On Species-Area Relations

Fangliang He; Pierre Legendre
American Naturalist, Volume 148, Issue 4 (Oct., 1996), 719-737.

Stable URL:
http://links jstor.org/sici?sici=0003-0147%28199610%29148%3 A4%3C719%3A0SR%3E2.0.CO%3B2-Z

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

American Naturalist is published by The University of Chicago Press. Please contact the publisher for further
permissions regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/ucpress.html.

American Naturalist
©1996 The University of Chicago Press

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR

http://www.jstor.org/
Fri Mar 21 14:08:28 2003



Vol. 148, No. 4 The American Naturalist October 1996

ON SPECIES-AREA RELATIONS

Species-area relationships have been of interest in ecology for a long time
(de Candolle 1855; Jaccard 1902, 1908). They have been called ‘‘one of commu-
nity ecology’s few genuine laws’’ (Schoener 1976, p. 629). Plotting number of
species (S) against sampling area (A), for a series of samples of increasing sizes,
yields a monotonically increasing curve whose slope is steep at first but gradually
becomes nearly flat. The shape of such curves has been used to help determine
the area required to obtain an adequate sampling of the species in a particular
community—the ‘‘minimal area’’ concept (Goodall 1952; Hopkins 1957; Cain and
Castro 1959; Barkman 1989), to characterize community structure (Fisher et al.
1943; Goodall 1952; Preston 1962; May 1975), to estimate species richness (Evans
et al. 1955; Kilburn 1966; Hubbell and Foster 1983; Palmer 1990; Baltanas 1992,
Grassle and Maciolek 1992), to measure the effect of disturbance on communities
(Lawrey 1991), and to define the appropriate size of reserves and natural areas
in conservation biology (MacArthur and Wilson 1967; Soulé et al. 1979; William-
son 1981).

A large number of natural comimunities have been investigated, especially by
plant ecologists. They found that different communities may exhibit different
types of species-area relations.” Among them, three expressions are most widely
used: exponential curve (Gleason 1922, 1925),

S = ZIn(A) + C; )]
power curve (Arrhenius 1921, 19234, 1923b),
S = CAZ, ?2)
and logistic curve (Archibald 1949),
B
STeva ®

where S is the number of species, A is the area, and B, C, and Z are constants
by conventional notation.

These models were first proposed as the result of empirical observations, and
they have competed with one another in ecology. There has been wide disagree-
ment among researchers on three topics: what is the best model, how to explain
the best model in ecological or biological terms, and how to estimate and interpret
the parameters of species-area models.

In the present study, our main purposes are to attempt to unify the above three
species-area curves using a general model, to relate different curves to different
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sampling situations, and to argue that the logistic curve is an appropriate model
to estimate asymptotic species richness in a community or a region.

UNIFIED MODEL FOR SPECIES-AREA RELATIONS

The three species-area models described above are special cases of a general
equation. We can safely assume that the derivative of the number of species (S)
with respect to sampling area (A)—that is, the rate at which new species are
found when the area increases dA—is the ratio of some function of the number
of species to the sampled area:

das _ f(S)
dA A

We assume that f(S) has three continuous derivatives on S € (0, «). Although we
do not know at this point what f(S) looks like, we can expand it into a Taylor
series about § = 0, that is,

)

f(8) = f(0) +£'0)S + %f”(O)S2 +0(8?), o)

where o(S?) is the remainder of the expansion. Replacing £(0), f'(0), and £(0)/2
by constants a, B, and vy, we obtain

f(S) = a + BS +vS5% + o(S?). 6)
The exponential, power, and logistic species-area models can be derived from
equation (6), truncating the terms of order higher than the first, second, and third,
respectively.
Exponential Model

Retaining only the first term of equation (6), equation (4) becomes

S _«o
dA A~ M
Rearranging equation (7), the integral expression is as follows:
dA
JdS = [« e 8)
The integral of equation (8) is
S=alnA +c, ©))

where c is an integral constant. We easily obtain the exponential model (1) by
making Z = awand C = c.
Power Model
Retaining the first two terms of equation (6), equation (4) becomes
as _a+BS

dA A (10)
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Rearranging equation (10), we obtain the following integral expression:

ds
fOL‘l‘BS

_dA

=1 (1

After integrating and a few steps of rearrangement, we obtain
—éln(a+BS)=lnA+c, (12)

where c is a constant. Rearranging the above equation produces
a+PBS=ef AP, (13)

Imposing the constraint that the number of species S = 0 if the sampling area A
= (0, which is another fair assumption, leads to a« = 0 in equation (13). The
consequence is that in equation (10), we only need to include the second term of
equation (6). Thus, equation (13) reduces to

§=%- AP, (14)

Taking Z = B and C = eP¢/B, we obtain the power model (2).

