    1   247.85      1248     948.64 

 

16. Wald statistic 

 

This is another way to test for the significance of coefs. H0: β1 = 0 
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This test statistic follows the standard normal distribution N(0, 1). 

p-value = P(|z| > W), large W suggests rejection of H0: β1 = 0. 

 

Note: Different from deviance test (χ2 test in 15), the Wald statistic suggests a 

direction of change. 

 

17. Analysis of residuals – assessing the goodness-of-fit 

 

(1) Like the linear regression, R also performs all sort of residual analysis for GLMs. 

Try plot(glm.object). However, interpretation of any such analysis must be 

cautious because GLM residuals are usually not normally distributed, particularly 

for small samples. As a result, the curvature in Q-Q plot cannot be taken 

seriously. 

 

18. Two residuals 

 

(1). The Pearson residuals: 
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Problem with rp is that its distribution is often skewed for non-normal 

distribution, therefore, Q-Q plot is not reliable. Large |rpi| suggests outliers. 

 

(2). Deviance residuals 
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i
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where di is the contribution of each observation to the total deviance D, 

i.e., . ∑= idD

 

19. Model interpretations (Hosemer & Lemeshow 1989) 

 

(1). The key question is: What do the estimated coefs in the model tell us about the 

research questions that motivated the study? 

(2). The estimated coefs for the independent variables represent the slope or rate of 

change of the dependent variable given per unit of change in the independent 

variable. Therefore, the interpretation involves two steps: Determining the 

functional relationship between the dependent variable and the independent 

variable, and appropriately defining the unit of change for the independent 

variable. 

(3). Proper interpretation of the coefs in a logistic regression model depends on being 

able to place meaning on the difference between two logits. 
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logit: 
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 The difference of two logits: 
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20. Odds ratio 

 

Assume x is dichotomous independent variable, from the logistic model in (19) we 

have 

 

                                                        Independent variable x 
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Dependent 
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Odds of outcome being present among individuals with x = 1 is defined as: 

  Odds:   10
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Odds of outcome being present among individuals with x = 0 is: 
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Odds ratio: 
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Odds ratio is a measure of association which has wide applications. It approximates 

how much more likely (or unlikely) it is for the outcome to be present among those 

with x = 1 than among those with x = 0. 

 

For example, if y denotes the presence or absence of lung cancer and if x denotes 

whether or not the person is a smoker, then 2=ψ) indicates that lung cancer occurs 

twice as often among smokers than among nonsmokers in the study population. 

 

(Note: The interpretation for the odds ratio is based on the fact that in many instances 

it approximates a quantity called the relative risk, defined as 
)0|1(
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π
π ) 

 

21. log-odds ratio: 

 

Take a log on the odds ratio, it is easy to show 
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Thus, log-odds ratio is actually the difference in two logits which is the coef. 

 

22. probit model: 

 

x10
1 )( ββπ +=Φ−  

Or 

)( 10 xββπ +Φ=  

ocotwh.probit=glm(y~slope,family=binomial(link=probit),data=ocotwh.dat) 
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23. log-log model: 

 

x10)]1log(log[ ββπ +=−−  

Or 

 )]exp(exp[1 10 xββπ +−−=  

 

ocotwh.loglog=glm(y~slope,family=binomial(link=cloglog),data=ocotwh.dat) 

 

24. Variable selection: 

 

(1). Start from model with constant term only: 

ocotwh.1=glm(y~1,family=binomial,data=ocotwh.dat) 

(2). Use step 

 

> ocotwh.step=step(ocotwh.1,~slope+meanelev+convex+habcat) 
Start:  AIC= 1198.49  

 y ~ 1  

 

           Df Deviance     AIC 

+ slope     1   948.64  952.64 

+ habcat    6   958.06  972.06 

+ convex    1  1161.53 1165.53 

+ meanelev  1  1177.46 1181.46 

<none>         1196.49 1198.49 

 

Step:  AIC= 952.64  

 y ~ slope  

 

           Df Deviance     AIC 

+ habcat    6   926.40  942.40 

+ convex    1   944.67  950.67 

<none>          948.64  952.64 

+ meanelev  1   947.19  953.19 

- slope     1  1196.49 1198.49 

 

Step:  AIC= 942.4  

 y ~ slope + habcat  

 

           Df Deviance    AIC 
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+ meanelev  1   919.18 937.18 

+ convex    1   921.90 939.90 

<none>          926.40 942.40 

- habcat    6   948.64 952.64 

- slope     1   958.06 972.06 

 

Step:  AIC= 937.18  

 y ~ slope + habcat + meanelev  

 

           Df Deviance    AIC 

+ convex    1   904.45 924.45 

<none>          919.18 937.18 

- meanelev  1   926.40 942.40 

- habcat    6   947.19 953.19 

- slope     1   954.05 970.05 

 

Step:  AIC= 924.45  

 y ~ slope + habcat + meanelev + convex  

 

           Df Deviance    AIC 

<none>          904.45 924.45 

- convex    1   919.18 937.18 

- meanelev  1   921.90 939.90 

- habcat    6   939.42 947.42 

- slope     1   936.66 954.66 

 

Note: Choose a model with smallest AIC. But care must be taken to accept such a 

model as the step may include trivial explanatory variables in some circumstances. In 

such situation, use anova is useful to screen out those trivial variables. 

