Lecture 1

- Implant = substance/object that is put in the body as a prosthesis, or for treatment or diagnosis
 o A metal device placed into or on top of the jaw bone to provide support and/or retention for a dental restoration or prosthesis
 ▪ Types
 • Subperiossteal – on top of bone but beneath tissue, not used anymore
 • Transosseous/transmandibular staple – through mandible
 • Endosseous – current type implants, screw and cement type
 • Transitional – mini implants
- Osseointegration – direct structural and functional connection between ordered, living bone and the surface of a load carrying implant
- Fibro-osseous integration – fibro-osseous ligament, usually means implant failure from soft tissue intervention

Implant Types

- Implants – Branemark system (screw retained) – 5 component system
 o Gold screw → gold cylinder, abutment screw → abutment → fixture
 ▪ Gold cylinder attaches onto the abutment screw
- Implants – Cement retained system – 3 component system
 o Crown cemented on top of abutment
 o Abutment connected via abutment screw (inside) to implant
Restorative sequencing
- Prosthodontics consult (Treatment planning, diagnosis)
 - Imaging – CT, panoramic
 - Diagnosis – partially edentulous, cause?
 - Med and Dent Hx
 - Contraindications = bone disorders, poorly controlled diabetes, heavy smoking
 - Smoking has no effect on posterior Mn implant prognosis
 - Bone quality, quantity (need imaging)
 - Quality – D1, D2, D3, D4
 - Intraoral exam
 - BL dimension, MD dimension
 - Vertical space
 - Guidance, bruxism, periodontal diagnosis on adjacent teeth (bacteria may block implant healing)
 - Tx options, time line, costs (need imaging – see if patient needs sinus lift)
 - Implant, FPD, RPD, do nothing
 - Esthetic expectations, upper lip smile line
 - Longevity
 - Bridge – 74% last 15 years, adjacent teeth last 92% at 10 years
 - Loss of 8-18% of adjacent teeth over 10 years
 - Implant – 95% last 8-20 years, adjacent teeth last 99.5% at 10 years
 - RPD – 50% last 10 years, adjacent teeth last 56% at 10 years
 - Tx sequences (need imaging)
 - Preliminary impressions
 - Study and communicate with surgeon, fabricate interim RPD, fabricate surgical guide
- Surgical consultation
 - Bone grafting, if needed, may take 3-6 months
 - Direct sinus lift – flap opened side of Mx, pack bone (can pack lots)
 - Indirect sinus lift – osteotome technique, implant placed immediately
 - More than 54.2% of Mx posterior implants involved sinus augmentation
- Surgical guide fabrication – use diagnostic cast, get location and angle of implant placement
- 1st stage surgery – place implant on bone, place cover screw
 - Integration takes 3-6 months
- 2nd stage surgery – remove tissue and cover screws, place healing abutments
 - Soft tissue healing takes 2-3 weeks
- Impression
- Final restoration delivery
Lecture 2

Evaluation of Implants
- Implant success – highest in anterior Mn, lowest in posterior Mx
 - Immobile
 - No radiolucency
 - <0.2mm/year loss, first year loss <1.0mm
 - No persistent pain, discomfort, or infection attributed to implant
 - Determine if pain is from bone or from soft tissue being impinged on (dull pain = from bone)
 - Implant design doesn’t preclude prosthesis placement, appearance satisfactory to patient and dentist

Spacing
- 1.5mm between implant and natural tooth/implant and labial/lingual bone
 - Prefer 2.0mm of labial bone to retain gingival height – avoid recession with crown margin exposure
- 3.0mm between 2 implants
 - Natural tooth has PDL, bone does not have good vascularization – need adequate blood supply
- 2.0-3.0mm depth between top of implant and CEJ of adjacent natural teeth
 - Emergence profile
 - Bigger discrepancy between implant and natural tooth diameter = deeper implant should be
- Ferrule – 2.0mm high, 1.0mm thick
- 4.0-5.0mm gutta percha seal needed at apical
- For radiographs, can see distortion if you can’t see implant threads
 - Harder to see distortion in edentulous areas

Surgical Plans
- Want to get initial stability and long term implant success
- Conventional implant placement
 - Extraction site healing (2-4 months) before implant surgery
 - 1st and 2nd stage surgeries needed
 - Healing period between surgical stages 3-6 months, removable prosthesis used by patient
 - Impression taken 2-3 weeks after 2nd stage surgery for master cast
- Immediate implant placement
 - Placing implant after extraction of NON-infected tooth (shortens total time by 2-4 months)
 - Need regular crown/root ratio, do not load immediately (prevent soft tissue intervention)
- One stage implant
 - Placed in jaw and remain exposed (eliminate 2nd stage surgery)
 - If there are any doubts in healing process = use 2 stage surgery
- Immediate restoration
 - Immediate implant placement with immediate restoration can be planned to maintain and support periodontal tissue as much as possible to get maximum esthetics
 - Eliminate all centric and eccentric contacts
- Immediate loading
 - If bone quality is good enough, should withstand loading without critical micromotion and still achieve osseointegration
 - Mainly anterior Mn, multiple implants splinted together, fabricated interim for healing periods before definitive restoration is constructed
Radiographs
- Periapicals (14% distortion)
 - No cross sectional information
 - Distortion/magnification (Technique dependent)
 - Only 53% of measurements from crest to canal are accurate to 1mm
- Panoramic (23% distortion)
 - No cross sectional information
 - Varies from machine to machine and area to area
 - Variable inherent magnification/distortion of 20-30%, horizontal more variable than vertical
 - Take length of measurement and decrease by 20-30% to be safe
 - Only 17% of measurements from crest to canal are accurate to 1mm
- CT (1.8% distortion)
 - Cross sectional imaging
 - Assess bone density (HU) – water density = 0 (benchmark), increased value = increased density
 - Implant software, 3D representations
 - Uniform and minimal magnification with CT
 - 94% of measurements from crest to canal accurate to 1mm

