CHE 572

Assignment #3
(Solution)

Course Instructor: Dr. Fraser Forbes

SOLUTION OF QUESTION NO. 1

The given system is:

ﬁ=10_ 1 4x1x§
dt 1+ x,

1
dx, X, L)
—=ux|1-——
dt 1+ x,

The initial conditions for the reactor are x = [O 2] . The normal operating input value

for the reactor is u = 3.5 and the process has an equilibrium point at x = [2 S]T.

a)

You can check if the given point is an equilibrium point by determining whether
X = [2 S]T is a solution to the steady-state problem (i.e., see if the right-hand side of the
equations is zero for the given values of x and u).

b)
The Simulink model was setup as given below:
i/
Name: Differential Equationn Editor
# of inputs: [1
First order equations, f(x,u): =0
101 )-(4(17%(2)/(1+x(1)"2)) 0
u1P(1(1-+{2/(1+x(1)°2)) 2 Differential Equation
dx/dt= g |
Constant DEE1 To Wordspace1
Number of states = 2 Total =2 Tempz2
Output Equations, f(x.u): e
#(1) Clock To Workspace
¥= «(2)
Help I Rebuild | Undo | Bone I
Fig # 1 : Inside the DEE block Fig #2 : The Simulink Block Diagram
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In this case the relative tolerance (/n the menu bar go to, Simulation>Simulation
parameters>Relative tolerance) was set at 10”. It must be set at a small value to get
smooth curves like the ones given here. The simulation was run for 200 seconds.

)

The time trace of the state variables for the three feed rate conditions are given below:

(1) The normal operation, where u = 3.5,

Plot of the States (x‘ and xz) verses Time
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Fig # 3 : Plot of the States for u =3.5

(i1)) A step change to the input Au =0.5 attime 1 =0,

Plot of the States (xl and xz) verses Time

EN

States x
N
_—
=
H

. . . . . .
0 20 40 60 80 100 120 140 160 180 200
Time (sec.)

g

B M"
= IU\V
2. -
i
w 2 i
DD 2'0 dID EID BID 1DID 12'0 1 IIlD 1BID 18ID 200
Time (sec.)
Fig #4 : Plot of the States for step change to the input Au = 0.5
at time t =0
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(ii1)) A step change to the input Au =-0.5 attime ¢ =0,

Plot of the States (x, and x,) Verses Time
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Fig #5 : Plot of the States for step change to the input Au = -0.5
at time t =0

d)
The phase portrait of the state variables for the three feed rate conditions are given below:

(1) The normal operation, where u = 3.5,

Plot of the States X‘ verses State )(2
8 T T
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Fig # 6 : Plot of the States for u =3.5
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(i1)) A step change to the input Au =0.5 attime 1 =0,

Plot of the States X‘ verses State )(2
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Fig # 7 : Plot of the States for step change to the input Au = 0.5
at time t =0

(iii)) A step change to the input Au = —0.5 attime ¢ =0,

Plot of the States X‘ verses State )(2
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Fig #8 : Plot of the States for step change to the input Au = -0.5
at time t =0
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4x, 8x7x, 4x,
_1_1 >+ 2\2 _1 2
v 0 (1+a7) ¥ 14 -16
fxO wy X, 2u,x]x, ux, 156 -14
w|1- 2 P 2
1+ x, (1+x12) 1+ x, ,
0 0
B = V f = 1_ x2 = |: :|
- ot xl 1+-x1 " 0
dx [14 -1.6][x, 0
—= +| |u
da |56 -14]|x, 0 o)

1 0][x, 0
Y= +| |u

0 1f|x, 0
It should be noted in the State Space equations (Equation (2)) given above that, the
process input has no influence on the output. So, whatever input is given, it does not

change the process output. The linearized model fails to represent the process output at
any other point except the steady state point.

—3
0.1 -D.DB -D.DG -0.04 -0.02 DDQ DDA DDE DDB 0.1

Fig # 10 : The Eigenvalues for Different u’s (u=3.0 to 4.0)

From Figure (10) it can be clearly noted that, the eigenvalues corresponding to u = 3.5 lie
on the imaginary axis. This indicates that the process will be marginally stable at this
point. If it moves to the right by a very small amount, that is if u decreases
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infinitesimally, it will become unstable and spiral away from the equilibrium point. On
the other hand, if u is increased by a small margin; the process will spiral into the

equilibrium point at, x = [2 5]7. So, u=3.5 is a bifurcation point for this process. It

will be wrong to linearize around this point, as this will give us erroneous results for
minor changes in u (see:

http://monet.physik.unibas.ch/~elmer/pendulum/bif htm#attractor
to learn more about bifurcations).

