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CH E 572 
 

Assignment #4 
(Solution) 

 
Course Instructor: Dr. Fraser Forbes 

 
 

ANSWER TO QUESTION NO. 1 
 
 
(a) 
The first step would be to plot the data: 
 

  
Fig # 1 : Plot of flow rate (f) vs. Time (t) Fig # 2 : Plot of Temperature (f) vs. Time (t) 
 
It can be noted from the plot that the data is quite noisy. Estimating the dead time from a 
noisy data can be quite difficult. 
 
Remove the means from the input and output data and plot them on the same plot using 
the following commands 

f1=f-mean(f); 
T1=T-mean(T); 
figure; plot (t,T-mean(T)); hold; plot (t,f-mean(f)); 

 
The Matlab command ‘detrend’ can also be used instead of subtracting the mean this 
way. 
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Fig # 3 : Plot of ‘detrend’-ed flow rate (f) 
and Temperature (T) vs. Time (t) 

Fig # 4 : ‘cra’ of the given input-output 
data 

 
We can zoom into Fig #3 to get an estimate of the time delay (4 unit time). But, as a 
confirmation, we can also look at the results from Matlab command ‘cra’ (see Fig #4). 
‘cra’ clearly shows the delay to be 4 unit times. 
 
The questions says that the process is a “second-order + dead-time” model. So, the 
discrete time model will be: 
 432211 −−− ++= kkkk uayayay  … … … … (1.1) 

Please note, u  has a subscript of ( )4−k . 
 
Rewriting this Equation 1.1 in matrix form: 
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yk = yk"1 yk"2 uk"4[ ]
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 … … … … (1.2) 

We know that for a linear equation of the form, βXY = , the value of the parameters can 

be estimated by, 

! 

" = XT X( )#1 XTY( ) 
 
The X and Y matrix for our case will be as follows: 
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The commands used to generate the matrices and to estimate β  in Matlab are: 
X=[T1(1:end-1) [0; T1(1:end-2)] [ 0; 0; 0;  f1(1:end-4)] ]; 
Y=T1(2:end); 
B=inv(X'*X)*(X'*Y) 
 
This gives the following estimates of the parameters: 

⎥
⎥
⎥

⎦
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⎢
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⎣

⎡

=

0.1407-
0.3297-
1.2498

β  

 
Now, we can use the parameter to compare our estimates with the actual data. We 
calculate the estimated temperature, T̂  (in Matlab it is shows as Th) and the residual, r  
using Matlab command: 

 
Th=X*B; 
r= T1-Th; 

 
Then we plot the actual temperature with the estimated temperature (See Fig #5) and, the 
residual (see Fig #6) using the Matlab commands: 
 figure; plot (T) 

hold; plot (Th+mean(T), 'r-.') 
legend ('Temperature Actual (T)', 'Temperature 

Estimated (Th)') 
figure; plot (r) 

 

  
Fig # 5 : Plot of actual temperature, T  and 

estimated temperature, T̂  with time 
Fig # 6 : Plot of model residual, r  with 

time 
 
We now want to know how accurate our parameters are. We will have to calculate the 

variance of the residual,

! 

"#
2 = var y $ ˆ y ( ) =

1
N $ p

yi $ ˆ y i( )2

i=1

N

% , and then the covariance matrix 

of the parameters, 

! 

var ˆ " ( ) = XT X( )#1
$%

2  
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We use the following Matlab commands to do this, 
SigmaSquare = (1/(75-3))*(r’*r) 
VarB = (1/(75-3))*inv(X'*X)*(r’*r) 

 
Here, SigmaSquare stands for 2

εσ , and VarB stands for 

! 

var ˆ " ( ) . And,  the results are: 
 

! 

"#
2 = 0.2651 

 

! 

var ˆ " ( ) =
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Based on the two estimates (

! 

"#
2 and 

! 

var ˆ " ( ) ) given above, it appears that the parameters 
are all non-zero. 
 
 
 
(b) 
Based on Figure #5 it can be stated that the “second-order + time-delay” model gives 
quite a good fit to the given data. But, when we check the residual (Figure #6), we find 
that there are ‘spikes’ in the plots where the step changes are made. 
 
We can go back to Figure #1 to understand the underlying reason for this. In this 
reactor/cooler system, when the flow rate of coolant in increased, the temperature does 
not go down. The temperature increases at first and then it decreases. Similarly, when the 
coolant flow rate is reduced, the temperature goes down first and then starts to climb. 
 
This means the process has an inverse response. In other words, the process has a zero in 
its model. To get a better fit, we need to add a zero to our estimated model. We could use 
‘cra’ to see the dependence of residuals on inputs too. 
 
