Orthodontics I Course Review
Enoch Ng, DDS 2014

Intro to Ortho

- Tooth size and number decreasing, but slower than jaw size
 - From softer foods, refined sugars, genetics

- Population Stats
 - 45% people have ideal Mx occlusion = 55% people have Mx crowding
 - 35% people have ideal Mn occlusion = 65% people have Mn crowding
 - 45-55% people have ideal OJ, 15% have class II, <5% have class III
 - 50% people have ideal OB, 30% have deep bite, <5% have open bites
 - Problems happen from deep bites, not open bites

- Angle’s Occlusion
 - US population, classification of anterior teeth only (did not look at molars)
 - 30% normal
 - 55% class I malocclusion
 - 15% class II
 - <1% class III

Bone Biology

- Flat bones – intramembranous – direct ossification without cartilage template – cranial vault, Mn body, Mx
- Long bones – endochondral – indirect ossification, requires cartilage – femur, cranial base, condyle
 - Complex multistep, sequential formation/degradation of cartilage, postnatal growth and repair

- Ages
 - 0-20y/o = BF>BR
 - 20-50y/o = BF=BR
 - >50y/o = BF<BR

- Osteoclasts needed for bone formation – osteoclastic number (not activity) control bone formation

- Drugs
 - Bisphosphonates – osteoporosis
 - Nitrogen containing = affects ruffled membrane
 - Non-nitrogen containing = causes cell death
 - Glucocorticosteroids – arthritis
Craniofacial Growth/Development 1

- Cephalocaudal gradient (head to tail bone)
 - 2 months = 50% head
 - Birth = 30% head
 - Head bigger than face (small Mn) = easier to get through birth canal
 - 25y/o = 12.5% head
 - Cranium closest to adult size at birth, stops growing first
 - Mn last bone to finish growing
- Scammon's Curve
 - 7y/o – cranial sutures close, neural development finished, ideal time to screen for ortho
 - 10y/o – lymphatics done, start to shrink
 - 10-12y/o – puberty starts, genital and general growth spurts begin
- Growth Patterns
 - Boys start developing 2 years later, develop for longer, and grow larger than girls
 - Growth spurt starts 2 years before sexual maturation
- Apposition – periosteum experiences hyperplasia, hypertrophy, and ECM secretion at surfaces (not internally)

Craniofacial Growth/Development 2

- Cranial vault – intramembranous formation/ossification, growth at sutures and apposition along fontanelles, resorption along internal surface
- Cranial base – endochondral from spheno-occipital, intersphenoid, and spheno-ethmoidal synchondroses
 - Growth stops at age 7
- Mx is displaced anterior inferiorly, with resorption along anterior surface and apposition on posterior surfaces
 - Best age to pull Mx forward is age 7
 - Palatal sutures close around 13-15 y/o
 - Lengthening of Mx arch from apposition along Mx tuberosity
- Mn intramembranous formation
 - Mn ramus = intramembranous ossification, condyle = endochondral ossification
 - Apposition along posterior surface, resorption along anterior surface of ramus (space for 3rd molars)
- For young kids, growth of the alveolar process is most important to accommodate the developing dentition
- Soft tissue – loses collagen with age
 - Sags – decreased exposure of upper incisors and increased exposure of lower ones
 - Thinner, less vermillion displaces, less protruded
- Cartilage growth
 - Nasal bone growth stops at age 10, cartilage finishes after adolescent growth spurt
 - Females = stops age 17-19/o
 - Males = stops age 19-21y/o
- Mn crowding – late Mn growth = crowding earlier, but may resolve later on
 - Bones stop growing in width first, then in length. Growth in height is the last to stop

<table>
<thead>
<tr>
<th>Adolescence</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat females around 2y earlier than boys</td>
<td>Facial tissue grows more than hard tissue</td>
</tr>
<tr>
<td>Lots of individual variation</td>
<td>Lower incisal crowding</td>
</tr>
<tr>
<td>Mid-palatal suture close 13-15y/o</td>
<td>Lip line to upper incisors</td>
</tr>
<tr>
<td>Mn last bone to grow</td>
<td>Chin accentuation</td>
</tr>
<tr>
<td>Space for 3rd molars</td>
<td></td>
</tr>
</tbody>
</table>
Development of Dentition 1

- Stages of Development
 - Primary dentition
 - Early mixed – presence of permanent incisors and molars
 - Late mixed – loss of deciduous molars and canines
 - Permanent dentition

- Primary dentition
 - Centrals, laterals, 1st molars, canines, 2nd molars
 - 4 month rule
 - Variations of up to 6m for eruption normal
 - Dentition is stable from 3-6 y/o – development of permanent dentition
 - Primate space = M to canine in Mx, D to canine in Mn
 - Shallow overbite/excess overjet
 - Increased horizontal overlap of anterior teeth
 - Mx grows AP faster than vertically
 - 71% Flush terminal plane – class I or II
 - 19% Mesial step – class I or III
 - 10% Distal step – class II

- Primary dentition less proclined than permanent dentition
 - Permanent arches are more tapered, primary arches are more ovoid

- Leeway space – space from difference in size between primary and permanent teeth
 - C (canine) = 0
 - D (premolar 1) – Mx = 0.0mm, Mn = 0.5mm
 - E (premolar 2) – Mx = 1.5mm, Mn = 2.0mm
 - Mn arch = 5mm leeway space
 - Mx arch = 3mm leeway space

- Mesial shifting
 - Early mesial shift (63% of population) – mesial migration of Mn 1st molar
 - Uses up primate space, occurs around age 6
 - Late mesial shift (100% of population) – mesial migration of Mn 1st molar AFTER primary 2nd molar loss
 - Uses up leeway space, occurs around age 11

- Teeth move occusally, mesially, buccally in adulthood
Development of Dentition 2

- 1st molars, Mn centrals, Mx centrals, Mn laterals, Mx laterals, Mn canines, Mx premolars, Mn premolars, Mx canines, 2nd molars, 3rd molars
- 3 principles of treatment planning impacted teeth
 - Prognosis related to extent of displacement and surgical trauma
 - Eruption should happen through keratinized mucosa
 - Adequate space created prior to surgery
- Transitional midline diastema – closes with eruption of Mx canines
 - >2mm = begin pondering treatment
- Dental arch length decreases with transition from primary to permanent dentition
- Incisor liability – canine eruption, primate spacing, incisor proclination
- Potential problems with eruption
 - Premature loss of deciduous teeth – if primary 2nd molar is lost, ALWAYS maintain the space
 - Interproximal decay, over-retained primary teeth
 - Impaction – contralateral teeth should erupt within 6 months of each other
 - Ankylosis – grey in color, dull to percussion
 - Positional anomalies – ectopic eruption (wrong location) of lower incisors
 - Transposition – most commonly upper lateral and canine
 - Palatal eruption – may be genetic
 - Canines erupted in line, but if crowded likely to erupt labially
 - Crossbites (posterior and/or anterior)
Biology of Tooth Movement

