
Chapter 11. Multiple linear regression 
 

1. Model and estimation 

 

 

1.1. Model: 

 

iikkiii xxxy εββββ ++++= ...22110 ,  i = 1, 2, …, n 

 

 

1.2. Data format 

 

i y x1 x2 … xk

1 y1 x11 x12 … x1k

2 y2 x21 x22 … x2k

… … … … … … 

n yn xn1 xn2 … xnk

 

 

1.3. Least squares estimation 
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1.4. An easier approach is to write model (1.1) in matrix notation 

 

y = Xβ + ε 

 

where 
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1.5. Based on the matrix notation, the least squares estimator of β is: 

 

yXXX ')'( 1−=β
)

 

 

If regressors xi is highly correlated, the inverse  may not exist (i.e., 1)'( −XX XX '  is 

singular). This is called collinearity problem. 

 

R-code: 

x1=rep(1,420)   #create a list containing 1, length=420 

x=cbind(x1, dbh, htb)  #create a data frame for x 

x=matrix(x,ncol=3)  #matrix with 3 columns 

xx=t(x)%*%x   #matrix(3,3) 

xx.inv=solve(xx)   #inverse of xx, i.e.,  1)'( −XX

beta=xx.inv%*%t(x)%*%htt #obtain the estimates of beta 

 

1.6. The fitted values are: 

 

HyyXXXXXy === − ')'( 1β
))  

 

H is called hat matrix. 

 

R-code: 

yhat=x%*%xx.inv%*%t(x)*htt #fitted tree height 

 

1.7. Use lm: 
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hl.lm_lm(htt~dbh+htb,data=hl.dat) 

 

> summary(hl.lm)   #view outputs 
Call: 

lm(formula = htt ~ dbh + htb, data = hl.dat) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-10.5166  -0.7098  -0.2194   0.5908  14.5024  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.04146    0.12683   8.211 2.66e-15 *** 

dbh          0.65954    0.01492  44.198  < 2e-16 *** 

htb          0.27073    0.04964   5.454 8.46e-08 *** 

--- 

Signif. codes:  0  `***'  0.001  `**'  0.01  `*'  0.05  `.'  0.1  ` '  1  

 

Residual standard error: 1.758 on 417 degrees of freedom 

Multiple R-Squared: 0.9192,     Adjusted R-squared: 0.9188  

F-statistic:  2371 on 2 and 417 degrees of freedom,     p-value:     0 
 

2. Hypothesis testing 

 

2.1. The expectation and variance of β
)

: 

 

 Unbiased estimator: ββ =)(
)

E  

 

 Covariance: 12 )'()( −= XXCov σβ
)

 

 

The variance of iβ
)

 is the diagonal element, the off-diagonal is the covariance. 

Assume , the variance of 1)'( −= XXC iβ
)

 is: 

   iii CV 2)( σβ =
)

 

 The covariance of iβ
)

 and jβ
)

is: 

   iiji CCov 2),( σββ =
))
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2.2. Estimation of : 2σ
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 SSE yXyy ''' β
)

−=  

 

 The unbiased estimate of  is: 2σ
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2.3. Test for significance of regression 

  

 0...: 210 ==== kH βββ  

 0:1 ≠iH β  for at least one i 

 

 Variation partition: 

∑∑∑ −+−=− 222 )()()( iiii yyyyyy ))  

  SST = SSR + SSE

df:  n-1  k  n-(k+1) 

 

 F-test: 
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Reject H0 is , or p-value = P(F1,,0 −−> knkFF α k, n-k-1 > F0). # small p-value is evidence 

against H0. 

 

(Note: R does not have outputs for this test. It is more informative to test for 

individual regression coefficients) 

 

2.3. Test for individual regression coefs: 

 

Including an extra regressor will always increase the regression sum of squares and 

reduce the residual sum of squares. Testing for individual coef will help determine if 

the benefit is sufficient to include that regressor. This is an important step in model 

building. 

 

  0:0 =iH β  

 0:1 ≠iH β  

 

Under H0 hypothesis, the test statistic is the same as in simple linear regression: 

 

10 ~ −−= kn
iiE

i t
CMS

t
β
)

 

 

p-value = P(tn-k-1 > t0) 

 

Small p-value is against H0. 

 

(Note: To remember, this test is a test of the contribution of xi given the other 

regressors already in the model. So it is really a partial or marginal test because the 

coef iβ
)

 depends on other regressors in the model.) 