 
(c) 
Based on the idea explained in (b), we add a zero to our model: 
 532211 −−− ++= kkkk uayayay  … … … … (1.3) 
 
Rewriting this Equation 1.3 in matrix form: 

 

! 

yk = yk"1 yk"2 uk"4 uk"5[ ]
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 … … … (1.4) 

The X and Y matrix for our case will be as follows: 
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The estimated parameters are: 
 

[ ]T79.150.1295.015.1 −−=β  
Using the same kind of Matlab command as before we generate the following plots: 
 

  
Fig # 7 : Plot of actual temperature, T and 
estimated temperature, T̂  (from modified 

model) with time 

Fig # 8 : Plot of model residual, r  (from 
modified model) with time 

 
If we compare Figure #5 and Figure #7, it will be very difficult to see the improvement 
due to the modification of the model. But, comparison of Figure #6 and Figure #8 shows 
the true picture. In Figure #6 we had spikes in the residuals. But, in Figure #8 we see only 
white noise. This indicates that the new model was successful in capturing the total 
dynamics of the system. It can also be noted that the variance of the error has been 
reduced quite a bit too (see below). 

! 
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We could use ESS to determine whether the improvement in fit is better or not. 
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ANSWER TO QUESTION NO. 2 
 
 
(a) 
The metal slab will be heated by a combination of convective and radiative heat transfer.  
The equation representing it will be: 
 

! 

q =UA Tg "T( ) +# Ts
4 "T 4( )  … … … … … (2.1) 

 where the temperatures measurements are given in terms of some absolute temperature 
scale. 
 
(b) 
As a first step of model identification, we plot all the given parameters in a single plot 
(see figure #9).   
  

 
Fig # 9 : Plot of the given input-output parameters vs. time 

  
The Matlab commands used to generate this plot are: 

figure; plot (T, 'b-'); 
hold; plot (Tg, 'k-.') 
plot (Ts, 'r:'); plot (q, 'm-d') 
legend ('Surface Temp (T)', 'Bulk Gas Temp (T_g)', 

'Radiative Surface Temp (T_s)','Heat Flux/Unit Area (q)') 
  
  
We can write equation 2.1 in the following form: 

 

! 

q = Tg "T( ) Ts
4 "T 4( )[ ] U#

$ 

% 
& 
' 

( 
)  
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Now, that the equation has taken the form of βXY = , we can use our parameter 

estimation formula, 

! 

" = XT X( )#1 XTY( )  to estimate U  and σ . 
  
The Matlab commands for this calculation like before are: 
 X = [(Tg-T)  (Ts.^4 - T.^4)*10^-10] 

Y = q; 
B=inv(X'*X)*(X'*Y) 

Note that the second term has been multiplied by 1010−  to make the parameters of the 
same scale. 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

2504.0
2598.3

β  

  
The estimated U  and σ  are, 
 2598.3ˆ =U  and 910504.2ˆ −×=σ  
  

  
Fig # 10 : Plot of actual heat flux, q  and 

estimated heat flux, q̂  with time Fig # 11 : Plot of residual with time 

 
(c) 
  
Using the estimated parameter, we can get the estimated heat transfer rate, q̂  from the 
following equation: 

 

! 

ˆ q = Tg "T( ) Ts
4 "T 4( )[ ]

ˆ U 
ˆ # 

$ 

% 
& 
' 

( 
)  

Then, we calculate the covariance matrix of the parameters, 

! 

var ˆ " ( )  by: 

! 

var ˆ " ( ) = XT X( )#1
$%

2  

 where, 

! 

"#
2 =  variance of the residual = var y $ ˆ y ( ) =

1
N $ p

yi $ ˆ y i( )2

i=1

N

%  

In Matlab we use the following commands for it: 
qh=X*B; 
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r= Y-qh; 
SigmaSquare = (1/(20-2))*(r’*r) 
VarB = (1/(20-2))*inv(X'*X)*(r’*r) 

  

1241.4732 =εσ     and,   

! 

var ˆ " ( ) =
0.0676 -0.0399
-0.0399 0.0236
# 

$ 
% 

& 

' 
(  

  
(d) 
Based on the given data, the estimated values of the parameters will be: 
 

! 

ˆ U = 3.2598 ± 0.068 = 3.2598 ± 0.26  and 
 

! 

ˆ " = 0.2504 ± 0.024( ) #10$10 = 2.504 ±1.54( ) #10$9 
These values of the parameter estimates are quite far off of the design values. The 
convective heat transfer coefficient is approximately 5 standard deviations from the 
design values; whereas, the radiative coefficient is certainly within one standard deviation 
of the design value. (Note that it is only approximately 1.4 standard deviations from zero, 
which raises the question of its statistical significance). Finally, the covariance terms for 
the parameter estimates cannot be ignored in this case, since they are large in comparison 
to the variance terms (and the actual parameter estimate for the radiative term). 
  