- PDL required, acts as a shock absorber
- Physiologic function – fast (<5s) and heavy loading, intermittent
 - Fluids and ligaments stabilize against gross displacement, alveolar bone bends, no pain
- Undermining resorption
 - Heavy forces, rapid pain, compressed PDL decreases bloodflow = necrosis \(\rightarrow \) hyalinization of tissue
 - Takes longer to move tooth – must heal first
- Frontal resorption
 - Light forces, relatively painless, reduced blood flow causing signaling, not cell death, remodeling occurs
 - Tension and compression sides for remodeling
 - Tension = apposition – osteoblasts and fibroblasts, laying down osteoid
 - Compression = resorption – osteoclasts
 - Minimum 4-6h to get orthodontic tooth movement, want around 20-350grams of force
- Tissue changes
 - Enamel = no effect
 - Cementum = localized perforations, repaired from cellular cementum zone
 - Dentin = resorption possible in areas of perforated cementum
 - Pulp = transitory inflammation – loss of tooth vitality in teeth with history of trauma
- Types of movement
 - Tipping
 - Translation
 - Rotation
 - Extrusion
 - Intrusion
- Force types
 - Continuous force – never declines to zero. Think of a NiTi coil spring
 - Interrupted force – declines to zero, then replaced. Think of a power chain
 - Intermittent force – declines to zero, but appliance is removable. Think of headgear or elastics
- Drugs
 - Prostaglandins and IL1\(\beta \) increases quickly in PDL during orthodontic tooth movement
 - Prefer to use Tylenol instead of NSAIDs, as NSAIDs act centrally and block prostaglandins
 - Depress OTM
 - Bisphosphonates, prostaglandin inhibitors (NSAIDs), tricyclic antidepressants, antyarrhythmics, glucocorticosteroids, antimalarials, anticonvulsants, tetracyclines
 - Increase OTM
 - Vitamin D, prostaglandins
Patient Exam and Diagnosis

- Psychosocial
 - Develop rapport with patient
 - Write down the CC verbatim, ADDRESS THE CC
 - Why are you here? Why now? What do your parents say?
 - Why do you think you need braces?
 - MHx/DHx

- 3 major reasons for ortho treatment
 - Impaired dentofacial esthetics
 - Impaired function
 - Enhancement of dentofacial esthetics

- Be problem oriented so as not to fixate on only 1 portion – idea is to create a database for planning
 - Prioritize the problem list – should address primary CC, ensures all issues are addressed, includes pathologic, functional, and developmental problems

- Patient interview
 - Physical growth evaluation – growth charts, sexual maturation, growth prediction
 - Social/behavior evaluation – internal motivation/expectation, documentation of patient compliance, etc

- Clinical Exam
 - Oral health – perio charting, caries, pulpal disease
 - Jaw and occlusion – mastication/speech, habits, breathing, TMD/other dysfunctions
 - Facial/dental appearance
 - Macroesthetics – frontal exam (symmetry, proportions of width/height), developmental age, facial proportions, profile analysis
 - Brachyfacial, mesofacial, dolichofacial
 - Rule of 3rd (forehead, Mx, Mn areas)
 - Rule of 5th (bisecting nose (1/5), eyes (2/5), to edge of ears (2/5))
 - Convex = class II, flat = class I, concave = class III
 - Miniesthetics – teeth, smile framework (gingival display, midlines, etc), crossbites, malocclusion
 - Microesthetics – details on individual tooth
 - Not necessary to mount child casts – TMJ is not done developing, hard to find reproducible CR
Classification of Malocclusion

- Andrew’s 6 keys
 - Molar relationship
 - Mesial crown angulation
 - Crown inclination – incisor proclination, canine and posterior lingual inclination
 - No rotations present
 - No spaces present
 - Flat (or slightly curved) occlusal plane

- Other components of normal occlusion
 - Normal apical base relationship
 - Good interdigitation
 - Minimum overjet and overbite
 - Smooth/coordinated arch shapes
 - Symmetrical dental arches, matching midlines
 - Normal axial root inclination
 - No crossbites
 - No crowding or spacing
 - No supernumary or missing teeth
 - No oversized or undersized teeth
 - CR/CO shift <2mm
 - Normal curves of Wilson and Spee

- Malocclusion – deviation from accepted norm that presents a hazard to person’s wellbeing, associated with dentofacial abnormalities
 - Angle’s classification – Mx MB cusp in Mn B groove, first molar analysis only!
 - Ackerman and Proffit classification – transverse plane relationship, AP plane relationship, vertical plane relationship, soft tissue relationship, intra arch dental relationship

- Class II – end to end, or full step (Mx DB cusp in Mn B groove)
 - Division 1 – accentuated OJ – usually end to end
 - Division 2 – acceptable OJ (Mx incisors usually retroclined) – usually full step
 - Subdivision – patient’s left or right side

- Vertical dysplasias
 - Supraversion – teeth out of alignment, excessive eruption occlusally – deep bite
 - Infraversion – teeth out of alignment, insufficient eruption (doesn’t reach occlusal plane) – open bite

- Etiology
 - Pathological, developmental, accidental, genetic, acquired
 - CLP (embryonic disturbance)
 - Congenital missing/supernumary teeth
 - Ectopic eruption, impactions
 - Early loss of primaries, caries
 - Trauma, habits

- Example Classification
 - Sagittal – class II, Division 1, Subdivision left
 - Transverse – unilateral left posterior crossbite
 - Vertical – anterior open bite
Cephalometrics 1
- Goals – evaluate relationships (horizontally and vertically) of 5 major functional components
 o Cranial base
 o Maxilla
 o Maxillodentoalveolar process
 o Mandibulodentoalveolar process
 o Mandible
- Standard cephalometric arrangement to standardize study of:
 o Skeletal relationships
 o Underlying malocclusion etiology
 o Pattern of craniofacial growth
 o Prediction on timing of maximum growth
- Completion of growth – Nasion-Menton should not change between 6 month cephalometric radiographs
- Cephalometric analysis
 o Soft tissue – facial contour, proportions, lip positions
 o Skeletal – Mx and Mn basal arches, AP and vertical relationships, Mn plane, facial plane
 o Dental – incisor/molar angulation, AP/vertical angulation, occlusal plane angulation, OJ and OB
 o Lateral – AP dysplasia, vertical dysplasia, incisor position/inclination, balance of soft tissue/facial contour
 o Frontal – transverse dysplasia, asymmetries

Cephalometrics 2
- Refer to diagrams in notes
Study Model Analysis

What to look for
- Symmetry – superimpose a plastic grid (or have computer do it), pay attention to subdivisions, look for midline deviations
- Occlusion – count teeth, check for patterns of surface wear
 - Sagittal, vertical, transverse – check for excessive, level, or reversed Curve of Spee
- Intra-arch
 - Space – crowding, spacing
 - Irregularities – size, rotations, translations
 - Tooth size