Logistic Model

This time, we use the first three terms of equation (6). After derivations similar
to those above, we can obtain the logistic model of equation (3). Here o = 0 is
obtained by assuming that § = 0 if A = 0, under the condition y # 0. The
derivative is the following:

ds _BS++vS?

dA A (15)

By integrating equation (15) and rearranging the parameters, we obtain the logistic
model of equation (3), with B = BeP°, C = — ~eP°, and Z = B. Because the
number of species available for colonization in any biogeographical region or
geographical unit of the planet is limited, the species-area curve has to be asymp-
totic to some upper ‘‘number of species’” bound. So, when the logistic function
is fitted to any real species-area data set, y will automatically take up a negative
value, with the consequence that C in equation (3) is positive; the ratio B/C =
B/(—+) gives the maximum number of species (asymptote of the curve) in the
community.

In summary, equation (4) dynamically describes the relationship between the
number of species in a community and the area they occupy. The exponential,
power, and logistic models are obtained by using the first one, the first two, or
the first three terms of equation (6), respectively. The merit of this model is that
it unifies the species-area models and makes them comparable under a single
mathematical framework. The links among these models are obvious from equa-
tions (7), (10), and (15). Equation (15) embodies the effect of equation (10), while
equations (10) and (15) possess the effect of equation (7) under the condition
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S
FiG. 1.—Illustration of function f(S) for the exponential, power, and logistic species-area

models.

that S = 0if A = 0. The three models of f(S) as a function of S are shown in
figure 1. When S is small (approaching zero), equations (10) and (15) converge.

In equation (4), f(S) is a function of the number of species, describing how this
number responds to the increasing size of the sampling area. It is very much like
the response of population growth to available resources in the environment, in
Malthusian and logistic models (the former for unlimited, the latter for limited
resources). Here the area is an environmental resource available for occupation
by the species present in the zone. In a very small area, a small rise in sampling
area approximately leads to a linear increase in the number of species; increasing
the sampling area further, the number of species rises in an accelerated way
following the power relation; with an even larger increase in area, the increase
in number of species slows down and finally levels off.

In a given time, the number of species in a community can be considered
constant. Based on the properties of equation (4) and on our understanding of
(), if that community is only sampled across a small area, then the species-area
relation should follow the exponential model; for a sampling area of intermediate
size, the relation should follow the power model; and for a large sampling area,
the logistic model becomes suitable. The ‘‘small,”” ‘‘intermediate,”” and ‘‘large”’
sampling areas are relative to the size of the community under study. These
species-area relations are more clearly illustrated in figure 2.

This line of reasoning is supported by the findings of several authors, who note
that species-area relations often possess an inflection point (in S-In A space),
corresponding to the point where a large proportion of the community area has
been sampled; as a consequence, these species-area curves are sigmoid in shape
(Archibald 1949; Vestal 1949; Niering 1963; Whitehead and Jones 1969; Abbott
1973; Lassen 1975; He et al. 1996). Williams (1943) found that samples from small
areas had species-area relations in the form of the exponential model, while the
power model was more appropriate for intermediate sampling areas. Kilburn
(1963) also found that the power model was best fitted to samples from a relatively
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Fic. 2.—Illustration of the three species-area models, as functions of In(A) in abscissa.
Since the community species-area curve is logistic, the picture shows that the exponential
model is only valid for species-area data from a small sampling area relative to the size of
the community. The power model can be used either for small or intermediate sampling
areas; but if the community area is well sampled, the logistic model should be used.

small sampling area, and he suggests that the logistic model is best for data from
larger sampling areas.

