Pain Pathways

- Can be blocked by blocking depolarization, conduction, or synaptic transfer
- Head/neck region takes up ½ of the homunculus

- Types of Anesthesia
 - Topical
 - Transdermal – applied with intent of deeper penetration
 - Infiltration – placed near tissue, diffused in
 - Local – placed to affect specific nerve trunk
 - Ideal LA
 - Water soluble
 - Non-irritating to nerve
 - Low systemic toxicity
 - Short induction
 - Adequate duration
 - No side effects
 - Vasoconstriction

- Neuroanatomy
 - Type A – pressure/motor
 - Type B – myelinated, boderate in size
 - Type C – pain/temperature

- Calculations per Carpal – 1.8cc per carpal
 - 1% = 10mg/cc
 - 1:1000 = 1.0mg/mL 1:100,000 = 0.01mg/mL

- Carpal contents
 - Anesthetic agent
 - Vasoconstrictor – epi or levonordefrin
 - Vasoconstrictor preservative – sodium metabisulfite
 - Isotonic NaCl
 - Note – methylparaben present in multidose vials – anesthetic preservative (slightly allergenic)

- Types of LA – aromatic lipophilic group and hydrophobic tertiary amino sandwiching an intermediate chain
 - Amides – have an “i” before “_caine”
 - Metabolized in liver, use low dose to avoid toxicity
 - Esters – all others (exception – piperocaine is an ester LA)
 - Metabolized in plasma via pseudocholinesterase
 - PABA is major metabolite – known allergen
 - Patients with atypical pseudocholinesterase may have systemic toxicity from ester Las

- Nerve Conduction
 - RMP = -80mV
 - Nerve excitation → increased permeability → Na⁺ influx → reaches firing threshold (-50mV) → action potential → peak (+40mV) → membrane becomes impermeable → K⁺ efflux, return to -80mV

- LA Mechanism
 - Depress depolarization
 - Blocks reaching threshold potential
 - Blocks AP formation – blocks Na⁺ channel influx (blocks action potential formation)
 - Blocks conduction
- Infected tissues have a lower pH
 - Non-ionized base crosses nerve membrane – less non-ionized base to cross membrane → less potent
 - pKa 9.1 – procaine
 - pKa 8.1 – bupivacaine
 - pKa 7.9 – lidocaine, prilocaine
 - pKa 7.7 – etidocaine
 - pKa 7.6 – mepivacaine
 - Lower pKa – more rapid onset
 - Increased lipid solubility – more potent
 - Increased protein binding – longer duration

- Vasoconstrictors
 - Attach and directly stimulate adrenergic receptors
 - Act indirectly provoking release of endogenous catecholamines from intraneuronal storage sites
 - Both

- Toxicity
 - Systemic
 - Inadvertent IV injection
 - Large quantities
 - Altered metabolism
 - Local response
 - Idiosyncratic reactions
 - Allergies
 - Agent (xylocaine)
 - PABA
 - Sodium metabisulfite (vasoconstrictor preservative)
 - Methyl paraben (agent preservative)

- Side Effects
 - Convulsions – self limiting
 - Treat with diazepam, barbiturate, succinylcholine
 - Respiratory depression
 - CV collapse

- No drug exerts only 1 effect
- No drug is without some toxicity
- Danger lies in hands of the user
Acute and Chronic Pain

- Acute pain – transient pain from noxious stimulus – protects from injury, promotes healing
- Chronic pain – spontaneous pain/hypersensitivity in association with damage/lesion to nervous system
- Anxiety – vague unpleasant emotional state, objectless
- Fear – anxiety with an object
- Phobia – intense, unreasonable fear

Neurons
- A-delta fibers – low threshold mechanoreceptors (crude touch, pressure, pain, temperature)
- C-fibers – nociceptive specific (pain, temperature, touch, pressure)
- A-beta fibers – wide dynamic range (touch, kinesthesia)

Types of Pain
- Central – emanates from CNS structures
- Referred – felt in area innervated by different nerve than mediates primary pain
- Projected – felt in peripheral distribution of same nerve that mediates primary nociceptive input