Space Analysis
- TSALD – tooth size arch length discrepancy
 - Space available – space required = amount of crowding or spacing
- Arch length available – measured with a brass wire, or sum of 4 segments (bilateral – 2 posterior, 2 anterior)
- Arch length required
 - Permanent dentition
 - Merrifield analysis
 - Arch length required = total dental width, measured M-D of each tooth summed
 - Mild = 1-3mm crowding/spacing
 - Moderate = 4-6mm crowding/spacing
 - Severe ≥ 7mm crowding/spacing
 - Irregularity index
 - Measure each overlap from M to M of the 2 bilateral first molars and sum the measurements – most commonly used for Mn anterior teeth in relapse studies
 - Reported as a length (mm) – higher the value, more severe the crowding
 - Mixed dentition
 - Must discover size of permanent teeth, and account for changes in arch size by growth
 - Moyer’s analysis – based on Caucasians (tendency to overestimate)
 - Sum width of 4Mn incisors/2 – prediction of Mx and Mn Cs, PM1, PM2
 - Widths of C, PM1, PM2 provided in charts – no radiographs required
 - CI = 75% - 75% will have ≤ value, STD of ±1mm
 - Tanaka Johnson’s analysis – greatest variability of error (usually overestimates 2° teeth size)
 - Sum width of 4Mn incisors/2 + 10.5mm = Mn C, PM1, PM2
 - Sum width of 4Mn incisors/2 + 11.0mm = Mx C, PM1, PM2
 - Radiographic method – need high quality X-rays, no effect of ethnicity
 - Radiographically measure MD width of unerupted permanent teeth
 - Use a scaling coefficient to account for distortion
 - (1° Clinical width / 1° rad width) x (2° rad width) = estimated 2° clinical width
 - Films must be // to MD crown axis (BW or PA, cannot use PAN)
 - Teeth must lie in same Bu/Li plane
 - Has poor estimation of canine M/D widths due to curvature
Bolton Analysis – estimates tooth size discrepancy between Mx and Mn, related to perfect class I dentition
- ~5% of population has size discrepancy, discrepancy <1.5mm rarely clinically significant
- If there is a discrepancy, check for peg laterals
 o Mn excess (deficient OJ) – consider interproximal reduction of Mn incisors, or buildup of Mx incisors
 o Mx excess (increased OJ) – consider interproximal reduction of Mx incisors, or leave extra OJ
 ▪ Class I canine with anterior crossbite or edge to edge bite – probably excess Mn anteriors
 ▪ Class I canine with excess OJ – probably Mn anterior deficiency
 ▪ Class I canine with crossbite – probably excess Mn anteriors – want to open space and restore it
 o Anterior ratio – sum of 6 Mn anteriors / sum of 6 Mx anteriors = 77.2%
 ▪ >77.2% = excess Mn tooth size
 ▪ <77.2% = excess Mx tooth size
 o Overall ratio – sum of 12 Mn teeth / sum of 12 Mx teeth = 91.3%
 ▪ >91.3% = excess Mn tooth size
 ▪ <91.3% = excess Mx tooth size
Removable Appliances
- Can be removed from the mouth by the patient

General Points
- Development in Europe
 - Little influence of Angle’s classifications
 - Social welfare system – limited ortho treatment for the masses
 - Scarce precious metals available for fixed ortho work
- Advantages
 - Lab made – reduces dentist chair time
 - Oral hygiene easier – can be removed for cleaning
 - Can be removed for aesthetic occasions
- Disadvantages
 - Success is patient compliance dependent
 - Move only a few teeth at a time
 - Almost impossible to produce complex tooth movements

Take Home Messages
- Removable ortho appliances used for
 - Growth modification
 - Simple tooth movement in kids
 - Retention
- They consist of a
 - Framework
 - Retentive elements
 - Active elements
- Typically cheaper and easier to clean than fixed appliances, but can only create tipping forces
- Can be used as retainers to keep teeth in position after active ortho movement

Common Appliances
- Functional appliances – passive tooth-borne appliance for guiding growth
 - Similar to headgear (treats class II) – headgear moves Mx back, functional appliance moves Mn forwards
 - Each functional appliance, no matter what name, is simply a melding of wire and plastic parts
 - Passive – no intrinsic force generated from springs or screws
 - Changes posture of the Mn, pressures created by soft tissue stretch transmitted to bone – moves teeth and modifies growth (commonly used to correct class II retruded Mn)
 - Capping incisors blocks Mn incisor proclination
 - 1900s – Monobloc
 - 1920s – Activator
 - Block of plastic covers palate and teeth of both arches
 - Advances Mn for class II correction, opens bite by 3-4mm
 - Shelves between teeth provide vertical control, angled flutes in acrylic guide posterior tooth eruption
1960s – Bionator
 • Cut down activator with incisor capping and no palatal coverage
 o Omega wire covers the palate
 • Lingual flanges stimulate forward posturing of Mn

1960s – Functional regulator
 • Tissue borne, buccal shields and lip pads reduce pressure on teeth
 • Lingual pad dictates Mn position, buccal stretching of cheeks causing alveolar apposition via periosteal stretching

1970s – Twin block (popular in Britain)
 • Designed to be worn all day and to be used in function
 • Individual plates with ramps which guide Mn forward when patient closes down
 • Allows nearly full range of movement and reasonable speech
 • Mx plate usually includes expansion screw (expand as patient grows)
 • Also, grind down posteriors to allow supraeruption, add braces, fine tune

Components approach – combine appropriate components that deal with specific aspects of patient’s problems for custom designed appliance for individual

- Active plates – tooth borne appliances for tipping motion
 - Retention
 • Clasps – fits into undercuts for good retention, needed for plate retention
 o Adam’s clasp – most useful and versatile for removable appliances
 ▪ Molars and premolars, 0.7mm stainless steel wire
 o Arrow clasp – simple retention for removable appliances
 ▪ Used in continuous row of teeth, 0.7mm stainless steel wire
 • Labial bow – retention of plate when in undercuts, limits tooth movement from springs, can be used for tooth movement when activated
 o Horizontally follows curvature of incisors
 o Vertically positioned in middle third of clinical crown
 o U-loops in canine region allow for activation – close loop to tighten the bow
 - Baseplate – complete or segmented
 • Made of acrylic – palatal coverage = main source of appliance anchorage
 • Can be configured to serve as a bite plane
 • As thin as possible for patient comfort
 - Active elements – screws and springs
 • Screws – opening with a key separates sections of the plate
 o Heavy rapidly decaying forces – not ideal for tooth movement (uncontrolled)
 o If force level is too high, the appliance gets displaced
 • Springs – contacts tooth at single point, creating tipping forces
 o Light continuous forces, must be guided to only exert action in desired direction

- Early/interceptive treatment
 • Arch expansion – corrects posterior crossbite
 • Incisor tipping – corrects anterior crossbite
 • Space maintenance

- Regular treatment
 • Simple cases needed only tooth tipping movement
Retainers – usually passive and used after active treatment
 - Allows for small movements only because the rest of the retainer should be passing
 - Tooth borne appliance to prevent intra-arch instability after ortho treatment
 - Passive or active
 - Removable or fixed
 - Hawley Retainer – molar clasps and outer bow with adjustment loops from canine to canine
 - Preferred retainer in Mx, especially after palatal expansion
 - Minimal wirework crossing occlusion – allows for vertical settling
 - Horseshoe shaped baseplate – improved speech
 - Must consider pre-treatment situation before designing retainer – prevent relapse
 - Active removable retainer – realignment of incisors with spring retainer fabricated on a lab model where teeth were reset into alignment
 - Vacuum-formed retainers – cheap, less lab time
 - Occlusal coverage – blocks vertical settling (this is NOT good)
 - Should block 2nd molars – prevent anterior open bite from over eruption
 - Thickness of material may prove uncomfortable
 - Appliance bulk distal to canine prone to fracture
- Clear aligners/invisalign
 - Vacuum-formed sheets on casts with slightly reset teeth to fix mild irregularities
 - Sequence of casts can be made to incrementally correct irregularities with new vacuum-formed retainers made for each resetting
 - Invisalign – Align Technologies in 1990s, heavy marketing to public
 - Only treats mature dentition – growth changes cannot be predicted (not designed for kids)
 - Success requires patient to wear aligners 20-22h/day
 - If not worn, next set of aligners will not work – new set will be required
 - Tooth-colored composite attachments allow correction of severe malpositioned individual teeth

