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Abstract

Using data from the Survey of Professional Forecasters, we find that a large fraction of

analysts’ expectations about future economic growth is not due to technology or other

shocks to fundamentals. The comovement pattern associated with these changes is

different from the one driven by fundamental shocks. Specifically, a non-fundamental

improvement in expectations of future output predicts boom-bust dynamics in the key

macroeconomic aggregates. We offer a novel theory that explains why boom-bust dy-

namics emerge in response to non-fundamental expectations shocks and not to tech-

nology shocks.
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We uncover a new finding on the role of expectations in shaping economic fluctua-

tions. When changes in expectations are not due to policy or technology shocks, but rather

are non-fundamental, they lead to boom-bust dynamics in key macroeconomic indicators.

Specifically, after a positive shock to expectations, output initially rises but eventually falls

significantly below trend. In contrast, fundamental shocks result in trend-reverting dy-

namics without any oscillatory patterns.

Broadly speaking, our findings relate to Keynes’ idea of the existence of “animal spir-

its” guiding the actions of economic agents, and driving business cycles. This idea is ap-

pealing for at least two reasons. First, it aligns with the consensus in the business cycle

literature that the economy is primarily driven by demand disturbances, with changes in

technology accounting for only a small fraction of fluctuations (see, for example, Angele-

tos et al., 2020). Non-fundamental expectation shocks, within this paradigm, represent

a natural candidate for demand-driven fluctuations. Second, historical narratives of eco-

nomic fluctuations driven by sentiments abound. For example, Hall (1993) argues that the

1990-1991 recession originated from a spontaneous fall in consumption, while the swift

recovery post 9/11 was attributed by Shiller (2020) to an unexpected positive change in

national sentiment. Even the Great Recession cannot be solely attributed to depressed

fundamentals (see, for example, Farmer, 2012 and Bacchetta and Van Wincoop, 2016).1

Besides showing that our evidence supports the idea of animal spirits being an important

contributor of business cycle fluctuations, we find that they shape the economy in a way

that is profoundly different from shocks to fundamentals. As a direct consequence of

our results, expansions fueled by sentiments are more likely to culminate in a recession

than expansions driven by technology improvements. As such, distinguishing between

sentiments and fundamentals becomes even more relevant for policymakers, whose aim is

to prevent inefficient economic fluctuations. We place such distinction at the center of our

analysis.

1 See also Blanchard (1993) for an “animal spirit” account of the 1990-1991 recession.
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To begin, we show that an important fraction of changes in agents’ expectations is not

due to the fundamental shocks estimated by the business cycle literature.

We use data from the Survey of Professional Forecasters (SPF), and compute the time

t revision of one-year-ahead expectations on real GDP growth that analysts formed in

quarter t−1. We then extract the surprise in analysts’ revisions that is unrelated to past,

present, and future technology growth, and to the expectations thereof. We find that

these non-fundamental expectation shocks explain between 48% and 52% of the changes

in analysts’ expectations, depending on whether we also control for other fundamental

shocks along with technology.

Next, we find that non-fundamental expectation shocks are associated with macroeco-

nomic dynamics that stand in stark contrast to those generally attributed to fundamental

shocks. Using local projections method, we estimate that a positive expectation shock

leads to boom-bust dynamics in aggregate quantities. Real GDP, consumption, hours, and

investment significantly increase on impact, and remain elevated for about three years,

after which they display a significant contraction below their long-run trend.

We subject our results to a vast array of robustness checks. First and foremost, we

are concerned that our results might be contaminated by fundamental shocks other than

anticipated and surprise technology shocks. Thus, we control for other shocks estimated

by the literature, including the monetary policy shock series of Romer and Romer (2004)

extended by Wieland (2021), the military spending shock series of Ramey (2011), the

anticipated and surprise tax shock series of Mertens and Ravn (2012), the oil price shock

series estimated in Kilian (2008), and the financial uncertainty of Ludvigson et al. (2021).
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Results remain largely unchanged.2 Additionally, we check that our results hold if we

change the expectation targets or the sample period.

