
Chapter 10. Assessing model adequacy 
 

1. The major assumptions that we have used so far in the regression analysis: 

 

(1). The relationship between y and x is linear 

(2). The error term ε has zero mean 

(3). The error term ε has constant variance σ2 (identical) 

(4). The errors are uncorrelated (independent) 

(5). The errors are normally distributed 

 

In other words, ε is iid N(0, σ2). In this chapter we will check if these assumptions are 

met given a data set. 

 

2. Residuals (Deviation between the observation and the fit) 

 

iii yy )−=ε , i = 1, 2, …, n 

 

It is a measure of the variability not explained by the regression model. 

 

3. Properties of the residuals 

 

It has zero mean:  0
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4. Standardized residuals and outliers: 
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The studentized residual is the residual divided by the exact variance V(εi) 
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An observation is considered as an outlier if its yi has ri > 2 or ri < -2. 

 

5. Q-Q plot 

 

(1). Rank the residuals εi in ascending order: ε(1), ε(2), …, ε(n) 

 R-code: z=sort(e) 

(2). Compute the corresponding cumulative probability: Pi = (i-0.5)/n 

(3). Compute the expected normal quantile corresponding to Pi:  )(1
ii Pq −Φ=

 R-code: qnorm(0.2) if Pi = 0.2 whose quantile = -0.8416212. 

(4). Plot qi versus z 

 

Using R, these steps can simply be implemented as qqnorm(hl.lm$resid) 

Further, put a 1-1 line: qqline(hl.lm$resid) 

 

6. Interpretation of Q-Q plots: 
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Ideal

Heavy-tailed Light-tailed

Skewed to right

Skewed to left

 
 

7. Plots of residuals versus y) (not y) or x 

 

R-code:  plot(hl.lm$fitted.value, hl.lm$resid) # residuals versus yhat 

Or  plot(dbh, hl.lm$resid)   # residuals versus x 
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8. Cook’s distance (diagnosing influential points): 

 

It measures how far an observation yi is from the rest of data. (It is not a method to 

identify outliers but to identify influential points.) 
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where y)  is the estimate from all data, while iy−
)  is the estimate by deleting the ith data 

point yi. k is the number of regressors, in simple linear regression k = 1. 

 

R-code: The above assessments can be done in one shot using plot.lm(lm.out) 

 

9. Variance-stabilizing transformations 

 

Relationship of σ2 to E(y) Transformation 

consant∝2σ   No transformation 

)(2 yE∝σ  y   (Poisson data) 

)](1)[(2 yEyE −∝σ  )(sin 1 y−  (binomial data: 0 ≤ y ≤ 1) 

22 )]([ yE∝σ  log(y) 

32 )]([ yE∝σ  2/1−y  

42 )]([ yE∝σ  
y
1  

 

10. Exercise: Model htb ~ dbh 

(1). Without transformation: htb.lm=lm(htb~dbh,data=hl.dat) 

  Examine plots:  plot(htb.lm) 

(2). With transformation:  loghtb.lm=lm(log(htb)~log(dbh),data=hl.dat) 

  Examine plots:  plot(loghtb.lm) 
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