
Abstract Predators and parasitoids are known to exploit
both plant volatiles and herbivore pheromones to locate
their insect prey. However, the interaction of these chem-
ical cues in prey location, and the implications of multi-
ple sources of chemical cues to predator feeding breadth
and tracking of herbivore counter adaptations, are less
well understood. We evaluated the responses of three
coleopteran predators to the pheromones and plant sig-
nals associated with two species of common bark beetle
prey. Thanasimus dubius, Platysoma cylindrica, and
Corticeus parallelus feed exclusively on the fauna with-
in trees colonized by bark beetles. The predominant bark
beetles in conifer forests of central Wisconsin are Ips
pini and Ips grandicollis. The aggregation pheromone of
Wisconsin I. pini contains ipsdienol, which occurs as (+)
and (-) enantiomers, and lanierone, and the pheromone
of I. grandicollis contains ipsenol. The major hosts of
these bark beetles are Pinus resinosa, Pinus banksiana,
and Pinus strobus, which contain monoterpenes as their
predominant phytochemical volatiles. Monoterpenes by
themselves did not attract predators. However, some
monoterpenes significantly affected predator attraction
to aggregation pheromones. Myrcene, and to a lesser ex-
tent 3-carene, reduced predator attraction. By contrast,
α-pinene consistently enhanced attraction by all three
predators to the pheromones of their Ips prey. However,
the predators’ responses were modulated by the stereo-
chemistry of α-pinene, and these responses differed
when confronted with the different pheromones of the
two prey species. (+)-α-Pinene synergized predator 
responses to the pheromone of I. pini, whereas (-)-α-
pinene synergized responses to the pheromone of I.
grandicollis. This pattern occurred for all three predator
species. Interactions between herbivore pheromones and
host plant compounds may provide an important source
of behavioral plasticity in predators, and facilitate their

ability to track several cryptic species that are distributed
across multiple plant species and that show semiochemi-
cal variation in space and time.
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Introduction

Entomophagous insects exploit a diverse array of chemi-
cal cues to locate their prey (Sabelis and Van de Baan
1983; Price 1986; Dicke 1988; Vet and Groenewold
1990; Dicke et al. 1990a; Turlings et al. 1990; English-
Loeb et al. 1993; Agrawal 1999). Many parasitoids, and
some predators, orient towards plant odors, including
specific chemical signals released following feeding by
herbivores (Turlings et al. 1990, 1998; Dicke et al. 1993;
Rose et al. 1998; Thaler 1999). Similarly, the frass or
pheromones produced by herbivorous insects can pro-
vide predators and parasitoids with chemical signals 
that orient them to suitable habitats and hosts. Despite
the recognized importance of both plant volatiles and 
insect pheromones in prey finding behaviors by en-
tomophagous insects, interactions between these sources
have been studied less, particularly among predators at-
tacking several prey species (Price et al. 1980; Vinson
1981; Barbosa and Saunders 1985). Some exceptions in-
clude the predatory mite, Phytoseiulus persimilis Athias-
Henriot, which uses both volatiles from plants infested
with the spider mite, Tetranychus ureticae Koch, and
their pheromones (Sabelis et al. 1984; Dicke 1986), and
some natural enemies of bark beetles that use conifer
monoterpenes to modulate responses to aggregation
pheromones (Miller and Borden 1990; Erbilgin and
Raffa, 2000a).

Bark beetles (Coleoptera: Scolytidae) are cryptic, en-
dophytic insects that develop within the subcortical tis-
sues of trees, in which they spend all but a few days of
their life cycles. Once they have selected potential hosts,
adult bark beetles release aggregation pheromones that
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attract both males and females (Wood 1982; Miller 1990;
Miller et al. 1990; Seybold 1992; Vanderwel 1994).
These aggregation pheromones may be oxidized deriva-
tives of, or be synergized by, host conifer monoterpenes
(Wood 1982). Within scolytid species, there is often geo-
graphic variation in the stereochemistry of pheromones
(Lanier et al. 1980; Raffa and Klepzig 1989; Berisford et
al. 1990; Seybold et al. 1992, 1995; Miller et al. 1997).