Treatment Sequence – single implant restoration
- Prosthodontics consult
 - Imaging
- Surgical consult
 - Medical history
 - Bone level – requires imaging
 - Surgical plan – immediate placement, one stage implant, sinus lift, etc – requires imaging
 - IV sedation confirmation
 - Medical history
 - Nothing to eat or drink (not even water) 6-8h before surgery
 - Require guardian for travel TO AND FROM surgery
 - Use restroom immediately before sedation (clear the bladder)
 - Sequences, timeline, fees
 - Consent form
 - Instructions – NPO, designated driver, premedication, etc
- Surgical guide/radiographic guide fabrication
 - Diagnostic casts with diagnostic wax up – locate most ideal place to position missing teeth
 - For fully edentulous case, need duplicate of existing denture or full arch denture teeth with wax try in to confirm tooth set up is ideal
 - After locating most ideal tooth position, make radiographic guide – template to indicate location of implant osteotomies during radiography
 - Do imaging, determine if there is a need to change implant position. Fabricate surgical guide
 - May need to trim the surgical guide flange so surgeon can see where bone is
- 1st stage surgery, 2nd stage surgery
- Impression
- Final restoration delivery
- Maintenance
Lecture 3

Grafting Techniques
- Increasing thickness
 - Particulate bone
 - Block graft
 - Ridge split with chisel/osteotome
 - Greenstick fracture
- Increasing height
 - Block graft
 - Sinus lift – direct/indirect
 - Distraction osteogenesis
 - Mn nerve transposition

Graft Materials
- Autograft – self bone
- Allograft – same species
- Xenograft – different species (usually bovine)
- Alloplast – synthetic
- Osteoconductive – particulate bone
 - Guides bone growth
- Osteoinductive – human rich plasma added to facilitate human bone growth added to scaffold
 - Biocompatible, causes laying down of new bone, promotes new bone growth

Healing Times
- Bone Graft – 2-4 months
- Implant – 3-6 months
- Tissue – 2-4 weeks
Lecture 4

Requirements for Successful Implants
- Recognition of patient’s CC
- Medical risk assessment
- Evaluation of
 - Ridge morphology
 - Bone quality
 - Relation of edentulous areas to opposing arch/teeth/prosthesis
 - Periodontal status
 - Restorability of natural dentition
- Effect of patient’s habits – smoking, bruxism
- Organized treatment plan – procedures, costs and time, sequencing with time intervals between each step
- Maintenance, including recall intervals

Siebert Classification of Ridge Deficiencies
- I – buccal/lingual deficiency (best case for ridge deficiency)
- II – apical/coronal deficiency
- III – both I and II

Site Selection for Implants
- 7mm diameter – 4mm for implant diameter, 1.5mm either side of implant (for single implants)
 - Prefer 2mm of labial bone
- Dentinal gingival fibers – provide support for gingival tissues in natural teeth
 - Periodontal healthy anterior tooth = 5.5mm papilla height coronal to interproximal alveolar bone crest
 - Implants lack these fibers – height between TWO implants = 3.4mm (black triangle, short papilla)
 - Papilla morphology dependent on perio status, ridge morphology dependent on quantity/shape of bone
- Ridge reconstruction – 4 main principles
 - Residual socket walls hold bone graft in place, stabilize clot required for guided bone regeneration
 - Residual socket walls provide blood supply, maintains space
 - Thin labial walls resorb in apical and palatal direction – bone graft for ridge preservation
 - Primary closure of flaps helps exclude oral environment – enhances guided bone regeneration
- Surgical Guide
 - Helps orient position of implant, confirms marginal bone height

Effects of Edentulism
- Complete denture function is 1/4 to 1/7 that of natural dentition
- >50% Mn dentures have problems with retention and stability
 - Difficulty performing life tasks (speaking, eating) impacts quality of life
- Mean residual ridge resorption in Mn is 4x that of Mx (0.4mm vs 0.1mm per year)

Indications for 2 Implant Overdentures
- Already adequate lower denture, but want better retention/stability
- RPD patients who need to get rest of teeth pulled
- Age nor osteoporosis contraindication for dual implant treatment
- Treatment of choice for price and simplicity
Advantages of Implant Retained Overdentures
- Prevent bone loss
- Facial esthetics
- Improve retention/stability of prosthesis
- Improve chewing, increase occlusal force
- Create reproducible centric relation occlusion
- Improve speech, self-esteem, confidence
- Requires fewer implants than fixed restoration
- Reduces need for bone grafting compared to fixed restoration
- Requires less specific implant placement (but REQUIRES parallelism to insert prosthesis, wear of rubber O-rings)
- Acrylic flange can have better esthetics compared to fixed restoration
- Easier hygiene access, easily repaired

