
Chapter 9 - Simple linear regression models 
 

Introduction 
 

1. Linear regression analysis is the core of statistical modeling. 

2. Applications of regression are numerous and occur in almost every field. Its uses 

include: 

Data description and summarization 

Parameter estimation: Ohm’s law: RIV =  

Prediction and estimation 

Control 

3. There are many types of linear models: 

Simple linear regression model:  εββ ++= xy 10  

      y – response (dependent) variable 

      x – predictor (regressor) 

      (β0, β1) – regression coef. 

      ε – error term 

Multiple linear regression model:  εββββ ++++= kk xxxy ...22110  

Polynomial regression model:   εβββ +++= 2
210 xxy

The above models all require ε iid normal distribution N(0, σ2) 

 

Generalized linear models (GLMs): … εβββ ++++= )...( 110 kk xxgy  

For the GLMs, ε does not usually follow a normal distribution. 

 

4. “linear” means that the model is linear in parameters β0, β1, …, not because y is a 

linear function of the x’s. 

 

 
 



Estimation 
 

1.1. Model: εββ ++= xy 10  

 β0 is intercept, β1 is slope 

 

1.2. n observed data pairs: 

 

i y x 

1 y1 x1

2 y2 x2

… … … 

n yn xn

 

 

1.3. The most important objective of regression analysis is to estimate the unknown 

parameters (β0, β1). The process is called fitting the model to the data. 

 

1.4. x is considered to be measured without error, while y is a random variable. 

 

1.5. The expectation of y is:  xxyE 10)|( ββ +=  

 The variance of y is:   2
10 )()()|( σεεββ ==++= VxVxyV

(Assumptions: E(ε) = 0, V(ε) = σ2) 

 

1.6. Least squares estimation of parameters β0 and β1: 
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1.7. Minimization through derivatives: 
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1.8. Solve for β0 and β1 from (1.7): 
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where ∑= iy
n

y 1 , ∑= ix
n

x 1  

 

1.9. The fitted model: 

 

  xy 10
ˆˆˆ ββ +=

 3



 

1.10. Residual = observed data – corresponding fitted value 

 

)ˆˆ(ˆ 10 iiiii xyyy ββε +−=−=  

 

1.11. Example: height (y in m) versus diameter (x in cm) for 420 western hemlock trees 

from BC. The data object is called: hl.dat. y is named as htt, x is named as dbh.  

 

R-code 1: 

Step 1. Attach the data:   attach(hl.dat) 

Step 2: Plot the data:    plot(dbh, htt) 

Step 3. Calculate means for x and y:  xbar=mean(dbh) 

       ybar=mean(htt) 

Step 4. Calculate Sxy and Sxx:   sxy=sum(y*(dbh-xbar)) 

       sxx=sum((dbh-xbar)^2) 

Step 5. Calculate β0 and β1:   beta1=sxy/sxx 

       beta0=ybar-beta1*xbar 

Step 6. Plot the fitted line: : xx=sort(dbh) xy 10
ˆˆˆ ββ +=

       yhat=beta0+beta1*xx 

       lines(xx,yhat, col=”red”) 

 
R-code 2 (use lm) 

 

 Step 1. One step fitting:   hl.lm=lm(htt~dbh) 

 Step 2. Plot the fitted line:   abline(lm(hl.lm)) 

 Step 3. To view the regression outputs: summary(hl.lm) 

 
 
2. Hypothesis testing 

 

2.1. Model assumptions: 
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Model: iii xy εββ ++= 10 , i = 1, 2, …, n 

 

The procedures developed in this section require the error term εi identically and 

independently follows the normal distribution: 

),0(~ 2σε Ni ,  

or  

),(~ 2
10 σββ ii xNy +  

 

2.2. Properties of the LSE 1β
)

: BLUE (Best Linear Unbiased Estimators, “best” means 

minimum variance) 
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Unbiased: 11)( ββ =
)

E  

 

Variance: 
xxS

V
2
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Standard error of 1β
)

: 
xxS
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2.3. Properties of the LSE 0β
)

: 

 

Unbiased: 00)( ββ =
)
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 5



Variance: ⎟⎟
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2.4. Estimation of : 2σ

An estimate of  is required to test hypothesis and construct CI pertinent to the 

regression model. 