Coleopteran predators are important mortality agents
of bark beetles and can be closely linked to their popula-
tion dynamics (Reeve 1997; Turchin et al. 1999). Evi-
dence for their impact comes from exclusion experi-
ments, laboratory assays, life tables, and time-series ana-
lyses of field populations (Miller 1986; Riley and Goyer
1986; Turchin et al. 1991; Weslien and Regnander 1992;
Shroeder and Weslien 1994; Weslien 1994; Schroeder
1996; Reeve 1997; Turchin et al. 1999). Predators exploit
both host tree odors and bark beetle pheromones as kai-
romones (Wood et al. 1968; Stephen and Dahlsten 1976;
Mizell et al. 1984; Grégoire et al. 1992). Most, if not all,
coleopteran predators attack several species of scolytids,
and thus may exploit a broad set of chemical signals. The
interactions between host volatiles and pheromones, and
the role of host plants in the behavioral plasticity of at-
traction to prey pheromones, are not well understood.

Raffa and Klepzig (1989) proposed that the chiral
specificity of bark beetle pheromones may evolve par-
tially as a response to predator recognition. Subsequent
work demonstrated that disparities between the relative
preferences of predators versus prey for specific ste-
reoisomers and additional components may facilitate es-
cape from predators, yet retain intraspecific functionality
(Raffa and Dahlsten 1995; Aukema et al. 2000a,b). It is
not known how the stereochemistry of host plant com-
pounds affects these predator-prey relationships. Howev-
er, the attractiveness of tunneling Ips pini (Say) to flying
conspecifics and their insect predators varies with host
tree species (Erbilgin and Raffa 2000a).

The pine engraver, I. pini, colonizes Pinus trees
throughout much of North America, and is the most
common bark beetle species associated with conifers in
the Great Lakes region (Schenk and Benjamin 1969;
Miller et al. 1989; Klepzig et al. 1991). During establish-
ment within a suitable tree, adult males emit ipsdienol
(2-methyl-6-methylene-2,7-octadien-4-ol) and lanierone
(2-hydroxy-4,4,6-trimethyl-2,5-cyclohexadien-1-one)
(Birch et al. 1980; Lanier et al. 1980; Seybold et al.
1992, 1995; Miller et al. 1996). In Wisconsin, Ips
grandicollis (Eichhoff) is a frequent associate and com-
petitor of I. pini (Klepzig et al. 1991; Raffa 1991; Wallin
and Raffa 2001). Male I. grandicollis produce the aggre-
gation pheromone ipsenol (Vité et al. 1972; Werner
1972). A third species, Ips perroti Swaine, is sometimes
present and responds to the pheromone of I. pini, but oc-
curs in very low numbers. For example in a 3-year study
of five sites in Wisconsin, only 1.5% of over 160,000 Ips
were I. perroti, and in a 2-year study of six sites, only
0.6% of over 26,000 Ips were I. perroti (Hobson and
Raffa 1996; Aukema 1999; Aukema et al. 2000a, b).

The flight periods of I. pini and I. grandicollis coin-
cide in the Great Lakes region (Raffa 1991), and both
species colonize Pinus resinosa (Aiton), Pinus banksi-
ana Lamb. and Pinus strobus L. (Drooz 1985). I. pini,
however, is more commonly associated with P. resinosa,
whereas I. grandicollis is more commonly associated
with P. banksiana (Klepzig et al. 1991; Wallin and Raffa
2001). Erbilgin and Raffa (2000b) found that some host
monoterpenes inhibited the flight response of I. pini to
ipsdienol plus lanierone. In contrast, (-)-α-pinene en-
hanced the attraction of I. grandicollis to its pheromone,
ipsenol. Similar to I. pini, I. grandicollis showed reduced
attraction to ipsenol in the presence of most other host
monoterpenes.

Thanasimus dubius (F.) (Coleoptera: Cleridae) and
Platysoma cylindrica (Paykull) (Histeridae) are the most
abundant predators of I. pini and I. grandicollis in the
Great Lakes region (Raffa and Klepzig 1989; Raffa
1991; Raffa and Dahlsten 1995). Adults and larvae of T.
dubius feed on adult and larval bark beetles, respectively,
and P. cylindrica are egg predators. Corticeus parallelus
Melsh (Tenebrionidae), and Tenebroides collaris (Sturm)
(Trogositidae) are also predators of Ips spp., but their
biologies are less well known (Raffa 1991; Aukema et
al. 2000a). Each of these predators is attracted to both
ipsdienol and ipsenol, and is attracted to I. pini boring in
different tree species in the same order as their prey
(Erbilgin and Raffa 2000a). Our objective in this study
was to evaluate how host plant compounds influence the
responses of these predators to sources of pheromones
from two prey species.