<table>
<thead>
<tr>
<th>Good for</th>
<th>Bad for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild crowding with IPR or expansion</td>
<td>Dental expansion of blocked out teeth</td>
</tr>
<tr>
<td>Posterior dental expansion</td>
<td>Extrusion of incisors</td>
</tr>
<tr>
<td>Correction of mild spacing</td>
<td>Severe rotations</td>
</tr>
<tr>
<td>Absolute intrusion of individual teeth</td>
<td>Relative intrusion</td>
</tr>
<tr>
<td>Lower incisor extraction for severe crowding</td>
<td>Molar uprighting</td>
</tr>
<tr>
<td>Simple movements only, not complex</td>
<td>Molar translation</td>
</tr>
<tr>
<td>Closure of premolar spaces after extraction</td>
<td></td>
</tr>
</tbody>
</table>

- Production Process
 - CT scan of impressions – create accurate 3D digital model
 - Digital sectioning of teeth
 - Movement of teeth following clinician’s instructions
 - Preliminary plan placed online for clinician review as a ClinCheck
 - Transfer of digital models to a cast production facility where stereolithographic model for each step fabricated
 - Clear plastic retainers formed over each model
 - Aligners shipped to clinician
Fixed Appliances I

Configurations
- Standard edgewise – brackets at 90° to the wire (no tipping, torqueing, or in/out variations), all teeth get standard brackets
 - Most contemporary braces use standard edgewise
 - Wire bends to adapt to tooth/teeth malposition
- PreAdjusted (straightwire) edgewise – built for averages, may require small adjustments
 - Better than large adjustments starting from a scratch wire
 - Tip (mesial/distal) – angulation
 - Rhomboid shape, with the slot’s angulation positioned to match roots/long axis of tooth
 - Torque (buccal/lingual) – inclination
 - Values are more negative as you move posteriorly in the Mn – want natural lingual inclination
 - In-out (distance between surface of tooth and bracket (thickness)) – offset
- Slot sizes – two types
 - 0.018” x 0.025” – stainless steel, but people used to gold dimensions preferred to keep 0.022”
 - 0.022” x 0.028” – originally for when gold wires were used

Types of Tooth Movement
- Occlusal/gingival
- Mesial/distal rotation
- Buccal/lingual (in/out)
- Mesial/distal angulation (tipping)
- Buccal/lingual inclination (torque)

Type of Archwire Bends
- First Order – visible from occlusal view
 - Adjusts in/out (buccal/lingual position)
 - Adjusts mesial/distal rotation
- Second Order – visible from lateral/frontal view
 - Adjusts occlusal/gingival (up/down)
 - Adjusts mesial/distal angulation (tipping)
- Third Order – twist in the wire
 - Adjust buccal/lingual inclination (torque)
 - Only possible with rectangular wires (not possible with circular ones)
Components
- Bracket (bonded or banded) – important to keep organized, so proper bracket goes on proper tooth
 - Archwire slot
 - Closed – self ligating
 - Open – requires ligatures
 - Tie wings – undercuts for elastic ligatures
 - Bracket base – bonded to tooth or band
 - Indicator dot – ALWAYS oriented to the distal gingival
 - Buccal tubes (for molars)
 - Mx – triple tube – auxiliary tube, main archwire tube, headgear tube
 - Mx – double tube – auxiliary tube, main archwire tube

- Archwire – energy is stored in the archwire for tooth movement
 - Wire gets distorted to fit malocclusion → slowly releases energy to move teeth as it restores itself to normal form/straightens out

<table>
<thead>
<tr>
<th>Metal Alloys</th>
<th>Sizes – many different sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless steel – stiffest</td>
<td>- Rounds – 0.014”, 0.018”, 0.020”</td>
</tr>
<tr>
<td>TMA (β-titanium) – half as stiff as stainless steel</td>
<td>- Rectangular – 0.016x0.016”, 0.016”x0.022”, 0.019”x0.025”</td>
</tr>
<tr>
<td>NiTi – half as stiff as TMA</td>
<td></td>
</tr>
</tbody>
</table>

- Ligatures
 - Elastic chain form
 - Wire ties

Fixed Appliances II

Auxiliaries
- Transpalatal Arch – removable or fixed (soldered) – spans between banded Mx first molars
 - First molars require banding with lingual auxiliary tubes
 - Anchorage support
 - Molar rotation
 - Arch width adjustment

- Nance appliance
 - Acrylic button used to anchor Mx molar position
 - Typically used in mixed dentition to hold space

- Lower Lingual Arch – similar to TPA in concept
 - Arch width control
 - Anchorage control
 - Arch length management
 - May (or may not) contact incisors
 - If it doesn’t contact incisors, allows for incisor movement to increase arch width

- Lip Bumper
 - Uses muscles to hold molars in place or tip them (usually to upright them)
 - Difficult to create molar translation, but tipping forces are possible
 Coil springs (stainless steel or NiTi) – placed over archwire
 o Used to open or close spaces
 o Can be combined with temporary alveolar implants for closing spaces
 o Metal wire ligatures on either side of the coil spring to prevent tooth rotation (remember, bracket is on facial of tooth, so forces applied through facial surface)

- Power thread (zing string) – elastic monofilament coil spring
 o Very technique sensitive – requires perfect square knot for attachment to coil spring
 o Must be active AFTER tie is completed; if tied incorrectly it is often passive after tie completed
 o Tooth attached to a [gold] chain and tied to the coil spring via a thread to activate the tooth

- Expanders
 o RME/RPE – rapid maxillary expander/rapid palatal expander (they are the same thing)
 ▪ As rigid connection as possible to minimize tooth movement when active
 ▪ Increase arch by separating mid-palatal suture
 o Quad helix (4 circles) – activated in the office, not at home (spring appliance, does not have a screw)
 o Pendulum appliance – moves molars backwards, can move other teeth distally afterwards
 ▪ Always bonded to premolar occlusal surfaces for anchorage

- Herbst Appliance
 o Bars attached from posterior Mx to anterior Mn – forces Mn to occlude anteriorly

Elastics
- Class I – intra-arch – closes spaces inside an arch
- Class II – class II malocclusion – pulls Mx back and Mn forward
 o Control the vertical force component, or may cause supraeruption and give patient a gummy smile
- Class III – class III malocclusion – pulls Mx forward and Mn back
- Vertical – used to correct open bites
- Anterior cross elastics – used to correct crossbites
 o Do not use for a long time (3+ months) or patient’s occlusal plane may kant
- Posterior cross elastics
- Posterior box – used to close larger vertical open areas

Separators
- Metal springs/elastics placed into proximal contacts
- Coil springs attached to temporary alveolar bone implants
 o Stretched – closes spaces as it comes together
 o Compressed – opens spaces as it pushes apart
Construction, Debonding, Debanding

Separators
- Brightly colored radiopaque separators used to open proximal contacts to allow for band seating
- Should not be used for longer than 2 weeks (usually 2-7 days, longer may cause attachment loss)
- Elastic separators work 95% of time – if elastics separators don’t work, use elastic springs
 - Place between beaks of separating pliers, stretch, snap one side through contact
 - Use 2 loops of floss, stretch separator, snap floss through contact and pull separator underneath contact, pull separator up to snap one side through contact, remove floss

