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CH E 572 
 

Assignment #3 
(Solution) 

 
Course Instructor: Dr. Fraser Forbes 

 
 

SOLUTION OF QUESTION NO. 1 
 
 
 
The given system is: 
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The initial conditions for the reactor are 

! 

x = 0 2[ ]T . The normal operating input value 

for the reactor is 5.3=u and the process has an equilibrium point at 

! 

x = 2 5[ ]T . 
 
a) 
You can check if the given point is an equilibrium point by determining whether 

! 

x = 2 5[ ]T  is a solution to the steady-state problem (i.e., see if the right-hand side of the 
equations is zero for the given values of x and u).   
 
b) 
The Simulink model was setup as given below: 

 

 

Fig # 1 : Inside the DEE block Fig # 2 : The Simulink Block Diagram 
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In this case the relative tolerance (In the menu bar go to, Simulation>Simulation 
parameters>Relative tolerance) was set at 10-9. It must be set at a small value to get 
smooth curves like the ones given here. The simulation was run for 200 seconds. 
 
c) 
The time trace of the state variables for the three feed rate conditions are given below: 
 

(i) The normal operation, where 5.3=u , 
 

 
Fig # 3 : Plot of the States for 5.3=u  

 
 

(ii) A step change to the input 5.0=Δu  at time 0=t ,  
 

 
 Fig # 4 : Plot of the States for step change to the input 5.0=Δu  

 at time 0=t  
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(iii) A step change to the input 

! 

"u = #0.5 at time 0=t ,  
 

 
Fig # 5 : Plot of the States for step change to the input 5.0−=Δu  

at time 0=t  
 
 
d) 
The phase portrait of the state variables for the three feed rate conditions are given below: 
 

(i) The normal operation, where 5.3=u , 
 

 
Fig # 6 : Plot of the States for 5.3=u  
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(ii) A step change to the input 5.0=Δu  at time 0=t ,  
 

 
Fig # 7 : Plot of the States for step change to the input 5.0=Δu  

 at time 0=t  
 
 
 
(iii) A step change to the input 5.0−=Δu  at time 0=t ,  
 

 
Fig # 8 : Plot of the States for step change to the input 5.0−=Δu  

at time 0=t  
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It should be noted in the State Space equations (Equation (2)) given above that, the 
process input has no influence on the output. So, whatever input is given, it does not 
change the process output. The linearized model fails to represent the process output at 
any other point except the steady state point. 
 

 

 
Fig # 10 : The Eigenvalues for Different u’s (u=3.0 to 4.0) 

 
 
From Figure (10) it can be clearly noted that, the eigenvalues corresponding to 5.3=u  lie 
on the imaginary axis. This indicates that the process will be marginally stable at this 
point. If it moves to the right by a very small amount, that is if u decreases 



CH E 572 6 

infinitesimally, it will become unstable and spiral away from the equilibrium point. On 
the other hand, if u is increased by a small margin; the process will spiral into the 
equilibrium point at, [ ]T52=x . So, 5.3=u  is a bifurcation point for this process.  It 
will be wrong to linearize around this point, as this will give us erroneous results for 
minor changes in u (see: 

http://monet.physik.unibas.ch/~elmer/pendulum/bif.htm#attractor 
to learn more about bifurcations).  
 
Can you reconcile the behavior of the eigenvalues shown in Figure 10 and the behavior 
exhibited by the nonlinear system shown in Figures 6, 7 and 8? 
 
f,g,h,i) 
Applying Laplace on Equation (2) gives, 
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Since the system is not initially at steady state then
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x 0( ) " 0  and cannot be eliminated.
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We are interested in the poles of this transfer function to make deductions about the 

stability of the process. For that purpose, we replace the ⎥
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And, now substituting the first equation into the second gives, 
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or, 
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It is clearly visible from Equation (3) that, the denominator of both the equations will be 
72 +s . So, the poles of the transfer functions will be, is 7±= . Which indicates that the 

process will show marginally stable behavior for 5.3=u . The states of the process will 
keep on oscillating indefinitely.  
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Since matrix B in the state space form of the system is zero, any change in the input will 
not affect Y and input-output transfer function is zero. Therefore if the initial condition 
was zero (steady state) the output would stay at zero (steady state). In this problem the 
initial conditions are not zero that will affect the output. Since the linear system is based 
on deviation variables, the initial condition should be converted to deviation variable as 

well.
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The above equation is the trajectory of output variable in Laplace domain. By taking the 
inverse Laplace of it the trajectory of output can be calculated. 
As it is shown in this problem, it is difficult to include the effects of initial conditions in 

transfer function models. This would be much more difficult if we had 

! 