Materials and methods

Study sites, treatments, and experimental design

The field sites consisted of three P. resinosa forests in Wisconsin,
USA. They are located near Spring Green, Sauk Co. (latitude
N43° 11.78′, longitude W90° 11.15′), Lake Delton, Juneau Co.
(latitude N43° 58.28′, longitude W90° 07.35′), and Necedah, 
Jackson Co. (latitude N44° 22.24′, longitude W90° 43.80′). We
conducted experiments in 1998 and 1999, during the major flight
period of I. pini and I. grandicollis. Synthetic lures and blank con-
trols were assigned to multiple funnel traps (Lindgren 1983) in a
randomized block design, as described in Erbilgin and Raffa
(2000b). Traps were spaced a minimum of 10 m apart within
blocks, and blocks were separated by 50–60 m. Unbaited control
traps were used in all experiments. We sampled treatments every
4 days, and re-randomized treatments at each collection to mini-
mize potential spurious effects due to trap positions within a block
or block locations within a site.

We tested the major monoterpenes present in the phloem tissue
of P. resinosa, P. banksiana, and P. strobus in Wisconsin (Bridgen
et al. 1979; Klepzig et al. 1995,1996; Raffa and Smalley 1995;
Wallin and Raffa 1999), and the pheromones of I. pini and
I. grandicollis. The test chemicals were from Phero Tech, (Delta,
British Columbia). The monoterpenes were: racemic-α-pinene,
[chemical purity (cp)=99%, enatiomeric purity (ep)=95%)] (-)-β-
pinene (cp =99%, ep =97.5%), myrcene (cp =97%), 3-carene (cp
=97%). The pheromones were: racemic ipsdienol (98%), lanierone
(98%), and racemic ipsenol (98%). Monoterpenes and phero-
mones were released from closed polyethylene micro-centrifuge
tubes (15 ml), and from 20 mg bubblecaps, respectively. These
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synthetic lures maintain constant emission rates for approximately
3 months. We chose release rates of monoterpenes and phero-
mones to emulate release rates associated with pine trees follow-
ing entry by bark beetles (Browne et al. 1979; Ikeda et al. 1980;
Lanier et al. 1980; Byers et al. 1985; Strömvall and Petersson
1991; Teale et al. 1991; Erbilgin and Raffa 2000b). The release
rates of (+)-α-pinene, (-)-α-pinene, (-)-β-pinene, myrcene, and 
3-carene were 227.9 mg/day, 339 mg/day, 211.2 mg/day,
335.6 mg/day, 457.2 mg/day at 27°C, respectively. The phero-
mones ipsdienol, lanierone, and ipsenol were released at
110 µg/day, 100 µg/day, and 110 µg/day at 25°C, respectively.

Field assays

We tested a total of 24 combinations of monoterpenes and phero-
mones in nine experiments over 2 years. Simultaneous comparison
of this many choices could violate the underlying assumption of
independence that is implicit in behavioral choice tests (Peterson
and Renaud 1989; Lockwood 1998), create spurious spatial effects
in the field, and potentially mask the activity of weakly attractive
compounds by drawing insects to highly attractive compounds.
Therefore, we approached the problem sequentially, by first test-
ing monoterpenes alone to determine whether they are attractive
(or repellent), and then proceeding to combinations of monoter-
pene with pheromone (Fig. 1). We included both negative controls
(blanks) to provide a baseline arrival rate to traps containing no at-
tractant, and positive controls (pheromones) to validate that ade-
quate populations were available to generate a statistically signifi-
cant effect when an attractant was present. In the latter experi-
ments, a treatment of monoterpene alone could be excluded where
prior assays showed it has no effect. Because of the theoretical
possibility that weak levels of attraction could be masked by high-
ly attractive monoterpenes or by the positive controls, we (1) con-
ducted two sets of assays, in which all monoterpenes were tested
simultaneously, and again in which the same monoterpenes were
tested in smaller groups, and (2) conducted separate experiments
in which we deployed positive checks in two experimental fash-
ions: true positive controls within the treatment blocks (to validate
that local populations are high enough to respond to an attractant
under these conditions), and stand monitoring controls outside
treatment blocks (to assure that adequate populations are present
within the stand, but mitigate the risk of directing populations
away from weakly attractive compounds).

