CHE 572: ASSIGNMENT#1.

SOLUTIONS.

1
$$f(x) = [f(x)] = [x_1^2 + 6x_1x_2 + x_2^2 + 4x_1 + 3x_2 + 12] = 0$$

 $[f(x)] = [f(x)] = [x_1^2 + 6x_1x_2 + x_2^2 + 4x_1 + 3x_2 + 12] = 0$

Jacobian of f(x):

$$J(f(x)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} \cdot \frac{\partial f_1}{\partial x_1} = 2x_1 + 6x_2 + 4.$$

$$\frac{\partial f_1}{\partial x_1} = 2x_1 + 6x_2 + 4$$

$$\frac{\partial f_2}{\partial X_1} = \frac{\partial f_2}{\partial X_2} = \frac{\partial f_1}{\partial X_2} = \frac{\partial f_1}{\partial X_2} = \frac{\partial f_1}{\partial X_2} = \frac{\partial f_2}{\partial X_2} = \frac{\partial f_2}{\partial X_2} = \frac{\partial f_2}{\partial X_2} = \frac{\partial f_2}{\partial X_2} = \frac{\partial f_1}{\partial X_2} = \frac{\partial f_2}{\partial X_2} = \frac{\partial f_2}{\partial$$

Substituting the differential terms into the expression
$$J[f(x)]$$
:

$$\frac{\partial f_2}{\partial X_1} = 4X_1 - 2X_2$$

$$\frac{\partial f_2}{\partial X_2} = 4X_2 - 2X_1$$

$$J[f(x)] = \begin{bmatrix} 2x_1 + 6x_2 + 4 & 6x_1 + 2x_2 + 3 \\ 4x_1 - 2x_2 & 4x_2 - 2x_1 \end{bmatrix}$$

Gradient of r(x) is given as:

$$\nabla r(x) = \frac{\partial r}{\partial x_1} + \frac{\partial r}{\partial x_2} - (2a)$$

Now,
$$\frac{\partial r}{\partial x_1} = \frac{\mu_{\text{max}} \cdot x_2}{k_{\text{m}} + x_2}$$
; $\frac{\partial r}{\partial x_2} = \frac{(k_{\text{m}} + x_2) \mu_{\text{max}} \cdot x_1 - \mu_{\text{max}} \cdot x_2}{(k_{\text{m}} + x_2)^2}$

$$= \frac{\text{Km} \, \text{µmax} \, \text{?}_1}{\left[\text{Km} + \text{?}_2\right]^2}$$

$$\nabla r = \left[\frac{\mu_{\text{max}} \times_2}{k_{\text{m}} + \chi_2} \hat{i} + \frac{\kappa_{\text{m}} \mu_{\text{max}} \times_1}{(k_{\text{m}} + \chi_2)^2} \hat{j} \right]$$

$$(3)$$
 a)

Second-order Taylor series expansion of a single variable function f(x) about x=xois given as:

$$f(x) \approx f(x_0) + \frac{df(x)}{dx} |_{x=x_0} (x-x_0) + \frac{1}{2!} \frac{d^2f(x)}{dx^2} |_{x=x_0} (x-x_0)^2 - (3a)$$

When $f(x) = xe^{-x}$, the differential terms in Eq.(3a) can be written as:

$$\frac{df(x)}{dx} = e^{-x} - xe^{-x} = (-x)e^{-x};$$

$$\frac{d^2f(x)}{dx^2} = -e^{-x}e^{-x} + xe^{-x} = (x-2)e^{-x}$$

Substituting the differential terms into (3a) yields:

$$xe^{-x} \approx x_0e^{-x_0} + (1-x_0)e^{-x_0}(x-x_0) + 1(x-2)e^{-x_0}(x-x_0)^2$$

b) Second order Taylor Series expansion of a multivariable function f(x) about to is given as:

$$f(\underline{x}) \approx f(\underline{x}_0) + \nabla f(\underline{x}) \Big|_{\underline{X}=X_0} (\underline{x}-\underline{x}_0) + \frac{1}{2!} (\underline{x}-\underline{x}_0)^T \nabla_f^2(\underline{x}) (\underline{x}-\underline{x}_0).$$

when $f(x) = \frac{\mu_{max} x_1 x_2}{Km + x_2}$ and $x = [x_1 x_2]$ $\frac{\chi_0 = [x_1^0 x_2^0]}{Km + x_2}, \text{ the differential terms in (36) can be calculated as follows:}$