Can you reconcile the behavior of the eigenvalues shown in Figure 10 and the behavior
exhibited by the nonlinear system shown in Figures 6, 7 and 8?

f,g,h,i)
Applying Laplace on Equation (2) gives,

sX(s) - x(0) = [;2 jﬂx(s) + mg(s)

1 0
)=y g+ o Juts
Since the system is not initially at steady state thenx(0) =0 and cannot be eliminated.

-0 T = | fts) 500
56 -14 0

1 0 0

=y [l

We are interested in the poles of this transfer function to make deductions about the

0 k
stability of the process. For that purpose, we replace the [Ol by [kll.
2
-1 -1
14 -16 k, 14 -1.6
I - U I - 0
< [5.6 —1.4]) [kj—(s)J' < [5.6 —1.4]) +(0)
10
Y(s)= X
)=y 156

And, now substituting the first equation into the second gives,

o-fl ot e el o ) o

X(s) -
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) s+14 -1.6 s+14 -1.6
1 0|l 2 2 k 1 0f| 2 2
_ sT+7  sT4+7 || ™ s +7  sT+7
o r0={lg 115 Sl V)T S o
sSS+7 S +7 sS+7 5 +7
([s+14 -1.6 s+14  -16
| s+7 S +7 ki sSS+7 S +7
or,  Ys)=11"5%" S ha|l |0 s so1aO) )
Ls*+7 s°+7 s+7 5 +7

It is clearly visible from Equation (3) that, the denominator of both the equations will be

s” +7. So, the poles of the transfer functions will be, s = ++/7i. Which indicates that the
process will show marginally stable behavior for u =3.5. The states of the process will
keep on oscillating indefinitely.

0
Finally if we replace [ ! ]by [0} , we will have:

s+14 -1.

s°+7
Since matrix B in the state space form of the system is zero, any change in the input will
not affect Y and input-output transfer function is zero. Therefore if the initial condition
was zero (steady state) the output would stay at zero (steady state). In this problem the
initial conditions are not zero that will affect the output. Since the linear system is based
on deviation variables, the initial condition should be converted to deviation variable as

0-2 -2
well. x(0) = i . Then
-25+2

| s#+7
I_/(s)— —3s5s-17

s +7

The above equation is the trajectory of output variable in Laplace domain. By taking the
inverse Laplace of it the trajectory of output can be calculated.
As it is shown in this problem, it is difficult to include the effects of initial conditions in

transfer function models. This would be much more difficult if we had B =

0 Th
ol us,

transfer function models are not really appropriate for the type of simulation we would
like to run. State-space models, however, incorporate initial conditions very naturally and
since LTI state-space and the transfer functions that are derived from them are
“equivalent” representations, then we can use our linearized state-space models to do the
simulation.

In order to set up the state-space block the initial condition should be set to [—2 —3].
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800 X untitled *
File Edit View Simulation Fomat Tools Help

Constant

ToWorkspace2

State-Space

ToWorkspace3

Constant1

N

(&) ) W Function Block Parameters: State-Space

State Space
State-space model:
dx/dt = Ax + Bu

y=Cx +Du
Parameters
A
[1.4 -1.6;5.6 -1.4]
B:
[0;0]
©
[10,01]
D:
[0;0]
Initial conditions:
[-2;-3)
Absolute tolerance:

auto

State Name: (e.g., 'position’)

oK " Cancel

 Help )

Fig # 11 : The Simulink Block Diagram Used to Compare the TwoTtypes of Models

|— Nonlinear Mode
6 : - T T T — Linearized Mode

Plot of the Linear Model's States X| verses State )(2

States )(2
bl o o ~
o ®m 1 N !
L L L L L L

=
L

351 q

25 L L L L L
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State X,

Fig # 12: Comparison of linarized and
nonlinear models

Fig # 13: Plots of the States of the
linearized Model

The original nonlinear model and the linear state-space model are compared in Figure 12
for the negative change in input. You should note that the sine waves have different
amplitudes for the nominal value of u. Since in the linearized model the input u has no
effect on the states or the outputs, changing u# will not result in any different behavior
than is shown in Figure 12. Thus the linearized model will not adequately represent the

behavior of the nonlinear model, even locally.

