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CHE 572 
 

Assignment #5 
(Solution) 

 
Course Instructor: Dr. Fraser Forbes 

 
 

SOLUTION OF QUESTION NO. 1 
 
 
There are two approaches to solve this problem. One is to assume that we don’t have a 
priori information about the type of the model and identify the best possible model using 
the given data. The second approach is to assume that the order of the model is known 
and find the parameters of the model by using system identification methods. Here the 
second approach has been chosen. Therefore a model of the following form is fitted to the 
data: 
 

 

! 

yt =
1"C1z

"1( )
1+D1z

"1 +D2z
"2( )
# t   

a) 
 
Data Set 1: 
The first set of raw data is given in Figure #1. By using the “dtrend” command of 
MATLAB the mean is removed (Figure #2) and using the following command an ARMA 
model is fitted to it. 
 
model=armax(Y,[2,1]) 
 
 The model obtained is as follows: 

 

! 

yt =
1" 0.01331z"1( )

1" 0.742z"1 + 0.1329z"2( )
# t =

1" 0.01331z"1( )
1" 0.3021z"1( ) 1" 0.4399z"1( )

# t  

  
The autocorrelation function plot of the residuals is given in Figure #3. The plot can be 
obtained by “ resid(model,Y)” command. 
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Fig # 1: Plot of given data Fig # 2: Plot of given data after removing 

the mean 
 

 
Fig # 3 : Autocorrelation (residual) plot of the model 

residuals 
Note: No cross-correlation, since there is no input data 

 
It can be noted here that, all the points in the autocorrelation plot are within the 95% 
confidence band. 
 

  
Fig # 4: Plot of the actual output and the 
estimated output 

Fig # 5: Plot of model residual 
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Figure #4 compares the predicted output and the given data. The plot is obtained using 
“compare” command of MATLAB. On the other hand, Figure #3 shows the prediction 
errors obtained by the following commands:  
 
e=pe(Y,model); 
plot(e) 
 
The covariance matrix of the parameters can be found by the following command: 
 
model.CovarianceMatrix 
 
and the results is: 

! 

Cov(p) =

1.6388 "1.0598 1.6269
"1.0598 0.6985 "1.0523
1.6269 "1.0523 1.6385

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
 

 
Therefore the standard deviations of the parameters are: 
Table #1: Parameter Estimates  for data set 2 
Parameter Value Standard deviation 

! 

C1 -0.01331 1.28 

! 

D1 -0.742 1.2802 

! 

D2  0.1329 0.8358 
 
Note that the standard deviation can also be found by using the following command 
 
Model.da  % % gives the standard deviations of the autoregressive part 
Model.dc %% gives the standard deviations of the moving average part 
 
Similarly, two new models are obtained from the remaining two data sets. 
 
 
Data Set 2: 

 

! 

yt =
1" z"1( )

1"1.732z"1 + 0.7367z"2( )
# t =

1" z"1( )
1" 0.7509z"1( ) 1" 0.9811z"1( )

# t  
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Fig # 6: Plot of given data Fig # 7: Plot of given data after removing the 

mean 
 
 

 
Fig # 8: Autocorrelation plot of the model residuals 

Note: No cross-correlation, since there is no input data 
 
 

  
Fig # 9: Plot of the actual output and the 
estimated output 

Fig # 10: Plot of model residual 
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The covariance matrix is: 

! 

Cov(p) =

0.0027 "0.0025 0.0005
"0.0025 0.0024 "0.0003
0.0005 "0.0003 0.0008

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
 

Table #2: Parameter Estimates  for data set 2 
Parameter Value Standard deviation 

! 

C1 -1 0.0277 

! 

D1 -1.732 0.0515 

! 