 

(3). >summary(ocotwh.step)  #view the outputs for the best model 

 

(4). >anova(ocotwh.step)   #deviance analysis for the best model 

 

 

 

25. Autologistic regression model: 
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where 

1st order neighborhoods: neighbors) horizontal and vertical(*1 ∑=y  

 

2nd order neighborhoods: ∑= neighbors) diagonal(*2y  

 

26. Nominal logistic regression 

If the response variable is categorical, with more than two categories, then there are 

two options for generalized linear models. One is the generalization of the logistic 

regression, extending the binary model to multicategorical models. The other option 

is the log-linear model – to model the frequencies or counts of the covariate patterns 

as the response variables with Poisson distribution. We will focus on the 

multicategorical logistic model here and defer the log-linear model to the next 

chapter. 

 

27. Multicategorical (nominal) logistic regression 

Nominal logistic regression models are used when there is no natural order among the 

response categories. Consider two species are distributed in 1250 cells on the 20×20 

m grided BCI plot. Each cell can either be occupied by one of the species or empty. 

The distribution can be denoted as: 

0 – Empty, none of the species is there, 

1 – The presence of species A, 

2 – The presence of species B. 

 

The explanatory variables on each cell are denoted as xi, where i = 1, 2, …, p are the 

number of explanatory variables. 
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where j is the jth category (species). 
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Because 1...21 =+++ Jπππ , we have 
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The parameters of the nominal logistic model can be solved using mle for 

multinomial distribution. 

 

28. Over-dispersion (extra-binomial distribution) 

The logistic regression is based on the binomial distribution – modeling the count of 

yes/no: . This model assumes that the occurrences of 

yes/no are independent events. Its mean and variance are: 

yny
y
n

yf −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )1();( ππµ

Mean: πnyE =)(  

Variance: )1()( ππ −= nyV  

 

The binomial distribution may not be strictly valid if in the following situations: 

(1) Binary trials are not independent, 

(2) The π’s for the binary responses are not the same, 

(3) Important explanatory variables are not included in the model of π. 

In these situations, the mean for the binomial distribution still roughly holds, but the 

variance is inflated. In other words, the parameter estimates of the logistic model are 

still roughly unbiased, but the standard errors will tend to be smaller than they should 

be. This means that p-value will tend to be too small and confidence interval will tend 

to be two narrow. Which type of statistical error is committed here? 

 

29. Logistic model with overdispersion 
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)1(]|var[ ππφ −= nxy . The standard logistic regression has φ = 1. 

When you are not sure if your data are overdispersion, it is safer to suppose that 

overdispersion is present than to ignore it. The consequences of assuming the 

presence of overdispersion when there is actually none are minor. Inferences may be 

less precise, but they will not be misleading.  

 

30. Checking for extra-binomial variation 

(1) Asking whether extra-binomial variation is likely present: are the binary 

responses independent? Are observations with identical values of the explanatory 

variables likely to have different π’s? May any important explanatory variables be 

missing? 

(2) Examining the goodness-of-fit test: A large deviance test statistic may indicate 

that the binomial distribution with specified explanatory variables may not be 

supported by the data. Large deviance probably indicates overdispersion. 

(3) Examining residuals: Since deviance statistic is the sum of the squared deviance 

residuals, it is useful to examine the deviance residuals themselves to see whether 

a few of these are responsible for a large deviance statistic. If so, the analysis 

should focus on the outlier problem rather than on the overdispersion problem. 

 

31. Solution: Quasi-likelihood approach 

The quasi-likelihood method was developed in such a way that the maximum quasi-

likelihood estimates of parameters are identical to the mles, but the standard errors are 

larger and inferences are adjusted to account for the extra-binomial variation. 

 

One possible estimate of the dispersion parameter is the deviance statistic divided by 

its degree of freedom: 

freedom  of  degree
Devianceˆ =φ , where df = N-p. (sample size - # of parameters) 
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This is amount to the sample variance of the deviance residuals. It should 

approximately equal 1 if the data are binomial, and larger than 1 for over-dispersion. 
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