The questions we addressed are listed below. A flow diagram
of the overall series of experiments, and the decision tree by
which our results guided subsequent experimental design, are
shown in Fig. 1.

1. Are the major predators of bark beetles attracted 
to monoterpenes present in phloem of host pines 
in the Great Lakes region?

A. Experiment 1.1. Simultaneous evaluation of the predominant
monoterpenes in Great Lakes region pine phloem

The major monoterpene constituents in the phloem of P. resinosa, P.
banksiana, and P. strobes were simultaneously presented to field pop-
ulations of flying insects. The treatments were: (1) myrcene, (2) (+)-
α-pinene, (3) (-)-α-pinene, (4) (-)-β-pinene, (5) ∆-3-carene, (6) ipsdi-
enol plus lanierone, and (7) blank control. Both negative and positive
controls were positioned within treatment blocks. There were 14 rep-
licates. This experiment was conducted from 6 to 14 May 1998.

B. Experiment 1.2. Simultaneous evaluations of small groups 
of monoterpenes present in Great Lakes region pine phloem

In order to verify the lack of attraction by predators to plant mono-
terpenes we observed in experiment 1.1 (see Results), we conduct-
ed a more sensitive assay, in which the same monoterpenes were
tested in two smaller groups, and we deployed pheromone-baited

monitoring traps within the site but outside the treatment blocks
(Fig. 1). In the first assay, we included monoterpenes that display
substantial variation in enantiomeric composition in midwestern
pines. There were 20 replicates of: (1) (+)-α-pinene, (2) (-)-α-
pinene, and (3) blank control. In the second assay, we included
monoterpenes that do not display substantial variation in enanti-
omeric composition in midwestern pines. There were 20 replicates
of: (1) (-)-β-pinene, (2) 3-carene, (3) myrcene, and (4) blank con-
trol. In addition, 20 replicates of pheromone-baited and unbaited
traps were located within the stand but outside of the blocks: (1)
ipsdienol with lanierone, (2) ipsenol, and (3) blank control. These
experiments were conducted from 1 to 21 May 1999.

2. Are predator responses to bark beetle pheromones mediated 
by host plant monoterpenes?

A. Experiment 2.1. Effects of host plant monoterpenes 
on predator responses to ipsdienol

This experiment tested whether the responses of insect predators to
the primary pheromone component of I. pini are affected by the pres-
ence of host plant monoterpenes. There were 35 replicates of each
treatment: (1) (+)-α-pinene with ipsdienol, (2) (-)-α-pinene with
ipsdienol, (3) (-)-β-pinene with ipsdienol, (4) myrcene with ipsdi-
enol, (5) 3-carene with ipsdienol, (6) ipsdienol, and (7) blank control.
This experiment was conducted from 30 May to 19 June 1998.

Fig. 1 Flow diagram of the sequence and decision tree of experi-
mental procedures. Questions are illustrated in boxes with rounded
bottoms, and the experiment (s) to address them are shown in the
boxes with angular edges. The answers to each question (yes or
no) determined by each experiment lead to the next question. See
text for details
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B. Experiment 2.2. Effects of host monoterpenes 
on predator response to ipsdienol plus lanierone

This experiment tested whether the responses of insect predators
to the complete pheromone (ipsdienol plus lanierone) of I. pini are
affected by the presence of monoterpenes. There were 28 repli-
cates of seven treatments: (1) (+)-α-pinene with ipsdienol plus
lanierone, (2) (-)-α-pinene with ipsdienol plus lanierone, (3) (-)-β-
pinene with ipsdienol plus lanierone, (4) myrcene with ipsdienol
plus lanierone, (5) 3-carene with ipsdienol plus lanierone, (6)
ipsdienol plus lanierone, and (7) blank control. This experiment
was conducted from 21 June to 7 July 1998.

C. Experiment 2.3. Effects of host plant monoterpenes 
on predator response to ipsenol

This experiment tested whether the responses of insect predators
to the pheromone of I. grandicollis are affected by the presence of
monoterpenes. There were 20 replicates of seven treatments: (1)
(+)-α-pinene with ipsenol, (2) (-)-α-pinene with ipsenol, (3) (-)-β-
pinene with ipsenol, (4) myrcene with ipsenol, (5) 3-carene with
ipsenol, (6) ipsenol, and (7) blank control. This experiment was
conducted from 5 June to 25 June 1999.