2σ

 

Residual (error) sum of squares: 

xyyyiiiE SSyySS 1
22 )( βε

)) −=−== ∑ ∑  

 

SSE has n-2 df because two the 2 dfs are associated with the estimates of the two 

parameters ),( 10 ββ
))

 (i.e., 2 dfs are lost due to the estimates of the two parameters). 

 

To view residuals in R, type: hl.lm$resid 

 

The unbiased estimator of  is: 2σ

E
E MS
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2σ)  (error mean square) 

 

σ)  is called the standard error of regression or residual standard error 

 

2.5.   Testing:  H0: β1 = 0 versus H1: β1 ≠ 0. 
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Rejecting H0 if 

2,2/0 || −> ntt α  (the upper α/2 percentage point of the t distribution) 

(Significant at α level, * for α = 0.05; ** for α = 0.01) 

 

More accurate and popular expression is: 

p-value = P(tn-2 > |t0|) {In R code, p-value = 1-pt(t0, n-2) } 

=> Large |t0| value has small p-value, evidence against H0. 

 

The testing can be viewed by typing summary(hl.lm) in R: 

 

> summary(hl.lm) 
 

Call: 

lm(formula = htt ~ dbh, data = hl.dat) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-11.5576  -0.6854  -0.2518   0.5340  13.7582  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.26208    0.12427   10.16   <2e-16 *** 

dbh          0.71762    0.01081   66.40   <2e-16 *** 

--- 

Signif. codes:  0  `***'  0.001  `**'  0.01  `*'  0.05  `.'  0.1  ` '  1  

 

Residual standard error: 1.817 on 418 degrees of freedom 

Multiple R-Squared: 0.9134,     Adjusted R-squared: 0.9132  

F-statistic:  4409 on 1 and 418 degrees of freedom,     p-value:     0 
 

2.6. Adjusted coefficient of determination Ra
2: 

kn
nR

dfresidual
dftotalRRa −

−
−−=−−=

1)1(1)1(1 222  

where k is the number of parameters (k = 2 here). 

 

2.7. Interpretation of the hypothesis H0: β1 = 0: 
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This is actually a test on the significance of regression. Failing to reject H0 has two 

implications: (1) x is of little value in explaining the variation in y (x is independent 

of y), (2) The true relationship between x and y is not linear. In contrast, rejecting H0 

implies that (1) the linear model is adequate in explaining the variability in y, (2) x is 

of value in explaining y but the linear model may still not be an adequate model. 
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2.8. Testing:  H0: β0 = 0 versus H1: β0 ≠ 0. (Exercise: To formulate the test.) 
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 (If H0 is true) 

 

Rejecting H0 if 

2,2/0 || −> ntt α  (the upper α/2 percentage point of the t distribution) 

 

2.9. ANOVA for testing significance of regression, equivalent to testing H0: β1 = 0 

 

Identity:  
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Squaring and summing both sides over all n observations: 

 

∑∑∑∑ −−+−+−=− ))((2)()()( 222
iiiiiii yyyyyyyyyy ))))  

 

The interaction term is zero, resulting in 

 

∑∑∑ −+−=− 222 )()()( iiii yyyyyy ))  

    SST = SSR + SSE

df:  n-1  1  n-2 
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ANOVA Table: 

 

Source of variation Sum of squares d.f. Mean square F0

Regression SSR 1 MSR = SSR/1 MSR/MSE

Residual SSE n – 2 MSE = SSE/(n-2)  

Total SST n – 1   
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If H0: β1 = 0 is true, the test statistic F0 follows the F1, n-2 distribution. Therefore, to 

test the hypothesis H0: β1 = 0, we compare F0 with F1, n-2 and reject H0 if 

 

F0 > Fa, 1, n-2 (Significant at α level, * for α = 0.05; ** for for α = 0.01) 

 

Or to report the p-value: 

 

p-value = P(F1, n-2 > F0) {In R-code, it is 1-pf(F0, 1, n-2)} 

 

=> Large F0 leads to small p-value, evidence against H0. 

