Extensive Amalgams

- Indication	าร
--------------	----

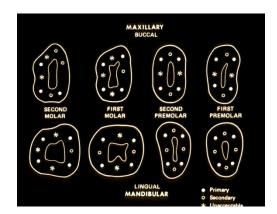
- Caries control
- Questionable prognosis
- o Foundation/build-up
- o Economics
- o Replacement of restorations
- Extensive primary caries
- Unable to obtain isolation

- Disadvantages
 - Difficult to restore occlusion/proximal contours
 - Supplemental retention features required
 - Unpredictable longevity

- Principles of Preparation (ORRC-CEC)
 - Outline
 - Resistance
 - Resist fracture of remaining tooth structure
 - Remove unsupported enamel
 - Remove weak cusps
 - Resist fracture of amalgam
 - Bulk of amalgam to resist occlusion
 - Cavity wall orientation perpendicular to occlusal force
 - Retention
 - Opposing axial walls diverge gingiva-occlusally
 - Occlusal walls converge pulpal-occlusally
 - Box form supplemental on facial/lingual
 - Amalgam slot/pin (need stable matrix band)
 - Dentinal post (need stable matrix band)
 - Pins (increase retion, MAY decrease resistance)
 - o Convenience
 - Caries removal
 - Remove decay closest to pulp LAST
 - Enamel margin
 - Clean prep

- Amalgam Selection

- Blended alloy (dispersalloy)
- Spherical alloy (tytin)
 - High early compressive strength <24h
 - Easier, NOT better, adaptability
 - Difficult to achieve proximal contact
 - Gingival overhangs more likely
 - Less condensation force required


- Amalgam Condensation
 - o Condensaire
 - Less likely to dislodge unstable matrix
 - Good for large class V preparations

- Matrix application
 - Tofflemire #2 band
 - Tofflemire and shim
 - Copper band
 - o "T" band

Threaded Pins

- Indications
 - o Inadequate tooth structure to retain amalgam
 - Questionably matrix stability don't stabilize matrix; are more tolerant of unstable matrix
- Contraindications
 - High risk of pulpal/external perforation
 - Non-vital teeth
- Threaded pins
 - o Gold plated self-threading placed in undersized pinhole
 - Convenient to use
 - Variety of sizes and instruments
 - 2 in 1
 - Self-shearing
 - Latch contangle accessories
- Use of Pins
 - Tooth must be large and have adequately think dentin
 - Pin too large = fracture tooth
 - Pin too small = insufficient retention
 - Mn anterior/Mx lateral dentin too think for large pin
 - Pin should be in dentin dentin is elastic, enamel is not
 - 0.5mm from DEJ, equidistant between tooth surface and pulp prevent fracture, pulp perforation
 - Near line angles of tooth prevent lateral perforation
 - 0.5mm from vertical wall allow drilling/placement without lateral interference, allow amalgam condensation around pin
 - 2mm deep into dentin occlusally provides optimal retention-depth
 - o 1 pin per missing retentive feature or per cusp, max of 4 pins
 - Must be spaced at least 2mm apart, optimally 5mm apart
 - Too many pins weaken tooth, increase risk of fracture
 - o Placement should parallel contour of tooth prevent lateral perforation
 - o Pin covered by 2mm of amalgam occlusally prevent excessive stress concentration
 - Pin embedded in carved amalgam at least 1mm laterally allow proper contouring, maximum retention
- Potential Problems
 - Perforate pulp
 - o Perforate periodontium
 - Fracture dentin and/or enamel

o Tractare definitional of channel	
- Technique	- Pin depths
 Slow-speed with latch-type contrangle 	 Cemented – 3mm into dentin, 2mm exposed
 Self-limiting twist drill 	 Friction lock – 3mm into dentin, 3mm exposed
Self-shear pin	 Threaded – 2mm into dentin, 2mm exposed
 Pin bender (if needed) 	