In the last part of the robustness checks section, we discuss why other studies adopting

similar procedures have not found boom-bust dynamics in response to similarly identified

expectation shocks. The closest paper related to our empirical findings is Levchenko and

Pandalai-Nayar (2020). Their estimation strategy also entails extracting the residual of an-

alysts’ forecasts that is orthogonal to anticipated and surprise technology shocks. But they

do not find the boom-bust dynamics that we do. We show that the key innovation of our

strategy is to use local projections method which, relatively to Vector Autoregregressions,

is better suited to estimate medium to long horizon dynamics.

Before turning to the model, we demonstrate that the oscillatory dynamics obtained in

response to non-fundamental expectation shocks do not emerge in response to fundamen-

tal shocks. We carry out two distinct exercises. First, we estimate the impulse response

to analysts’ revisions without controlling for changes in technology or other fundamental

shocks. We find that positive revision surprises do not predict a future bust, but boom-bust

dynamics obtain only when we remove the fundamental component. Second, we identify

technology shocks and estimate their effects on the business cycle. To do so, we extract

the unpredictable component of the growth rate of the utilization-adjusted Total Factor

Productivity taken from Fernald (2014), and estimate its effect on the economy via local

projections. We find that technology shocks lead to significant and positive deviations of

macroeconomic aggregates from their long-run trend, without exhibiting any oscillatory

pattern.

2 These controls are only imperfect proxies for the true unobservable fundamental shocks. However, the body

of the literature that examines business cycle shocks does not find boom-bust dynamics in response to any

fundamental source of fluctuations. As such, it is rather unlikely that our results are confounded by such

shocks.
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Altogether, our empirical results pose new challenges for business cycle models. On

the one hand, workhorse DSGE models, as in Smets and Wouters (2007), feature no in-

tertemporal dependence between expansions and recessions. As such, they are unable to

reproduce the oscillatory responses that we uncover. On the other hand, models of en-

dogenous cycles, as in Beaudry et al. (2020), predict oscillatory dynamics in response to

all shocks, thus they fall short in reproducing the responses to technology shocks. In the

second part of the paper, we build a model that shares elements with both families of

models and rationalizes the conditional emergence of boom-bust cycles.

The model is a Real Business Cycle model with both expectation and technology shocks.

Expectation shocks stem from the interplay of two frictions. First, we assume that firms

can borrow from households up to a limit that depends on their market value. Second, we

assume that firms face a working capital requirement. We demonstrate that the interaction

between the borrowing limit and the working capital requirement generates self-fulfilling

equilibria, that is, equilibrium changes in agents’ expectations independent from technol-

ogy. The intuition is as follows. If households become more optimistic regarding firm

value, the borrowing constraint relaxes, and firms can finance more production. As firms

increase their labor demand, households’ income increases and so does their demand for

firm assets. Consequently, firm value rises, validating the initial optimism of households.

Next, we feed the model with both i.i.d. expectation shocks orthogonal to technology,

i.e., sentiments, and transitory technology shocks. The model rationalizes the conditional

boom-bust dynamics that we find in the data. The intuition is that while both sentiment

and technology shocks increase firm value, the nature of the increase matters for propaga-

tion. During a sentiment-driven expansion, firm value rises because households increase

their saving desire in expectation of a future recession. Then, a recession obtains from the

interaction between households’ sale of firm assets and the tightening of firms’ borrowing

constraints. During an expansion driven by a temporary improvement in technology, in

contrast, firm value increases because firms are more profitable. Since households know
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that higher firm values are due to higher technology, they will not sell firm assets and,

consequently, there will be no crunch in credit.