Banding vs Bonding
- Until 1980s, only way to secure a bracket was to band the tooth
- Now, only routinely banded teeth are Mx molars
- Banding Indications
 - Teeth receiving heavy intermittent forces against attachments – headgear
 - Require attachment of intraoral or extraoral auxiliaries – transpalatal arch
 - Need both labial and lingual attachments
- Ideal band position
 - Parallel to cusps and marginal ridges – all cusps are equally visible
 - Band margins just below marginal ridges and above contact points
 - Tube straddles buccal groove mesial-distally, perpendicular to long axis of the tooth
- Adhesives for Bands
- Ideal bracket position (use of a PANO helps locate roots and gives better idea for ideal placement)
 - Center of clinical crown
 - Bracket slot parallel to incisal edges/marginal ridges
 - Tie wings parallel to long axis of tooth
 - Inaccuracies
 - Horizontal error – unwanted tooth rotation
 - Axial error – unwanted tooth tipping
 - Thickness error – improper torque/rotation
 - Vertical error – extrusion/intrusion, torque error, in/out error
- Adhesives for bands – light cure adhesive systems used in ortho
 - RMGIC for ortho use – light cured, greatly reduces problems with leakage beneath bands and allows for control of working time
 - 2part powder/liquid GIC for ortho use – dual cure from visible light and chemical causes rapid set, better bond strength than light cured cements
 - Sandblasting – increases bond strength and mean survival time, reduces clinical failure rate
 - Bonding to non-enamel – roughen surface with micro-etch, diamond, or green stone
 - Bond metals and ceramic brackets to enamel
 - Resin based primer penetrates into enamel rods
 - Possible to add pontics to fill spaces temporarily – for patient esthetics
Orthodontics I Course Review Enoch Ng, DDS 2014

- Bonding – >90% of orthodontists in USA use direct bonding with light cured resins with a median fail rate of 5%
 - Clean the tooth – pumice to remove plaque and organic pellicle
 - Pre-select appropriate band size using patient plaster casts as a guide
 - Remove separators, trial seat and adapt the bands to the teeth
 - Remove bands and thoroughly clean and dry teeth and band before bonding
 - Cover occlusal openings with tape, fill attachments and tubes to prevent obturation with cement
 - Label bands, mix cement, apply to inner surfaces of bands
 - Seat bands in ideal position, clean off excess cement with cotton rolls, pellets, and scalers
 - Keep cement layer between tooth and band as thin as possible

- Enamel surface preparation
 - Use cheek retractors and saliva ejector to keep area dry, better environment for adhesives
 - Etch 37% phosphoric acid (blue to contrast with tooth, gel so it stays on tooth) for 15s anterior, 30s posterior, rinse thoroughly, dry thoroughly – etched areas should appear frosty white (if not, etch again)
 - Apply thin coat of primer
 - Have adhesives on bracket before placement – adhesive pre-coated brackets are available
 - Place slight excess adhesive on bracket base, place bracket on tooth in correct position
 - Bracket at midpoint of clinical crown, tie wings parallel to long axis
 - Push bracket firmly toward tooth surface – extrudes excess cement
 - Remove excess adhesive with explorer or scaler
 - Check vertical position using a bracket gauge
 - Light cure from ALL sides – time depends on bracket type, adhesive, and light source
 - Recheck bracket position
 - Tie in archwires

Debanding/Debonding

- Debonding – band remover pliers
- Debonding metal brackets
 - Debonding pliers – used to deform metal base to collapse bracket
 - Lift-off debonding pliers – high risk of enamel damage
 - Weingart pliers – used to deform metal base to collapse bracket
 - Ligature wire cutter
- Debonding ceramic brackets – increased risk of shattering (danger to eyes)
 - Position tips against mesial and distal sides of brackets
 - Gently squeeze bracket until it collapses
 - Gently rock mesial/distally to completely separate from enamel
 - Ideally, adhesive stays on the tooth (bond between bracket/adhesive should be weaker than between tooth/adhesive)
- Post-debonding polishing
 - Spiral fluted carbide finishing bur in low speed with light pressure and painting motion
 - Prophy paste or pumice slurry with rubber cup
 - Brown and green polishing cups for highly polished final clinical appearance
 - Prophy polisher for enamel polish – optimum at 6,000rpm, no air/water spray necessary for cooling
Clinical Example
- Remove bracket by creating fracture between adhesive and bracket base
 - Keep archwire in place – pop off brackets THEN remove the bands (holds everything in 1 piece)
- Break cement attachment, life band off tooth by elevating buccal and lingual surfaces with band-removing pliers
- Remove excess adhesive, polish tooth

Polishing Effects

<table>
<thead>
<tr>
<th>Surface cleaning</th>
<th>Acid etch</th>
<th>Low speed</th>
<th>High speed</th>
<th>Polish</th>
<th>Enamel thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>5um</td>
<td>7-20um</td>
<td>10um</td>
<td>20-25um</td>
<td>10um</td>
<td>1500-2000um</td>
</tr>
</tbody>
</table>

Take Home
- Separators create space between teeth for band fitting and cementation
- Bands routinely used only for teeth that require attachment of intraoral or extraoral appliances
- Brackets used on all other teeth, can be bonded to enamel and non-enamel surfaces
- Ortho fixed appliances causes minimal enamel wear/loss
Treatment Timing
- 2 phase treatment for problems that are appropriate for early referral/treatment
- 1 phase treatment for problems solvable in early permanent dentition

Progressive Discrepancy
- Increase in problem severity/treatment difficulty over time
 - Recommend 2 phase treatment
- Habits (thumb/finger sucking) – hard to break habit after age 9, especially in females
- Anterior crossbite – fix before incisal facial wearing affects esthetic appearance
- Mild/moderate class III – palatal arch expansion/headgear
 - Severe class III requires surgery
- Moderate/severe space deficiency – arch expansion
 - Extraction of primary teeth for temporary solution
- Unilateral posterior crossbite with shift – Intervene before TMJ remodels
 - If the TMJ remodels, will make shift permanent

Stable Discrepancy
- No increase in problem severity or treatment difficulty over time
 - Recommend 1 phase treatment
- Mild/moderate crowding
- Most class II problems (with mixed dentition and no significant spacing concerns)
- Deep bite – only if you see a soft tissue effect
- Mild open bite
Biomechanics

Important Concepts
- Force = mass x acceleration = load applied to an object that tends to move said object
 o Major components
 ▪ Magnitude (N) = in ortho, measured in grams [negligible in tooth movement]
 • Varies with type of tooth movement
 • Light, continuous forces considered most effective in inducing tooth movement, undermining resorption occurs if too great a force is applied too fast
 o Tipping = 35-60gm
 o Translation = 70-120gm
 o Root uprighting = 50-100gm
 o Rotation = 35-60gm
 o Extrusion = 36-50gm
 o Intrusion = 10-20gm
 ▪ Direction – X, Y, Z components
 • Force is a vector, can be broken down into its directional components
 ▪ Point of Application – one point along line of action (ortho bracket)
 • Moment = tendency of a body to rotate when force is applied
 o Units = Nmm (gmm), direction is either clockwise or counterclockwise
- Center of Resistance
 o Ideally 1/3 distance from alveolar crest to apex
 o For multirooted teeth, center of resistance is just apical to the furcation
 o For individual tooth, center of resistance doesn’t change unless apex or crestal bone changes
 o Consider
 ▪ Number of roots
 ▪ Degree of crestal bone loss
 ▪ Root/apical resorption
- Center of Rotation
 o Point at which rotation occurs
 o Most often does not match center of resistance, but is possible