Hessian
$$\rightarrow \nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} \end{bmatrix}$$

Where:

$$\frac{\partial f(X)}{\partial x_1} = \frac{\mu_{max} X_2}{\kappa_{m+X_2}}$$
;
 $\frac{\partial f(X)}{\partial x_2} = \frac{\kappa_{m} \mu_{max} X_1}{\kappa_{m+X_2}}$;

$$\frac{\partial^2 f(x)}{\partial x_1^2} = 0; \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} = \frac{\partial^2 f(x_1)}{\partial x_2 \partial x_1} = \frac{\partial^2 f(x_1)}{(k_1 + k_2)^2};$$

$$\frac{df(x)}{dx_2^2} = -\frac{2k_m \mu_{max} x_1}{[k_m + x_2]^3}$$

Substituting the differential terms into (36) yields:

$$f(X) \approx \frac{\mu_{\text{max}} X_1^{\circ} X_2^{\circ}}{k_{\text{m}} + X_2^{\circ}} + \left[\frac{\mu_{\text{max}} X_2^{\circ}}{k_{\text{m}} + X_2^{\circ}} + \frac{k_{\text{m}} \mu_{\text{max}} X_1^{\circ}}{(k_{\text{m}} + X_2^{\circ})^{\frac{1}{2}}}\right] \left[X - X_0\right]$$

$$+\frac{1}{2!}\begin{bmatrix}x-x_0\end{bmatrix} = 0 \quad \frac{km\mu max}{[km+x_0]^2} \begin{bmatrix}x-x_0\end{bmatrix}$$

$$\frac{km\mu max}{[km+x_0]^2} \frac{-2km\mu max}{[km+x_0]^3}$$

Hibrory

b)
$$\begin{bmatrix} 0 & 1 \end{bmatrix} \frac{dx}{dt} = \begin{bmatrix} 10^6 & 0 \end{bmatrix} x + \begin{bmatrix} 473 \end{bmatrix} u$$

inverting the matrix premultiplying dx term, we obtain the state-space model in the standard form

$$\frac{dx}{dt} = \begin{bmatrix} 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 10^{6} & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 473 \\ 2 & 0 \end{bmatrix}$$

$$\frac{dx}{dt} = \begin{bmatrix} 0 & 0.5 \\ 10^6 & 0 \end{bmatrix} \times + \begin{bmatrix} 2.5 \\ 473 \end{bmatrix} U$$

L> A

The eigenvalues of A are: 707.1068; -707.1068

from the eigenvalues of A, it is evident that the dynamics of both X, and X2 change equally fast. The opposite signs just indicate the direction of that change.

Therefore, the given set of ODEs constitute a non-stiff. problem for which, use of any Runge-kutter based solver would suffice.

c) ode 45: (i) Non-Shift problem solver(ii) medium order of acturacy.

(iii) Computationally fast:

-					
M	ota	1,	AN	0	
1 1	019	11	011	1	9

Mr: Total mass of the liquid inside the kelle (grams)

V7: Total volume of the liquid inside the kettle (litres)

S: Mass fraction of Substrate

E: Mass fraction of Ethanol

Y: Mass fraction of yeast.

ME: Mass of ethan of inside the kelle (grams)

grains) Ms: Mass of Substrate ""

My: Mous of yeast " (grams)

Mw: Mass of water " " (grams)

P: density of liquid at any given time t' (grams litre)

So: in ital mass trackion of substrate

Eo: mikel mass fraction of ethand

	The state of the s						the first first and district the strategic markets that the best district district markets and	
)	1-1-11-1	INPUTS OTPUTS				States		
)	Variables.	marib.	dist.	meas.	Unmeas.	Control	024	
	MT		2.00	APK SIG	77 (S)	EVINADO		
	ME					W.		
	MY			(3 = -14.	2		
	Mw				1-5-	2-00		
	S					1		
	E			1 4 4			allab. I	-
	Y	4				*	4	

Assumptions.