 

2.4. Extra-sum-of-squares to test 0: 20 =βH  vs 0: 21 ≠βH  
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Full model: 

  εβββ +++= 22110 xxy  

 

Reduced model: 

 εββ ++= 110 xyr  

 

To test 0: 20 =βH , the regression sum of squares between the full model and the 

reduced model: 

 

)|()|,()|( 0102112 βββββββ RrRfR SSSSSS −=  

 

This sum of squares is called the extra-sum-of-squares due to β2 because it measures 

the increase in the regression sum of squares that results from adding the regressor 

x2. 

 

The test statistics: 
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p-value = P(Fr, n-k-1 > F0). Small p-value is against H0. 

 

Compare the differences in the outputs of the R-codes: 

  (1). hl.lm1=lm(htt~dbh+htb) 

   anova.lm(hl.lm1) 

  (2). hl.lm2=lm(htt~htb+dbh) 

   anova.lm(hl.lm2) 

 

(Note: Here we are assessing the value of adding x2 to a model that has not included 

x2 yet. It is helpful to think this measure as the contribution of x2 as if it were the last 
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variable added to the model. Therefore, the second SSR is the extra contribution of 

that regressor given that x1 is already in the model.) 

 

 

3. Indicator variables 

 

1.1. Parallel lines – x2 is an indicator variable equaling 0 or 1: 

 

Model: εβββ +++= 22110 xxy  

 

Species A (x2 = 0): 

εββ ++= 110 xy  

Species B (x2 = 1): 

εβββ +++= 1120 )( xy  
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(Note: The procedure is virtually the same as fitting two regression lines to the two data. 

The advantages are: (1) there is only one model to work on, (2) a common error variance 

σ2, and (3) more residual degrees of freedom) 

 

1.2. Nonparallele lines – Model tree heights for Hemlock and Cedar species 
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Model: εββββ ++++= 21322110 xxxxy  

(Note the interaction term for nonparallele lines) 

 

Hemlock (x2 = 0): 

εββ ++= 110 xy  

 

Cedar (x2 = 1): 

  εββββ ++++= 13120 )()( xy  

 

1.3. Testing two species have the same intercept: H0: β2 = 0. 

 

Using the extra-sum-of-squares technique: 

 

)|,()|,,(),|( 0310321312 ββββββββββ RRR SSSSSS −=  

 

Test statistic: 
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1.4. R-code: 

 

lm(htt~dbh+htb+sp+dbh*sp+htb*sp, data=hlcd.dat) 

 

Exercise: Compare the outputs with two separate analyses: 

lm(htt~dbh+htb, data=hl.dat) 

and 

lm(htt~dbh+htb, data=cd.dat) 

 

4. Assessing adequacy of the model 
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Follow the same procedure as for the simple linear regression model using 

plot.lm(**.lm) 

 

5. Model building and variable selection 

 

5.1. Goal: To build an adequate but parsimonious model 

 

5.2. Many criteria can be used to select variables, e.g., R2, F statistic, etc. 

 

5.3. Akaike Information Criterion (AIC) is one of the best 

 

 AIC = -2 maximized log-likelihood + 2 # parameters 

 

 AIC = n log(SSE/n) + 2k + const 

 

(Note: It is desirable to have a small AIC. Large k will lead to small SSE, but if 

trivial regressors are included, it will increase AIC. Thus, AIC trades off between 

SSE and the number of parameters.) 

 

Some programs use Mallow’s Cp as a basis to select variables. Cp is closely 

related to AIC in the way as: 

 

 AIC = SSE (Cp + 1) 

  

5.4. R-code: step 

 

 (1). Start from the simplest model, only with constant: 

 

  step.lm=lm(htt~1,data=hlcd.dat) 

 

 (2). Add all terms: 
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  step.lm=step(step.lm,~dbh+htb+sp+dbh*sp+htb*sp,data=hlcd.dat) 

 

6. Special topics 

 

6.1. lowess is a useful technique for EDA to detect patterns 

 

 plot(hl$dbh, hl$htt) 

 

 lines(lowess(hl$dbh,hl$htt),col=2) 

 

 Another function is: loess. 

 

6.2. Reasons why regression coefs have the “wrong” sign: 

 

(1). The range of some of the regressors is too small (this increases the variance of 

β
)

). 

(2). Important regressors have not been included in the model: 

  

x1 x2 Y 

2 1 1 
4 2 5 
5 2 3 
6 4 8 
8 4 5 
10 4 3 
11 6 10 
13 6 7 

 

 y versus x1: 

 

  1463.0835.1 xy +=)  

 

 10



 y versus x1 and x2: 

 

  21 649.3222.1036.1 xxy +−=)  

 

The sign for x1 is reserved. The reason is that 222.11 −=β  in the multiple model 

is a “partial” regression coef. which measures the effect of x1 given that x2 is also 

in the model. 

 

 (3). Multicollinearity is present. 

 

 (4). Computation errors have been made. 
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