Conceptual models – biomedical vs biopsychosocial
- Biological
- Behavioural
- Emotional
- Social
- Cognitive
- Environmental
Local Anesthesia Administration

- Armamentarium = syringe, needle, cartridge
 - Syringe
 - Non-disposable
 - Breech loading, metallic, cartridge type, aspirating
 - Breech loading, plastic, cartridge type, aspirating
 - Breech loading, plastic, cartridge type, self-aspirating
 - Pressure syringe, PDL injection
 - Disposable syringe
 - Safety syringe
 - Computer controlled systems
 - Needle adapter
 - Piston with harpoon
 - Syringe barrel
 - Finger grip
 - Thumb ring
 - Needle – larger gauge = smaller internal diameter
 - 25G – red cap
 - 27G – yellow cap
 - 30G – blue cap
 - Long needle = 32mm
 - Short needle = 20mm
 - Cartridge (carpal)
 - 1.7/1.8mL (North America)
 - 2.2mL (UK, Australia)
 - Stored at room temp
 - NOT autoclavable, NOT soaked in ^OH, NOT exposed to sunlight

- Remove syringe → attach needle → retract piston and load carpal → engage harpoon → remove cap → landmark → insert → aspirate, rotate 90°, aspirate again → inject → remove → recap needle
 - Recap using scoop technique
 - Do not bend needles
 - Never insert needle to need hub depth
 - Place needles and carpal in sharps, do NOT remove needle adaptor

- Other armamentarium
 - Topical anesthetics – ointments, gels, pastes, sprays (metered and unmetered)
 - Best applied on dry tissue
 - Hurricaine spray
 - Dentipatch – lidocaine transoral delivery
 - Pre-injection – 10-15min before injection
 - Scale/root planning – 5-10min before procedure
 - Applicator sticks
 - Cotton gauze
 - Hemostat
Complications of LA

- Local pain
 - pH < 5.0
 - Cold temp
 - Rapid injection
 - ^OH contamination
 - Touching periosteum
 - Treat via careful administration

- Difficult anesthesia
 - Discuss with patient
 - Lots of LA
 - Block anesthesia
 - PDL, intrapulpal Las
 - Consider adjuncts (N₂O, IV sedation)
 - Consider local anatomy, systemic physiology

- Local Complications
 - Needle breakage
 - Unexpected patient movement
 - Needle size (25G – 30G)
 - Needle manipulation (bending)
 - Visible – remove
 - Invisible – refer to OMFS
 - Trismus
 - IAN, Akinosi, Gowgates, IM injection (M. pterygoid, temporalis)
 - Hemorrhage
 - Barbed needle
 - ^OH contamination
 - Moist towel 20min/hr
 - Physiotherapy, analgesia, R/O infection
 - Hematoma
 - Arterial/venous disruption
 - Less common in palate
 - Good anatomy knowledge
 - Apply pressure to site
 - Analgesics
 - Heat application (>6h post injection – vasodilatory)
 - Facial nerve paralysis
 - Deposition in parotid gland
 - Transient paralysis – protect cornea
 - Reassure patient, saline eye drops, eye patch
 - Self inflicted
 - Children and MR at high risk
 - Use short-acting LA (prilocaine)
 - Give good instructions
 - Closely observe
- **Post-anesthetic lesions**
 - Resemble HSV outbreak
 - Local trauma/hypoxia/necrosis
 - Activation of HSV
 - Reassure patient
 - Self limiting lesions – 10-14 day course
 - Provide analgesia

- **Epithelial dequamation**
 - Prolonged topical
 - High [] vasoconstrictors
 - Usually palatal mucosa
 - Resolution 7-10 days
 - Provide analgesics, saline rinses

- **Persistent paresthesia/anesthesia**
 - Nerve sheath trauma
 - Hemorrhage around neural sheath
 - Usually lingual nerve following IAN block
 - Explain pathophysiology
 - Explain normal nerve recovery signs – tingling, intermittent burning/sharp pain
 - Re-evaluate in 2 weeks, refer to OMFS if persistent
 - Document degree and extent if >2 months, refer to OMFS within 3 months of consultation