Related literature This paper relates to three strands of the literature. First, our empir-

ical results relate to the literature on the estimation of expectation shocks. The definition

of expectation shocks is, however, not uniform across studies. On the one hand, there is a

strand of research that draws from Pigou (1927) and focuses on noise shocks, that is, on

mistakes about future technology movements.3 On the other hand, there is a set of papers

that identifies expectation shocks as orthogonal to fundamentals and their expectations,

labelling them as sentiments . Our definition of expectation shocks is in line with this

latter strand of literature. Examples in this class are Leduc and Sill (2013), Fève and Guay

(2019), and Levchenko and Pandalai-Nayar (2020), which use Structural Vector Autore-

gressions (SVARs) to identify sentiment shocks from survey data, and study their empirical

responses. We complement these studies by proposing a different method to trace out the

dynamics implied by sentiment shocks, which does not rely on SVARs. While we find sim-

ilar short-horizon responses, we document novel evidence of a medium-horizon reversal.

Section 1.1 shows that the key difference between our results and the ones obtained by

these papers stems from the choice of the number of lags in the VAR. A related handful of

papers uses instrumental variables to identify exogenous expectational shifts. In particu-

lar, Benhabib and Spiegel (2019) identifies sentiment shocks from political outcomes, and

Lagerborg et al. (2022) from the number of fatalities in mass shootings. Both studies find

that sentiment shocks have sizeable effects on the economy while they are silent on their

medium-horizon impact.

3 Works on the estimation of noise shocks include Oh and Waldman (1990), Beaudry and Portier (2004),

Lorenzoni (2009), Schmitt-Grohé and Uribe (2012), Blanchard et al. (2013), Hürtgen (2014), Forni et al.

(2017), Chahrour and Jurado (2018), Benhima and Poilly (2021), Enders et al. (2021), Chahrour and Jurado

(2022), Faccini and Melosi (2022), and Enders et al. (2022).
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The second strand of literature related to this paper is the one supporting the endoge-

nous cycle hypothesis. The idea is that the economy features an endogenous propagation

mechanism that makes it perpetually oscillating between periods of boom and periods of

bust. The endogenous cycle view has received only scattered attention (see Boldrin and

Woodford, 1990 for a survey), while a more exogenous view on cycles, according to which

cycles manifest due to the alternation of random positive and negative shocks, has popu-

larized the literature. Recently, however, Beaudry et al. (2020) has revived the attention

on the endogenous cycle hypothesis. They analyze the spectrum of several macroeconomic

indicators and provide novel supportive evidence of perpetual oscillations in the reduced

form data of U.S. We make a step forward, in the sense that our findings suggest that sen-

timents could be the source of the oscillations documented by Beaudry et al. (2020). More

tangentially, there is a growing literature that aims at detecting early warning indicators

of future financial crises. Sufi and Taylor (2021) provides a summary of this literature.

Their abstract reads “[...] Crises do not occur randomly, and, as a result, an understanding

of financial crises requires an investigation into the booms that precede them." We show

that recessions are likely to occur when the boom preceding them has a non-fundamental

cause.

Finally, our model is related to the class of models with equilibrium indeterminacy and

sunspot shocks. The workhorse model in this literature is the one by Benhabib and Farmer

(1994) in which equilibrium indeterminacy arises due to aggregate increasing returns to

scale.4 Their work suggests that economic fluctuations may be driven not only by changes

in fundamentals but also by self-fullfilling changes in agents’ expectations. A close paper

to ours in this class is Benhabib and Wen (2004), which analyzes an RBC model with

increasing returns and endogenous capacity utilization. They show that when the model

is parametrized in the indeterminacy region, it can better replicate the autocovariance

4 See also Azariadis (1981), Diamond (1982), Cass and Shell (1983), Woodford (1986), and Cooper and John

(1988).
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properties of the data. We share a similar spirit, with the distinction that our model also

emphasizes the different dynamics implied by technology and sunspot shocks. Lastly, we

relate to the class of models that generate self-fulfilling rational expectations equilibria due

to credit market amplification. Examples of this class are Benhabib and Wang (2013), Liu

and Wang (2014), and Azariadis et al. (2015). While their emphasis is either on a single

shock or the unconditional properties of the economy, our model is built to rationalize why

only non-fundamental shocks can explain the boom-bust patterns observed in the data.

