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UChapter 14. Poisson/loglinear regression 
 

 

1. Poisson regression or loglinear regression is useful for describing count data, rate data 

and contingency table. 

 

2. Poisson regression refers to the situation where we want to relate the events (e.g., 

number of car accidents, number of dead beetles, or the number of cured patients) to 

various explanatory variables that can be continuous or categorical. 

 

3. Loglinear model refers to contingency table analysis where the response variable is 

the frequency or count in each cell of the table. The variables used to define the table 

are treated as explanatory variables. 

 

4. Example: model the number of species (or the abundance of Ocotea whitei) in a 

quadrat, denoted by y, in terms of slope, meanelev, convex and habcat. 

 

The reasonable model for y is the Poisson distribution: 
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 In the standard format of the exponential family: 

( )!loglogexp);( yyyf −−= λλµ  

 

Recall that the general form of the exponential family can be written as:  

)]()()()(exp[);( ydcbyayf ++= θθθ  

If a(y) = y, the pdf is said to be in the canonical form, and b(θ) is called the natural 

parameter. 

 

5. Systematic component – Specify the slope x (explanatory variable) as 
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x10 ββ +  

 

6. Link function – As in the logistic regression, it is most typical to use the natural 

parameter as a link function. In our case, the natural parameter is log(λ): 

x10)log( ββλ +=  

 

Other links include: 

 

Identity link:  x10 ββλ +=  

  Square root link: x10 ββλ +=  

 

7. R-code: 

bcisp.log=glm(rich~slope,family=poisson(link=log),data=bcisp.dat) 

 

Let’s look at the outputs: 

> summary(bcisp.log) 

 

Call: 

glm(formula = rich ~ slope, family = poisson(link = log), data = bcisp.dat) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-3.77294  -0.84163  -0.00519   0.76878   3.92256   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) 3.882422   0.006615  586.91   <2e-16 *** (Wald test: )1,0(~
)ˆ(

ˆ

0

0 N
se β
β ) 

slope       0.012194   0.001034   11.79   <2e-16 ***  ( )1,0(~
)ˆ(

ˆ

1

1 N
se β
β ) 
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--- 

Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 1904.7  on 1249  degrees of freedom 

Residual deviance: 1768.3  on 1248  degrees of freedom 

AIC: 8984.8 

 

Number of Fisher Scoring iterations: 4 

 

8. Plot the observed data and prediction 

> plot(bcisp.dat$slope,bcisp.dat$rich) 

> lines(lowess(bcisp.dat$slope,bcisp.dat$rich,f=0.1),col="red") 

> id=order(bcisp.dat$slope) 

> lines(bcisp.dat$slope[id],fitted.values(bcisp.log)[id],col="blue") 

 

9. Use high order polynomial terms 

Try this model: log(y)=x+x^2+x^3. 

Let’s use orthogonal polynomials here: 

>bcisp.log=glm(rich~poly(slope,3),family=poisson(link=log),data=bcisp.dat) 

Open a new graphical window: >X11() 

 

10. Hypothesis test – Wald test, HB0B: β B1B = 0  
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=  

If |z| is large, HB0 B will be more likely to be rejected. The glm outputs are based on this 

test. 

 

11. Check model adequacy using residuals 
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(1) The Pearson residuals: 
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(2) Standardized residuals: 
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element on the diagonal of the hat matrix: ')'( 1 XXXXH −=  (note: Hyy =) ). 

 

(3) Chi-squared goodness-of-fit statistic is related to the Pearson residuals by: 
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(5) The deviance residuals are defined as: 

⎥
⎦

⎤
⎢
⎣

⎡
−−−= )(log2)( ii

i

i
iiii eo

e
o

oeosignd . R-code: >resid(bcisp.log) 

The deviance defined in (3) is simply: ∑= 2
idD . 