D. Experiment 2.4. Effects of (-)-α-pinene on predator 
response to ipsenol

Based on earlier work in which we observed attraction by I. grandi-
collis to (-)-α-pinene (Erbilgin and Raffa 2000b), we conducted a
separate test of this monoterpene alone and with ipsenol, in addition
to the more complete design described in experiment 2.3. This ex-
periment consisted of 14 replicates of four treatments: (1) ipsenol,
(2) (-)-α-pinene, and (3) ipsenol with (-)-α-pinene, and (4) blank
control. This experiment was conducted from 7 to 15 July 1998.

3. Does host plant mediation of predator attraction 
to the pheromones of different prey species vary with monoterpene
enantiomeric composition?

Based on results from the above experiments (see Results), we
conducted two assays to compare how different stereoisomers of
α-pinene interact with the pheromones of I. pini or I. grandicollis
to affect responses by predators that can exploit both species. In
the first assay, we included both enantiomers of α-pinene in the
presence or absence of ipsenol. There were 20 replicates of six
treatments (1) (+)-α-pinene, (2) (+)-α-pinene with ipsenol, (3) ips-
enol, (4) (-)-α-pinene, (5) (-)-α-pinene with ipsenol, (6) blank
control. In the second assay, there were also 20 replicates of 6
treatments: (1) (+)-α-pinene, (2) (+)-α-pinene with ipsdienol plus
lanierone, (3) ipsdienol plus lanierone, (4) (-)-α-pinene, (5) (-)-α-
pinene with ipsdienol plus lanierone, and (6) blank control. Both
experiments were conducted from 1 to 21 June 1999.

Statistical analyses

Data were analyzed using analysis of variance. Each variable was
tested to satisfy assumptions of normality and homogeneity of
variance (Zar 1996) by graphical analysis of residuals (Neter et al.
1983). If the variance was non-homogeneous, variables were
transformed to log10(x+1), which provided distributions that satis-
fied these assumptions in all cases. Dependent variables were ana-
lyzed in a split-plot design, with randomized block design treating
sites as blocks (PROC MIXED; SAS 1996). Covariance parameter
estimates (REML) for block and block × treatment were calculat-
ed for each variable. If the covariance parameter of a block was
equal to ‘0’, then the block term was eliminated from the random
statement in the model. If it was different from 0, the ‘–2 Residual
Log Likelihood’ values of the model with and without random
block were compared by chi-square analysis (df=1) at the P<0.05
level. If chi-square analysis revealed any significance, then block

was included in the random statement. An additional blocking fac-
tor for collection time was included for all experiments with over
2 collection periods. A protected LSD test (P<0.05) was used for
multiple comparison of means.

Because the numbers of insects were not distributed normally,
a Poisson distribution was used where appropriate. These data
were analyzed using the GLIMMIX module within SAS. We re-
placed 0s by a small constant, as suggested in Wolfinger and
O’Connell (1993): The statistical inference varied very little when
we varied this constant from 0.001 to 0.02, so we used 0.01.

Results

We captured a total of 3,383 predators. As in previous
work with this system (Raffa and Klepzig 1989; Raffa
1991; Raffa and Dahlsten 1995; Miller et al. 1997; 
Aukema et al. 2000a, b; Erbilgin and Raffa 2000a, b),
the most abundant predators in our traps were T. dubius
(n=1,314), P. cylindrica (n =1,256), and C. parallelus
(n=210). Together these species accounted for 82.2% of
all predators. Other predators captured in lower numbers
were Platysoma parallelum (Say) (Coleoptera: Hister-
idae) (n=180), Tenebroides sp. (Coleoptera: Tenebrion-
idae) (n=128), Thanasimus undatulus (Say) (Coleoptera:
Cleridae) (n =124), E. nigrifrons (Say) (Coleoptera:
Cleridae) (n=64), Grynocharis quadrilineata (Mels-
heimer) (n=37), Zenodosus sp. (n=37), Enoclerus 
nigripes (Say) (Coleoptera: Cleridae) (n=33). Because of
small sample sizes, these less abundant species were ex-
cluded from further analysis.

1. Are the major predators of bark beetles attracted 
to monoterpenes present in phloem of host pines 
in the Great Lakes region?