Mn Site Implant Placement
- Placed in canine region (Mn anterior, greatest bone height)
- Fulcrum line should run through middle of prosthesis AND be parallel to mandibular hinge access
- Implants placed vertically so tops of metal housings parallel to occlusal plane of patient’s denture/opposing arch
- Placed parallel to each other (within 15°) and perpendicular to occlusal plane (optimal function)

Impression Appointment
- Check implant is ready for restoration
- Remove healing abutments, ensure soft tissue health
- Connect impression post, do imaging to see it is fully seated
- Take final impression, place healing abutment back on patient
- Routine works – facebow, shade, interocclusal record, alginate impression
- Common complications
 - Loose healing abutment – do soft tissue removal surgery
 - Excess bone around top of implant fixture – do bone reduction surgery
 - Surgeon did not image to see bone growth/ensure abutment against implant instead of bone
 - Immature soft tissue around healing abutment
 - May have bacterial growth/bad smell
 - Pain on healing abutment tightening/removal or mobile implant (implant failure)
 - Ensure no soft tissue impingement – thick abutment on thin implant post
 - Bone pain = deep, sharp pain = gingival impingement

- Implant Readiness Tests
 - Tapping – differences in pitch and decay rate of ringing sound
 - Radiograph – radiolucency, especially for clear fibro-osseous intervention (implant failure)
 - Palpation – clinical mobility (implant failure)
 - Reverse torque testing – 20Ncm is a safe, reliable method
 - Forward tightening of healing abutment – check for pain
 - Periotesting – measures contact time and movement/give – clinically should be between -8 and +10
 - -8 = good, very solid
 - +15 = really bad
 - Resonance frequency analysis
Impression Techniques
- Closed Tray – used for simple cases
- Open Tray – used for complex cases, more accurate
 - Impression posts are tied together with a scaffold and GC resin to ensure their immobility
- Implant level – healing caps removed, impression posts placed in
 - Single implant or short FPD cases, usually combined with closed tray
- Abutment level – already have fixed/detachable abutments, so impression posts placed onto these
 - Traditionally, done with open tray technique for complicated cases
- With new CAD/CAM technology (instead of casting), now use open tray with IMPLANT level for complex case

Hex Contour abutment
- Cuff height can be 1mm, 2mm, or 3mm thick
 - Determined by thickness of soft tissue
 - Lingual side margin is usually 1.5mm higher than labial side
Lecture 5

Papilla Height
- Gingival fibers
 - Interdental fibers
 - Dentogingival fibers
 - Circular fibers
 - Alveolar crest fibers
- Papilla height
 - Between implants average = 3.4mm
 - Between natural dentition average = 5.5mm
 - For natural dentition, ≤5.0mm between crest and contact point = papilla fills 100% of the time
 - 6mm = papilla present 56% of the time, >7mm = papilla present <27% of the time

Residual Bone Height
- Class A (RBH >10mm) – classical implant procedures
- Class B (RBH 7-9mm) – osteotome technique, immediate implant placement
- Class C (RBH 4-6mm) – direct sinus lift (lateral approach), immediate OR delayed implant placement
 - Bone <5mm = sinus lift, delayed implant placement
 - Bone >5mm = sinus lift, immediate implant placement
- Class D (RBH 1-3mm) – direct sinus lift, delayed implant placement
- Bicortical stabilization – elastic moduli are significantly different
 - Alveolar crest = 17.1 ± 0.72 GPa
 - Middle trabecular bone = 14.59 ± 0.72 GPa
 - Sinus floor = 17.73 ± 0.72 GPa

Bone loss
- Conventional dentures = 1.63mm/year
 - Mn CD = 0.4mm/year
 - Mx CD = 0.1mm/year
- Implant dentures = 0.69mm/year
 - 1.1% reduction/year for 2 implant overdenture
 - 1.6% increased bone loss/year for 5 implant fixed detachable

Final Restorations
- Screw retained – retrievability
- Cement retained – easy to make, less lab intensive, popular (similar to conventional crown/bridge technique)
 - Esthetic, can provide ideal centric contact location
 - Problems if screw loosens
 - Cements
 - Premier implant cements (temporary resin cements)
 - Temp bond (noneugenol, eugenol)
 - Durelon (polycarboxylate cement)
 - ZPC
 - GI cements
Final Restoration Delivery
- Remove healing abutment, ensure soft tissue health
- Connect permanent abutment via abutment screw with screw driver
- Crown try-in to verify fit for delivery today
- Connect permanent abutment with abutment screw with 30Ncm torque wrench
- PFM adjustments for proximal contacts, marginal fit, occlusion, etc
 - Place cotton ball inside screw access hole
- Cement PFM, remove excess cement
- Periapical X-ray – verify cement removal, record baseline bone height
- Post-cementation instructions
 - No PDL – centric contacts are weaker
 - Abutment screw may loosen – weaker cement used – no flossing up or down through proximal contacts
 - Overloading common cause of bone loss – no guidance/eccentric contacts
 - 6 month recalls for next 2 years – monitor bone loss/level compared to baseline