 Note: It is quite easy to show that D ≈ χ P

2
P. Use the Taylor expansion: 

...)(
2
1)(log

2
+

−
+−=

e
eoeo

e
oo  

 

(6) Pseudo RP

2
P provides an overall test of the hypothesis that βB1 B = β B2B = … = β BpB = 0: 
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= , where l(bBmin B) is the maximum value of the log-likelihood 

function for a minimal model with no covariates (only including intercept β B0B), and the 

maximum of the log-likelihood function for the model with p parameters. 



 

12. There are three types of link functions for Poisson regression in R. Try 

bcisp.identity=glm(rich~slope,family=poisson(link=identity),data=bcisp.dat) 

bcisp.sqrt=glm(rich~slope,family=poisson(link=sqrt),data=bcisp.dat) 

 

13. Build the “best” model 

 

What is the best model is up to anyone’s imagination. Compare these: 

 

> bcisp.slope3=glm(rich~poly(slope, 3), family=poisson, data=bcisp.dat) 

> bcisp.logslope=glm(rich~log(slope), family=poisson, data=bcisp.dat) 

 

Compare the two predictions against observations. We will choose the second model 

as it is simpler. 

 

Now to consider including other explanatory variables: 

> bcisp.pois=glm(rich~log(slope)+meanelev+convex+habcat,family=poisson( 

link=sqrt),data=bcisp.dat) 

 

14. Variable selection: 

(1). Start from model with constant term only: 

> bcisp.1=glm(rich~1,family=poisson(link=sqrt),data=bcisp.dat) 

(2). Use step 

 

> bcisp.step=step(bcisp.1,~log(slope)+meanelev+convex+habcat) 

 

 

15. Loglinear models 

Loglinear models are used to model cell frequency in a contingency table. In the 

nonparametric section, we have learned how to test the independence of the 

classification schemes (factors). The loglinear model is a parametric approach. 
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Before specifying loglinear models for frequency data summarized in contingency 

table, it is important to consider how the design of a study may constrain on the data. 

The study design also affects the choice of probability models to describe the data. 

There are two basic designs (see Dobson’s book, page 157-160). One has fixed total, 

i.e., the total number of samples (patients) are prefixed before survey/experiment is 

conducted. The other is the row or column totals are fixed before conducting the 

experiment. In R, both design share the same model formula. 

16. Example: Cross-sectional study of malignant melanoma – These data are from a 

cross-sectional study of patients with a form of skin cancer called malignant 

melanoma. For a sample of n = 400 patients, the site of the tumor and its histological 

type were recorded. The data, numbers of patients with each combination of tumor 

type and site, are given below. 

 

Site  

Tumor type Head & Neck Trunk Extremities Total 

Hutchinson’s melanotic freckle 22 2 10 34 

Superficial spreading melanoma 16 54 115 185 

Nodular 19 33 73 125 

Indeterminate 11 17 28 56 

Total 68 106 226 400 

 

Question of interest: Is there any association between tumor type and site? 

To answer this question, we can use contingency table analysis. However, loglinear 

regression can give you more detailed information about the relationship. For example, 

the results will tell you whether the occurrence of Indeterminate tumor is different across 

sites. 

 

17. Model 
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Let YBijB denote the frequency for the (i, j)P

th
P cell with i = 1, 2, 3, 4 rows, and j = 1, 2, 3 

columns. In this study the total number of patients is 400
4
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is fixed by the design of the study – it was determined before survey was conducted. 

In this case, the Poisson model has to be constrained by this condition (n = 400). 

 

If the YBijB’s are independent random variables with Poisson distribution with 

parameters ijijYE µ=)( , then their sum has the Poisson distribution with parameter 
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conditional on their sum n, is the multinomial distribution: 
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ijθ  in this model can be interpreted as the probability of an observation in the (i, j)P

th
P 

cell of the table. The expected value of YBijB is: ijijij nYE θµ ==)( . The link function is 

then: 

)log()log()log( ijij n θµ += . 