Predators were not attracted to host pine monoterpenes.
In experiment 1.1, they were attracted only to traps bait-
ed with the pheromone of I. pini, ipsdienol plus lanier-
one, relative to unbaited controls (T. dubius: df=13,
F=5.773, P<0.0001; P. cylindrica: df=13, F=3.409,
P<0.0044). Experiment 1.2 supported these results. No
predators were caught at any of the monoterpene treat-
ments. However, predators were significantly attracted 
to monitor traps baited with the pheromones of I. pini
(ipsdienol plus lanierone), and I. grandicollis (ipsenol)
relative to blank controls that were likewise positioned
outside of the treatment blocks (T. dubius: df=19,
F=4.36; P<0.02; P. cylindrica: df=19, F=3.147,
P<0.041). T. dubius and P. cylindrica showed no differ-
ence in their preference for the pheromones of I. pini
versus I. grandicollis.

2. Are predator responses to bark beetle pheromones 
mediated by host plant monoterpenes?

Several monoterpenes had significant effects on the at-
traction of predators to bark beetle pheromones. These
effects varied with predator species, pheromone, mono-
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terpene, and pheromone-monoterpene combination. Tha-
nasimus dubius were significantly more attracted to traps
baited with (+)-α-pinene plus ipsdienol than traps baited
with ipsdienol alone, or ipsdienol combined with other
monoterpenes (Fig. 2A) (except perhaps 3-carene). At-
traction of T. dubius to ipsdienol was also enhanced by
the release of (-)-α-pinene and 3-carene. The presence of
myrcene significantly reduced attraction of T. dubius to
ipsdienol. Attraction of P. cylindrica to ipsdienol was not
affected by the release of these monoterpenes. Attraction
of C. parallelus was enhanced by 5.5× when ipsdienol
was combined with (+)-α-pinene (Fig. 2A). No other
monoterpene had a statistically significant effect on the
attraction of C. parallelus to ipsdienol.

The effects of plant monoterpenes on the attraction of
bark beetle predators to the complete I. pini pheromone,
ipsdienol plus lanierone, were generally similar to their
effects on attraction to ipsdienol alone (Fig. 2B). Syner-
gism of the attraction by T. dubius to ipsdienol plus lan-
ierone was again strongest for (+)-α-pinene and 3-care-
ne. Also, T. dubius were significantly more attracted to
ipsdienol plus lanierone when they were combined with
(-)-α-pinene than to ipsdienol plus lanierone alone. Ad-
dition of myrcene to ipsdienol plus lanierone reduced the
numbers of T. dubius captured to the level of the unbait-
ed control. (+)-α-Pinene also increased the attraction of
P. cylindrica to ipsdienol plus lanierone. Myrcene inhib-
ited attraction of P. cylindrica to ipsdienol plus lanierone
by 27% (Fig. 2B). Synergism of responses by C. paral-
lelus to beetle pheromones was again evident when 
(+)-α-pinene was released along with ipsdienol plus lan-
ierone. Other host compounds did not significantly affect
attraction to ipsdienol plus lanierone (Fig. 2B).

The effects of host plant monoterpenes on the same
predator species were different when they were combined
with the pheromone of I. grandicollis. (-)-α-Pinene in-
creased the attraction of T. dubius, P. cylindrica, and C.
parallelus to ipsenol (Fig. 3). The attraction of T. dubius
to ipsenol was not affected by any other monoterpene.
Myrcene plus ipsdienol attracted the fewest T. dubius of
any chemical treatment, and was the only treatment that
did not differ from the unbaited controls. As with T. dub-
ius, (-)-α-pinene was the most potent synergist of attrac-
tion to ipsenol by P. cylindrica (Fig. 3). (-)-β-Pinene also
enhanced attraction to ipsenol by P. cylindrica. All of the
remaining treatments attracted significantly higher num-
bers of P. cylindrica than did unbaited controls, but there
was no variation among baited treatments. A similar pat-
tern was observed for C. parallelus. Attraction to the
combination of (-)-α-pinene and ipsenol was significantly
higher than to the other treatments. Attraction of C. par-
allelus to the other combinations of ipsenol-monoterpene
was not different from controls.