Radiographic schedule
- Pre-surgical diagnostics – PAs with CBCT or Pan
- 1st stage postop – PA (baseline)
- Healing periods – none
- 2nd stage postop – PA (healing abutment seated fully – no bone overgrowth)
- Impression appointment – PA (impression post seated fully)
- Crown cementation postop – PA (baseline, ensure excess cement removal)
- Recall appointments – PA (monitor bone level every 6months over next 36months, look for bone stability)

Implant Success
- Immobile
- No peri-implant radiolucency
- <2.0mm vertical bone loss/year
- Loss of 1.0mm in first year is expected
 - Crestal bone level usually resorbs down to first thread in first year of loading – considered normal
- No persistent pain, discomfort, infection attributed to implant
- Design does not preclude placement of prosthesis with satisfactory esthetic appearance to dentist and patient
Lecture 6

Complications of Implant Therapy

- Loss of implant anchorage
 - Early failure (before loading) – more than ½ of all failures
 - Infection
 - Improper surgical technique/poor bone quality – lack of initial implant stability
 - Irreversible tissue damage (drill speed to high, lack of irrigation, burning bone, etc)
 - Premature loading during healing period by denture
 - Micromotion → repair instead of bone regeneration
 - Late failure (after loading)
 - Mechanical overload – bending moment (non-axial loading), cantilever, poor implant distribution, angulation, crown/implant ratio, prosthetic misfit, parafunctional habits, etc
 - Peri-implantitis – mucosal inflammation with corresponding bone loss

- Mechanical/prosthetic problems from overloading
 - Bone loss
 - Implant fixture fracture
 - Abutment/occlusal screws fracture
 - Screw loosening
 - Prosthesis fracture, framework fracture, veneers fracture, opposing prosthesis fracture
 - Prosthetic problems – esthetics, speech, lip support, etc

- Miscellaneous problems
 - Soft tissue – gingivitis, mucosal abscess, hyperplasia
 - Fracture of Mn, altered jaw sensation, inhalation of instruments, etc

Implant Survival

- Early implant loss ~ 2.5% of all implants over 5 years
- Loss during function = 2-3% supporting fixed prosthesis, >5% in overdentures over 5 years
 - Technical complications greater in overdentures than in fixed prosthesis
- Implant fracture is rare, <1% over 5 years
 - 0.14% over 2 years

- Implant survival = 96.8%
- Crown survival = 94.5%
 - PFM = 95.4%
 - All Ceramic = 91.2%
- Ceramic/veneer fractures = 4.5%
- Peri-implantitis/soft tissue complications = 9.7% of implants
 - 6.3% implants had bone loss >2.0mm
- Screw/abutment loosening = 12.7%
 - Screw/abutment fracture = 0.35%
Types of Implant Restorations
- Partially edentulous = single, splinted, FPD
- Completely edentulous
 - Mn
 - 5 implant supported Mn fixed complete denture (fixed detachable)
 - 5 implant supported Mn removable complete denture (fixed removeable)
 - 2 or 4 implant retained Mn complete denture
 - Ball/snap/locator attached overdenture
 - Bar overdenture
 - Mx
 - Implant supported Mx fixed complete denture with porcelain
 - Implant supported Mx fixed complete denture (fixed detachable)
 - Implant bar supported Mx removable complete denture
 - Implant retained Mx complete denture (overdenture)

Gingival Fibers
- Biologic width
 - Natural tooth = 2.04mm
 - Implant = 3.0 + 0.5mm
- Gingival fibers
 - Interdental fibers
 - Dento-gingival fibers
 - Circular fibers
 - Alveolar crest fibers
 - Implants only have circular and alveolar crest fibers – no fibers attach to the implant surface
- Papilla Height
 - <5mm = papilla present 100% of the time
 - 6mm = papilla present 56% of the time
 - >7mm = papilla present <27% of the time
 - Interradicular distance >2.4mm = influence of distance between contact point and crest of bone decreases, papilla height decreases
- Periodontal Fiber Types
 - Thin-scalloped (15% of people)
 - Distinct disparity between gingival margin height on direct facial vs interproximal height
 - Delicate and friable soft tissue curtain, underlying osseous form is scalloped
 - Small amount of attached masticatory mucosa, responds to trauma by recession
 - Subtle diminutive convexities in cervical thirds of facial tissue
 - Teeth triangular in shape, contact areas to adjacent teeth located incisal/occlusally
 - Small contact areas facial/lingually and incisal/gingivally
 - Thick-flat (85% of people)
 - Soft tissue curtain is denser and more fibrotic, underlying osseous form is flatter and thicker
 - Large amount of attached masticatory mucosa, responds to trauma by pocket depth
 - Prominent bulbous convexities in cervical thirds of facial tissues
 - Teeth square in shape, contact areas to adjacent teeth located more towards apical
 - Large contact areas facial/lingually and incisal/gingivally
Esthetics

- Checklist for Mx incisors
 - Smile line
 - Free gingival margin level
 - Gingival zenith – most apical point of gingival tissue
 - Biotype – thick flat or thin scalloped
 - Crest of bone level
 - Buccal/lingual thickness
 - Patient’s expectations

