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Summary

1. The relationship between occupancy and spatial contagion during the spread of eruptive and
invasive species demands greater study, as it could lead to improved prediction of ecosystem damage.
2. We applied a recently developed model that links occupancy and its fractal dimension to model
the spatial distribution of mountain pine beetle infestations in British Columbia, Canada. We
showed that the distribution of infestation was scale-invariant in at least 24 out of 37 years (mostly
in epidemic years), and presented some degree of scale-invariance in the rest. There was a general
logarithmic relationship between fractal dimension and infestation occupancy. Based on the
scale-invariance assumption, we further assessed the interrelationships for several landscape metrics,
such as correlation length, maximum cluster size, total edge length and total number of clusters.

3. The scale-invariance assumption allows fitting the above metrics, and provides a framework to
establish the scaling relationship between occupancy and spatial contagion.

4. We concluded that scale-invariance dominates the spread of mountain pine beetle. In this context,
spatial aggregation can be predicted from occupancy, hence occupancy is the only variable one
needs to know in order to predict the spatial distributions of populations. This supports the hypothesis
that fractal dispersal kernels may be abundant among outbreaks of pests and invasive species.
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Introduction

Many invasive species show heterogeneous spatial distributions
due to several spreading mechanisms (Ray & Hastings 1996;
Williams & Liebhold 2000). Their distributions are often
composed of a few large and many nascent small foci, a pattern
probably generated by fat or long dispersal kernels (Kenkel &
Irwin 1994; With 2004; Marco et al. 2007). Pathogen dispersal
also exhibits fractal properties that often produce scale-
dependent spatial distributions in occupancy (Kenkel &
Irwin 1994; Shaw 1995; Despland 2003).

Spatial scale-dependence has been an important assumption
for predicting patterns across scales and levels of organization
in biology (Brown et al. 2002; Haskell, Ritchie & OIff 2002).
Typically, many spatial scaling properties assume power-law
relationships of the form Y e X?, where Y is the variable of
interest (e.g. area occupied), X is the measuring scale, and b is
a scaling exponent. When this property holds for several
orders of magnitude, self-similarity (approximate repetition
of patterns with changes in scale) can be assumed. However,
heterogeneous distributions are often not self-similar: a diverse
combination of occupancy and spatial contagion may result in
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occurrence patterns ranging from totally random to clumped
(Lennon, Kunin & Hartley 2002; Despland 2003; Gamarra
2005). In some cases, nevertheless, homogeneous fractality in
space holds true for a wide range of scales, except when the
area occupied is close to the sampled space.

Outbreaks of mountain pine beetle (MPB, Dendroctonus
ponderosae Hopkins) in British Columbia, Canada, constitute
a good example of spatial scaling in ecology. Since 1997, this
bark beetle has infested over 7 million ha of lodgepole pine
(Pinus contorta Dougl.) through pheromone-mediated mass
attacks in association with blue fungi (Raffa & Berryman
1983; Safranyik & Wilson 2006). Although endemic, its
populations undergo cyclic epidemic events causing large
ecological and economic damage (Leuschner & Berck 1985;
McCullough, Werner & Neumann 1998). General spatial
scaling rules of endemic and epidemic events may inform us of
the presence of common, scale- and state-invariant mechanisms
for the spread of the beetle.

We hypothesized that occupancy, measured as a proxy for
abundance (Williams & Liebhold 2000; He & Gaston 2003),
and fractal dimension have a robust scaling relationship;
therefore occupancy can be used to predict the spatial
heterogeneity of the MPB distributions. Our aims were: (1)
to discern whether MPB spatial distributions follow scale-
invariant relationships; (2) to derive different spatial scaling
metrics (correlation length, maximum cluster size, edge length,
number of clusters) from the scale-invariance assumption;
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and (3) to provide a simple, easy-to-measure aggregate variable
that links those metrics under a common framework.