Bonding Amalgam

- Indications		- Contraindications
	Compromised cusp	 Inadequate isolation
	Wide isthmus	 Unsupported enamel
	Deep pulpal floor	
	Excessive lateral occlusal forces	
	Supplemental retention	
	Does not substitute for conventional	
	retention	
	 Bond strength ½ composite bonding 	
C	Reduce post-op pulpal sensitivity	
- A	dvantages (in vitro studies)	- Disadvantages
	Improved retention	 Additional time and expense
	Reinforcement of compromised tooth	 Highly technique sensitive
	structure	 Inconclusive in vivo results
	Increase in cuspal flexure of MOD	
	somewhat offset with bonding	
	 Bonding does not replace retention 	
	form of preparation	
C	Reduced post-op sensitivity	

- Procedure

- o Etch enamel and dentin for 15s, rinse 10s, blot dry excess water
- o Single bond 2x consecutively, dry 2-5s, cure 10s
- o Brush cement onto all cavity prep surfaces (SAVE cement dispensing cap)
- o Condense amalgam before cement sets, clean all instruments before amalgam sets
- o Carve/burnish as per usual

Composite Resin

- Advantages		- Disadv	vantageous	
	 Esthetics 		0	Absolute isolation needed
	 Lesion spe 	cific restoration	0	Difficult to achieve proximal
	■ Str	ructural preservation		contact/contour
	■ No	gross mechanical retention	0	Polymerization shrinkage
	■ No	material requirements		Marginal leakage
	 Low therm 	al conductivity	0	Cost – difficult, time consuming
	 Bonds to e 	namel and dentin	0	Demanding technique – bonding,
	■ Ne	early 100% recover of tooth strength		placement
	■ No	marginal leakage	0	Resistance by older dentists
		 Staining 		
		 Secondary caries 		
1	 Repairable 	•		

- Procedure

- o Wedge both sides of the tooth
- o Proximal clearance should be 0.65-1.00mm (0.30-0.65 for gingival seat)
- o Enhance = darker, finish
- o Pogo = whiter, polish

Direct Composite Extensive Restorations

- 2 milestones in adhesive dentistry
 - Acid-etch technique (1955)
 - o First commercial composite resin (1964)
 - Resin matrix
 - Inorganic filler
 - Coupling agent (silane) bond filler to resin
 - Pigments
 - Polymerization initiators (light or chemical)
- Anterior Restorations
 - o Esthetics different shade for enamel and dentin
 - Optical characteristics of enamel and dentin, such as translucency and fluorescence, make color match very difficult
 - Shades
 - Dentin more opaque
 - Enamel more translucent
 - Body intermediate opacity
 - o Translucency (relative amount of light that passes through an object) degree depends on patient age
 - Dentin = 52.6%
 - Enamel = 70.1%
 - Fluorescence (form of luminescence, absorption of UV and spontaneous emission of visible light in blue spectrum, contributes to VITAL aspect of natural teeth)
 - Central incisor symmetry
 - o Characterization mamelons, incisal halo, crack lines, white spots, etc
 - Surface gloss (finish)
 - o Resistance to abrasion more important than resistance to wear

- Shade	Matching	-	Procedure
0 0 0 0 0 0	Conventional shade guide Spectrophotometer (electronic shade guide) Hue = different colors Chroma = white to specific color (intensity) Value = white to black (grey scale) Filtek - only one opacity (body) Esthet.X - for shade layering, available in enamel AND dentin		 Bevel enamel cavo-surface angle Acid etch 15s, rinse, dry gently Single bond 15s, air dry Cure 20s, insert/shape composite, light cure increments of 2mm thickness Finish, check occlusion
- Matrix	s Systems Free hand Mylar strip/Matrix Band	-	Layering technique o Lingual enamel – transluceny o Dentin – opacity
0	Custom-made matrix – wax up and putty		 Buccal enamel – translucency

Pulpal Considerations

- Dentin a continuous fiber reinforced composite, with the intertubular dentin as the matrix and the cuffs of peritubular dentin forming the cylindrical fiber reinforcement
- Dentin regarded as a porous biological composite made up of apatite crystal filler particles in a collagen matrix
 - o 50% mineral
 - o 30% organic
 - o 20% water
- Dentinal tubules get larger as you approach the pulp chamber