1 Expectation shocks and boom-bust dynamics

In this section, we analyze the changes in analysts’ expectations that cannot be accounted

for by changes in technology, the expectations thereof, and by other shocks to fundamen-

tals. Not only do we find that about 50% of analysts’ expectation revisions are not due to

the fundamentals we control for, but also that such residual component is associated with

dynamics that are remarkably different from the ones generally attributed to fundamental

shocks.

Identification of expectation shocks We proxy expectations of market participants us-

ing expectations data from the Survey of Professional Forecasters (SPF) maintained by the

Philadelphia Fed. The survey is avaialable from 1968Q4 and consists in quarterly forecasts

of a number of macroeconomic indicators at several horizons. In our baseline specifica-

tion, we use the mean of analysts’ one-year-ahead forecasts of U.S. real GDP growth from

1970Q3 to 2020Q1.5,6 Let xt+h|t−1 be the mean analysts’ forecast of xt+h made in quarter

5 We start from 1970Q3 to avoid discontinuities in the data, while we stop in 2020Q1 to exclude the COVID-19

recession.

6 In Section 1.1, we show that results are robust to using the median (instead of the mean) or using other

macroeconomic indicators included in the Survey, such as unemployment and Industrial Production Index.
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t−1, we compute the quarter t forecast revision as

St =
xt+3|t
xt−1|t

− xt+3|t−1

xt−1|t−1
,

where the second term on the right-hand side is the forecast of annual GDP growth made

in quarter t− 1, and the first term is the updated forecast in quarter t. The difference

between the two, St, is the revised forecast that analysts make upon the arrival of new

information at time t.7 Next, we regress the forecast revision on the past, present, and

future technology, and on past and present expectations of future technology. Importantly,

including both realized technology and its expectations allows us to control for fluctuations

induced by ex-post wrong beliefs about future technology, i.e., noise shocks (see Chahrour

and Jurado, 2018). The regression reads:

St =αSt−1 +
K∑

k=−K
βk∆ logTFPt−k +

J∑
j=0

δ jbt− j +νt, (1)

where we omit the constant for convenience. The regression above includes three sets of

controls. First, under full information rational expectations, time-t revisions should only

be affected by contemporaneous variables. However, since Coibion and Gorodnichenko

(2015) shows that the forecast revisions predict forecast errors, we control for the past

value of forecast revision to ensure that the regression residual vt is not autocorrelated.

The second term is the past, present, and future realizations of total factor productivity. We

use utilization-adjusted quarterly TFP from Fernald (2014), and control for four lags and

twelve leads.8 Finally, the term bt ≡ Ê t[logTFPt+3− logTFPt−1] is the estimated beliefs on

future annual TFP growth, where we keep the timing consistent with the forecast revisions

7 Note that the nowcast of xt−1 made in t−1, xt−1|t−1, and the backcast in t, xt−1|t, are not necessarily the

same since analysts do not observe the current values of x. See Enders et al. (2021) for an exploration of the

economic effects of nowcast errors.

8 Results are unchanged when using more leads or lags. See Appendix G.
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St. Since TFP expectations are not readily available in the survey, we compute bt as the

fitted value of the following regression:

logTFPt+3 − logTFPt−1 =
M∑

m=0
αm∆ logTFPt−m +

Q∑
q=0

βqPCt−q + r t+3, (2)

where the left-hand side is the annual growth rate of quarterly TFP, and the right-hand

side includes both present and past values of quarterly TFP growth and of the first four

principal components of the quarterly dataset maintained by McCracken and Ng (2020).