A FRACTAL MODEL FOR SPATIAL SCALING

Consider a two-dimensional landscape converted to a grid
with dimensional minimum resolution €. The occupancy, £
(area infested by MPB), is expressed as a fraction of whole
landscape. Under complete randomness, pixels are occupied
following a Poisson distribution. Following Moisy & Jiménez
(2004), the mean distance between occupied e-sized pixels is
r = eNh. Assuming that £ << 1, tlge probability of finding an
occupied box of size wis 1 — ¢ . Thus, we can compute the
total number of occupied w-sized boxes as:

ymes _ 2
N(h, W) o W—Z[l _ e*(u/r) ] =w 2[1 _e h(wle) ]

This distribution is scale-dependent, and its fractal dimension,
expressed as D(h, w) = —dIn[N(h,w)]/dIn(w), is thus:

—h(wle )2

D(h, w) o 2|1 — h(wle)*—< eqn 1
1

—h(wle)® |
—e (wle)

However, under complete self-similarity, outbreaks
follow fractal distributions. Further assuming an infinite
two-dimensional space, Gamarra (2005) derived a robust
scale-invariant relationship for the fractal dimension:
Dh)=2-96 eqn 2
where 6 = In(/)/In(e). Thus, at certain occupancy, we may
have a constant, scale-invariant fractal dimension, but this is
non-constant among different occupancy values because of
its dependence on /. Fractal dimension and occupancy are
strongly associated through € (Latora, Rapisarda & Vinciguerra
1998; Gamarra 2005). This is important because it allows
development of a scaling approach to compute several land-
scape metrics based on non-constant fractal exponents.

Correlation length, &, measured as the lag distance at which
correlations vanish, can be computed from the semivariance
equation vy, o< EJ:HD”” (Burrough 1983). The semivariogram
is usually computed numerically as a weighted variance of
the indicator values of the pixels (either 0 or 1) in some neigh-
bourhood of size &, around each pixel. Knowledge of D(%)
from equation 2 and a relaxed assumption permits the so-called
nugget variance, ¥, — 0 at & = 0 due to errors associated with
€ (Leduc, Prairie & Bergeron 1994), and thus allows us to avoid
numerical computation of the semivariogram. Substituting
equation 2 to the semivariance equation and solving for &,
leads to:

(20)"

¢ s

g(' o eln(y( 170)/(26)

o< Ey eqn 3

where E o< yg(ze)il o g is a normalization factor.

From the dimensional ground, average patch size follows a
scaling of the form m o< &f, where m is the average patch size
(number of pixels of a patch or cluster). Percolation theory
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(Stauffer & Aharony 1994) states that, below the percolation
threshold, when 4 — 0, maximum (M) patch size scales as
M o< m; hence M o< &. Thus from equation 3 we derive the
scaling relationship:

2 18 -2_1/6
o< ..

M o< E7y. " ocg Ty, eqn 4

Another landscape metric, the total edge length (number of
joins of linear side €), scales as L «< /ip(1 — p), where p(h, €) is
the average probability that a cell is occupied (Lennon et al.
2002; He & Hubbell 2003), and depends on the spatial dis-
tribution of the set. However, our self-similarity assumption
establishes a direct relationship between spatial correlation
and occupancy that can be used to solve for p(h, €). As a
scale-dependent measure, Allain & Cloitre (1992) defined the
lacunarity of a fractal set as A(w) = w?®2 where w = & is the
scale of interest. Under scale invariance, equation 2 defines
A(w) = w® (Gamarra 2005). This defines the average relative
neighbourhood density of a self-similar distribution (sensu
Ostling, Harte & Green 2000) (Fig. 1a). The average probability
of occupancy then becomes p(/, €) = hA(w) (Gamarra 2005)
(Fig. 1b). Assuming a binomial distribution within window
boxes of size &, the scaling of edge length against occupancy is:

Lo A 1= hAE )] e I°E (1= hE ") o I’E exp(—hE")
eqn 5

Finally, the number of patches can be computed using
N < p"(1-p)" (Stauffer & Aharony 1994; He & Hubbell
2003). Typically, an occupancy percolation threshold is achieved
at 1, where the number of patches reaches a maximum. In
landscape ecology and percolation theory, this threshold can
cause sudden transitions in many properties of the system.
The number of joins on the perimeter of the average patch is
t =mpuV h <h,. Percolation theory defines the percolation
threshold from the number of patchesas/, = (1 + u) . Here u
is a proportionality constant between m and ¢ Introducing
again the lacunarity-based definition of p, when / << 1, the
equation can be approximated as:

N o< BEM (1= )™ o< hE! exp(-mp&}). eqn 6

Methods

We extracted patterns of occupancy in MPB populations in British
Columbia from publicly available data (http://cfs.nrcan.ge.ca/subsite/
mpb) providing images that we converted to lattices of 3 x 3-km
resolution. The 19642002 infestation maps (with data lacking in 1997
and 1998) were produced by manual transcription of damaged zones
observed from aerial surveys by the Canadian Forest Service, Natural
Resources Canada and the British Columbia Ministry of Forests.

To infer scaling using a fractal approach, one first needs to check
whether the assumption of fractality is general and plausible. Hence
we tested whether cluster size distributions of damaged areas followed
power-law scaling. We fitted cluster size distributions using the
gnlm R package from J. Lindsey (http://popgen.unimaas.nl/~jlindsey/
rcode.html). The goodness of fit of the zeta (power-law) model was
tested using Kolmogorov—Smirnov tests.
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Fig. 1. Theoretical scaling probabilities under scale-invariant distribu-
tions. (a) Power-law decay in relative neighbourhood density (lacunarity)
with regard to window sampling size for different values of occupancy.
(b) Probability of cell occupancy increases with occupancy under
different window sampling sizes. In all cases, € = 1/256.

To test the validity of the scaling relationships (equations 2-6), we
computed the landscape metrics used in those derivations. Fractal
dimension was computed via the box-counting algorithm with
successive window sizes ranging from 6 x 6 to 220 x 220 pixels by
intervals of 2. Indicator semivariograms allowed computation of
correlation lengths through qualitative detection of sills. Cluster-
related measurements such as size, total edge or number of patches
(clusters) were computed with Moore conditions, which define
clusters by neighbourhood pixels connected by edges or vertices.
When no neighbours were present, a single patch was counted as an
individual cluster. We used an iterative Levenberg-Marquardt
least-squares minimization algorithm (Press ez al. 1992) to fit the
nonlinear scaling models, and computed the corresponding exponents
via Kolmogorov-Smirnov goodness-of-fit tests after discarding the
largest clusters in the distributions (Fig. 2).

Results

The number of occupied cells from 1964 to 2002 indicates the
existence of 1-5 epidemic cycles with peaks in 1985 and 2002
(Fig. 2). Metapopulations grew more quickly in the second
peak, probably due to higher climatic suitability and milder
climate conditions (Carroll et al. 2004).

We found power-law distributions of cluster sizes in 24 of
the 37 years. The other 13 years mostly correspond to years in
endemic states (low occupancy levels; Fig. 2). Although
statistically not significant, all years except those two with lowest
occupancy presented power-law decay across a substantial
part of the cluster size spectrum. Power laws following cluster
size distribution p(s) o< s, where o, is the exponent of a
cumulative distribution F(S > s) «< 5 %, applied to those years
when outbreaks were most significant, and also applied to
about half of the endemic years between the two epidemic
peaks. For the peak years, the exponent from the cumulative
distribution a0 = 1.09 provided a hyperbolic-squared decay in
cluster sizes for the probability density function. Although
wildly different in terms of occupancy, MPB maps for 1985,
1986 and 1988 follow the same scale-invariant cluster size
distribution (Fig. 3). The 1987 map does not have power-law
decay over the whole spectrum of cluster sizes, and also
presents localized big clusters.

The spatial distributions of outbreaks of MPB strongly
supported our predictions. The fractal dimensions of MPB
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Fig. 3. Maps of the 1985-88 mountain pine
beetle outbreaks in southern British Columbia,
Canada. 1987 is the only year not described
by a power-law cluster size distribution.

distributions agree with equation 2, as opposed to the pattern
followed under the Poisson distribution given by equation 1
(Fig. 4). The very large embedding landscapes ensured that
occupancy was low enough so that finite-size effects did not
complicate analysis. Because equation 2 is based on scale-
invariance assumptions, we could assume homogeneous
fractality in the range of occupancies of the MPB data.
Average correlation lengths agree with equation 3 in Fig. 5(a).
A maximum correlation length of 120 km appears in 2002
(the largest infestation year). Equation 4 also agrees with the
data. Although our fractality assumption overestimates
maximum cluster size in those non-power-law years (Fig. 5a),
the aggregated scaling relationship still holds.