- **Nerve Injury** – compression, retraction, partial/complete severance
 - Type I (neuropraxia) – mild temporary conduction failure, no damage to nerve, no degeneration, recovery in 4 weeks, no intervention needed
 - Sunderland I
 - Type II (axonotemesis) – wallerian degeneration of axons, but nerve intact. Recover within 1-3 months, but never complete, surgery required.
 - Sunderland II – IV
 - Type III (neurotemesis) – complete nerve severance, degeneration, lose fasicular pattern, scar tissue formation, no recovery, surgery required
 - Sunderland V, VI
 - Neurona – disorganized collagen mass with randomly organized fascicles
 - Trigger point via Tinels test – tap nerve area and see if distal areas tingle – signifies regeneration
 - Spontaneous ectopic generation of impulses

- **Evaluating nerve injuries**
 - History/physical
 - Etiology
 - Onset and time course
 - Quantitative sensory examination, directional strokes, 2 point discrimination, pinprick sensation, thermal discrimination
 - Articaine = 2.5x more likely to cause paresthesia than prilocaine
- LA Overdose
 - Too large a dose
 - IV injection
 - Altered metabolism/excretion
 - Hepatic insufficiency
 - Renal dysfunction
 - Pseudocholinesterase for ester Las

- Dosing

<table>
<thead>
<tr>
<th>Name</th>
<th>pKa</th>
<th>Inset</th>
<th>Duration</th>
<th>Max Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procaine</td>
<td>9.1</td>
<td>Slow</td>
<td>45-90min</td>
<td>8-10mg/kg</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>7.9</td>
<td>Fast</td>
<td>120-240min</td>
<td>4.5-7mg/kg</td>
</tr>
<tr>
<td>Bupivacaine</td>
<td>8.1</td>
<td>Slow</td>
<td>240-480min</td>
<td>2.5-3mg/kg</td>
</tr>
<tr>
<td>Prilocaine</td>
<td>7.9</td>
<td>Mid</td>
<td>90-360min</td>
<td>5-7.5mg/kg</td>
</tr>
<tr>
<td>Articaine</td>
<td>7.8</td>
<td>Fast</td>
<td>140-270min</td>
<td>4-7mg/kg</td>
</tr>
</tbody>
</table>

- Articaine – same pKa and toxicity as lidocaine, \(t^{1/2} = \frac{1}{4} \text{ lidocaine} \)

- Systemic complications
 - Allergens
 - PABA in esters
 - Metabisulfite – vasoconstrictor preservative
 - Sulfa – articaine
 - Latex
 - Obtain accurate history
 - 1% diphenhydramine
 - Signs (low dose)
 - Lightheadedness, dizziness
 - Visual/auditory, disorientation, drowsiness
 - Tachycardia
 - Signs (high dose)
 - CNS excitation \(\rightarrow \) rapid CNS depression
 - Bradycardia
 - Convulsions/seizures
 - Syncope, coma, RS depression, CVS depression, collapse
 - Management
 - ABCs, supplemental \(O_2 \), activate EMS
 - Treat symptoms – 5mg diazepam/1mg midazolam IV (anxiety/convulsions)
 - Monitor vitals, cardiopulmonary resuscitation
 - Epi overdose signs
 - Fear, anxiety, headaches, restlessness, heart palpitations, tremors, seizures
 - Levonordefrin = 5x stronger than epi

- Methemoglobinemia
 - \(Fe^{2+} \rightarrow Fe^{3+} = Hb \) cannot release \(O_2 \)
 - Respiratory depression, syncope, cyanosis, chocolate brown arterial blood
 - Drugs that can cause methemoglobinemia – prilocaine, lidocaine, large dose nenzocaine
 - Treat with 1% methylene blue (1.5mg/kg)
 - Congenital methemoglobinemia – relative contraindication
Mandibular Injections

- **Block** – anesthetic near main nerve trunk, anesthetizes entire nerve distally
- **Infiltration** – anesthetic near distal fibers, only area that anesthesia is beside

