
Solution 1: 

The continuous-time nonlinear state space model for the Belousov Zhabotinsky reaction is given as:  
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Part1: 

1a) Normal operations 

 

Figure 1: SIMULINK sheet for normal operations 

  

Figure 2: Phase plane portrait for normal operations 
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1b) Abnormal operations 

 

Figure 3: SIMULINK sheet for abnormal operations 

 

Figure 4: Phase plane portrait for abnormal operations 

1c)  

 Normal operating conditions: the system is stable (refer to Figure 2) as the outputs (y=x) settles 

at (2, 5).  

 Abnormal operating conditions: the system is marginally stable (refer to Figure 4) with sustained 

oscillations around (2, 5)  

Note: Clearly, choice of an appropriate operating condition is critical for this system/process 

Part 2: 

2a) Linearizing the nonlinear model around the normal operating mode: (u0= [10 4]T ; x0= [2 5]T) 

Computing the required Jacobian matrices: 
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Linearized continuous state space model around the normal operating conditions is given as: 
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Note that all the variables are in deviation  form. 

2a) Linearizing the nonlinear model around the abnormal operating mode: (u0= [10 2]T ; x0= [2 5]T) 

Computing the required Jacobian matrices: 
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Linearized continuous state space model around the abnormal operating conditions is given as: 
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Again, note that all the variables are in deviation  form. 

 

Figure 5: Comparing the nonlinear and linear model response at normal operating conditions 
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Figure 6: Comparing the nonlinear and linear model response at abnormal operating conditions 

 

Linearization around the normal operation: Even though the linearized model does not approximate the 

transit behaviour well other than the oscillatory trend, the long term dynamics are well captured by the 

linear model. See Figure 5 for the comparison. 

Linearization around the abnormal operation: Linearizing the nonlinear model around the abnormal 

operations makes the linearized model unstable. See Figure 6 for the comparison. 

Note: This exercise highlights that a model cannot be linearized effectively at all operating conditions. 

The linearization technique is effective only in those operating conditions where the system nonlinearity 

is not severe (nonlinearity contour mapping for nonlinear systems is an important and active area of 

research). Therefore, choice of a good linearization point plays a critical role in deciding the 

performance or quality of the linearized system. In some extreme situations, a poor choice of 

linearization point can also make an otherwise stable (or marginally stable) system, unstable (See Figure 

6). 
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Part 6:  

See Figure 7 and 8 

 

Figure 7: SIMULINK sheet for linear, discrete-time state space models 
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Figure 8: Response for discrete-time state space models with different sampling time Ts 
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Part 8: 

 

Figure 9: Poles of different discrete-time transfer functions 

 

From Figure 9, it is evident that the poles of the discrete time transfer function for all the chosen 

sampling time are within the unit circle. This suggests that the discrete-time model is stable. (Note that 

this is only shown for the model linearized around the normal operating conditions) 

Part 9:  

Ts=0.5 min seems to be an appropriate choice for the sampling time, since it captures the peaks and 

troughs of the linear, continuous time response fairly well. In Figure 10, continuous-time response for 

the linearized model around the normal operating conditions is compared against the discrete-time 

model with Ts=0.5min. Note that the plotted responses are zoomed so as to get a better view of the 

approximation.  

Clearly for Ts=1min and 2 min, the approximation is poor as both the sampling intervals miss the peaks 

and troughs of the transient oscillations (see Figure 11 and 12); however, it should be noted that all 

three discrete-time model captures the long term response fairly well (see Figure 8). Hence, if the final 

objective is just to know the steady state value, then using a discrete-time model with Ts=2.0 min is 

probably the best choice, since it keeps the model simple and requires relatively less computation to 

reconstruct the original continuous time response as compared to the models corresponding to 

Ts=0.5min and 1.0min.  
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Figure 10: Continuous-time, linear response with discrete-time response 

 

Figure 11: Continuous-time, linear response with discrete-time response 
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Figure 12: Continuous-time, linear response with discrete-time response 
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