Edge length and number of clusters also scaled according
to our models (equations 5 and 6, respectively). The number
of clusters follows a humped curve tending to some maximum,
although it has a concavity stronger than that predicted by a
model based on the negative binomial distribution (He &
Hubbell 2003; Fig. 5(b)). Furthermore, the percolation thres-
holds in both models show some disagreement. In the
negative binomial model, 4, = 0.021, while our model shows
h,=~0.031. This is due to the fact that our model can incorpo-
rate more aggregated distributions, so that a larger occupancy
is needed to achieve full connectance of the landscape.

Discussion

We have provided an explicit model (equation 2) for the
scaling relationship between occupancy and fractal dimension
that assumes homogeneous fractality under some range of
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Fig. 4. Fractal dimension—occupancy plot. White and black circles
depict years with power-law- and non-power-law-distributed cluster
sizes, respectively. Dashed and solid lines correspond to the scale-
dependent equation 1 and the scale-invariant equation 2, respectively.
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Fig. 5. Relationships of landscape metrics derived from the scale-
invariant relationship in equation 2. White and black symbols are as
in Fig. 4. (a) Correlation length (circles, km) and maximum cluster
size (squares, cell number) and respective fits of equations 3 and 4. (b)
Number of clusters (circles) and total edge length (squares, in number
of joins). Solid lines: respective fits of equations 5 and 6. Dashed line:
negative binomial model fit. Percolation thresholds for the fractal and
the null model are shown by solid and dashed arrows, respectively.

occupancy. This contrasts with the Poisson-based scale-
dependent model (equation 1). We have derived five different
landscape metrics based on scale-invariance: correlation length,
maximum cluster size, average cluster size (not shown in
figures), total edge length, and number of clusters. However, other
spatial metrics could be derived based on percolation theory.

Rather than following constant scaling exponents, our
models (equations 3-6) provide some concavity in log—log
curves, more visible in the number of clusters (equation 6;
Fig. 5b). This concavity is due to the change in fractal dimension
with occupancy. However, finite size effects may strongly
upset this relationship: the use of constant exponents in the
absence of characteristic length scales is not feasible in real
systems, due to the intrinsic finiteness of any space (Lennon
et al. 2002; Halley et al. 2004; Sizling & Storch 2004). To avoid
this limitation, other alternatives have been proposed: use of
non-constant exponents (multifractals) or exponent-dependent
normalization factors (scale-dependent lacunarity, with
specific cases like exponential cut-offs). In order to predict the
spatial scaling properties over the whole range of possible
occupancy values, we would need an explicit formulation for
the fractal dimension—occupancy relationship accounting for
the constraints imposed by a finite space, such as the likely
acceleration in the fractal dimension once the percolation
threshold has been reached.

Percolating states can provide qualitative information on
the temporal dynamics of the system. When occupancy is
close to percolate, we could predict the imminent arrival of a
maximum peak in the global beetle outbreak using equation
6. This is the case for 2002, the year closest to the percolation
threshold derived from equation 6, where the infestation
approaches a state where the resource is about to be depleted.

The fact that years not described by power-law distributions
tend to follow the scale-invariant relationship may constitute

a paradox. However, this pattern is probably due to sampling
resolution, producing the following effects.

1. Undercounts — at the smaller spatial scales, there is an
undercount of cell occupancy (e.g. cluster size distributions
for 1968, 1985 and 2002 in Fig. 2) that may be the result of the
intrinsic difficulties in spotting small infestations from aerial
surveys, more so if trees are below the canopy and in a non-
outbreak year.