No mit a part

1.) icleal mixing conditions

2) Net change in the density I volume of the solution is negligible.

3) No initial mass of ethanol or yeast i.e., E=0& Yo=0

accumulation = flows in - flow out + generation-consumption. dSMI = - MSMT. Where SMT = Ms $\Rightarrow \frac{dS}{dt} = -\frac{\mu_{\text{max}} S}{\kappa_{\text{m}} + S} \tag{1}$ From mass falance, we also know that mass of Substrate consumed = massaf yeast and ethanot produced: I.e., SoMT-SMT = EMT + YMT. (2) mans of substrate was of ethouse produced. I mass of yeast produced. Also: EMT=YMT (given) - (3) . . Substituting (3) into (2) yields SOMT-SMT = ZEMT

 $\Rightarrow S_0 - S = E = Y - (4)$

differentiating (4) w.r.t. 't'

$$\frac{dE}{dt} = \frac{-1dS}{2dt} = \frac{1}{2} \frac{M_{\text{max}}.S.}{K_{\text{m}} + S.}$$
 (5)

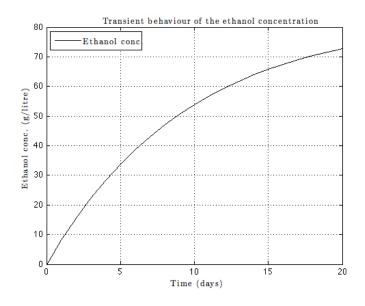
Similarly, dy = 1 Hmax S. Knn+S.

finally, The dynamic model of the system is given as

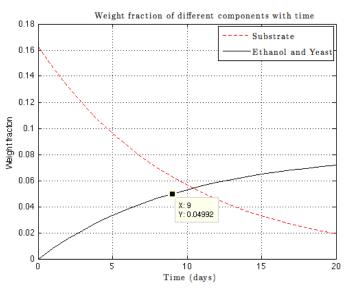
- The above model is non-linear w.r.t the variable 's'. d)
- Refer to Fig. 1.
- Refer to Fig 2.
- liquid level 'h in the keltle i doern't depend on the length of time. See Assumption (2)

Appendix

**
$$V_T = 20$$
 litres (See Assumption(2))


** $M_T = 17 \times 1000 + 3200 + 100 = 20300$ grams

**mais finaler mars at mars at hops

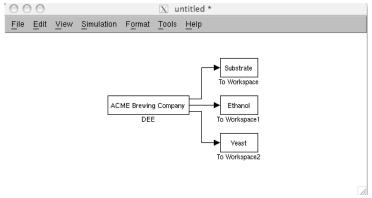

$$S_0 = 3200 + 100 = 3300 = 0.1626$$
 $M_T = 20300$

•
$$\epsilon_0 = 0$$
 ? See Assumption 3).

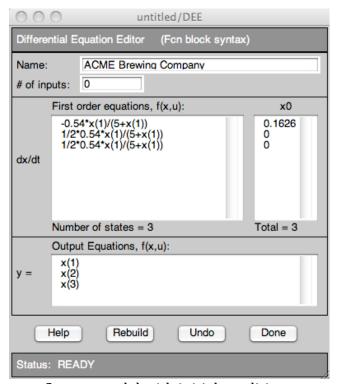
e)

f)

A batch of beer with 5wt% ethanol content takes approximately 9 days of brewing time.


Mixture composition at the end of a batch:

Ethanol= 5% (see the DataTip on the graph)


Yeast= 5% (since Ethanol production=Yeast production)

Substrate= 6.27% (Also from the graph)

Water= 83.33%

SIMULINK sheet

System model with initial conditions