  
 

 
ANSWER TO QUESTION NO. 3 

 
(a) 
Following the technique shown in Module 3, Question 6 on page 462 of “Process 
Dynamics Modeling, Analysis and Simulation”, by B. Wayne Bequette we can rearrange 

the given equation  (
2
1
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1 x
xkxr
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= ) in the following way: 
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21
 … … … … … … (3.1) 

 
Before going into the regression, we plot the data to get a physical understanding of its 
nature. 
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Fig # 12 : Plot of the given input-output parameters 

 
 
Based on equation 3.1, create our X and Y matrix now: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

n

n

nn x
x

xx

x
x

xx

x
x

xx

X

2

1

21

21

11

2111

20

10

2010

1
::

1

1

 and,  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nr

r

r

Y

1
:

1

1

1

0

 

We can generate the matrices with the following Matlab command and also estimate the 
parameters: 
 
 Y = 1./r; 

U = [1./(X(:,1).*X(:,2)) X(:,1)./X(:,2)]; 
B1=inv(U'*U)*(U'*Y) 
 

The estimated parameters will be: 

 ⎥
⎦

⎤
⎢
⎣

⎡
=
0.7949
0.7214

β  or k = 1.3862 and α = 1.1019. Note how poor the estimate is for k.  

 
To know the precision of our estimates, we will have to calculate the variance of the 

residual,

! 

"#
2 = var y $ ˆ y ( ) =

1
N $ p

yi $ ˆ y i( )2

i=1

N

% , and also the covariance matrix of the 

parameters, 

! 

var ˆ " ( ) = XT X( )#1
$%

2 . 
 
We use the following Matlab commands to do this, 
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Yh=U*B; 
resid= Y-Yh; 
SigmaSquare = (1/(27-2))*(resid’*resid) 
VarB = (1/(27-2))*inv(X'*X)*(resid’*resid) 

 
And, the results are: 
 

6.49872 =εσ  
 

! 

var ˆ " ( ) =
0.1292 -0.0362
-0.0362 0.0169
# 

$ 
% 

& 

' 
(  

 
Looking at the covariance matrix for the parameters, it appears that parameter estimates 
are quite inaccurate (i.e., compare the values in the matrix to the values of the parameter 
estimates). The accuracy of the reaction rate predictions from this model is also very 
poor. (Note the size of the prediction error variance compared to the size of 1/r). 
 
We plot the actual rate with the estimated rate in Figure #13 and the residual of the model 
in Figure #14. The explanation of the plots is given in (c).  

  
Fig # 13 : Plot of actual rate of reaction 

( r ) and estimated rate of reaction ( r̂ ) with 
time 

Fig # 14 : Plot of residual with time 

 
 
(b) 
In this section we have a nonlinear equation for the given model. We will have to use 
“lsqcurvefit” command from Matlab to get the parameter estimates and then we will use 
that to estimate reaction rate ( r̂ ) and the residual of the reaction rate (resid)  
 
The Matlab command used to for this is: 
 B2 = lsqcurvefit('kinetics',[ 0 0],X,r) 

rh=B2(1).*X(:,1).*X(:,2)./(1+B2(2)*X(:,1).^2); 
resid2 = r-rh; 

 
The estimated parameters are: 
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⎥
⎦

⎤
⎢
⎣

⎡
=
0.8363
3.6005

β  

 
The variance of the residual and the covariance matrix of the parameters were found to be 
as follows: 
 

0.82892 =εσ  
 
This means that the standard deviation on our reaction rate predictions is 9104.0±  
( 9104.00.8289 ==εσ ).  Given that the magnitude of the reaction rates, this seems 
reasonably accurate. 

 
 

  
Fig # 15 : Plot of actual rate of reaction 

( r ) and estimated rate of reaction ( r̂ ) from 
nonlinear regression with time 

Fig # 16 : Plot of residual from nonlinear 
regression with time 

 
 
 
 
(c) 
In the residuals of the linear model (see Figure #14) we notice a very large spike for 
sample number 22. The reason for this is that the reaction rate r for this sample is very 
small compared to the other reaction rates in the data and inverting a small number 
results in a very large number. The transformed model must then take this large spike into 
account, which “biases” the parameter estimates. On the other hand, the nonlinear model 
is showing very good fit.  This is evident from the almost perfect white noise residual 
(see Figure #16). 
 
The key things to note in the results are that: 1) the parameter estimates from the 
nonlinear least squares procedure are quite close to the real values (i.e, there is very little 
bias in the estimates); 2) the prediction error variance from the nonlinear least squares 
estimates is quite reasonable in comparison to the experimental values of the reaction 
rates; 3) the parameter estimates that resulted from transforming the model and using 
linear least squares were quite biased and particularly so for k; 4) the parameter 
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covariance matrix for the transformed model showed how poor the accuracy was for the 
parameter estimates; and 4) the prediction error variance for the transformed model was 
quite large in comparison to the values of 1/r. In short, the transformation and linear least 
squares approach failed miserably for this data. 
 