- **IAN block** – Most often used, 10-15% aspiration, 15-20% failure
 - **Landmarks**
 - Coronoid notch/anterior ramus
 - Pterygomandibular raphe
 - Occlusal plane (6-10mm superior)
 - Medial aspect of Mn, near Mn foramen
 - **Inject** cross arch, by contralateral canine – 20-25mm deep, lingual N block on way out
 - **Failure**
 - Anatomic – too low, too anterior (needle hits ramus prematurely)
 - Hematoma, trismus, transient facial paralysis (injection in parotid gland)

- **Gow-Gates** – Mn nerve block
 - **Landmarks**
 - Lateral side of condylar neck – mouth must be wide open – bring condylar neck inferior
 - Distal to Mx 2nd/3rd molars
 - High of Mn 2nd molar ML cusp
 - **Inject** – cross arch, 25mm deep, as if trying to hit the ear

- **Akinozi** – Mn nerve block
 - **Landmarks**
 - High of mucogingival junction adjacent to Mx 3rd molar
 - Closed mouth, no bony landmarks
 - **Inject** 25mm deep

- **Long Buccal** – Mn posterior vestibule
 - **Landmarks**
 - Distobuccal of 3rd molar
 - Mucobuccal fold along ascending ramus/external oblique ridge
 - **Inject** 1-2mm deep

- **Mental Block** – LEAST frequently used, premolars forward, soft tissue anesthesia

- **Incisive Block** – premolars forward, pulpal anesthesia
 - **Landmarks**
 - Between apices of 2 premolars
 - Mucobuccal fold/just anterior to foramen
 - **Inject** with 25-27G short needle, 5-6mm deep

- **PDL injection** – special syringe to force anesthesia into small space
- **Intraosseous** – requires access into bone (drilling) at apex of tooth
- **Intrapulpal** – for acute pulpitis (hot tooth)

- **Charting**
 - Drug name, dosage, location of injection
 - Concentrations, LA agent, vasoconstrictor
Maxillary Injections

- Infiltration – most Mx “blocks” are infiltrations
 o Individual teeth – 1-2 teeth for pulpal anesthesia
 o Landmarks
 ▪ Root apex
 ▪ Mucobuccal fold
 o Inject syringe parallel to long axis of tooth, insert roughly 45° to Mx
- Posterior-superior alveolar – 3.1% aspiration (vessel plexus), molars
 o Landmarks
 ▪ Superior to 2nd molar
 ▪ Mucobuccal fold, no bony landmarks
 o Inject posteriorly, superiorly, medially, 15-20mm
 o Failure
 ▪ Hematoma
 ▪ Sometimes does not get mesial half of first molar
- Infraorbital block – canine to central incisor
 ▪ 72% get anesthesia of premolars and mesiobuccal root of 1st molar
 o Landmarks
 ▪ Over first premolar, lateral to canine (avoid zygoma)
 ▪ Infraorbital foramen
 o Inject 25mm, 0.9-1.2mL
- Nasopalatine – painful (apply pressure on injection, topicals, etc), canine to canine
 o Palatal approach
 ▪ Get incisive papilla, then palatal aspect of premaxilla
 o Labial approach
 ▪ Get labial frenum, then interdental papilla, then incisive papilla
 o Inject with ¼ carpal
- Greater Palatine – secondary hemipalate
 o Landmarks – distal to 2nd molar
 o Inject until tissue blanches
- Maxillary nerve block - hemimaxilla
 o Higher tuberosity approach – pterygopalatine fossa
 o Greater palatine approach – through greater palatine foramen
Treatment Plan Development