STUDY CASES

Statistical Criteria to Select the Best Model

Connor and McCoy (1979) suggest that the best-fit model should be selected
empirically, using statistical criteria. They discriminated among competing
species-area models by checking for no lack of fit in the regression residuals or
by the size of the correlation coefficient, and by retaining all models that fit the
data well. Though Sugihara (1981) suggests that the best model should be judged
by assessment of the lack of fit, not by absence of lack of fit, Connor et al.
(1983) argue that comparing regression or residual sums of squares would be an
appropriate means to discriminate among models. In practice, strict assessment
of lack of fit is virtually impossible because multiple observations (i.e., replicate
measurements) of species richness within a fixed sampling quadrat are hardly
ever available (for the method to assess lack of fit of a model, see Jobson 1991,
pp. 135-137). In any case, though Connor and McCoy’s (1979) criteria to select
a best model are useful and informative, if there are different numbers of parame-
ters between models, a lower residual sums of squares or a higher correlation
coefficient does not guarantee the best model, because the extra parameters alone
may contribute to these statistics. A formal test of significance must be carried
out.

In this note, we will compute all three models and select the best-fitting one,
using as best-fit criterion the probability associated with the usual F ratio (regres-
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sion mean square over the error mean square) of the ANOVA table of the regres-
sion model. The best model is the one with the lowest P value (probability under
the null hypothesis). We also computed the adjusted coefficient of determination
(Ra?), as used by Boecklen and Gotelli (1984) and Loehle (1990) for species-area
model fitting. This coefficient is calculated as

(n — DRSS
(n — k) TSS’

where RSS is the residual sum of squares, TSS is the total sum of squares, n is
the number of samples, and k is the number of parameters in a model. This
coefficient is more suitable than the usual coefficient of determination R? in that
it takes into account the respective numbers of degrees of freedom of the numera-
tor and denominator. The purpose of this correction is to produce a statistic
suitable for comparing regression equations fitted to different data sets, with
different numbers of samples and numbers of independent variables.

All the calculations were made using the nonlinear regression program NLIN
of SAS version 6.08 (SAS 1989); the iterative method was Marquardt. Probabili-
ties were calculated using a Fortran subprogram for computing the probability of
an F ratio, adapted from Dorrer (1976).

Ra’=1— (16)

A Tropical Rain Forest Data Set (Plant Community)

A data set describing the tree community structure of a lowland tropical rain
forest, in the Pasoh Forest Reserve of Malaysia (called the Pasoh forest hereafter;
see Kochummen et al. 1991), was used to fit equations (1), (2), and (3), using
different sampling areas (A). The entire study area is 50 ha (500 x 1,000 m). The
survey consisted of enumerating all free-standing trees and shrubs at least 1 cm
in diameter at breast height (dbh), positioning each one by geographical coordi-
nates on a reference map, and identifying it to species. The diversity of the plot
was quite high: there were 334,077 trees, belonging to 825 species. To prevent
overlap in sample areas, which would make the samples interdependent, we pro-
ceeded as follows. Using a computerized database of the Pasoh forest, the study
area was divided into two equal parts, and one of them was selected at random
as our largest-size sample; the remaining part was then divided again into two
equal parts, and one of them was randomly selected; the procedure was re-
peated 17 times. At the last division (into quadrats of 3.81 m?), only one quadrat
was selected. The objective was to retain only one quadrat of each size for
model fitting. The raw data and the codes of the sampled quadrats are shown in
table 1.

First, the exponential and power models were fitted to the data from the small-
est sampling areas only: Ib, II, III, and IV (fig. 3a). Because the species-area
relation for the small samples did not display an inflection point, the logistic
model could not be fitted. The observed species-area curve and the fitted logistic
curve for all sampling areas (3.81-250,000 m?) are also shown in all panels of
figure 3 for reference. Although both the exponential and power models satisfac-
torily describe the species-area data for small samples, the exponential model
gives better-fitting results (P value and Ra?; table 2). The fitted equations are
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TABLE 1

Raw DATtA aND PREDICTED NUMBERS OF SPECIES FOR THE PASOH FOREST OF MALAYSIA, USING THE
EXPONENTIAL, POWER, AND LoOGISTIC MODELS