D2  0.7367 0.0494 
 
 
Data Set 3: 

 

! 

yt =
1" 0.8966z"1( )

1"1.779z"1 + 0.7797z"2( )
# t =

1" 0.8966z"1( )
1" 0.7822z"1( ) 1" 0.9968z"1( )

# t  

  

  
Fig # 11: Plot of given data Fig # 12: Plot of given data after removing the 

mean 
 

 
Fig # 13: Autocorrelation plot of the model residuals 
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Fig # 14 : Plot of the actual output and the  
estimated output 

Fig # 15 : Plot of model residual 

 
 
 
The covariance matrix is: 

! 

Cov(p) =

0.0029 "0.0029 0.0019
"0.0029 0.0029 "0.0019
0.0019 "0.0019 0.0015

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
 

 
Table #3: Parameter Estimates  for data set 3 
Parameter Value Standard deviation 

! 

C1 -0.8966 0.0388 

! 

D1 -1.779 0.0540 

! 

D2  0.77797 0.0537 
 
 
Table #4: Parameter Estimates  for all three non-differenced data sets 
Parameter a b c 
 Value SD Value SD Value SD 

! 

C1 -0.01331 1.28 -1 0.0277 -0.8966 0.0388 

! 

D1 -0.742 1.2802 -1.732 0.0515 -1.779 0.0540 

! 

D2  0.1329 0.8358 0.7367 0.0494 0.77797 0.0537 
 
 
(b) 
In this part we are differencing the data (i.e. y). So, the new predicted model will be: 

 

! 

yt =
1"C1z

"1( )
1+D1z

"1( )
# t   

We will be getting similar kind of plots for this part as before. The resulting model 
parameters and their standard deviations are given in Table 5. 
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Table #5 : Parameter Estimates  for all three differenced data sets 
  51 Data 201 Data 1001 Data 

C1 Parameter -0.9752 -0.9425 -0.9088 
 Standard Deviation 0.0445 0.0362 0.0461 

D1 Parameter -0.7798 -0.7336 -0.7898 
 Standard Deviation 0.1266 0.0728 0.0313 

 
 
(c, d) 
From Tables #4 and #5, it is evident that as the number of data points increase; we get 
better estimates of the model parameters. This improvement is both in terms of the bias 
(i.e., the difference between the parameter estimates and their true values) and the 
variance of these estimates. The covariance matrix for the parameter estimates is 
proportional to the variance of the prediction errors, which is estimated as: 
 

εεσ T2 1
pNe −

=  

Thus, the variance of the parameter estimates is inversely proportional to the number of 
data points available for estimating them. This is not quite borne out by the standard 
deviations given by Matlab, but you must remember that these standard deviations do not 
really incorporate the effects of the covariance between the individual estimates. 
 
Also by comparing Table 4 and Table 5, one can observe that differencing the data gives 
more accurate results, especially for cases that the number of data point is limited. For 
example in the case of 51 data points, the uncertainty in the identified model using non-
differenced data is significant. The values of standard deviations are bigger than the 
values of parameters and the 95% confidence interval includes 0 for all parameters.  
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SOLUTION OF QUESTION NO. 2 
 
 
(a) 
In this question we have been given a large set of input-output data of a Single-Input-
Single-Output (SISO) process. Our target will be to estimate a model. 
 
The first step in identification is to build an iddata object of the given data by the 
following command: 
 
data= iddata(y,u,1) 
 
Then we should look at the raw data (See Figure #1). From it, we notice that there is 
some random walk in the output data.  

  
Fig # 1: The given input-output raw data Fig # 2: A section of the given data 
 
To further study the data, we zoom into the data (see Figure #2).  From it, we notice that 
there is some correlation between the input data and the output data. To know the exact 
correlation, we use the Matlab command ‘cra’ on the data (see Figure #3). But, before 
that we do have to remove the mean from the data(using dtrend command). 
 