- pKa of LA usually means ½ exists as non-ionized form at physiologic pH 7.4
 - Remember – solubility determines onset (potency)
- Infection lowers tissue pH
- Maximum dosage is usually 2 carpals for CV complicated patients, 11 for normal patients
 - Healthy patient – 0.2mg
 - Cardiac patient – 0.04mg
 - 0.018mg epi in 1.8mL carpal, [1:100,000]
 - 0.01mg/mL ratio
- Diabetics
 - Type I – use 50% in morning, short acting
 - Type II – stop oral insulin prior day
 - Post-operative – insulin sliding scale (titrate insulin, don’t give too much)
 - Glucose check day of therapy
- N₂O contraindicated for pregnant women
 - Blocks B₁₂ absorption, needed for folate metabolism → thymidine, DNA base acid
- N₂O fine for asthma, COPD
- Seizures – hypoxia warning, precipitated by stress
 - N₂O is okay
 - O₂ is good
Nitrous Oxide

- Anxiety most frequent factor for office medical emergency
 - Combined with labile patient, can produce medical crisis
 - Use anesthesia, analgesia, anxiolysis agents

- Anesthesia – loss of sensation
- Analgesia – loss of pain sensation, pain relief without loss of consciousness
- Anxiolysis – reducing anxiety
- Sedation
 - Conscious sedation – depressed level of consciousness from pharmacologic agent, patient still independently continuously maintains airway and communication
 - General anesthesia – controlled state of depressed consciousness produced by pharmacologic agent, complete loss of reflexes and unable to responds purposefully to physical/verbal stimuli

- Psychological factors

<table>
<thead>
<tr>
<th>Increased pain</th>
<th>Decreased Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sadness, depression</td>
<td>Happiness</td>
</tr>
<tr>
<td>Fatigue, insomnia</td>
<td>Rest, sleep</td>
</tr>
<tr>
<td>Anger, discomfort</td>
<td>Diversion, symptom relief</td>
</tr>
<tr>
<td>Anxiety, fear</td>
<td>Sympathy, understanding</td>
</tr>
</tbody>
</table>

- Inhalation anesthesia
 - N₂O
 - Advantages
 - Fast onset – similar to IV, faster than IM, oral, or rectal
 - Titration possible
 - Rapid complete recovery – 3-5min, escort not needed post-op
 - No injection needed, few side effects, analgesic properties (highly variable)
 - Disadvantages
 - Initial cost of tech, equipment maintenance (gas cylinders)
 - Variable potency, patients must breathe through nose, chronic exposure issues

- Must understand anatomy and physiology – CV, pulmonary, and CNS
 - Mechanics of respiration
 - Ventilation
 - Healthy individuals driven by CO₂ levels
 - CO₂ ↑ causes person to take a breath, CO₂ ↓ decrease ventilation rate
 - Muscles expand and contract chest cavity
 - Diaphragm, intercostals, SCM, abdominals, muscles of the spine
 - Principles of gas exchange – N₂O coefficient = 0.47 (very low)
 - High blood:gas coefficient – slow onset and recovery
 - Low blood:gas coefficient – insoluble in blood, so fast onset/recovery
 - Higher [N₂O] allows for rapid induction
 - Second gas effect
 - High potent but low concentration gas has slow onset
 - Giving gas that’s less potent but high concentration causes first gas to have more rapid effect
 - Giving N₂O with a more fast acting gas (halothane) speeds N₂O onset
- MAC – minimal alveolar concentration
 - Minimum [agent] prevents movement in 50% of individuals from surgical incision
 - N_2O MAC > 100 – not possible to produce surgical anesthesia alone in 50% of people

- Preparation
 - Heating ammonium nitrate crystals – decomposes to N_2O and H_2O
 - Compressed and stored – 30% of N_2O is liquid
 - Purity of gas usually approaches 99.5%

- N_2O properties
 - Not flammable or explosive
 - Support combustion (even w/o O_2)
 - Needs to be heated to 450°C \rightarrow N_2 and O_2
 - N_2O is inhaled
 - Rapid diffusion into blood \rightarrow ↑tension of gas \rightarrow ↑[$N_2]$ in brain \rightarrow fast onset
 - Rapidly replaces N_2 in blood
 - Enters closed air space (middle ear, intestine) 35x faster than N_2
 - Increases cavity pressure/volume
 - Recovery
 - Rapid diffusion back into alveoli from blood (brain \rightarrow blood \rightarrow alveoli)
 - Causes diffusion hypoxia \rightarrow dilution of O_2 and CO_2, decreasing respiratory drive
 - N_2O largely released from alveoli for first 5-10min post-op
 - Treat with 5-10min post-op 100% O_2
 - Diffusion hypoxia – nausea, headache, lethargy, hangover effect
 - Side Effects
 - Cutaneous vasodilation (flushing, perspiration)
 - Depression of myocardial contraction (at high [N_2O])
 - Does not affect HR, CO, BP in healthy patients
 - Anxiety reduction from deeper slow breathing
 - Deeper sedation may produce rapid shallow breathing
 - CNS depression, variable analgesia
 - Hypoxia – nausea and vomiting
 - B_{12} metabolism causing bone marrow suppression and neuropathies (chronic exposure)