- Action Plan
 - Educate patient
 - Site preparation – bone/CT grafting
 - Ideal 3D implant position
 - Emergence profile – axial contour that extends from the base of the gingival sulcus past the free margin and continuous to the height of contour
 - Implant position, B/L angle
 - Implant position, M/D angle
 - Implant position, occlusal/gingivally
 - Proportion of implant size to edentulous space
 - Custom abutment, all ceramic abutment/restoration
 - Immediate implant placement and immediate restoration
 - Flapless
 - Space between buccal plate and implant
 - Bone graft or not
 - Immediate restoration
 - Possibility of revision surgery

Recent Breakthroughs

- Surgical Breakthroughs (less bone loss, better soft tissue maintenance, overall faster and better treatment)
 - 2 stage surgery → 1 stage surgery
 - Sinus lift procedures (osteotome technique)
 - Immediate implant placement
 - Surface treatment – faster osseointegration
 - Minimal invasive surgery (flapless)
 - Precision surgical guide
 - CAS (computer aided surgery), CPS (computer planned surgery), robotic surgery

- Prosthetic breakthroughs
 - Immediate/early loading, immediate restorations
 - Better screw mechanics and minimum abutment fixture connection
 - Internal hex, morose taper, platform switch, conical seal, etc
 - All ceramic abutment and all ceramic restoration
 - CAD/CAM, custom made abutments
Immediate provisional

- Indirect screw or cement retained provisional restorations
 - Take VPS impression of implant
 - Modify Dx cast so implant analogue placed exactly as in patient’s mouth
 - Fabricate immediate provisional prosthesis using temporary abutment and temporary crown material from modified Dx cast
 - Temporary is tried and seated in occlusion, proximal contacts, and contours are adjusted

- Direct screw retained provisional (technique sensitive, fast)
 - Temporary abutment tried into patient’s mouth and modified
 - Putty matrix premade from Dx cast used to make temporary crown directly in patient’s mouth
 - Matrix removed after 1min, screw access is dug out
 - Unscrew temporary abutment/temporary crown complex from patient’s mouth
 - Temporary abutment is trimmed, then complex connected to implant via abutment screws
 - Occlusion, proximal contacts, and contours adjusted

- Direct cement retained provisional (most versatile)
 - Temporary abutment tried into patient’s mouth and modified
 - Piece of rubber dam applied to protect surgical wound around connected temporary abutment
 - Separating medium applied to temporary abutment
 - Putty matrix premade from Dx cast used to make temporary crown directly in patient’s mouth
 - Matrix removed after 1min, temporary crown will come with it because of separating medium
 - Temporary abutment removed, temporary crown placed onto temporary abutment extraorally
 - Separating medium applied to temporary crown
 - Flowable composite applied to temporary abutment – converts into custom modified temporary abutment (requires light curing)
 - Temporary crown removed from custom modified abutment
 - Custom modified abutment screwed back into implant, temporary crown is tried
 - Occlusion, proximal contacts, contours adjusted
 - Crown cemented with weak temporary cement
2 Implant Retained Mn Complete Denture

- Prosth consult – diagnosis, treatment planning
- Surgical consultation
- Surgical guide fabrication
- 1st stage surgery
- 2nd stage surgery
- Technique 1
 - Locator (or ball) abutment cuff height selection
 - Connection of locator (or ball) abutment to implant, final border molding and impression of implant locator (or ball) abutments
 - Baseplate, wax rim, CR, VDO, and denture tooth selection
 - Process denture with metal housing, deliver to patient
- Technique 2
 - Mn conventional CD fabrication
 - Locator (or ball) abutment cuff height selection, connection to implant
 - Pick up metal housing intraorally with Mn CD

Wound Healing

- Angiogenesis precedes osteogenesis
 - Distance osteogenesis – bone growth towards implant
 - Contact osteogenesis – bone growth from implant towards natural bone
 - Osteoconduction with bone formation
 - Osteoinduction
- Implant microtopography
 - Degree of platelet activation – TGF, PDGF, EGF – mesenchymal cell activation → osteoblasts
 - Fibrin retention – serves as network when osteoblast migrate to implant surface
Implant selection criteria

- Material
 - Titanium alloy is 4x stronger than commercial titanium

- Size and length
 - Implant diameters: 3.3mm, 3.7mm, 4.1mm, 4.7mm, 6.0mm
 - Platform diameters: 3.5mm, 4.5mm, 5.7mm
 - Implant lengths: 10mm, 11.5mm, 13mm, 16mm

- Surface macro and micro design (surface treatment)
 - Macro design
 - Cylinder
 - Threading – shape of threads, size of pitch (distance between the threads)
 - Micro design
 - Unprocessed surface – machined surface
 - Processed surface
 - A – added surface – TPS (titanium plasma sprayed), HA, CaPO₄
 - B – subtracted surface – sand blasted, acid etched
 - Anyklosed – grit blasted
 - Astra – TiO blasted, osseospeed (with F ions)
 - ITI SLA – sand blasted, large grit acid etched
 - Keystone (life core) – RBM (resorbable blast media)
 - 3I – osseotite (Acid etched), nanotite (with CaP)
 - Nobel biocare TiUnite – anodic oxidation