OBSERVED PrepICTIONS USING THE FOLLOWING MODELS
AREA NUMBER OF
CobE (m?) SPECIES Exponential Power Logistic
Ia 3.81 3 _— 57.7 9.9
Ib 3.81 3 D 57.7 9.9
11 7.63 3 B 68.5 15.0
I 15.26 12 81.2 22.7
v 30.52 13 28.9 96.3 34.1
A% 61.04 31 83.1 114.2 51.0
VI 122.07 70 137.2 135.4 75.3
VII 244.14 112 191.3 160.6 109.6
VIII 488.28 134 245.5 190.5 156.3
IX 976.56 236 299.6 225.9 217.0
X 1,953.12 308 353.8 267.9 291.1
X1 3,906.25 400 407.9 317.7 375.0
XII 7,812.5 471 462.0 376.8 462.3
X111 15,625 541 516.2 446.8 545.7
X1V 31,250 593 570.3 529.9 618.9
XV 62,500 631 624.5 628.4 678.6
XVI 125,000 752 678.6 745.3 724.3
XVII 250,000 783 732.7 883.8 757.9

Note.—Sampling size doubles from one quadrat to the next but is subjected to rounding error.
The sum of these areas is the whole size of the Pasoh plot (500,000 m?). Code Ia was excluded from
model fitting in order to keep only one quadrat of each size in the calculations. A dash represents
negative numbers of species predicted by the exponential model.

exponential model, S = 5.623 In(A) — 5.623; power model, § = 1.313 A%,
Using the fitted exponential model equation, the estimated number of species for
the 3.81-m? sampling area is 1.9. Using the power model equation, it is 3.3; by
comparison, the observed value for that sampling area is 3.0. For small sampling
areas, the exponential model systematically produces large deviations from the
observed data. For very small sampling areas, it predicts negative values that are
meaningless.

Nine sampling quadrats from Ib to IX were then analyzed together (table 1).
The fitted curves for the exponential and power models are presented in figure
3b for that range of samples; the power model emerges as a better-fitting descrip-
tion of the observations than the exponential (table 2). The fitted equations are
exponential model, S = 46.528 In(A) — 115.217; power model, S = 4.011 A%,
Finally, the same evaluation of the three models was carried out with all samples
from Ib to XVII (table 1). Although the iterative estimation process converges
for all three models, the logistic model provides the best-fitting results (table 2).
The fitted equations are exponential model, S = 78.108 In(A) — 238.103; power
model, S = 41.546 A%?*; and logistic model, S = 4.438/(0.00534 + A ~%60%)

Lake Islands Data Set (Bird Community)

On islands of the Pymatuning Lake, at the Pennsylvania-Ohio border, Coleman
et al. (1982) collected a complete breeding bird data set in 1978 and 1979; hereaf-
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Fic. 3.—Species-area curves for the Pasoh forest data, Malaysia. The observed data and
the fitted logistic curve for the whole sampling area are presented in all three panels for
reference. a, Small sampling areas, 3.81-30.52 m% the species-area data are best fitted by
the exponential model (the fitted curve is hidden by the power curve). b, Small to intermedi-
ate-size sampling areas, 3.81-976.56 m% the power model is better than the exponential. c,
Small to large sampling areas, 3.81-250,000 m?%: the species-area data are best fitted by the
logistic model.

ter, the two data sets are called Cole78 and Cole79. These authors found that the
species-area relation across the islands was best explained by the random place-
ment model, which is derived from the hypothesis that all individuals in an area
are located at random. This model was superior to the exponential and power
models for this particular data set (Coleman et al. 1982). We reanalyzed this data
set using the exponential, power, and logistic models and compared the results
using the ‘‘root mean-square deviation’’ (A), the same criterion used by Coleman
et al. (1982); this statistic is the square root of the RSS divided by the number of
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TABLE 2

ADJUSTMENT OF THREE SPECIES-AREA CURVES TO THE PASOH FOREST DATA OF MALAYSIA

Sampling Area* Exponential Power Logistic
Small:
RSS 14.72 17.80 _
F ratio 21.49 17.59 _
df 2,2 2,2 _
Probability 04551 .0538 _—
Ra? 933 919 _—
Small to intermediate:
RSS 16,421.05 1,572.71 _—
F ratio 41.61 472.25 _
df 2,8 2,8 _—
Probability 5.914 x 1073 4.976 x 10~%F _
Ra? .901 991 _
Small to large:
RSS 68,399.37 76,163.18 7,375.80
F ratio 298.44 267.26 1,760.68
df 2,15 2,15 3,14
Probability 8.330 x 1078 1.866 x 10~12 <1073
Ra? 974 971 .997

Note.—A dash represents negative numbers of species predicted by the exponential model.