Fig. 2 Responses of bark beetle predators to pine monoterpenes
alone or combined with bark beetle pheromones (A) ipsdienol:
T. dubius: F6,35=9.751, P<0.0001; P. cylindrica: F6,35=3.229,
P<0.0046; C. parallelus F6,35=11.73, P<0.0001, (B) ipsdienol plus
lanierone: T. dubius: F6,28=14.22, P<0.0001; P. cylindrica:

F6,28=5.133, P<0.0046; C. parallelus F6,28=6.305, P<0.0001. Bars
with the same letter within each species are not significantly dif-
ferent, PROX-MIX and Tukey’s Protected LSD test on data trans-
formed by y′= log (x +1), P<0.05
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When the potential synergism of ipsenol by (-)-α-
pinene was tested in the absence of other monoterpenes,
the results were consistent with those of previous experi-
ments. The attraction of T. dubius and P. cylindrica to
ipsenol was synergized by (-)-α-pinene (Fig. 4). As be-
fore, there was no attraction to (-)-α-pinene alone, and
predators were significantly attracted to ipsenol.

3. Does host plant mediation of predator attraction 
to the pheromones of different prey species vary with 
monoterpene stereochemistry?

The stereochemistry of α-pinene affected predator re-
sponses to the pheromones of different prey species. The
response of T. dubius to ipsenol was strongly synergized
by the presence of (-)-α-pinene, but only weakly by 
(+)-α-pinene (Fig. 5A). This pattern was the same for all
three species. The attraction of both P. cylindrica and C.
parallelus to ipsenol was synergized by (-)-α-pinene, 
but not by (+)-α-pinene (Fig. 5B, C). Conversely, 
(+)-α-pinene synergized the attraction of T. dubius to the

pheromone of I. pini, ipsdienol plus lanierone (Fig. 5D).
(-)-α-Pinene did not increase attraction of T. dubius to
ipsdienol. (+)-α-Pinene also synergized the attraction of
P. cylindrica and C. parallelus to ipsdienol plus lanier-
one (Fig. 5E, F). (-)-α-Pinene did not affect attraction of
T. dubius to ipsdienol plus lanierone. It significantly in-
creased attraction of P. cylindrica and C. parallelus to
ipsdienol plus lanierone, but this increase was slight
(Fig. 5D–F).

Overall, attraction to ipsenol was strongly synergized
by (-)-α-pinene. In contrast, attraction to ipsdienol plus
lanierone was most strongly enhanced by (+)-α-pinene.

Discussion

These results demonstrate that the stereochemistry of
host plant compounds can differentially influence the
responses of predators to pheromones of various prey
species. (-)-α-Pinene strongly synergizes the response
of each predator tested to the pheromone of I. grandi-
collis, ipsenol. Conversely, (+)-α-pinene synergizes the
attraction of the same predators to the pheromone of
I. pini, ipsdienol plus lanierone. Predators are not at-
tracted to monoterpenes in the absence of bark beetle
pheromones.

Fig. 3 Responses of bark beetle predators to the bark beetle pher-
omone ipsenol, alone or combined with various host pine mono-
terpenes. Bars with the same letter within each species are not 
significantly different, PROX-MIX and Tukey’s Protected LSD
test on data transformed by y′= log (x+1), P <0.05. T. dubius:
F3,20=4.211, P<0.0007; P. cylindrica: F3,20=3.907, P <0.0013;
C. parallelus F3,20=6.152, P<0.0001

Fig. 4 Responses of bark beetle predators to (-)-α-pinene and ips-
enol alone and in combination. Bars with the same letter within
each species are not significantly different, PROX-MIX and 
Tukey’s Protected LSD test on data transformed by y′= log(x+1),
P<0.05. T. dubius: F3,14=6.541, P<0.0036; P. cylindrica: F3,14=
5.653, P<0.007



Flexible prey searching strategies that incorporate
plant stereochemistry may also facilitate the ability of
predators to detect several prey species. α-Pinene occurs
as a significant component of the oleoresin of the Pinac-
eae (Kurth 1952; Mirov 1961), and has previously been
shown to synergize the attraction of several conifer-
infesting scolytids and natural enemies to pheromones
(Chénier and Philogène 1989; Schroeder and Lindelöw
1989; Erbilgin and Raffa 2000b). Although I. pini and
I. grandicollis can colonize the same host trees, I. pini
is more commonly associated with P. resinosa, while
I. grandicollis is more commonly associated with
P. banksiana (Klepzig et al. 1991; Wallin and Raffa
2001). The oleoresin of P. banksiana contains more 
(-)-α-pinene than that of P. resinosa (Erbilgin, unpub-
lished data). Several studies have shown that natural ene-
mies can distinguish between odors from closely related
plant cultivars (Elzen et al. 1985, 1986; Ding et al.
1989). Our results suggest that predator exploitation of
plant kairomones may vary depending upon the phero-
mone signal of the prey species that is most commonly
associated with various plants.