- Procedure
 - 6L flow
 - 100% O_2 3-5min
 - Titrate 20% N_2O, increase 10%/min as needed
 - Treatment
 - 100% O_2 3-5min recovery
Patient Evaluation

- Delivery of N₂O/O₂
 - Central gas supply system
 - Cost savings, convenience, space
 - Manifold
 - Alarm system (<45psi, >60psi)
 - Pressure reducing value (regulator) 50psi
 - Portable delivery
 - For not frequent use
 - Moved easily
 - Holds 2-4 tanks
 - Pin index safety system

- Equipment involved:
 - Tanks
 - N₂O tank (blue)
 - Gas in liquid form, 750psi
 - Gauge will not indicate gas use until almost empty (20%)
 - Use 1 tank for every 3-4 O₂ tanks
 - O₂ tank (white/green)
 - 2000 psi, gas only, gauge measures gas accurately
 - N₂O cylinders
 - 95% liquid, 5% gas, 750 psi at 70°F
 - Decreasing pressure (liquid/gas) – 20% contained
 - O₂ cylinder
 - 2000 psi, pressure gauge indicates accurately
 - O₂ tank is empty → no N₂O flow
 - Reducing valves (gauges)
 - High pressure to low pressure, 50psi
 - Hoses/pipes/manifold
 - On/flush switches
 - Flow meter
 - Gas flows through the meter, read to center of the sphere/cylinder
 - Note – columns are NOT equal
 - Can flush, has a percent dial
 - Reservoir bag
 - 2-3L, gases mixed, most likely source of leak
 - Source of additional gas if needed (Positive O₂)
 - Monitor breathing (respiration here)
 - Conducting tubes
 - Non-collapsible
 - Nasal hood
 - Double mask system, should fit well to minimize gas leak
 - Gas scavenger
 - Standard of care
Safety Features

- **Color Codes**
 - Blue – N₂O
 - Green – O₂ (USA)
 - White – O₂ (international)
- **O₂ failsafe mechanism**
 - Standard of care before 1976
 - Minimum 30% O₂ (ambient air is 21% O₂)
- **Index safety system**
 - Pin index system – can’t get into the wrong socket
 - Diameter index system – can’t get into the wrong socket
- **Scavenger**
 - Connection to suction, vent away from breathing area

- **Major industries**
 - Health settings – 85-90%
 - Hospitals – 80-85%
 - Dentists – 10%
 - Chemical industry – 5%
 - Food industry – 5-8%

Indications

<table>
<thead>
<tr>
<th>Indications</th>
<th>Contraindications</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Anxiety, gagging, pain relief</td>
<td>- Compulsive personality</td>
</tr>
<tr>
<td>- Procedures where more than LA is needed</td>
<td>- Claustrophobic persons</td>
</tr>
<tr>
<td>- Lengthy procedures for medically compromised patients</td>
<td>- Unable to breathe through nose</td>
</tr>
<tr>
<td></td>
<td>- Pregnancy</td>
</tr>
<tr>
<td></td>
<td>- Severe behavior problems</td>
</tr>
<tr>
<td></td>
<td>- URI, COPD</td>
</tr>
</tbody>
</table>