-

- Secondary dentin secreted after root formation complete, slow rate throughout life
- Reactionary dentin tertiary dentin matrix secreted by odontoblasts in response to an appropriate stimulus
- Reparative dentin tertiary dentin matrix secreted by new generation of odontoblast-like cells, after death of original odontoblast
- Smear layer physical barrier that prevents any material from contacting dentin surface
- Dentin some morphological features help prevent passage of bacteria and other potential pulp irritants
 - Neutralizes acid potent buffer system
 - o Tubular fluid under constant pressure outward (pulpal pressure)
 - o Anatomical area of dentinal tubule > functional area
- Pulp injury from operative procedures
 - Remaining dentin thickness (RDT) most important factor. Odontoblast injury increases as RDT decreases.
 Below 0.25mm, odontoblast # decreases 23% and forms minimal reactionary dentin.
 - Deeper cavity preps suppress odontoblasts less subsequent dentin formation at all time periods
 - o Bacterial leakage
 - 1927 enough evidence to cast doubt on acid theory of pulp irritation under silicate fillings
 - 1965 in rats, presence or absence of microbial flora major factor in healing of exposed pulps
 - 1987 in monkeys, so long as surface is sealed (ZOE), filling material doesn't affect pulpal irritation
 - Chemically toxic factors are LESS significant than bacterial leakage in causing pulpal injury
 - Toxic component of dental materials
 - Unpolymerized composite
 - High intensity curing light
 - Longer curing time with low intensity light less toxicity
 - Pressure and speed of handpiece
 - Increase in EITHER speed or pressure can produce significant intrapulpal temp increase over range of 7000-15,000 RPMs and 20-60g
 - Doubling either increases temperature 50% during finishing
 - Cavity dessication
 - Threaded pins
 - Temperature increase (no water cooling)

- Protecting Pulp
 - Deep dentin (<0.5mm RDT) and non-carious pulp exposure (without symptoms of irreversible pulpitis)
 - No base used to cap exposure persistent inflammation, delayed pulpal healing, failure of dentin bridging seen in human pulp directly exposed to bonding agents
 - Persistent inflammatory reaction and hyaline alteration of ECM inhibited complete pulp repair or dentin bridging
 - Use Ca(OH)₂ to cap exposure after 1 week, odontoblast-like cells organized beneath coagulation necrosis, pulp repair evolved into apparent complete dentin bridging in 60 days
 - Ca(OH)₂ liner (ex:// dycal), covered with RMGIC (ex:// vitrebond plus)
 - RMGIC does not cover ALL dentin surface, only the liner
 - Rest of restoration as normal, evaluate at each recall
 - Superficial and middle dentin (>0.5mm RDT)
 - No base needed
 - Ca(OH)₂ not recommended for superficial preparations
 - No therapeutic effect on superficial dentin
 - Weak mechanical properties
 - Low compressive strength, significantly weaker at 90 days than at 24h (as compared to Fuji lining, etc)
 - o Dycal bases for amalgams 50% softened after 1 year, 70% after 5 years
 - Easily dissolved by phosphoric acid
 - Prevents adhesive contact with dentin
 - Adhesive does NOT polymerize if it penetrates beneath Ca(OH)₂
 - Carious pulp exposure
 - Start immediate root canal treatment
 - If RCT not possible:
 - Pulpotomy
 - Sterile cotton pellet
 - Temporary restoration ZOE reinforced
 - Refer to endodontics

- Clinical diagnosis	- Prevention of pulpal complications
o Clinical exam	Avoid pins
 Spontaneous symptoms 	 Avoid cavity dessications
Vitality tests	 Avoid deep cavity preparations
 Radiographs 	 Use materials backed with scientific evidence
	 Have enamel margins (composites don't
	prevent micro leakage around dentin margins)
	 Have absolute isolation
	 Use abundant water cooling/refridgeration

All substances can be remedies or poisons depending on dosage and mode of application