Chapter 10. Assessing model adequacy

1. The major assumptions that we have used so far in the regression analysis:

(1). The relationship between y and x is linear

(2). The error term & has zero mean

(3). The error term ¢ has constant variance o (identical)
(4). The errors are uncorrelated (independent)

(5). The errors are normally distributed

In other words, & is iid N(0, o). In this chapter we will check if these assumptions are

met given a data set.
2. Residuals (Deviation between the observation and the fit)
& =Yi— Vi i=1,2,...,n
It is a measure of the variability not explained by the regression model.

3. Properties of the residuals
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It has zero mean: g =
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4. Standardized residuals and outliers:
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The studentized residual is the residual divided by the exact variance V(&)
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An observation is considered as an outlier if its y; has r; > 2 or r; < -2.

Q-Q plot

(1). Rank the residuals & in ascending order: gy, &2), --., &n)
R-code: z=sort(e)
(2). Compute the corresponding cumulative probability: P; = (i-0.5)/n

(3). Compute the expected normal quantile corresponding to P;: g; = CD‘l(Pi)

R-code: gnorm(0.2) if P; = 0.2 whose quantile = -0.8416212.
(4). Plot q; versus z

Using R, these steps can simply be implemented as qgnorm(hl.Im$resid)

Further, put a 1-1 line: ggline(hl.Im$resid)

Interpretation of Q-Q plots:
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7. Plots of residuals versus y (noty) or x

# residuals versus yhat

R-code:  plot(hl.Im$fitted.value, hl.Im$resid)
Or plot(dbh, hl.Im$resid) # residuals versus x
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8. Cook’s distance (diagnosing influential points):

It measures how far an observation y; is from the rest of data. (It is not a method to
identify outliers but to identify influential points.)
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where y is the estimate from all data, while y_; is the estimate by deleting the i" data

point yi. k is the number of regressors, in simple linear regression k = 1.

R-code: The above assessments can be done in one shot using plot.Im(Im.out)

9. Variance-stabilizing transformations

Relationship of ¢ to E(y)

Transformation

o? o consant

o o E(y)

o? o« E(y)L-E(Y)]
o? o« [E(Y)]*

o? o« [E(Y)]

o? « [E(Y]*

No transformation

ﬁ (Poisson data)
sin(,/y) (binomial data: 0 <y < 1)
log(y)
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10. Exercise: Model htb ~ dbh

(1). Without transformation:

Examine plots:
(2). With transformation:

Examine plots:

htb.Im=Im(htb~dbh,data=hl.dat)
plot(htb.Im)
loghtb.Im=Im(log(htb)~log(dbh),data=hl.dat)
plot(loghtb.Im)
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