 
Fig # 3 : The impulse response of the process 

from ‘cra’ 
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From Figure #3, we notice that the process has 3 unit time-delay. Furthermore, it looks 
like a first order process or an over-damped second order process. 
The autocorrelation function (see Figure #4) and partial autocorrelation function (see 
Figure #5) are given below. To obtain these graphs the following commands have been 
use: 
 
autocf(data.outputdata,20,0) 
pautocf(data.outputdata,20) 
 
 

  
Fig # 4: Autocorrelation of the output data Fig # 5: Partial-Autocorrelation of the 

output data 
 
All the points in the autocorrelation (see Figure #4) are outside the confidence band, 
which indicates that the data probably should be differenced.  On the other hand, there 
are two points (at 1 and 2) outside the confidence band. One is at one and the other one is 
below the confidence band. So, we can say that, the AR part of the model might be of 
second order. 
 
The general procedure, which I follow to fit these models, is to: 1) fit the plant model; 2) 
identify the noise model using the residuals produced from the subtracting the predicted 
outputs from the measure outputs (using “pe” command); 3) use the original data to re-
estimate all of the parameters in the full plant+noise model; and 4) validate the full model 
by checking a variety of plots. This procedure is repeated until I am satisfied with the fit. 
 
We will start with a 1st order model for the plant. A model can be identified by the 
following commands 
 
data=diff(data) %% for differencing the data (it will difference both input and output) 
nb=1; nc=0; nd=0; nf=1; nk=3;%% nc and nd are zero, because we are interested in plant model only 
model=bj(data,[nb nc nd nf nk]) 
reside(data,mode) 
The residual plot is given in Figure 6. 
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Figure #6, Residual plot of BJ model [1 0 0 1 3] 

Some points are outside the 95% confidence interval. Then we try to increase nf to 2. 
 
The residual is given in Figure 7. 

 
Figure #7, Residual plot of BJ model [1 0 0 2 3] 

 
Now residuals look fine. Using pe command we can calculate the prediction error. 
 
e=pe(data,model). 
 
Now we can identify a noise model for the prediction errors. The autocorrelation and 
partial auto correlation plot of the error are given in Figures 8 and 9. We can observe that 
both of them die off but none of them truncates. We attempt to fit an ARMA model with 
AR order of 1 and MA order of 1. 
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Figure #8: Autocorrelation function of 
residuals 

Figure #9: Partial autocorrelation function of 
residuals 

 
The noise model can be identified by the following command: 
 
noise=armax(e,[1 1]) 
 
In order to validate the noise model, we should calculate the residuals of this noise model 
and plot autocorrelation and partial autocorrelation graphs (Figures 10 & 11) 
 
e2=pe(noise,e) 
autocf(e2,20,0) 
pautocf(e2,20) 
 

  
Figure #10: Autocorrelation function of 
residuals of the noise model 

Figure #11: Partial autocorrelation function of 
residuals of the noise model 

 
Now we can combine the noise and plant models using the bj command of form [1 1 1 2 
3]. The resulting model will be 
 

 

! 

yt =
z"3

1"1.001z"1 + 0.2097z"2( )
ut +

1+0.9672z"1( )
1+ 0.9723z"1( ) 1" z"1( )

# t    (2.1) 
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or 

! 

yt =
z"3

1" 0.7025z"1( ) 1" 0.2985z"1( )
ut +

1+0.9672z"1( )
1+ 0.9723z"1( ) 1" z"1( )

# t  

 
Table 2.1: Parameters and their Standard deviation 

B1 Parameter 1 
 Standard Deviation 0.0016 

C1 Parameter 0.9672 
 Standard Deviation 0.0469 

D2 Parameter 0.9723 
 Standard Deviation 0.0432 

F1 Parameter -1.001 
 Standard Deviation 0.0015 

F2 Parameter 0.2097 
 Standard Deviation 0.0015 

 
It should be noted from Table #1 that none of the parameters have the zero in their σ2±  
range. So, we can say that, none of the above parameters is zero. Note that the actual 
model used to produce this data was: 

! 

yt =
z"3

1" 0.7z"1( ) 1" 0.3z"1( )
ut +

1" 0.9z"1( )
1-  0.85z"1( ) 1" z"1( )

# t  

 
Figure 12 compares the predicted output and the actual data. 