B "
0
0
# 
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( . Thus, 

transfer function models are not really appropriate for the type of simulation we would 
like to run. State-space models, however, incorporate initial conditions very naturally and 
since LTI state-space and the transfer functions that are derived from them are 
“equivalent” representations, then we can use our linearized state-space models to do the 
simulation. 
In order to set up the state-space block the initial condition should be set to 

! 

"2 "3[ ] . 
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Fig # 11 : The Simulink Block Diagram Used to Compare the TwoTtypes of Models 

 
 
 
 

 
 

Fig # 12: Comparison of linarized and 
nonlinear models 

Fig # 13: Plots of the States of the 
linearized Model 

 
 
The original nonlinear model and the linear state-space model are compared in Figure 12 
for the negative change in input. You should note that the sine waves have different 
amplitudes for the nominal value of u. Since in the linearized model the input u has no 
effect on the states or the outputs, changing u will not result in any different behavior 
than is shown in Figure 12. Thus the linearized model will not adequately represent the 
behavior of the nonlinear model, even locally. 
 
This is an example where linearization results in a poor model. 
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SOLUTION OF QUESTION NO. 2 
 
 
 
The given system is: 
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The process is at steady state at 

! 

x(0) = 0 0[ ]T . 
 
 
a) 
The Jacobian of the set of ODE given in Equations (1) is: 
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Evaluating the eigenvalues of the Jacobian gives, 30 i± . Since the real part of the 
eigenvalues is zero, the system is marginally stable. 
 
b) 
 
The eigenvalues of the system are at 30 i± . This indicates that the process will become 
oscillatory after any kind of excitation and the oscillation will persist indefinitely. So, for 
both step input and impulse input, the process will start to oscillate. The only difference 
will be that the center of oscillation will be different for the two inputs. For the impulse 
response the oscillations will be about x=[0 0]T; whereas, for the step response, the 
oscillations will be about some nonzero steady-state value. 
 
 
c) 
The system is linear and can be represented as a linear state-space model as following 
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The State Space model will be: 
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The simulink model is given in Figure 2. 

 

 

Fig # 1 : Inside the State-Space block Fig # 2 : The Simulink Block Diagram (for 
Step response) 
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Fig # 3 : Step Response Input and Output 

 
subplot (2,1,1); plot (t,u); xlabel ('Time'); ylabel ('Input'); 
subplot (2,1,2); plot (t,y); xlabel ('Time'); ylabel ('Output'); 
title ('Step response Input & Output'); 
 
 

 
Fig # 4 : Phase Portrait 

 
figure; plot (y(:,1),y(:,2)); 
title ('Phase portrait (y_1 Vs. y_2)'); xlabel ('y_1'); ylabel ('y_2'); 
 
d) 
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Applying Laplace on Equation (2) gives, 
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e) 
From Equation (2) we know that, 
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In order to descretize the system we need to calculate 
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Since the first matrix is a zero matrix, all the terms in the resultant matrix will be zero 
too. 
 
So, the discrete state space model will be: 
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So, the discrete state space model will be: 
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⎦
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So, the discrete state space model will be: 

 
( ) ( ) ( )

( ) ( ) ( )kukyky

kukxkx
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⎦
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⎣

⎡
+⎥
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⎢
⎣
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f ) 
 

For 
3
2π

=sT , ⎥
⎦

⎤
⎢
⎣

⎡
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01

 

 
0=−Φ Iλ  
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01
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=⎥
⎦

⎤
⎢
⎣

⎡
−⎥
⎦

⎤
⎢
⎣
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λ  

or, 0
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01

=⎥
⎦

⎤
⎢
⎣

⎡

−

−

λ

λ
 

or, 

! 