2. Coalescence — at larger spatial scales, cluster size distribu-
tions bend upwards due to coalescence of clusters into bigger
clusters (avoidable with better resolutions) (e.g. 1985 and
2002 insets in Fig. 2).

3. Non-homogenous resource landscapes, which imply the
presence of unsuitable areas between clusters: for larger
clusters, some distributions tend to bend downwards due to
the absence of pine habitat between clusters (e.g. 1968 and
2002 insets in Fig. 2).

Nonetheless, power-law scaling over a substantial section of
the cluster size distribution in all years except two (see e.g.
inset in Fig. 2 for 1968) is consistent and ensures the robustness
of equation 2 across our data.

Two consequences arise for MPB spread and dynamics.
First, all epidemic and many of the endemic states follow
fractal cluster size distributions that result in the fractal
dimension—occupancy scaling equation 2. This is a significant
step, in that derivation of aggregate spatial properties simply
from occupancy allows us to develop spatially implicit models
for distributions: colonization parameters can incorporate
aggregate, occupancy-dependent spatial properties derived from
such scaling relationships (such as metapopulation capacity
or lacunarity, sensu Gamarra 2005). Hence there may be no need
to develop dynamic equations for both occupancy and spatial
aggregation, because they are tightly linked. Furthermore,
the fractal dimension—occupancy relationship provides
clues on the build-up of epidemic clusters growing towards
percolating structures. This supports the importance of fat-tailed
dispersal or fractal kernels in the colonization and extinction
of outbreak insects (Kenkel & Irwin 1994; Shirtliffe, Kenkel &
Entz 2002), due to this tight scaling relationship.

Second, robust landscape metric—occupancy relationships
allow the prediction of spatial indices (five of them derived
here: fractal dimension, maximum patch size, edge length,
number of patches and correlation length) from the sole
information of occupancy. Some measures, such as average
correlation length or maximum cluster size, are useful in
characterizing distributions, and may provide information about
spatial spread and potential forest-management actions. For
example, correlation length may indicate the average size of con-
tinuous damaged forest, while maximum cluster size may represent
the potential extent of maximum continuous damage.

Many studies have focused on the effect of resource quantity
and distribution on the dynamics and distribution of consumer
populations (Williams & Liebhold 2000; Gamarra 2005; GOkland
et al. 2005). However, long-distance dispersal diminishes the
role of resource distribution by increasing the connectivity
between patches of resources (With 2004). Hence, contrary to
consumer—resource-based assumptions, it is not obvious that
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the distribution of lodgepole pine forest in British Columbia
may be playing such a constraining regulatory effect in the
spread of MPB.

Some other real systems and simulation experiments show
patterns that follow our derivations qualitatively. Despland
(2003) showed that areas damaged by locust populations
follow a scaling relationship similar to equation 2. Data on
breeding birds and butterflies in Holland (OIff & Ritchie
2002), forest habitat for the Florida panther (Kerkhoff, Milne
& Maehr 2000), and simulations of disturbance regimes in
artificial landscapes (Hargis, Bissonette & David 1998) also
support equations 2 and 5. These patterns pervade even in
invasive species with high growth rates and a lack of natural
enemies, where long-distance dispersal is followed by local
reproduction in the area surrounding the founder parent
(Marco et al. 2007). The apparently widespread nature of the
relationship between fractal dimension and occupancy points
to the presence of general mechanisms for the spread and
distribution of many living organisms. By studying these
patterns in other pests, invasive and pathogenic species, we
will be able to assess the generality of the role played by habitat
connectivity. The potential of such robust relationships
includes their use in risk analysis, pest control and the design
of protected area networks. However, forecasts of population
outbreaks will be feasible only under adequate modelling
frameworks for the dynamics of those populations.

The robustness of the model would also improve population
monitoring. Although regular surveys across large, susceptible
landscapes are to be recommended, fractal scaling suggests
that the spatial distribution of sampling effort should not be
uniform. Rather, special attention should be paid to managing
areas that are susceptible to incipient large local outbreaks,
while the prompt localization of small endemic bursts
demands that rigorous sampling be realized in other areas at
longer distances than expected if short-term, diffusion-like
dispersal is assumed.
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