 
Fig # 12: Actual data and the data generated by the simulation 
 
 
 
 
 
(b) 
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As before, the first step in identification should be to look at the raw data (See Figure 
#13). From it, we notice that there is random walk in the output data. 
 

  
Fig # 13 : The given input-output raw data Fig # 14 : A section of the given data 
 
After detrending the data, we can use “cra” command to identify the time delay of the 
process. The result is given in Figure 15. 
 

 
Fig # 15 : The impulse response of the 

process from ‘cra’ 
 
From Figure #15, we notice that the process has a 10 unit time-delay. Furthermore, it 
looks like a first order process or a second order over-damped process. 
 
The autocorrelation function (see Figure #16) and partial autocorrelation function (see 
Figure #17) are given below. 
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Fig # 16 : Autocorrelation of the output data Fig # 17 : Partial-Autocorrelation of the 

output data 
All the points in the autocorrelation (see Figure #16) are outside the confidence band, 
which indicates that the data may need to be differenced. Figure 18 is the plot of the 
differenced data. 

 
Fig #18: plot of the differenced data 

Following the same procedure as outlined in part 2(a) we start from a plant model of 
order 1 (bj of form [1 0 0 1 10]). The resulting residual plot is given in Figure 19. 

 
Fig. #19: Residual of BJ model of form [1 0 0 1 10] 
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Since there are some points outside the 95% confidence interval, we try to increase the 
orders. We tried: [2 0 0 1 3]. The resulting residuals are:  

 
Fig. #20: residuals of BJ of form [2 0 0 1 10] 

 
 
By increasing the orders of denominator and numerator in plant model we will so no 
improvement. So we try to fit a noise model. First we should plot the autocorrelation and 
partial autocorrelation plots of the prediction error (Figures 21 & 22). 

  
Fig. # 21: Autocorrelation function of 
residuals 

Fig. # 22: Partial Autocorrelation function of 
residuals 

 
Based on Figures 21 & 22 we can see that the Autocorrelation function truncates at lag 4. 
So choose a moving average model of order 4. The residual plot of the noise model is 
given in Figure 23. We can observe that all of the points are inside the 95% confidence 
interval.  
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Fig. # 23: Residual of the noise model 

 
 
Finally we can combine the identified plant model and noise model by a BJ function of 
order [2 4 0 1 10]. The resulting model is: 
 
 

! 

yt =
0.385z"10 + 0.4136z"11

1" 0.2723z"1( )
ut +

1" .4712z"1 " 0.1888z"2 + 0.1324z"3 + 0.1258z"4( )
1" z"1( )

# t
 (2.2) 
 
Note that the zero in the plant transfer function probably comes from a partial period of 
delay. 

Table 2.2: Parameters and their Standard deviation 
B1 Parameter 0.385 

 Standard Deviation 0.011     
B2 Parameter 0.4136 

 Standard Deviation 0.0162 
C1 Parameter -0.4712     

 Standard Deviation 0.0221     
C2 Parameter -0.1888 

 Standard Deviation 0.0243 
C3 Parameter 0.1324     

 Standard Deviation 0.0243     
C4 Parameter 0.1258     

 Standard Deviation 0.0221     
F1 Parameter -0.2723 
 Standard Deviation 0.0173 

 
It should be noted that none of the parameters have the zero in their σ2± range. So, we 
can say that, none of the above parameters is likely to be zero. Note that the standard 
deviations of variable can be found by the following commands: 
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model.df  %% standard deviation of the parameters of polynomial F 
model.db %% standard deviation of the parameters of polynomial B 
model.dc %% standard deviation of the parameters of polynomial C 
model.dd %% standard deviation of the parameters of polynomial D 
 
 
 

 
Fig # 19 : A section of the actual data and the estimated 
data plotted together 

 
 
 
 
 
By looking at the inputs for cases a and b, we notice that the switching frequency of the 
input is equal to the sampling frequency, which is a little fast to get good estimates of 
slow dynamics. On the other hand the switching frequency for case b is half of the 
sampling frequency and is more appropriate than case a. 
 
 
 
 
 
 