18. For a two contingency table (like the melanoma data), the most commonly considered 

hypothesis is that the row and column variables are independent so that: 

jiij ..θθθ = , 

where .iθ  and j.θ  are the marginal probabilities with ∑ =1.iθ  and ∑ =1. jθ . 

This hypothesis can be tested by comparing the fit of the following two linear models: 

Full model:  )log()log()log( ijij n θµ +=  (# of parameters = # of cells) 

Reduced model: ).log(.)log()log()log( jiij n θθµ ++=  

 

Note: this is analogous to the analysis of variance for two factor experiment without 

replication. 
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Full model:  ijjiij n )()log()log( αββαµ +++=  

Reduced model: jiij n βαµ ++= )log()log(  

So the key question is whether 0)( =ijαβ . 

19. Inference for loglinear models 

The adequacy of the loglinear model can be assessed by using the same goodness-of-

fit statistics given in (11) in the above. 

20. Data format in R: 

> melanoma.dat 

            type        site freq 
1        freckle    headneck   22 
2        freckle       trunk    2 
3        freckle extremities   10 
4         spread    headneck   16 
5         spread       trunk   54 
6         spread extremities  115 
7        nodular    headneck   19 
8        nodular       trunk   33 
9        nodular extremities   73 
10 indeterminate    headneck   11 
11 indeterminate       trunk   17 
12 indeterminate extremities   28 
 
 

21. R-code:  

Full model: 

> melanoma.glm1=glm(freq~type*site,family=poisson,data=melanoma.dat) 

 

Reduced model: 

> melanoma.glm2=glm(freq~type+site,family=poisson,data=melanoma.dat) 

 

Minimum model: 

> melanoma.glm3=glm(freq~1,family=poisson,data=melanoma.dat) 

 

22. Interpretation of R outputs 

> melanoma.glm2 
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Call:  glm(formula = freq ~ type + site, family = poisson, data = melanoma.dat)  

 

Coefficients: 

(Intercept)  typeindeterminate        typenodular         typespread          sitetrunk       siteheadneck   

           2.9554             0.4990                  1.3020                 1.6940               -0.7571           -1.2010   

 

Degrees of Freedom: 11 Total (i.e. Null);  6 Residual 

Null Deviance:      295.2  

Residual Deviance: 51.8         AIC: 122.9 

 

Model setting in R is slightly different from the model in section 17. The program 

treats the category of “freckle” and “extremities” as the reference category – it picks 

up the cell combination according to the alphabetic order of the category names. The 

model is: 

jiij βαµµ ++=)log( , where  i = “head & neck”, and “trunk” 

     j = “spread”, “nodular”, and “indeterminate” 

Therefore, the expected cell frequencies can be estimated as follow. 

The expected frequency for “freckle” on “extremities”: 21.199554.2 =e  

The expected frequency for “freckle” on the “head & neck” is: 78.5201.19554.2 =−e . 

The expected frequency for “spreading” on “trunk” is: 02.497571.0694.19554.2 =−+e . 

 

These estimated frequencies can be confirmed by: > fitted.values(melanoma.glm2).  

Or it can be confirmed using: row total × column total/cell total. 

 

23. The test for the association between two classification factors can be easily solved 

using the contingency table analysis. The advantages of loglinear model are twofold. 

(1) It can give more detailed information about the relationship. For example, the 

results will tell you whether the occurrence of Indeterminate tumor is different across 

sites. (2) Loglinear model can easily handle more complicated problems with several 



classification factors. It is easier to analyze multiple cross-tabulated data using 

loglinear models. 

24. Note: contingency tables may include cells which cannot have any observations (e.g., 

male hysterectomy cases). This phenomenon, termed structural zeros, may not be 

easily incorporated in Poisson regression unless the parameters can be specified to 

accommodate the situation. See Agresti (1990) Categorical data analysis. Wiley, NY. 
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