1" #( ) 1" #( ) = 0 
or, 1,1=λ  
 
This point is on the unit circle. 
 
 

For, 
3
π

=sT , ⎥
⎦
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"1" #( ) "1" #( ) = 0 
or, 1,1−−=λ  
 
This point is on the unit circle. 
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For, 
35

π
=sT , 

! 

" =
1.1484 #0.6787
0.6787 0.4697
$ 

% 
& 

' 

( 
)  

 

! 

"# $I = 0  
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! 

1.1484 "0.6787
0.6787 0.4697
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$ 
% 

& 

' 
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$ 
% 
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' 
( = 0  
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! 

1.1484 " # "0.6787
0.6787 0.4697 " #

$ 

% 
& 

' 

( 
) = 0  
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! 

1.1484 " #( ) 0.4697 " #( ) " 0.6787( ) "0.6787( ) = 0 

or, 04606.05394.06181.12 =++− λλ  
or, 016181.12 =+− λλ  
or, i5877.0809.0 ±=λ  
 

Since, ( ) ( ) 15877.0809.0 22 =+ , so this point is also on the unit circle. 
 
So, for all three cases, we will get marginally stable systems. 
 

 
Fig # 5 : Plot of Eigen Values on a Unit Circle 

 
 
g) 
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All three models are marginally stable. The first one (
3
2π

=sT sec.) has eigenvalues at 

1=λ , the integrator mode. The second model (
3
π

=sT sec) has eigenvalues at 1−=λ , 

the ringing mode. The last one (
35

π
=sT sec) is also on the unit circle. Thus all three 

models are marginally stable. 
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i ) 
The simulation results are given below: 

 

 
Fig # 6 : Discrete Transfer 
Function Model Based on 

Sampling time of 
3
2π

=sT sec. 

Fig # 7 : Output of Model Based on Sampling Time 

of 
3
2π

=sT sec. 

 
 

 

 
Fig # 8 : Discrete Transfer 
Function Model Based on 

Sampling time of 
3
π

=sT sec. 

Fig # 9 : Output of Model Based on Sampling Time 

of 
3
π

=sT sec. 
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Fig # 10 : Discrete Transfer 
Function Model Based on 

Sampling time of 
35

π
=sT sec. 

Fig # 11 : Output of Model Based on Sampling 

Time of 
35

π
=sT sec. 

 
 
 
 
j ) 
The thing to be noted here that, we must sample data at a rate that is more than double the 
frequency natural of the process. The results we have here are classic examples of what 

can happen if  1) the sample and process oscillation periods are identical (
3
2π

=sT sec), 

2) we sample twice per process oscillation (the Shannon frequency) (
3
π

=sT sec), and 3) 

we sample at a faster rate than the process oscillates (
35

π
=sT sec). 
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Fig # 12 : Actual Output and the Discrete Transfer Function 

Model Based on Sampling time of 
3
2π

=sT sec 

 
In Figure 12, the sampling and oscillation frequencies are identical. So, if it is assumed 
that the first sample was taken at the crest of a sine wave, the next one will be taken at the 
next crest. So, it will give a straight line. 
 

 
Fig # 13 : Actual Output and the Discrete Transfer Function 

Model Based on Sampling time of 
3
π

=sT sec 

 
In Fig. 13, we are sampling at Shannon frequency for this process (i.e. sampling rate is 
twice that of the oscillation frequency). Here we do capture the dynamics of the process, 
but in a wrong way (observe, we have a peak where we are supposed to have a trough). 
Thus the simulation seems “out of phase” with the process. Since, we are sampling only 
two points from every cycle of the sine wave, another sine wave of different amplitude 
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and phase can fit the data. That is exactly what has happened here. So, Shannon sampling 
is not enough for most of the cases. 

 
Fig # 14 : Actual Output and the Discrete Transfer Function 

Model Based on Sampling time of 
35

π
=sT sec 

 
In Fig 14, we are sampling at a much faster rate than the previous two cases. So, we are 
getting a better representation of the true scenario. But, we must also keep in mind that 
sampling at a faster rate does make the model more complex.  
 