- Abutment/implant connection
 - External hex – 0.7-1.0mm tall hex, for multiple splinted structure
 - Internal hex – >2.0mm tall, for single implant restoration or cement retained FPD
 - Morse taper (cone in cone) – >2.0mm tall, for single implant restoration or cement retained FPD
 - Other
 - Platform switch (shift) – limit crestal resorbtion and seems to preserve peri-implant bone levels
 - Reduction of abutment of 0.45mm on each side
 - Crestal bone loss = 0.2±0.4mm for platform switch implants
 - Crestal bone loss = 1.2±0.3mm for non-platform switch implants

- Conical Seal

- Price and customer support
- Proven/on-going research records

Ideal abutment/implant junction complex

<table>
<thead>
<tr>
<th>Less screw loosening – less prosthetic complications</th>
<th>NobelActive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better screw mechanics, stable connection configuration</td>
<td>- High initial stability, even in compromised bone situations</td>
</tr>
<tr>
<td>Less crestal bone loss – maintain long term esthetics and function</td>
<td>- Bone condensing properties</td>
</tr>
<tr>
<td>Optimum implant/abutment surface treatment</td>
<td>- Redirecting capability for optimal placement</td>
</tr>
<tr>
<td>Thin metal collar, microthreads</td>
<td>- Conical connection</td>
</tr>
<tr>
<td>Less stress concentration at neck of implant</td>
<td>- Built-in platform switch</td>
</tr>
<tr>
<td>Platform switch</td>
<td>- Less stress concentration at neck</td>
</tr>
<tr>
<td>Less microleakage – less peri-implantitis</td>
<td>- Dual-function prosthetic connection</td>
</tr>
<tr>
<td>Flexible to support various options of restorations</td>
<td></td>
</tr>
</tbody>
</table>
Implant Biomechanics

- Successful implants can support forces and deliver them safely to interfacial tissues over the long term
- Challenge is to develop basic science understanding of all aspects contributing to implant performances
 - In vivo loading conditions
 - Adult molars – 880N
 - CD – 196N
 - Implant CD – 412N
 - Intrusive stiffness
 - Implant – 4.2N/μ
 - Molar – 1.0N/μ
 - Bruxism/clenching – 3-10x higher force
 - Lack of posterior support increases force on anteriors
 - Signs of over stress situations – big stature, tori, big chewing muscles, right mandibular angle
 - Load transfer to interfacial tissues
 - Predicting interfacial stress and strain
 - Decide which stress-strain states are conducive to implant success vs failure
 - Stress transfer dependent on
 - Implant in vivo loading
 - Shape of implant
 - Square threads transmit 10x more compressive load than V-threads
 - Mechanical properties of implant interface with hard tissue
 - Fixed – alveolar crest
 - Frictionless contact – apex
 - Nature of interconnection (boundary condition)
 - Quantity and quality of bone contacting implant
 - How biologic tissue reacts to loading
 - Two stages – upon surgery and after initial healing
 - Factors – genetics, diseases, nutrition/hormones, toxic agents
 - About 1mm of bone adjacent to surgical sight undergoes necrosis post-op
 - Wound healing
 - Hematoma, cells, mediators
 - Angiogenesis precedes osteogenesis
 - Implant microtopography
 - Degree platelet activation – mesenchymal cell activation, osteoblast activation
 - Fibrin retention – network for when osteoblasts migrate to implant surface
 - Regeneration vs repair
 - Wound maturation: modeling and remodeling
 - Modeling – shape change
 - Remodeling – old bone replaced by new bone, no shape change
 - Amount of micromotion determines regeneration or repair
 - Implant stability
 - Single stroke – requires single large force to overload implant
 - Fatigue failure
 - 100-300 microstrain = bone loss
 - 1500-3000 microstrain = bone gain
 - >4000 microstrain = bone resorption
Clinical Implant Biomechanics
- Avoid off-axis loading – centric contacts near long axis of implant
- Axial loading of implants – occlusal forces projected vertically, distributed periapically
 o Placing centric contacts as close as possible to the center may be as effective as increasing implant
diameter or number of implants
- Off axis loading
 o Natural tooth – lateral occlusal forces dissipated via PDL (shock absorption)
- Cantilever systems – significantly higher forces on crest of bone and on abutment screws
 o A-P spread – line through distal of posterior implants vs line through center of most anterior implant
 ▪ Cantilever should be no more than 1.5x A-P spread
 ▪ 15-20mm spread
 ▪ First molar occlusion
- Crown/root ratio – need minimum 1:1
 o Minimum 6-7mm interocclusal space needed to fit different implant components (shortest components)
 o Best to maximize implant surface area
 ▪ Long term prognosis
 ▪ Amount of arch length space
 ▪ Costs, esthetics
- Allow movement of implant retained CD

Screw Mechanics
- Torque (applied energy) = friction + preload (stored potential energy by elongated screw)
- Preload – screw tension – should be as high as possible within material’s elastic limit
 o Increasing surface area of joint screw increases resistance to torque and bending forces
- Settling effect – embedment relaxation – occurs as rough spots are flattened under loading
 o No machined surfaces are completely flat microscopically