Advantages

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid onset</td>
<td>Equipment cost</td>
</tr>
<tr>
<td>No biotransformation, no injection</td>
<td>Not potent</td>
</tr>
<tr>
<td>Variable analgesia</td>
<td>Requires cooperative patient</td>
</tr>
<tr>
<td>Titratable (incremental dosing = standard of care)</td>
<td>Chronic exposure problems</td>
</tr>
<tr>
<td></td>
<td>Need person in room at all times (preferably same gender)</td>
</tr>
</tbody>
</table>

- **Common signs/symptoms**
 - Light headedness/dizziness
 - Transient feeling, [N₂O] inadequate for treatment
 - Tingling sensation of oral cavity, extremities
 - Good [N₂O] for starting IV, scaling, LA
 - Feeling of warmth, floating/heaviness
 - Near ideal [N₂O] for treatment
 - Note – patient variability is high – patient should feel relaxed and comfortable

- **Elimination of N₂O**
 - Stop leaks, use ventilation and scavenging nasal hoods
 - Minimize talking to the patient (N₂O can be exhaled orally)
 - Air monitoring – caution above 50ppm
Pain and Anxiety - Course Review
Enoch Ng, DDS 2014

- Monitoring
 o Questionable usefulness as decrease in respiratory drive should be minimal
 o NOT standard of care (oximetry and capnography)
 o Usually very few changes in vital signs present

- Primary indications
 o Fear and anxiety management
 ▪ Anxiolysis
 ▪ Analgesia (variable)
 ▪ Reduction of pain threshold – useful prior to injection
 o Medically compromised patient
 ▪ Anxiolysis
 ▪ Minimal risk of hypoxia (if used properly)
 ▪ Used in patients with angina, heart failure, dysrhythmia, MI
 ▪ Fine for asthma patients – non-irritating to mucosa, no increase in bronchospasm
 ▪ Good for epilepsy – if used properly, prevents hypoxia (hypoxia increases seizure risk)
 ▪ Used in post-CVA patients (prevents hypoxia, same as epilepsy)
 o Gagging, gingival retraction cord
 ▪ Provides analgesia, anxiolysis, decreased gag reflex
 o Incision and Drainage
 ▪ Infection → ccidic pH – decreased LA effect
 ▪ N₂O provides analgesia and anxiolysis
 o Dry socket dressing changes, suture removal
 ▪ Short procedure, but can be discomforting
 ▪ N₂O provides analgesia and anxiolysis
 o Initial dental/perio exam, insertion of wedges/matrix bands, rubber dam retainers
 ▪ Anxiety reduction, analgesia for sensitive tissues/pain/pressure
 o Removal of provisional crowns
 ▪ Avoids use of LA because of analgesia/anxiolytic effects
 o Scaling/root planning/curettage
 ▪ Painful procedure require debridement of necrotic tissue (ANUG) and from ultrasonics
 ▪ N₂O provides analgesia and anxiolysis

- N₂O Recovery (after 100% O₂)
 o Check for normal feeling, common sense
 o Does not require patient escort if recovery is proper

- Pediatric patients
 o Nasal hood can be challenging
 o Can increase [N₂O] for “induction”
 o Use “tell-show-do” technique
 o Observation of sedation level should be apparent
 o Teenage patients may be aware of N₂O and request it
 ▪ “the substance”
 ▪ “nitrous”
 ▪ “laughing gas”
 ▪ “hippy crack”
 ▪ “N₂O”
Nitrous Oxide and Abuse

- Addiction – repeated, compulsive use despite negative psychosocial consequences
- Physical dependence – absence of substance leads to signs/symptoms of withdrawal
- Withdrawal syndrome – overactivity of physiologic functions that were suppressed by drug

- Uses of N₂O
 - Medical/dental anesthesia
 - Engine injection for boosting horsepower in automobile racing
 - Oxidant for semiconductor industry and analytical chemistry
 - Raw material in production of chemicals used to inflate airbags
 - Propellant in food industry (whip cream)

- Abuse Effects
 - Myeloneuropathy, equilibrium and coordination problems
 - Muscle weakness
 - Headache, memory/mood alteration
 - Multiple-sclerosis like symptoms
 - Depletion of B₁₂ – peripheral nerve numbing (fingers/toes), bone marrow depletion