Stereochemically based chemodiversity is prevalent
among the terpenoids, which represent a large family of
natural products (Connolly and Hill 1991). For example,
Ips paraconfusus Lanier transforms (-)-α-pinene from
Pinus ponderosa Doug. ex Laws, to cis-verbenol, an ac-
tive constituent of its aggregation pheromone (Renwick
et al. 1976). However, when these insects are exposed to
(+)-α-pinene, they form trans-verbenol, which is not at-
tractive and, when combined with verbenone, inhibits
aggregation (Renwick et al. 1976; Byers 1989). To the
best of our knowledge, there are no previous examples of
predator responses to herbivore pheromones being dif-
ferentially mediated by various stereoisomers of plant
compounds.

Modulation of predator behaviors through environ-
mental signals in addition to prey kairomones may func-
tion as a mechanism for contending with the spatial and
temporal variation in the densities of multiple prey spe-
cies (Meyer 1987; Scheiner 1993). Variation in responses
by predators and parasitoids has been shown to influ-
enced by both genetic and environmental factors (Via
1987; Stearns 1989; Vet et al. 1990; Turlings et al.
1993). For example, Prévost and Lewis (1990) demon-
strated heritable responses by Microplitis croceipes
(Cresol) (Hymenoptera: Braconidae) to specific odor
blends. Likewise, learning is common among natural en-
emies that respond to specific odors associated with their
hosts (Lewis and Tumlinson 1988; Papaj and Vet 1990;
Vet and Groenewold 1990; Vet et al. 1990; Turlings et al.
1992; Vet and Papaj 1992; Godfray 1993). Learning of
olfactory cues has been explored more extensively in
parasitoids, but also has been reported for ant, wasp, and
mite predators (Carlin and Hölldobler 1983; Isingrini et
al. 1985; Chang et al. 1988; Dicke et al. 1990a, b). The
potential roles of learning and heredity in the foraging
behavior of coleopteran predators of bark beetles have
not been examined.
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Modulation of predator exploitation of kairomones by
plant volatiles could facilitate counter adaptation to se-
meochemical shifts within bark beetle populations that
might otherwise allow prey to avoid predators. Scolytid
species exhibit substantial variation in the enantiomeric
ratios and additional components of their pheromones,
both over broad scales of space and time (Lanier et al.
1980; Miller et al. 1989), and also within regions and
over brief time periods (Raffa and Klepzig 1989; Herms
et al. 1991; Raffa 1995; Aukema 2000a, b). This dynam-
ic variation in space and time may represent a coevolv-
ing system among bark beetles and their predators (Raffa
and Dahlsten 1995), as has been suggested in other sys-
tems involving chemical and acoustical communication
(Aldrich et al. 1989; Zuk et al. 1993).

Fig. 5 Responses of bark beetle predators to two enantiomers of
α-pinene alone or combined with the pheromone of either Ips
grandicollis (ipsenol) or Ips pini (ipsdienol plus lanierone). Bars
with the same letter within each species and within each phero-
mone category are not significantly different, PROX-MIX and 
Tukey’s Protected LSD test on data transformed by y′ =log(x +1),
P<0.05. Treatment of I. pini pheromone: T. dubius: F3,20=7.85,
P<0.0001; P. cylindrica: F3,20=7.892, P<0.0001; C. parallelus
F3,20=5.76, P<0.008; treatment of I. grandicollis pheromone: T.
dubius: F3,20=6.62, P<0.0047; P. cylindrica: F3,20=4.43, P<0.0171;
C. parallelus F3,20=2.797, P<0.0202. Abbreviations: (-)-α: (-)-α-
pinene; (+)-α: (+)-α-pinene; P pheromone
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Several studies have shown that herbivores can gain
partial escape from predators and parasites by colonizing
“enemy free space”, including plant species less condu-
cive to searching by natural enemies (Bernays and 
Graham 1988; Bernays and Minkenberg 1997). Our re-
sults suggest that plasticity in predator responses to plant
volatiles associated with prey colonization may enable
natural enemies to partially overcome this difficulty, and
that the stereochemistry of host compounds may provide
an important signal.
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