Abutment/Implant Connection
 o Implant-abutments with clearance fit have micromotion
 o Implant-abutments with precision conical connections show no micromotion
- Unconnected crowns in posterior region are more susceptible to technical failure of implant-abutment interface
- Pumping effect from micromotion might play important role for crestal bone resorption
 o Assumed that bone is contaminated with liquid contained in the implant
- Things helping conical Seal – microthreading, thin metal collar of metal implant, platform switch, conical seal
- External hex – 0.7-1.0mm tall, for multiple splinted implants
- Internal hex or morse taper – >2.0mm tall, single implant restorations or cement retained FPD
Chemical surface treatment – faster and stronger bone formation
- Osseospeed (F)
- Nanotite (Ca-P)
- DCD (discrete crystalline deposition)
- HA coated implant

Osteoinduction
- BMP, TGF-β, rhPDGF, genes
- Challenges – how to attach mediators to implant surface, how to control release of mediators?

Hardware and design
- Alpha bio implant, nobleactive implant – drilling protocol is 0.7-1.5mm less, than implant diameter
- Bicon implant – taper and larger crestal radius at shoulder reduce stress better than conventional implants

Custom Implants
- Imaging – bone quality/quantity
- CAD/CAM – shape/thread design, surface treatment
- Custom implant for patient and site

- Customized implant treatment planning
 - In vivo loading condition
 - Healing capacity (loading condition)
 - Local bone quality
 - Implant features
 o Site-specific treatment plan
 - Immediate loading, early loading, conventional loading, or delayed loading
 - Types of restoration, # of implants, location, length, and implant diameter
Lecture 10

Restoration Options
- How much sound tooth structure remaining, can it retain core?
 - Caries/faulty restoration removal
 - Root canal treatment, if needed
 - Crown prep, if needed
- How much stress will be applied to tooth, can it resist crown fracture at the neck of the tooth?
 - Single crown vs RPD/FPD abutment
 - Eccentric guidance
 - Occlusal force (anterior vs posterior), parafunctional habits
- If yes to both questions, core buildup indicated
- If no to either/both questions, place post before core buildup
- Consider longevity of treatment, cost of treatment, patient preference, other options (FPD, RPD, implant)
 - Endo treated teeth have similar fail rate to implants
 - Implants take longer to time to function, higher rate of complications

Endo treated teeth
- Require crown due to access opening – reduce tooth stiffness by 5%
 - Molars without crowns lasted 36% over 5 years
 - Crowns should be placed on posteriors and anteriors without sound structure
- Ferrule of 2.0mm high, 1.0mm thick needed
- Posts are to retain core, they do NOT reinforce endo treated teeth
 - May help prevent coronal fracture
 - Should use adhesive resin cement
 - Threaded posts cause root fracture
- Primary problems
 - Core without post – crown dislodgment and root fracture
 - Extract tooth if it doesn’t have adequate ferrule, or use post if not enough walls for retention
 - Post – debonding
 - Use resin cements for cast D&C and for prefabricated posts

Treatment Planning
- Complete oral evaluation
- Data collection
 - Perio health
 - Quality of NSRCT
 - Occlusal scheme
 - Parafunction
 - Intended tooth function – single restoration, abutment for RPD/FPD/overdenture
 - Crown lengthening – root length, crown/root ratio, furcation location, taper of root
 - Vertical space for crown
Treatment Sequence for Cast D&C
- Pre-Op radiograph
- Crown preparation
- Canal preparation
 - Mid-op radiograph
- Finalization of canal prep
- Direct cast D&C pattern fabrication
- Fabrication of provisional crown with cast post and cementation
- Casting of direct D&C pattern
- Cementation of cast D&C
- Refining crown margins
- Final impression for crown fabrication
- Provisional crown fabrication
- Crown fabrication, cementation

Canal Preparation
- Length of dowel = crown length
- Length of dowel = 2/3 root length
- Length of dowel under bone = 1/2 root length in bone
- Dowel diameter not > 1/3 root diameter
 - Minimum 1.0mm dentin around all sides
- Always leave 4-5mm gutta percha for hermetic seal
 - If not possible, likely from
 - Excessive crown/root ratio (short root)
 - Excessive bone loss
 - Losing of apical seal

Fiber Posts
- Advantages
 - Matrix is epoxy resin – highly polymerized
 - Fibers are made of glass or quartz
 - Do not need to silanate fiber posts
 - Greater bond strength to dentin compared to zirconia posts
 - Less likely to cause root fracture compared to metal or zirconia posts
 - Forces on tooth apparently absorbed by fiber post, less transferred to interface to root structure
 - Metal posts induce greatest stress concentration at post/dentin interface
 - Stiffness similar to dentin – lower stress in dentin compared to metal posts
 - Lower modulus of elasticity (more flexible), greatest resistance to mechanical fatigue
 - Single session post placement
 - Good esthetics, easily trimmed, biocompatible, relatively less expensive than cast metal posts
 - Easier to repair
Disadvantages
- Expensive
- Variable radiopacity among fiber posts
- May flex under loading (modulus of elasticity similar to dentin)
- Ferrule of 2.0mm required to stabilize core retained by fiber post
- Cylindrical shape – do not adapt well to root canals