* Small sampling areas correspond to codes Ib-IV, 3.81-30.52 m? (see table 1); small to intermediate
sampling areas, codes Ib—IX, 3.81-976.56 m?; and small to large sampling areas, codes Ib—XVII,
3.81-250,000 m2.

t The best-fitting model (lowest probability of the data under the null hypothesis).

samples. Coleman et al. (1982) evaluated the exponential and the power models
using linear regression analysis; we used nonlinear regression analysis instead
and obtained somewhat different results, showing that different regression meth-
ods can give rise to different estimates (table 3). Although the conclusion of
Coleman et al. (1982) was not altered (i.e., the random placement is superior to
the exponential and power models), all of the nonlinear evaluations had smaller
root mean squares than their linear regression counterparts (table 3). On the other
hand, we found that the logistic model is as good as (Cole78) or superior (Cole79)
to the random placement model.

Having shown that the logistic curve is an appropriate model, we fitted the
exponential, power, and logistic models to different island sizes: small islands
only, small to intermediate islands, and small to large islands. We obtained similar
results as in the tropical rain forest community of the previous section: the ex-
ponential model best fits small samples, the power model best fits small to inter-
mediate samples, while the logistic model is the best for small to large samples
(table 4).

DISCUSSION

Models and Hypotheses

The study of species-area relationships has long focused on the shape of the
relation, its interpretation, and the mechanisms explaining the proposed form
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TABLE 3

COMPARISON OF THE EXPONENTIAL, POWER, LoGIsTIC, AND RANDOM PLACEMENT MODELS FOR TwoO
RESIDING BIRD SPECIES-AREA DATA SETS (COLE78 AND COLE79) FROM THE ISLANDS OF
PYMATUNING LAKE (COLEMAN ET AL. 1982)

CoLE78 CoLE79

PARAMETERS 15 Samples (Islands) 27 Samples
Exponential model:

C 6.506 (6.549) 8.333 (8.333)

VA 14.351 (14.453) 12.742 (12.743)

Ag 2.38 (3.9 343 (3.4)
Power model:

C 6.285 (4.298) 6.476 (4.993)

VA 425 (.600) 428 (.543)

Ap 3.05 (5.8 324 4.1)
Logistic model:

B 5.537 6.776

C 142 .184

VA 916 .998

Ay 1.67 2.02
Random placement A, (1.7) 2.2)

Note.—Terms with A the root mean square of deviation. Parameters are defined in equations (1),
(2), and (3) and were evaluated by nonlinear regression analysis. To remain comparable with Coleman
et al. (1982), calculations were done using base-10 logarithms wherever applicable. The values in
parentheses have been estimated by Coleman et al. (1982) using linear regression analysis.