We set the number of lags M and Q equal to four.9,10

Table 3 in Appendix C shows the results for both regressions, and Figure 10 in Appendix

B illustrates the expectation shock series ν̂t. Perhaps surprisingly, the R-squared of the

regression in Equation (1) is 48%, meaning that more than half of changes in analysts’

expectations are not due to realized changes in TFP or noise. Furthermore, the R-squared

increases only to 52% when we additionally control for several externally identified funda-

mental shocks. These controls include Romer and Romer (2004) monetary policy shocks,

Ramey (2011) military spending shocks, Mertens and Ravn (2012) unanticipated and an-

ticipated tax shocks, Kilian (2008) oil price shocks, and Ludvigson et al. (2021) financial

uncertainty series.

Impulse responses to expectation shocks The residual, ν̂t, from Equation (1) is our ob-

ject of interest. We estimate the impulse responses to a one standard deviation increase in

9 The right-hand side of Equation (2) might not fully capture agents’ information about future technology,

therefore in Section 1.1 we augment the controlling set with the TFP news shocks estimated in our sample

using the procedure by Barsky and Sims (2011).

10 Appendix G shows that results are robust to changing the number of lags or of principal components.
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ν̂t using local projections as in Jordà (2005). Specifically, we run the following projections:

yt+h − yt−1 = θhν̂t +
P∑

p=1

[
δpν̂t−p +λp∆yt−p

]
+1h>0ût+1,t+h +ut,t+h

for h = 0,1, . . . ,H

(3)

where the parameter θh is the response of y to a positive expectation shock after h periods.

In the baseline, we control for the first four lags of both ν̂t and the first difference of yt. In

addition, when h > 0, we control for the residual ût+1,t+h estimated in the h−1-th regres-

sion and forwarded by one period.11 The right panels of Figure 1 illustrate the responses

of both the log of real GDP and the forecast revisions to an expectation shock. The left

panels, in contrast, show the responses to a one standard deviation increase in the forecast

revisions. Since we use a lag-augmented local projection estimator, we compute 80% and

90% confidence intervals using Eicker-Huber-White heteroscedasticity-robust standard er-

rors (see Montiel Olea and Plagborg-Møller, 2021 for a discussion). Two patterns emerge.

First and foremost, the response of GDP depends on whether or not we remove the funda-

mental component from forecast revisions. The left panels show a transitory but persistent

increase in the real GDP in response to a positive change in forecast revisions. The right

panels, in contrast, show boom-bust dynamics in response to an expectation shock. A pos-

itive expectation shock predicts a gradual increase in the real GDP which remains elevated

for about three years, significantly falling below trend afterward. Second, we find that

analysts correctly predict the increase in output after an expectation shock but not after

an innovation in forecast revisions. The cross in the bottom panels marks the mean of

analysts’ forecasts that they made when the shock hit the economy. When we consider

11 As suggested by Jordà, 2005, pp. 166, the inclusion of the residuals from the previous regression increases

the efficiency of the estimator. This is because ût+1,t+h is, by construction, orthogonal to the regressor ν̂t,

therefore, its inclusion improves the accuracy of θ̂h (see Wooldridge, 1993, pp. 687). Nevertheless, Figure

12 of Appendix G reveals that our conclusions do not change when we remove the estimated residuals from

the set of controls.
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Figure 1: GDP response to a forecast revisions shock and expectation shock

Note: Impulse responses to a one-standard deviation forecast revision shock (first column) and expectation
shock (second column). Sample period: 1970Q3–2020Q1. Shaded areas are the 80% and 90% confidence
bands calculated with Eicker-Huber-White heteroscedasticity-robust standard errors. Horizontal axes mea-
sure quarters and vertical axes measure percentage points (forecast revision) and percent deviations from
pre-shock trend (real GDP). In the second row, the x mark is the expected Real GDP growth implied by the
impact response of the forecast revision.

forecast revision shocks, analysts under-predict the future increase in output. This finding

is consistent with Coibion and Gorodnichenko (2012), which shows that analysts fail to

adjust in response to shocks to fundamentals. In contrast, analysts correctly predict the

increase in output following an expectation shock, suggesting that our estimated residu-

als reflect a different relation between expectations and realized outcomes. We interpret

this outcome as suggestive evidence that expectation shocks stem from non-fundamental

disturbances, that is, shocks originating from a change in agents’ expectations, as opposed

to shocks that analysts don’t perfectly observe. In Section 2, we propose a model that ra-
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tionalizes the emergence of boom-bust dynamics to non-fundamental expectation shocks

without violating the rational expectation assumption.