 

ANOVA table can be produced as: 

 

> anova(hl.lm) 
Analysis of Variance Table 

 

Response: htt 

           Df  Sum Sq Mean Sq F value    Pr(>F)     

dbh         1 14564.3 14564.3  4409.2 < 2.2e-16 *** 

Residuals 418  1380.7     3.3                       

--- 

Signif. codes:  0  `***'  0.001  `**'  0.01  `*'  0.05  `.'  0.1  ` '  1 

 

2.10. Exercise: To familiarize yourself with the various statistics introduced above, 

suggest computing them manually as follows: 

 

Residual sum of squares (2.4): sse=sum((htt - 1.26208 - 0.71762*dbh)^2) 

Residual std error (2.4):  mse=sqrt(sse/418) 

Std error for 1β
)

 (2.2):  sqrt(mse/sxx) 

Std error for 0β
)

 (2.3):  sqrt(mse*(1/420+(xbar^2)/sxx)) 

SSR (2.8):    msr=sum(1.26208 + 0.71762*dbh-ybar)^2) 

F-statistic:   msr/mse 
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How to test hypothesis H0: β1 = 0, based on this F-value? (Find out on the top of the 

previous page.) 

 

2.11. Confidence interval for y) : 

An important use of a regression model is to estimate the mean response E(y|x0) for a 

particular value x0 of the regressor variable x. For example, we wish to estimate 

mean tree height at dbh of 10 cm. This height estimate is not a fixed value but a 

random variable whose 100(1-α)% CI is: 
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Exercise: Write an R code to plot the interval. 

 

R-code: 

 

yhat=predict(hl.lm, hl.dat, interval=”confidence”,level=0.95) 

 

To add the 95% CI on y-hat: 

 

id=order(hl.dat$dbh) 

lines(hl.dat$dbh[id],yhat.lw.up[,2][id],col=2) 

lines(hl.dat$dbh[id],yhat.lw.up[,3][id],col=2) 

 

2.12. Prediction of new y: 

 

Prediction of new observations is another important use of the regression model. 

Given a value of x0, the point estimate of a new observation is simply: 
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0100 xy ββ
))) += . 

 

However, the CI for the new observation is wider than the one given in 2.11 which is 

the CI on the mean of y, not a probability statement about future observations from 

that distribution. The CI for the new observation is: 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
++− −−

xx
En

xx
En S

xx
n

MSty
S

xx
n

MSty
2

0
2,2/0

2
0

2,2/0
)(11,

)(11 αα
))

 

 

R-code: 

 

ynew.lw.up=predict.lm(lm.out, hl.dat, interval=”prediction”,level=0.95) 

 

To add the 95% CI for the observations: 

 

id=order(hl.dat$dbh) 

lines(hl.dat$dbh[id],ynew.lw.up[,2][id],col=2) 

lines(hl.dat$dbh[id],ynew.lw.up[,3][id],col=2) 

 

How to compute the 99% CI for a new htt observation given dbh = 10 cm? 

 

2.13. Coefficient of determination 
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SST is a measure of the variability in y without considering the effect of the regressor 

variable x, SSE is a measure of the variability in y remaining after x has been 

considered. Therefore, R2 is really the proportion of variation explained by the 

regressor x. 
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The expectation of R2 is approximately: 

 

22
1

2
12 )(

σβ
β

+
≈

xx

xx

S
S

RE )

)

 

 

Clearly, R2 depends on the range of x. R2 will increase as the spread of the x’s 

increases and decrease as the spread of the x’s decreases. Thus, a large value of R2 

may result simply because x has been varied over an unrealistically large range. On 

the other hand, R2 may be small because the range of x was too small to allow its 

relationship with y to be detected. 

 

2.14. Further misconceptions about R2 

 

(1). In general, R2 does not measure the magnitude of the slope of the regression line. 

A large value of R2 does not imply a steep slope. 

(2). R2 does not measure the appropriateness of the linear model, for R2 can be large 

even though y and x are nonlinearly related. 

 

Take home messages 

3.1. Regression models do not describe causal relationship. To establish causality, the 

relationship between the regressors and the response must have a basis outside the 

sample data (e.g., suggested by theoretical considerations). Regression analysis can 

aid in confirming a cause-effect relationship, but it cannot be the sole basis of such a 

claim. 

3.2. Regression model in general is valid only over the region of the regressor variables 

contained in the observed data, i.e., in (x1, x2). Extrapolation is dangerous as 

illustrated below. 
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x2 x3x1

y

 

 

3.3. It is important to remember that regression analysis is part of a broader data-analysis 

approach to problem solving, i.e., the regression model itself may not be the primary 

objective of the study. We use the model to help gain insight and understanding on 

the system generating the data. 

3.4. Data quality. Data collection is an essential aspect of regression analysis. Without 

representative data the regression model and conclusions drawn from it are likely to 

be in error. 
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