Results of Force Application
- Pure translation
 o Center of rotation at infinity (far away from the tooth) – essentially no rotation
 o All parts (root and crown) moving in the same direction
- Pure rotation
 o Center of rotation = center of resistance
 o Root and crown move in opposite directions
- Controlled tipping
 o Center of rotation just apical or matching root apex
 o Tipping, both crown and root moving in same direction
- Uncontrolled tipping
 o Center of rotation between center of resistance and root apex
 o Tipping, crown and root moving in opposite directions
Fixed Appliances
- Type of movement depends on moment to force ratio
- Most forces applied to crown = causes tipping motion
 - To get desired motion:
 ▪ Increase magnitude
 ▪ ID center of rotation, place in desired location (control moment/force ratio)
- Moment/force ratio
 - Translation – create a moment and apply it so it cancels out the moment caused by primary force
 ▪ Using a thicker wire fully engages slot – allows placement of center of rotation more
 towards infinity (further from the root)
 - Final result ultimately based on biological response of teeth and tissues (perio, bone, etc)
 - Magnitude of force is vital

Removable appliances
- Only tipping motions, usually uncontrolled tipping

Biomechanical Examples
- Intrusion arch – used when there is a deep bite promoted by all teeth (very rare)
 - Fx – proclines incisors, distally tips molars (not seen in type 1)
 - Fy – anterior intrusion, molar extrusion
 - Fz – not significant
- Power chain space closure
 - Fx – canine moves distally, molar moves mesially
 - Fy – not significant
 - Fz – canine rotates distolingually, molar rotates mesiolingually
 ▪ Always use 2 parameters when describing rotation – surface/cusp and direction it is moving
 ▪ Prevent rotation with stainless steel ties
- Class II elastics
 - Fx – Mx canine moves distally, Mn molar moves mesially
 - Fy – extrusion of both canine and molar
 - Fz – Mn canine rotates distolingually, Mx molar rotates mesiolingually
 ▪ Place elastic on lateral incisor and 2nd molar – greater X component, smaller Y component
- Class III elastics
 - Fx – Mn canine moves distally, Mx molar moves mesially
 - Fy – extrusion of both canine and molar
 - Fz – Mn canine rotates distolingually, Mx molar rotates mesiolingually
- Molar uprighting from orthodontics – takes 6-12 months
 ▪ Improves direction and distribution of occlusal loads (increases restoration durability)
 ▪ Decreases tooth reduction needed for parallel abutments
 ▪ Decreases probability for endo, perio, or advanced prosth procedures
 ▪ Removes plaque-retentive areas – increases perio health
 ▪ Improves alveolar contour and crown/root ratio
 - Fx – not significant
 - Fy – anterior intrusion, molar extrusion
 - Fz – uprights molar, proclines anterior segment
Anchorage

Principles
- Differential force theory – rate of tooth movement related to force/unit area of root surface
 - Tooth with more root surface area have higher resistance, therefore higher anchorage
- Relationship between surface area and tooth movement is NOT linear
- Tooth movement increases with increased applied force, but has a maximum
- Optimal level exists after which there is no increase in movement, only in strain on anchor units

Assessing Requirements
- Anchorage available in an arch is related to space in that arch, usually an extraction space
 - How much space is needed to complete the correction?
 - How much might the anchor teeth move?
- Group A – anterior retraction
 - High anchorage needed in posterior – maximum posterior anchorage
 - Retraction of anterior teeth without mesial posterior tooth movement
- Group B – equivalent retraction/protration – reciprocal anchorage
 - Moderate anchorage needed in posterior
 - Equal movements of anterior and posterior movements distal and mesial, respectively
- Group C – posterior protraction – maximum anterior anchorage
 - No anchorage in posterior
 - Protraction of posteriors without distal movement of anterior teeth

Anchorage Control
- Differential response to pressure allows for moving some teeth more than others, though unwanted tooth movements will still occur
 1. Reinforcement
 - Addition of teeth to anchorage unit – increases root surface area, dissipating force over more teeth
 - Addition of teeth from opposite arch via elastics (intermaxillary traction)
 2. Subdivision of desired movement
 - Pit resistance of a group of teeth against movement of single tooth
 - Move canine back individually, add it to anchorage group, then move back incisors
 3. Friction control strategies

Supplemental Anchorage
- Extraction decision
- Non-dental sources of anchorage – if structures other than teeth are used for anchorage, possible to produce wanted movement without creating any unwanted movement
 - Intraoral sources
 - Mucosa and underlying bone
 - Pendulum/pendex appliance – moves posterior teeth back without moving other teeth too far forwards
 - Nance appliance
 - Soft tissue and perioral musculature
 - Lip bumper
Orthodontics I Course Review

Orthodontics I Course Review

Enoch Ng, DDS 2014

- **Extraoral sources**
 - Forehead, basal bones
 - Protraction facemask – reverse pull headgear, anteriorly pulls Mn forwards
 - Cranial vault, occipital bone, neck
 - Headgear – posterior forces Mx back
 - Has an inner and outer bow
 - Inserts into headgear tube on molar band
 - Exerts distal force on molars
- **Skeletal (absolute) anchorage**
 - Temporary anchorage devices
 - Osseointegrated implants
 - Palatal implants need 3-6 months to osseointegrate
 - Miniscrews – titanium screws that penetrate through gingiva into alveolar bone, but no osseointegration needed (can be loaded immediately)
 - Distalize anterior teeth w/o moving molars forward (good for severe class II)
 - Absolute intrusion – must be placed on both B and L to avoid tipping tooth
 - Miniplates/bone anchors – placed beneath soft tissue, usually in zygomatic buttress area of Mx

Uses of Headgear

- **Orthodontic anchorage**
 - 100g/side
 - Hold position of Mx posterior teeth in the arch
- **Tooth movement**
 - 150-250g/side
 - Distalize Mx molars
- **Growth modification**
 - 500g/side
 - Create differential growth between Mx and Mn
- **Vertical effects of headgear can negate forward Mn growth**

- **High pull – occipital**
 - Level of force through the center of resistance = backward upward translation of molar
 - If combined with short facebow and a Mx splint, causes Mx rotation
 - Level of force below or above center of resistance = crown or root tipping
- **Low pull – cervical**
 - Level of force through center of resistance = backward downward translation of molar
 - Level of force below or above center of resistance = crown or root tipping
 - Negative effect = clockwise movement of Mn
- **Straight pull – both occipital and cervical**
 - Level of force through center of resistance = backward translation of molar
Class I Treatment

US Population
- 30% normal occlusion
- 50-55% class I malocclusion
- 15-20% class II malocclusion
- 1% class III malocclusion
 - Etiology – genetics, tooth size discrepancy (Bolton analysis), big/small jaws, # of teeth, shape of teeth, inappropriate function, rotations, vertical problems, condylar fractures, congenital anomalies, etc

Treatment Planning Factors
- Chief complaint
- MHx, medications
- Internal motivation, realistic expectations
- Perio, prosth, restorative, other dental needs
- Crowding, incisal position/inclination, Bolton discrepancy, OJ, OB, transverse and vertical relationships
- Facial proportions, soft tissue
- Growth potential
 - Class I malocclusion patients don’t need any growth modification