1.1 Robustness checks

We now show that the results documented in Figure 1 are robust to different specifications.

In the interest of space, Figure 2 only plots the responses of real GDP. The solid red line

along with shaded areas are the responses under the alternative specification, whereas the

Figure 2: GDP responses to an expectation shock using different specifications

Note: Impulse responses of real GDP to a one-standard deviation expectation shock under different speci-
fications. The red line is the point estimate and the shaded areas are the 80% and 90% confidence bands
calculated with Eicker-Huber-White heteroscedasticity-robust standard errors. Circled and dashed blue lines
are the point estimates and the 80% confidence bands of the baseline specification presented in Figure 1.
Horizontal axes measure quarters and vertical axes measure percent deviations from pre-shock trend. In the
first row, the specification in the first panel controls for monetary policy shocks (Romer and Romer, 2004),
unanticipated and anticipated tax shocks (Mertens and Ravn, 2012), government spending shocks (Ramey,
2011), oil price shocks (Kilian, 2008), financial uncertainty (Ludvigson et al., 2021); second panel shows a
specification that uses the median of the expected real GDP growth from the SPF; specification in the third
panel uses the first principal component of the SPF forecast revisions of real GDP growth, industrial produc-
tion growth, and unemployment rate. Specifications in the fourth panel (first row) and first panel (second
row) detrend the endogenous variable using a linear trend and a High-Pass filter that excludes periodicities
over 200 quarters, respectively, and then estimate the responses according to Equation (4). In the second
row, in the specification of the second panel the sample period ranges from 1982Q1 to 2020Q1; third and
fourth panels show a specification that controls for eight lags of the controls presented in Equation (3) and
for news shocks as estimated by Barsky and Sims (2011), respectively.
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blue line with circular markers is the baseline response together with 90% confidence inter-

vals. We address six major concerns. First, since the expectation shock series is estimated

as a residual in Equation (1), it may contain forecast revisions induced by fundamental

shocks other than technology. Thus, the first panel plots the GDP response after adding

other fundamental disturbances to the right-hand side of Equation (1). More specifically,

we control for the monetary policy shock series of Romer and Romer (2004) and extended

by Wieland (2021), the military spending series of Ramey (2011), the unanticipated and

anticipated tax shocks estimated by Mertens and Ravn (2012), the oil price shocks esti-

mated by Kilian (2008), and the financial uncertainty series by Ludvigson et al. (2021).

The restricted sample ranges from 1971Q1 to 2004Q3. Relatively to the baseline, point

estimates are largely unvaried, which is somewhat not surprising given that we found that

these shocks contribute very little to the R-squared of regression in Equation (1). Con-

fidence bands, on the other hand, are narrower than in the baseline, despite the loss of

observations, further suggesting that our results might be driven by non-fundamental ex-

pectation shocks. The second source of concern is the choice of the SPF forecast series and

its aggregation. In the baseline, we take the mean of the analysts’ forecast on real GDP

growth. In the second and third panel of the first row, instead, we take the median forecast

revisions of real GDP growth, and the first principal component of the forecast revisions

of unemployment rate, industrial production, and real GDP, respectively. A third impor-

tant check consists in the treatment of the left-hand side variable in the local projections.