(Connor and McCoy 1979; McGuinness 1984). There have been in general three
approaches to evaluate species-area curves. The first approach proposes and
evaluates species-area relations by empirically fitting existing equations to field
observations (Arrhenius 1921; Gleason 1922; Archibald 1949; Hopkins 1955; Kil-
burn 1963, 1966). The second approach attempts mathematically to derive spe-
cies-area curves on the basis of observed species-abundance relations and the
assumption of a linear relationship between number of individuals and area (Pres-
ton 1960, 1962; Williams 1964; May 1975; Engen 1977; Wright 1988). The third
approach justifies the use of a given species-area curve from some ecological
(or statistical) mechanisms and hypotheses (Arrhenius 1921; Preston 1962; Mac-
Arthur and Wilson 1963, 1967; Williams 1964; Coleman 1981). The last approach
is the most interesting in ecology because it invokes mechanistic explanations.
Unfortunately, these explanations may not generate unique predictions; for exam-
ple, both the equilibrium hypothesis and the habitat diversity hypothesis can
explain the power model (Williams 1943; MacArthur and Wilson 1963). Connor
and McCoy (1979) suggest that the contribution of a specific ecological mecha-
nism to an observed species-area relation should only be assessed by experimen-
tation. This is what Simberloff and Wilson (1969) did for the recolonization of
mangrove islands that had been experimentally defaunated. In our view, how-
ever, even with field experiments, the problem cannot fully be resolved, because
although an experiment can support a given species-area relation, it cannot falsify
alternatives.
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Williams (1943, 1964) proposes habitat diversity as a hypothesis explaining
the correlation between species and area: with the increase of sampling area
(A), from a local community to regional flora and to global biosphere, a greater
diversity of environments is included, and so the number of species increases.
In the real world, of course, the environment is never homogeneous, be it
within or among communities. Even in the relatively homogeneous lowland
tropical rain forest of Malaysia, heterogeneity is still detectable (He et al. 1994).
In the general species-area model (eq. [4]), the derivative dS/dA describes how
many new species dS are recruited when the area increases dA. With the
increase of sampling area, heterogeneity inevitably increases, and with it the
number of species. This process is not only valid for invertebrate species
inhabiting a single plant population (Gunnill 1982) or a tropical rain forest (He
et al. 1994), but also for islands (Abbott 1974; Werff 1983) and continental
regions (Williams 1943, 1964). We have shown, however, that the change of
the rate of dS/dA is not constant, and so a species-area relation takes different
forms depending on the spatial scale of sampling. At a very local scale, the
addition of new species is relatively slow within an area, probably because of
a strong similarity (autocorrelation) of environmental conditions and species
composition among neighboring sites. In these conditions, species-area relations
are well described by the exponential model. Increasing the spatial scale,
substantial heterogeneity is added as soon as we go beyond the range of
action of the spatial autocorrelation of environmental conditions (Dutilleul and
Legendre 1993). The number of new species increases more rapidly; conse-
quently, the species-area relation is best described by the power model.
Naturally, heterogeneity is not unlimited in a geographically defined commu-
nity, ecosystem, or region (delimited by physical barriers or conceptually);
neither is the number of species. If the sampling area keeps increasing,
recruitment of new habitats is bound to slow down and finally cease; at the
same time, the rate at which new species are found decreases until a different
type of community is encountered; this process is best described by the logistic
model.

Although the general model (eq. [4]) can reasonably be explained by the habitat
diversity hypothesis, we do not limit the meaning of function f(S) to mechanistic
explanations. We believe this function is related to the spatial distribution of
heterogeneity and species in a study area and to species-abundance relations,
because the only term that can accommodate these factors in model (4) is f(S).
It is well known that different species-abundance relationships can give rise to
different species-area curves (Williams 1943; Preston 1962; McGuinness 1984;
Colwell and Coddington 1994); any spatial distribution of species that deviates
from randomness would affect species-area curves according to the random place-
ment hypothesis. It is not surprising that model (4) is also affected by these
factors, although it is technically a challenge to incorporate them into f(S). In a
very general form, we can qualitatively express f(S) as fiS[space, abundance]),
considering spatial features and species abundances. Keeping this general form
in mind, we can explain the effect of disturbances on species-area curves as a
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TABLE 5

COMPARISON OF THE Z AND C VALUES OF THE POWER MODEL FOR DIFFERENT SAMPLING AREAS FROM
THE PASOH FOREST OF MALAYSIA (PASOH) AND THE 1978 AND 1979 DATA OF COLEMAN ET AL. (1982)

Sampling Area Pasoh Cole78 Cole79
Small:
VA .694 573 344
C 1.313 4.534 4.400
Small to intermediate:
VA .578 .653 701
C 4.011 4.794 5.379
Small to large:
VA .246 425 .429
C 41.546 6.285 6.476

Note.—Sampling areas are described in table 2 for the Pasoh Forest and in table 4 for the data of
Coleman et al. (1982).

force modifying the spatial distribution of environmental heterogeneity, species
distributions, and the abundance of species.