 
(d) 
To explain why the experiments were done in the way they were done, we need to plot 
the input variables one against the other (see Figure #17). 
 

 
Fig # 17 : Plot of x1 verses x2 

 
From the plot we can easily see that the experiments were done in a grid like fashion, 
with three different values chosen for each independent variable. In fact this is a full, 
three level experimental design, with repeated experiments. Three or higher level 
experimental designs like this are required to capture nonlinearity in the models. The 
more conventional two-level designs are best suited to fitting linear relationships.  
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APPENDIX A 
 
The Matlab code used in this assignment are as follows: 
 
 

Question # 1 
 
clear all; close all 
load che562_assn5q1_2002 
f1=f-mean(f); 
T1=T-mean(T); 
figure; plot (t,T-mean(T)); hold; plot (t,f-mean(f), 'r-.') 
legend ('Temperature (T)', 'Flow rate (f)') 
figure; cra ([T1 f1]); 
 
X=[ T1(1:end-1) [0; T1(1:end-2)] [ 0; 0; 0;  f1(1:end-4)] ]; 
Y=T1(2:76); 
B=inv(X'*X)*(X'*Y) 
 
Th=X*B; 
r= T1-Th; 
 
figure; plot (T) 
hold; plot (Th+mean(T), 'r-.') 
legend ('Temperature Actual (T)', 'Temperature Estimated (Th)') 
figure; plot (r) 
 
SigmaSquare = (1/(75-3))*(r’*r) 
VarB = (1/(75-3))*inv(X'*X)*(r’*r) 
 
X2=[ T1(1:end-1) [ 0; T1(1:end-2)] [ 0; 0; 0; f1(1:end-4)] [ 0; 0; 0; 0; f1(1:end-5)] ]; 
B2=inv(X2'*X2)*(X2'*Y) 
 
Th2=X2*B2; 
r2= T1-Th2; 
 
figure; plot (T) 
hold; plot (Th2+mean(T), 'r') 
figure; plot (r2) 
 
SigmaSquare2 = (1/(75-4))*(r2’*r2) 
VarB = (1/(75-4))*inv(X2'*X2)*(r2’*r2) 
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Question # 2 
 
 
clear all; close all 
load che562_assn5q2_2002 
 
figure; plot (T, 'b-'); 
hold; plot (Tg, 'k-.') 
plot (Ts, 'r:'); plot (q, 'm-d') 
legend ('Surface Temp (T)', 'Bulk Gas Temp (T_g)', 'Radiative Surface Temp 
(T_s)','Heat Flux/Unit Area (q)') 
 
X = [(Tg-T) (Ts.^4 - T.^4)*10^-10 
Y = q; 
B=inv(X'*X)*(X'*Y) 
 
qh=X*B; 
r= Y-qh; 
SigmaSquare = (1/(20-2))*(r’*r) 
VarB = (1/(20-2))*inv(X'*X)*(r’*r) 
 
figure; plot (q) 
hold; plot (qh, 'r') 
legend ('Actual Heat flux (q)', 'Estimated Heat flux (q_e_s_t)') 
figure; plot (r) 
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Question # 3 
 
 
 
clear all; close all 
load che562_assn5q3_2002 
 
figure; plot (X(:,1), 'b:') 
hold; plot (X(:,2), 'r-.'); plot (r, 'k-') 
legend ('Concentration of Reactant 1, (x_1)', 'Concentration of Reactant 2, (x_2)', 
'Reaction Rate (r)') 
 
Y = 1./r; 
U = [1./(X(:,1).*X(:,2))  X(:,1)./X(:,2)]; 
Y1=Y; 
B1=inv(U'*U)*(U'*Y1) 
 
Yh=U*B1; 
resid= Y1-Yh; 
SigmaSquare = (1/(27-2))* (resid’*resid) 
VarB = (1/(27-2))*inv(X'*X)*(resid’*resid) 
 
figure; plot (Y) 
hold; plot (Yh, 'r') 
legend ('Actual rate of reaction', 'Estimated rate of reaction') 
figure; plot (resid) 
 
B2=LSQCURVEFIT('kinetics',[ 0 0],X,r) 
rh=B2(1).*X(:,1).*X(:,2)./(1+B2(2)*X(:,1).^2); 
resid2 = r-rh; 
SigmaSquare2 = (1/(27-2))* (resid2’*resid2) 
 
figure; plot (r) 
hold; plot (rh, 'r-') 
legend ('Actual rate of reaction', 'Estimated rate of reaction') 
figure; plot (resid2) 
 
figure; plot (X(:,1), X(:,2), 'ro') 
xlabel ('x_1'); ylabel ('x_2'); 
 
 

--- X --- 