This is an example where linearization results in a poor model.
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SOLUTION OF QUESTION NO. 2

The given system is:
dx,
dt
dx
d—;=2x1—x2+u (1)
Y =X +Xx,

Vo =X~ X,

The process is at steady state at x(0) = [0 O]

X, —2x,

T

a)
The Jacobian of the set of ODE given in Equations (1) is:

1 -2
2 -1

Evaluating the eigenvalues of the Jacobian gives, 0+i+/3. Since the real part of the
eigenvalues is zero, the system is marginally stable.

Jac =

b)

The eigenvalues of the system are at 0 = i~/3. This indicates that the process will become
oscillatory after any kind of excitation and the oscillation will persist indefinitely. So, for
both step input and impulse input, the process will start to oscillate. The only difference
will be that the center of oscillation will be different for the two inputs. For the impulse
response the oscillations will be about x=[0 0]"; whereas, for the step response, the
oscillations will be about some nonzero steady-state value.

)

The system is linear and can be represented as a linear state-space model as following

1 -2
XU’“O_ 2 -1

0
Yo >Up B 1

A=V f

B = Vuf

CHE 572 9



D=

Vg

0
Xo U - 0

The State Space model will be:

w7l Sl

L

The simulink model is given in Figure 2.

™ O W Function Block Parameters: State-Space

State Space

State-space model:
dx/dt = Ax + Bu
y =Cx +Du

Parameters

A:
[1-2;2-1)

B:
[0;1]

_C:
[1001]
D:

[0;0]

Initial conditions:
0

Absolute tolerance:

auto

State Name: (e.g., 'position’)

( OK ) [ Cancel ) [ Help ) Apply

Fig # 1 : Inside the State-Space block
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0o \ untitled *

File Edit View Simulaion Format Tools Help

)

I X = Ax+Bu
y = Cx+Du v
Step State-5pace To Workspace

Seope.

Fig # 2 : The Simulink Block Diagram (for

Step response)
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Step response Input & Output

—_

% 05
0
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Time
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Fig # 3 : Step Response Input and Output

subplot (2,1,1); plot (t,u); xlabel ('Time'); ylabel ('Input');
subplot (2,1,2); plot (t,y); xlabel ('Time'); ylabel ('Output’);
title ("Step response Input & Output');

Phase portrait (y, Vs. y.)
0.4 T . r

02t

25 -2 -1.5 -1 0.5 0
¥4
Fig #4 : Phase Portrait

figure; plot (y(:,1),y(:,2));
title ('Phase portrait (y_1 Vs.y 2)"); xlabel ('y_1'); ylabel ('y_2");

d)
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Applying Laplace on Equation (2) gives,

oX(s)= [l —2])_c<s>+ mgm

2 -1 1
)=, e [g[ew
(z [; f])_z<s>=[‘f us)

)+ g}gm

CHE 572
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e)
From Equation (2) we know that,

de [l =-2][x, 0
—= +| |u
da |2 -1||x, 1
I 17[x, 0
= +| |u
S TR | R A I
In order to descretize the system we need to calculate CD(TS) =e

a b a b

‘ e’ e

can use ‘expm’ command of MATLAB. Note that e[‘ d} e ]
e’ e

AT To calculate @, one

#

F(T:‘%‘@” T3 e )T
(=3[0 s 23 [1-[)

Since the first matrix is a zero matrix, all the terms in the resultant matrix will be zero

too.

So, the discrete state space model will be:

sk +1)= [(1) (l)lx(k)+ [glu(m
0=, o)+ oo

For T, =% seconds, o
ofr- )" 5 -1](3)=[—01 ° _1
foegeosen( 1 2T
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. 1 2
1 -2 1 -1 2 1 (-1 2] |73 3
SO, = = =
2 -1 Ix(=1)-2x(=2)[-2 1| -1+4|-2 1| | 2 1
33
Again,
1 2 2
-2 0173 301 -2 013 |73
FTS=2—” =(®-1)4"B= 3317 = 312
V3 =2)(_2 M o -2flp g2
3 3 3 3

So, the discrete state space model will be:

4

sk +1)= [‘01 _01 (k) + g ulk)
3

SOR HEORNIO

4
For T, = —— seconds,

53
T 1 21 #
o7 -7 =eAm=e[2 Gl55) _[r14ss -0.6787
ENE] 0.6787  0.4697
7 . 1.1484 -0.6787] [1 OT\([1 =21\ [0
7 =—-|=(®-1)4"B= _
* 53 06787 04697 | |0 1{/||2 -1 1
= 10.1484  —0.67871([1 -21\"'10
or, N7r,=—7+=1=
53] 10.6787 -0.5303|||2 -1 1
P 2 1
. 0.1484  -0.6787]|3 0.1484><§—0.6787x§
or, N7, =——+=|= = 5 !
5v3) 106787 -0.5303[| 1] | 7072 _05303x L
3 3 3
1~ 0.1273
or, T|1,=""|=
5v3) | 0.2757
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So, the discrete state space model will be:

1.1484 -0.6787 -0.1273
x(k+1)= x(k)+ u(k)
0.6787  0.4697 0.2757

I -1 0

(k)= [l 1 ]y<k>+["]u<k>

f)
1 0
For TS:%’(D:[O 1]
[®-A1|=0

1 0 1 0
or, -A
o 1o 1

I-A4 0
or, =0
[0
or, (1-2)(1-21)=0
or, A=11

This point is on the unit circle.

NG 0 -1
[®-A1|=0
-1 0 1 0

or, -A =0
R
-1-4 0

or, =0
[ 0 —1—/1‘

or, ~1-2)(-1-4)=0

or, A=-1-1

This point is on the unit circle.
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fop 7 T g [1148% 06787
s TR T 706787 04697
|® - Al =0
1.1484 -0.6787] _[1 0
or, - =0
06787 04697 | "o 1
1.1484 -4 ~0.6787
o 06787 04697 - A~

or,  (1.1484 - 2)(0.4697 - A) - (0.6787)(-0.6787) =0

or, A2 —1.61814+0.5394 + 0.4606 = 0

or, A*—161814+1=0
or,  A=0.809=0.5877i

Since, /(0.809) +(0.5877)2 =1, so this point is also on the unit circle.

So, for all three cases, we will get marginally stable systems.

A
Imag.

A=10.809+/0.5877

Y
Fig #5 : Plot of Eigen Values on a Unit Circle

g)
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All three models are marginally stable. The first one (7, = 2—”sec.) has eigenvalues at

J3
A =1, the integrator mode. The second model (7, = %sec) has eigenvalues at A = -1,
the ringing mode. The last one (7, = Lsec) is also on the unit circle. Thus all three

5v3
models are marginally stable.

h)

We know, GH(z)=C((zI -®)'T + D

1 0 0 1 1] 0
T R L N e R

V3 0

So,

So,
1 11z 0 -1 0 - _4/3 0
GH(z) = ||, _1(_0 ZHo -1]) [—2/3 +M
1 11[z+1 o |\ -4/3| [0
= : _1_(_ 0 Z+1) [_2/3}4- 0]
Now,

1

— 0
z+1 O ~ (z+1)
0 z+1|

z+1 O
0 z+1
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1 0 ]
1 1]|(z+1) ~4/3] o
GH(z) =
2) [1 -1} 0 1 [-2/3+0
(z+1)
4
11730+ [0
= +
-1 2 0]
| 3(z+1)
[ -4 -2
|| 3(z+1)] {0
=l -4+2 *o
3(z+1)
)
_ (z+l)
= | -0.6667
z+1
For7 - 7 . - L1484 -0.6787] | [-01273) . 1 1] .4 o
53 0.6787  0.4697 0.2757 1 -1
So, )
(11 17([z 0] [1.1484 —-0.6787]\ [-0.1273] [0
GH(z)= - +
1 -1|||0 z| [0.6787 0.4697 02757 | |0
(11 17([z-1.1484  0.6787 1) [-0.1273] [0
= +
1 -1||| -0.6787 z-0.4697 02757 | |0
Now, )
z2-1.1484 06787 |\ 1 7-0.4697
—0.6787 z-04697|) ~ (z-1.1484)(z -0.4697)+0.4606 | 0.6787
(z-04697) 06787
(*-1.6181z+1) (2> -1.6181z+1)
0.6787 (z-1.1484)
2
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(z-0.4697) 0.6787
1|(2-16181z+1) (£ -1.6181z+1) [-0.1273] [0
0.6787 (z-1.1484) || 02757 } " [0]
(2 -1.6181z+1) (2% -1.6181z+1)