Treatment Timing for Class I
- No need to modify growth
- Usually best started in late mixed/permanent dentition stage
 - Minor problems can be fixed later (Adult stages – avoid uncompliant teen stage)
- Transverse problems (orthognathic problems) should be treated earlier
 - Orthopedic palatal expansion before palatal suture closes
 - Lateral and anterior shifts treat immediately before TMJ remodeling to avoid permanent assymetry
 - Lateral shift – unilateral crossbite where there is actually bilateral crossbite, bit hidden by shift
- Vertical growth problems (habits) may need to be addressed earlier
 - Open bites are more problematic than deep bites, unless there is perio damage or palatal impingement
- Severe crowding (>10mm) may benefit from serial extraction in mixed dentition stage

Potential Problems and Treatments
- Arch-space discrepancy
 - Crowding – IPR, extractions, dental and/or skeletal expansion
 - Spacing – close spaces (retention, Bolton analysis, anchorage requirements, restorative plan)
- Antero-posterior discrepancy – no posterior discrepancies in Class I malocclusion (molar relationship), so problems are in anterior region
 - Skeletal class I – normal ANB and facial convexity
 - Dental class I – class I molars
 - Bimaxillary dentoalveolar prognathism (Jaws are in Class I, but are prognathic to cranial base – common in African Americans) – extraction
 - Anterior crossbite – extraction, incisor advancement, Bolton
 - Excessive OJ – incisor advancement, space closure, Bolton
Orthodontics I

Course Review

Enoch Ng, DDS 2014

- Transverse discrepancy
 - Posterior crossbite (buccal and lingual crossbites) – lingual crossbites more common
 ▪ Skeletal posterior crossbite – Mx expansion via opening of midpalatal suture
 ▪ Dental posterior crossbite – removable appliances, expanding archwires, cross elastics
 - Bilateral buccal crossbite (scissors bite) – Mn completely tucked under Mx – very rare
 ▪ Scissors bite – dental expansion of Mn arch, constriction of Mx arch, surgery

- Vertical discrepancy
 - Deep bite
 ▪ Incisor intrusion, leveling curve of Spee, extrusion of posteriors to open the bite
 - Anterior open bite
 ▪ Extraction mechanics usually deepens bite (wedge theory)
 ▪ Surgical impaction of Mx for gummy smile, reduce lip strain
 ▪ Incisor extrusion, level curve of Spee, intrusion of posteriors to deepen the bite

- Tooth anomalies (form, #, position)
 - Open/consolidate space of missing teeth
 - Create space for impacted teeth, then expose/bond and bring into the arch
 ▪ Open the space first before asking the surgeon to expose the canine

- Soft tissue problems
 - Bimaxillary dentoalveolar prognathism
 - Lip/mentalis strain (strain when lips are sealed together) – 1st premolar extraction. retract anteriors
 - Gummy smile
 ▪ Short upper lip – nothing can be done to treat, everything looks good but when they smile there’s lots of gingiva displayed
 ▪ Upper lip hypermobility – treat with botox
 ▪ Gingival hyperplasia – perio surgery

Extraction vs Non-Extraction

- 0-4mm crowding = IPR, expansion, incisor advancement and proclination
 - Only extract if there is severe incisor protrusion or severe vertical discrepancy
 ▪ Also for patients with bimaxillary prognathism who want their “full lips” corrected
- 5-9mm = both non-extraction and extraction techniques
 - Extraction dependent on patient’s hard and soft tissue characteristics, incisor position/angulation
 - Nonextraction requires transverse expansion across molars and premolars
- >10mm = premolar extraction needed

Extraction Options

- Option 1 – extract 4s (1st premolars)
 - Maximum posterior anchorage, maximum retraction of anterior teeth
 - Good for bimaxillary prognathism
- Option 2 – extract 5s (2nd premolars)
 - Less anchorage, less anterior teeth retraction
 - More difficult to correct anterior crowding
 - Can help treat open bites – “wedge theory” = 5s are closer to hinge; let molars move mesial to close anterior openbite
 - Good for open bites and hyperdivergent Mn (steep Mn plane)
- Serial Extraction – patients who fit all criteria are very rare
 - First extract certain deciduous teeth, then later on some permanent teeth
 - Does NOT avoid braces – avoids CROWDING
 - Common for people with congenitally missing 2nd premolars with crowding
 - For skeletal class I, normal OB (or open bite tendency), severe crowding (>10mm), all teeth present radiographically with good eruption positioning
 - Patients between 8-9y/o, incisors are crowded
 - Subsequent orthodontic treatment REQUIRED

- Dewel’s Method
 - Very simple, but has lots of risks – rarely done because of the risks
 - Extract deciduous canines to create space for incisors (tongue pressure will usually align incisors)
 - Extract deciduous first molars to aid in quick first molar eruption
 - Extract first premolars to create space for canines
 - Modified Dewel’s
 - First premolars are enucleated during extraction of first deciduous molars – expedite eruption of canines (more often used in Mn)
 - Risks
 - Deepening the bite
 - Possible loss of space via mesial migration if there is an eruption delay
 - Poorly executed serial extraction may worsen the case

Other methods to resolve crowding
- IPR – consider when, how, and where to do IPR
- Mx Expansion – requires seeing if the palatal suture is closed already (age 13-15)
 - Slow? Rapid? Surgically assisted (SARPE – surgically assisted rapid palatal expansion)?
 - True expansion? Dental expansion?
 - Other considerations – appliance design, nasal cavity, retention, etc

Appliances
- Fixed
- Removable
 - Invisalign – alone or combined with regular braces
 - In-house active trays
 - Spring aligners
 - Active retainers

Class II Treatment

Treatment Planning Factors
- Same etiology as Class I, except there is an A-P posterior dysplasia
 o Requirement to ID which jaw is at fault
 o Need to understand growth potential and patient compliance
- For orthognathic patients, need to ensure growth completed before surgery
 o Take cephalometrics every 6 months and superimpose to check for completed growth

Potential Problems
- Antero-posterior discrepancy
 o Increased ANB and facial plane
- Class II Division I
 o Dental problems
 ▪ Class II molars and canines
 ▪ Excessive overjet, often flared incisors
 ▪ Can be deep, normal, or open bite
 ▪ Subdivisions (left or right)
 o Skeletal Problems
 ▪ SNA and SNB
 • Greater SNA – Mx prognathism
 • Greater SNB – Mn retrognathism
 • Can also have combination
 ▪ ANB > 4°
 ▪ Facial convexity greater than 15°
 o Habits
 ▪ AAPD – thumb sucking for ≥ 3 years to cause malocclusion
- Class II Division II
 o Dental problems
 ▪ Class II molars and canines
 ▪ Incisors retroclined, limited overjet
 ▪ Lateral incisors/canines flared labially
 ▪ Subdivisions (left or right)
 o Skeletal problems
 ▪ SNA and SNB
 • Greater SNA – Mx prognathism
 • Greater SNB – Mn retrognathism
 • Can also have combination
 ▪ ANB > 4°
 ▪ Facial convexity greater than 15°
 ▪ Often with hypodivergent growth pattern and DEEP bite
Class II Treatment Strategies

- Growth stimulation – larger than what would normally be, causes MORE growth in a period than would have been expected without treatment
 - Does NOT occur in orthodontics
- Growth modification – differential acceleration of growth (functional appliances) or restraint of growth (headgear) – headgear effect = functional appliances tightens lips, restrains Mx growth
 - THIS is used in orthodontics