Placing Fiber Posts
- Significantly improve survival rate of RCT restored premolars
- Preservation of at least 1 coronal wall significant reduces failure risk
- Use fiber posts if 1-2 walls remain – significantly influences facture resistance
 - Use fiber post with composite buildup if marginal ridges are lost/destroyed
 - Use cast D&C if 0-1 walls remain
- Fiber posts are used for retention, NOT resistance
 - Incomplete crown ferrule associated with greater variation in loading capacity and fracture
 - Study showed 2.0mm ferrule gives better clinical survival after 3 years
- Preservation of root dentin is desired, more residual tooth structure = better prognosis
- Serrated posts do NOT increase retention – cement is source of retention
 - Composition of sealer (eugenol) doesn’t affect retention of posts cemented with adhesive/resin
- Fiber posts do not allow significant light through to cure deep cements
- Cements are usually self-adhesive cements now
 - Used to be adhesive system with a resin cement

Removing Fiber Posts
- Peeso reamers are as effective as sophisticated removal kits provided by manufacturers

Buildup Materials
- Glass ionomer cement not reliable as core buildup material
 - More defects than amalgam
 - Inadequate fatigue resistance
 - Amalgam combined with cement is not strong enough either
- Heavily filled composite resins without esthetic properties
 - Average particle size usually greater than that used for esthetic restorations
 - Meet minimum requirements for buildup material
 - Compressive strength, elastic modulus, diametral tensile strength, flexure strength
- Available as self cure, light cure, dual cure
 - Self cure hardness – very low @ 10min
 - Dual cure hardness – when light cured, hardness @ 15-30min similar to 24h later
 - Can proceed with crown prep shortly after inserting buildup material
- Clinical reliability influenced by:
 - Cutting forces – crown prep after polymerization of core buildup material
 - Withdrawal forces – impression material
 - Removal forces – provisional crown
 - Masticatory forces – loading

Incremental Curing (maximum 2.0mm increments)
- Decrease dimension change (limit volumetric shrinkage – for paracore = 5.7%)
- Allow light cure to reach lowest layers of buildup material
 - Do not rely on self-cure ability
Lecture 11

Decision Making – Extractions
- At initial treatment planning
 o NOT after NSRCT is completed
- If tooth is borderline, have an EXTRA (explanatory) appointment to remove caries and do crown preparation to make decision
 o Will also help for making decision on whether endo is needed, elective endo, and buildup with pins
- Take radiographs, clinical exam, and consider entire oral cavity health

Decision Making – Crown Restoration
- At treatment planning appointment, estimate how much tooth structure will remain
- Be ready for emergency endo during 2nd appointment – removal of caries/old restorations
- After endo treatment – imagine how much ferrule will be left after crown preparation
- Still need to consider overall treatment for the entire oral cavity
Lecture 12

Cast Dowel and Core

<table>
<thead>
<tr>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>- As long as possible, maintain 4-5mm apical seal</td>
<td>- No greater than 1/3 diameter of root</td>
</tr>
<tr>
<td>o Retention = proportional to dowel length</td>
<td>- Must have at least 1.0mm dentin thickness on all sides</td>
</tr>
<tr>
<td>o Longer = more evenly distribute force over root length</td>
<td>- Should be parallel sided</td>
</tr>
<tr>
<td>- Should = crown length</td>
<td>- Should be rough surfaced but fit/seat passively</td>
</tr>
<tr>
<td>- Should = 2/3 root length</td>
<td>- Should have a vent – easy escape for excess cement</td>
</tr>
<tr>
<td>- Should be at least 1/2 submerged in bone</td>
<td></td>
</tr>
</tbody>
</table>

Common Failures

- Loosening of post
- Tooth fracture
 o Commonly subalveolar/vertical root fracture
 ▪ Prefabricated/fiber post and core generally fracture AT gum line
 o Strength of entire structure limited to strength of weakest component

Cast Post&Core and Crown Design

- Finish line (bevel) for PFM margin
- Contrabevel at top margin of ferrule (no sharp corners on external side of buildup)
- Keyway ensures no rotation of the post internally
- Slots/channels do not provide sufficient retention for core buildup

Radiographs

- Pre-operative (after NSRCT)
- During/after preparation of post space (determine further need for canal prep, if needed)
- After cast dowel/core prepared onto tooth, before cementation (ensure complete seating of post)

Casting and Finishing

- Minimize expansion during casting
 o Add extra 1.0mL water to investing material
 o Do not use ring liner
- Cast in type III gold
- Examine casting under microscope for bubbles
- Sandblast
- Place vent on largest flat surface (use ½ round bur)

- Do not force post into canal – using indicator (fit checker) to find where binding site is, modify appropriately

- Cements – ZPC, GI cement, RGMiC (Rely X luting), resin cement, para post cement, unicem (selfetching dualcure)

Indirect Technique

- Use Cast D&C when:
 o Only 1 wall left, only ferrule left (no walls), compromised ferrule tooth structure exists
 o Multiple teeth need cast D&C – full mouth reconstruction (use indirect technique because of clinic time)
 o Divergent multi-root posts needed