When the root mean-square deviations (A) for the logistic and random place-
ment models are compared in table 3, it seems that the observed data can equally
well be explained by the logistic rationale and the random placement hypothesis.
These models gave similar results, although the logistic performs slightly better.
The closeness between these two models may result from the bird species on the
islands of the Pymatuning Lake being in fact randomly distributed. Were the
species not randomly distributed, the performance of the two models would be
much different. Once again, we turn to the Pasoh forest data to discriminate
between these two models. The spatial distributions of all 825 species of the
Pasoh forest have been thoroughly examined (He et al., in press). Excluding the
species with an abundance of fewer than five individuals in the plot, 80.4% of
the remaining 745 species presented aggregated distributions. Computing the root
mean-square deviations (A) for the logistic and the random placement models for
this data, we find substantial differences: Aq), = 412.96 for the logistic model,
and Ay, = 2,217.51 for the random placement model. Therefore, we conclude
that for a community in which species do not present random distribution (which
is the picture most often encountered in nature), the logistic model is a better
explanation than the random placement model. The two models converge only
in the case of random spatial distributions.

Across a range of spatial scales, it is not only the species-area models that
change but also the model parameters. For example, the Z value of the power
model, which is possibly a parameter of interest in ecology, changes substantially
for different sampling scales (table 5) for the Pasoh forest data and the two data
sets of Coleman et al. (1982). At the whole-plot scale, the Z value for the Pasoh
forest can be even lower than Preston’s ideal value of 0.262; this is what was
expected for ‘‘areas that are merely samples of larger areas’” (Preston 1962, p.
191), such as island archipelagos (Preston 1962; MacArthur and Wilson 1967).
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Arrhenius (1923a) also predicted that species-rich communities should have low
Z values. Our results show that these arguments are dubious. The critical point
is not that Z values are below or above 0.262 but that they are scale dependent.
The C values of the power model also show an increasing trend over scales from
small to large, so that they are also not scale independent (table 5). Our results
support Connor and McCoy (1979, p. 815), who ‘‘are skeptical that any biological
significance can be attached to these parameters and recommend that they be
viewed simply as fitted constants devoid of specific biological meanings.’’

A Choice among Species-Area Models

Goodall (1952, p. 217) states that a decision to select a model ‘‘cannot be made
on a priori grounds, but must rest on observational data.”” Connor and McCoy
(1979) also suggest that the procedure to select a best model should be by fitting
several models to real data and comparing results using statistical criteria. By
expanding model (4) and going through the exercise of regression modeling, we
have shown that the exponential model is only appropriate for small sampling
areas, the power model is the best for intermediate sampling areas, and the logis-
tic is the best for large-scale sampling. This result suggests that there objectively
exits a ‘“‘best’’ model for any particular data set and that there is no model that
is universally best, all depending on sampling scales.

The exponential model was once widely accepted by ecologists, but it is largely
ignored nowadays. The power model is the most widely used in the current
literature, and researchers have presented it as a paradigm without questioning
its appropriateness (Connor and McCoy 1979). The reason for the wide accep-
tance of the power model may lie in the fact that most field sampling programs
are not large enough for the logistic curve to impose itself, and not so small as
to make it clearly inadequate. For intermediate sampling areas, species-area data
are frequently found to be satisfactorily fitted by the power model. Our results
show, however, that it is necessary to question this paradigm before using it to
describe data, except where there is sound ecological evidence supporting the
power model as the appropriate form.

If sampling covers the whole of a community, the logistic is expected to be the
best model to describe the species-area relationship. Contrary to the exponential
model, which predicts a negative number of species when the area is very small,
or the power model, which predicts an astonishingly large number of species
when the area tends to be large, the logistic model predicts realistic numbers of
species converging toward zero for an area vanishingly small and to some maxi-
mum for the whole community. Unfortunately, the logistic model has not received
due attention in ecology and conservation biology, although it was proposed
almost a half-century ago (Archibald 1949) and observed by various workers to
fit large-scale sampling data (Vestal 1949; Kilburn 1963; Niering 1963; Whitehead
and Jones 1969; Abbott 1973; Lassen 1975).

For large sampling areas, if only the exponential and the power models are
compared, the former can frequently produce a better fit to observations than the
latter, as shown by the Pasoh forest (table 2) and the Cole78 data (table 4). That
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may be the reason that the exponential was once preferred by plant ecologists.
However, if the logistic model is added to the comparison, it proves far superior
to both the exponential and the power models for large sampling areas.