 - Differential growth
 - Facilitation of growth – functional appliances worn for 16-20h/day
 - Restraint of growth – headgear worn for 12-14h/day (better/easier compliance)
 - 150g force to move molars
 - 500g force to cause skeletal effect
 - High pull – good for open bite, moves teeth posteriorly and intrudes them
 - Cervical pull – good for deep bites (hypodivergent, flat Mn plane, horizontal growth), moves teeth posteriorly and extrudes them
 - Combination – for people with a good bite, moves teeth backwards only

- Dental movement
 - Dentoalveolar compensation
 - Used when extractions are not indicated
 - For mild problems (50% for class II molars)
 - Better for growing instead of non-growing patients
 - Class II mechanics – tends to bring forward Mn and procline Mn incisors
 - Is UNSTABLE if excessive tooth movement occurs
 - Molar distalization
 - Headgear, fixed molar distalizers, trans-arch distalization
 - Mild skeletal problems, designed to finish with class I molars and canines
 - Only used if facial height permits
Orthodontics I Course Review Enoch Ng, DDS 2014

- Extraction therapy
 o Mild/moderate compromised skeletal relationship
 o Usually involves upper first premolars
 o Designed to finish in Class I OR class II molars, only class I canines
 ▪ Decisions options – facial appearance, degree of crowding/protrusion and proclination of Mx incisors, open bite tendency
 o Extraction of Mx 4’s – correct malocclusion while making the soft-tissue discrepancy less apparent
 ▪ Resolve Mx crowding, less compliance required
 ▪ Finish in Class I canines, class II molars
 o Extraction of Mx 4’s and Mn 5’s
 ▪ Lower anteriors with moderate crowding or proclined
 ▪ Lower 2nd premolar space used for correcting crowding/retraction of anteriors as well as to mesialize into Class I
 ▪ Finish in Class I canines and class I molars
 o Extraction of Mx 4’s and lower incisors
 ▪ Adults with moderate/severe lower anterior crowding
 ▪ Resolves crowding to get class I canines
 ▪ Bolton discrepancy created – may finish with excessive overjet

- Orthognathic therapy
 o For patients who have stopped growing and/or to camouflage extraction treatment is not indicated
 o Pre-surgical orthodontics (decompensation) for 12-18 months, then post-surgical treatment to finalize occlusion (6 months)
 o Importance of clear treatment plan – direction of tooth movement and extraction pattern, definitive and cannot be reversed
 o Typical procedures include BSSO and/or LeFort I Maxillary impaction
 o Mandibular advancements up to 12mm are possible
 o For severe problems, mandibular advancement can be done at age 14-15 (psychosocial aspect)

Summary
- Extraction treatment can be effective if used when indicated
- Non-extraction treatment with excessive movement of teeth within their bony bases is unstable
- Orthognathic surgery when problems are severe or not suitable for growth modification (adults) or extractions
Class III Treatment

Treatment Planning Factors
- <1% of the population, same etiology as others, except there is a strong genetic/hereditary component
 - Check for mom and dad’s history of ortho treatment, compliance, etc
- Mesial relationship of Mn teeth to Mx arch
 - Know the cusp/fossa relationships of class I, II, and III
 - ANB <2° – overjet is end-to-end or negative
 - Straight to concave profile
- Potential dental compensations – because of function (eating, speech). May be associated with GERD, may have speech pathology
 - Proclined Mx incisors
 - Retroclined Mn incisors
- Very common conditions in craniofacial patients

Potential Discrepancies (Not just these 3, best to intervene early)
- Class III dental – anterior crossbite, retroclined Mn incisors, pseudo class III
 - Treat early
- Class III skeletal (growing patient) – Mx retro, Mn prognathism
 - Treat early, growth modification, Mx protraction/chin cup
- Class III skeletal (non-growing patient) – Mx retro, Mn prognathism
 - Treat later – potential surgery

Treatment Planning Factors
- Chief complaint
- Medical history/medications
- Internal motivation, compliance, realistic expectations
- Perio, prosth, restorative, other restorative needs
- Crowding, incisal position/inclination, Bolton discrepancy, OJ/OB, transverse and vertical relationships
- Facial proportions and soft tissue
- Growth potential
- Growth modification should be done early, treat before age 10
 - Need to differentiate true Class III from pseudo class III (class I with anterior shift when closing, causing appearance of class III)
- More significant skeletal discrepancies may need to be monitored until growth is completed
 - Skeletal assessment – 6 month serial cephalometrics, no skeletal changes is gold standard
- Continued Mn growth during treatment or after treatment makes prediction of class III treatment difficult
 - Class III treatment is potentially the most complicated and difficult treatment
 - Post-pubertal Mn growth can mis-align jaws/teeth, even after ortho therapy. Some orthos leave excessive overjet (similar to class II) to compensate for future post-pubertal Mn growth
- Pseudo Class III – CR/CO discrepancy, anterior shifting of the Mn forward, commonly due to anterior interference even though patient is class I
Class III Treatment Strategies

- Consider questions
 - Skeletal discrepancy, dental, or both?
 - Is a shift present?
 - Which jaw is at fault? Or both?
 - Mild, moderate, or severe?
 - For severe cases, intervene quickly with growth modification, or else expect an orthognathic case – mild/moderate is case dependent
 - Growth and growth potential?

- Differential growth
 - Differential promotion of growth – protraction facemask (reverse pull headgear)
 - 250-450g, 12-14h/day, downward and forwards force
 - Promotes forward movement of Mx teeth relative to Mx, downwards ad backward rotation of Mn
 - Create hyperdivergent Mn plane, hard to treat Class III open bites because of this
 - Indicated for normal positioned teeth, retrusive upper incisors, brachyfacial (short face form)
 - Differential growth restraint/redirection – chin cup, functional appliance
 - Chin cup – 350-450g, 14-16h/day, redirected Mn growth downwards
 - Increases facial height for decreased chin prominence, works best for brachyfacial patients (best for Class III with deep bite)
 - Functional appliance
 - Similar to chin cups – rotates Mn downward and backwards
 - Only redirects growth, doesn’t stop/promote growth
 - Requires 20-24h/day, is a compliance problem

- Dental movement
 - Dentoalveolar compensation – elastics, only for moderate tooth movement within the socket
 - Mild problems
 - Finish up treatment
 - Can be used on growing or adult patients (works better on growing patients)
 - Results are unstable if used to create excessive tooth movements
 - Mx dental protrusion/Mn dental retrusion

- Extraction therapy
 - Mild to moderate compromised skeletal relationship
 - Usually involves lower first premolars
 - Finish in class I molars and canines OR class I canines and class III molars
 - Extraction of Mx 5’s and Mn 4’s
 - Lower anteriors with moderate/severe crowding/proclination
 - Upper 2nd premolars used to mesialize molars to class I
 - Finish with canine and molar class I
 - Lower incisor extraction
 - Often in adults with moderate/severe lower anterior crowding
 - May or may not mask skeletal appearance
 - Creates a Bolton discrepancy – only corrects anteriors, ends with class III molars
- Orthognathic surgery
 - For when patient has stopped growing, or camouflage extraction treatment is not indicated
 - Pre-surgical orthodontics (decompensation) for 12-18 months
 - Patient will look worse before they look better because of decompensation
 - Ortho to correct teeth in relation to jaw, then orthognathic surgery will relate jaws correctly
 - Post-surgical, keep braces on for minor modifications, will use lots of elastics
 - Post-surgical finalization for 6 months
 - Importance of clear treatment plan – direction of tooth movement and extraction pattern