- Delegation of responsibilities (if authorized and when dentist is present in office)
 - RDAs – monitor N₂O patients
 - Hygienist – administer N₂O to patients

- Requirements for Certification
 - Must graduate from N₂O administration course at accredited university
 - 16h lectures, supervised clinical experience using fail-safe equipment with positive pressure
 - Must be trained biannually in CPR/BLS
 - Equipment must be fail safe and capable of positive-pressure ventilation
Review and Case Discussions

- 6-14% of Americans avoid dental care because of fear
- More invasive procedures can be done in outpatient clinics
- Anxiolysis – reduction of anxiety. Cognitive function and coordination may be impaired, but CV and Resp are not
- Moderate sedation – minimally depressed level of consciousness, patient retains ability to independently continuously maintain their own airway and response to physical/verbal stimuli
- Deep sedation – drug induced controlled state of depressed consciousness with partial loss of protective reflexes. Unable to maintain airway independently continuously and/or respond to purposeful verbal command
- General Anesthesia – elimination of all sensation, loss of consciousness. Not arousable by painful stimuli, may require mechanical ventilation and CV support

- Other inhalation anesthesia agents besides N₂O – usually used in OR or surgery, not usually dental office
 - Sevoflurane
 - Halothane
 - Desflurane
 - Isoflurane
- Oral Sedation
 - Advantages – no IV, good patient acceptance, minimal armamentarium
 - Disadvantages – not titratable, may not achieve desired effects, not predictable, multiple dosing not desirable, late onset (20-45min), monitoring needed, additional training needed, pre-op fasting required
 - Triazolam/halcion
 - Diazepam/valium
 - Lorazepam/Ativan
 - Midazolam/versed
 - Chloral hydrate
- IM
 - Advantages – no IV access needed, faster than oral onset, more reliable absorption than oral
 - Disadvantages – not titratable, overdose potential, lag time before seen effects, needle needed, potential 2-4h duration, monitoring needed, additional training required, pre-op fasting required
- IV
 - Advantages – titratable, more predictable, rapid onset, rapid reversal if needed, emergency drug admin if needed, replace fluid deficit from fasting
 - Disadvantages – monitoring needed, IV access needed, additional training needed, pre-op fasting required
 - Midazolam/versed
 - Fentanyl
 - Ketamine
 - Propofol
 - Brevital/methohexital
- Common side effects of sedatives
 - CNS depression, amnesia
 - Respiratory depression/arrest
 - Nausea
 - Disphoria/dreaming
 - CV effects
 - Drug interactions

- Monitoring
 - Moderate sedation
 - BP – before, during, after
 - Pulse oximetry
 - Respiration – chest rise, precordial stethoscope, capnography
 - Deep sedation/general anesthesia
 - BP – intermittent throughout procedure (every 5min)
 - Continuous pulse oximetry
 - Respiration
 - ECG
 - May also need airway support

- Patient evaluation for sedation
 - ASA PS level (prefer I and II)
 - ASA I – no known systemic disease
 - ASA II – mild/well controlled systemic disease
 - ASA III – multiple/moderately controlled systemic diseases
 - ASA IV – poorly controlled systemic diseases
 - ASA V – moribund patients
 - ASA VI – brain dead patients
 - Airway evaluation – most serious and common office emergencies involve airways/resp complications
 - Anatomy
 - Range of motion
 - Mallampati classification
 - Class I – tongue doesn’t block vision of uvula
 - Class II – tongue blocks lower vision of uvula, can still see oropharynx
 - Class III – can barely see oropharynx
 - Class IV – tongue blocks vision of oropharynx
 - BMI/neck circumference
 - Considerations for specific organ systems

- Preoperative considerations of anesthesia
 - NPA for >6h (no food for 6h)
 - Patient escort present/accounted for
 - Check daily medication regimen – prescription drugs, OTC meds, herbals
 - Comfortable clothing and shoes

- Systemic evaluation – CV, pulmonary, renal, hepatic, endocrine
 - Diabetes – HbA1c <6 for healthy, <7 for diabetic controlled