The random placement model (Coleman 1981) also describes the slow-rapid-
slow accumulation of new species in a region; in other words, it is of the logistic
type. Although that model is better than the exponential and power models, the
logistic model (eq. [3]) gives a better fit in general. Remember, however, that
species are rarely randomly distributed in nature. The nonrandomness of species
distributions significantly affects species-area curves, which are related to the
species’ spatial distributions (Palmer and White 1994; He et al. 1996). There are
two shortcomings to the random placement model: it is not useful for prediction
because the total observed number of species is the maximum number of species
predicted by the model, and construction of the model requires data on the abun-
dance of all species in a region. We suggest that the random placement model
should simply be considered as a null model under which species are randomly
distributed over a region.

The Monod equation, which is also used to describe species-area relations
(Clench 1979; Lauga and Joachim 1987; Colwell and Coddington 1994), is another
model displaying an inflection point (in S—In A space), just as the logistic and the
random placement models do. The Monod equation is actually not a new form
of species-area model but a special case of the logistic model obtained by impos-
ing that Z = 1 in equation (3).

Estimating the Total Number of Species

One of the uses of species-area curves is to estimate the maximum number
of species in a community or a type of vegetation through extrapolation (i.e.,
the number of species when A — «). When doing so, two types of error are
committed for the sake of generalization. The first one is statistical: a prediction
is sought out of the range for which data are available. The second one is
ecological: one assumes that the ‘‘real”’ community ideally occupies an area
of infinite size where the conditions remain the same and where evolution has
not given rise to other species. Although it corresponds to an essentialistic
view of nature, this estimation by extrapolation seems of great interest to
ecologists (Palmer 1990; Colwell and Coddington 1994). Many methods are
available for this purpose, including curve fitting, relative abundance distribu-
tions, estimators derived from sampling theories, and nonparametric techniques
(Bunge and Fitzpatrick 1993; Colwell and Coddington 1994). Our discussion
here is confined to model fitting.

Behind all the methods to estimate the maximum number of species, an implied
assumption is that in a limited area the number of species is finite. A community
can hardly be completely sampled, but a community can be considered as ‘‘nearly
completely sampled’’ if the sampling area tends to be large while the environmen-
tal conditions remain the same or else if the community is repeatedly sampled on
several occasions. Neither the exponential nor the power model can appropriately
be used to estimate the maximum number of species by extrapolation in a region,
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because in these models S does not tend to some maximum when A increases.
In contrast, the logistic model provides an upper-bound number of species when
the area tends to be large. This property is of significance in conservation biology.
When a community is thoroughly sampled or A — o, the logistic model estimates
the maximum number of species in that community to be B/C in equation (3).
For example, from the fitted logistic model, the total number of tree species
in the Pasoh forest can be estimated to be 4.438/0.00534 = 831. This estimate
is identical to that obtained by assuming a lognormal distribution of species
abundances (F. He, unpublished data), and it exceeds the observed number
of species (825) by only six species. This means that if the sampling area in
the Pasoh forest was expanded to be much larger than 50 ha while remaining
in the same type of landscape and habitat—but not far enough for evolution
to produce more species—or if all the tree species in the Pasoh forest were
thoroughly and correctly identified, the number of species would likely increase
to be close to 831. Although the observed number of free-standing tree species
in the Pasoh forest is the result of a supposedly complete and accurate census,
it remains possible that some species were missed because of their rarity or
misidentification.

From the logistic model, we predicted that the largest islands in the Pymatun-
ing Lake (Coleman et al. 1982) can accommodate as many as 39 residing birds
based on the 1978 data (the observed number on the largest island was 34)
or 37 species based on the 1979 data (the number recorded on the largest
island was 35).

As a caveat, we have to point out that the precision of the predictions by
any model, either parametric or nonparametric, depends on the completeness
of the observations, sampling scales, and taxonomic groups. For example, it
is a mistake to use a data set about a particular group of species to attempt
to predict the number of all species of a more encompassing group in a region.
When observations are fitted by the logistic (or some other) model, one
implicitly assumes that the community properties, species composition, and
environment heterogeneity are defined for these particular data, and only for
these data. Prediction of the number of species by extrapolation is done under
the condition that all these properties remain the same as defined in the
original data while area expands to be large. This process is not practically
true, but conceptually reasonable.
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