1 1 1]

(2 -1.6181z+1) [[1 1]

1 M 1]

(> -1.6181z+1)[[1 -1

1 M 1]

T (-16181z+1) |1 1]
1 [—(0.1273z +0.1273) +(0.2757z - 0.4030)

" (2 -161817+1)
1 (0.1484z -0.5303)

(> -1.6181z+1)

(0.14847 -0.5303)

(> -1.6181z+1)
(-0.4030z+0.2757)

CHE 572

(2 -1.6181z+1)

[—(0.12732+0.1273)
| (0.2757z -0.4030)

| -(0.1273z +0.1273) - (0.2757z - 0.4030)

(-0.4030z +0.2757)

1 -0.1273(z - 0.4697) - (0.6787)(0.275-7)
J(z -1.6181z+1) [( }

0.6787)(-0.1273) +(0.2757)(z - 1.1484)

[—(0.1273)(z -0.4697) - 0.1871
| -0.0864 +(0.2757)(z —1.1484)

[~(0.12737 -0.0598) - 0.1871
| -0.0864 +(0.2757z -0.3166)




i)

The simulation results are given below:

Step Discrete Scope

Transfer Fen

To Worspace

Step1 Discrete Scopel
Transfer Fen1

Clodc To Workspacel

Fig #6 : Discrete Transfer
Function Model Based on

2
Sampling time of T, = — sec.
\3

Step Discrete Scope

Transfer Fen

To Worspace

Step1 Discrete Scopel
Transfer Fen1

Clodc To Workspacel

Fig #8 : Discrete Transfer
Function Model Based on

4
Sampling time of T; = —=sec.
V3
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Fig # 7 : Output of Model Based on Sampling Time

of T =2—ﬂsec.

V3

Output y,
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Time

Fig #9 : Output of Model Based on Sampling Time
4

of Ty = ﬁsec.
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0.14842-0 5303
2218181241

Output y,
LS o
%

-0.40302+0.2757
22.1.8181z+1

Output y,

| 1 L 1
25 30 35 40 45 50

Time

Fig # 11 : Output of Model Based on Sampling

Fig # 10 : Discrete Transfer
Function Model Based on Time of T, = V4 sec.
53

4
Sampling time of T, = —=sec.
NG

i)

The thing to be noted here that, we must sample data at a rate that is more than double the

frequency natural of the process. The results we have here are classic examples of what
: I : Sy 2

can happen if 1) the sample and process oscillation periods are identical (7, = TZsec),

2) we sample twice per process oscillation (the Shannon frequency) (7, = %sec), and 3)

. 4
we sample at a faster rate than the process oscillates (7, = Tsec).
543
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Fig # 12 : Actual Output and the Discrete Transfer Function

Model Based on Sampling time of T, = 2T]::sec

In Figure 12, the sampling and oscillation frequencies are identical. So, if it is assumed
that the first sample was taken at the crest of a sine wave, the next one will be taken at the

next crest. So, it will give a straight line.

Output y,
EN o
I
"
———_“-—\
—

Output y,

! 1 L !
20 25 30 35 40 45 50
Time

Fig # 13 : Actual Output and the Discrete Transfer Function

Model Based on Sampling time of T, = %sec

In Fig. 13, we are sampling at Shannon frequency for this process (i.e. sampling rate is

twice that of the oscillation frequency).

Here we do capture the dynamics of the process,

but in a wrong way (observe, we have a peak where we are supposed to have a trough).
Thus the simulation seems “out of phase” with the process. Since, we are sampling only
two points from every cycle of the sine wave, another sine wave of different amplitude
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and phase can fit the data. That is exactly what has happened here. So, Shannon sampling

is not enough for most of the cases.

1

i] P | ) | kT

TV

2+ J A
0 5 10 15 2 2

Output y,

U
3B 40 45 &0

-3

Time

05

o

AR
Ity

0 5 10 15 20 25 30 35 40 45 50
Time

Output y,

o
n

-1

Fig # 14 : Actual Output and the Discrete Transfer Function

Model Based on Sampling time of T, = _sec
5v3

In Fig 14, we are sampling at a much faster rate than the previous two cases. So, we are
getting a better representation of the true scenario. But, we must also keep in mind that

sampling at a faster rate does make the model more complex.
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