Our baseline does not distinguish between business cycles and low frequency fluctuations

induced by expectation shocks. Yet, we find that the real GDP response is transitory. Nev-

ertheless, we can extract the business cycle fluctuations only. To do so, we detrend the real

GDP series and estimate its response to expectation shocks from the following modified

version of Equation (3):
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ydet
t+h = θhν̂t +

P∑
p=1

[
δpν̂t−p +λp ydet

t−p

]
+1h>0ût+1,t+h +ut,t+h

for h = 0,1, . . . ,H

(4)

where ydet
t stands for the detrended log of real GDP. Figure 2 shows results after removing

a linear trend, or using a High-Pass filter which excludes fluctuations with periodicities over

200 quarters. Since filtering removes long run fluctuations, estimates are more accurate at

longer horizons, resulting in narrower confidence bands. As a fourth robustness we restrict

the sample to the post-Volcker disinflation period, from 1982Q1 to 2020Q1. The overall

pattern doesn’t change but the initial boom is less pronounced and the bust occurs few

quarters earlier than in our baseline estimates. Fifth, we check that results are robust to

increasing the number of lags P in Equation (3) to eight. As a last exercise, we control for

news shocks in TFP to better isolate the non-fundamental component. Following Barsky

and Sims (2011), we estimate a VAR(4) with log of real GDP, consumption, hours, and

TFP using our data sample, and extract news shocks as the shocks orthogonal to current

TFP that maximizes the 40-quarter forecast error variance of future TFP. We then insert

the estimated news shock as an additional control on the right-hand side of Equation (1).

In conclusion, Figures 1 and 2 suggest the presence of a pervasive component induced by

expectation changes likely unrelated to fundamentals. Such component, drives boom-bust

dynamics on real GDP.

Discussion We are not the first to identify non-fundamental expectation shocks as agents’

expectations orthogonal to TFP. In particular, our identification strategy resembles the

one adopted by Levchenko and Pandalai-Nayar (2020, LPN henceforth). LPN estimates a

structural vector autoregression model including four lags of TFP, real GDP, consumption,

hours, and SPF forecasts of real GDP one quarter ahead. The sample ranges from 1968Q4

to 2010Q3. Expectation shocks are estimated as those that maximize the forecast error
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variance of analysts’ forecasts at two-quarter horizon, while being orthogonal to surprise

and news of TFP. They find that expectation shocks explain a relevant fraction of U.S. GDP

but they do not find evidence of boom-bust dynamics. The reason is that the VAR does not

include enough lags to correctly estimate the impulse responses at medium and long hori-

zons. In fact, VAR and local projections estimate the same responses only when enough

lags are included (see Plagborg-Møller and Wolf, 2021). To see this, we first replicate the

VAR(4) of LPN over their sample. The solid line in Figure 3 shows the response of real

GDP.12 Real GDP rises over the first few quarters, and then slowly returns to trend in a

monotonic fashion. Next, we compare these impulse responses with those obtained after

increasing the number of lags to eight in the VAR (left panel), or running local projections

Figure 3: GDP responses to an expectation shock identified as in Levchenko and Pandalai-
Nayar (2020)

Note: Impulse responses of real GDP to a one-standard deviation expectation shock. Sample period:
1968Q4–2010Q3. The black solid line and the shaded areas are the baseline point estimate and 80% and
90% confidence bands (Efron bootstrap) by LPN. On the left, the solid line with circles and dotted lines are
the point estimate and 80% confidence bands (Efron bootstrap) of the structural VAR by LPN using eight
lags instead of four. On the right, the solid line with circles and dotted lines are the point estimate and 80%
confidence bands (Eicker-Huber-White heteroscedasticity-robust standard errors) of the Local Projection es-
timator with eighth lags in which we project real GDP on the expectation shock series estimated by LPN.
Responses are scaled to match the annual cumulative effect of an expectation shock by LPN on real GDP.

12 See Appendix H for the details about the estimation and the response of all variables included in the VAR.
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on LPN’s shocks. For the local projections, we use the specification in Equation (3) with

eight lags, i.e., P = 8. The lines with circles show the responses under these alternative

specifications. Both extensions feature significant boom-bust dynamics. Furthermore, de-

spite differences in the identification strategy and the variable selection, the VAR(8) and

the local projections predict dynamics that are remarkably similar to the ones obtained in

our baseline.

1.2 Responses of other variables and variance decomposition

We now extend the analyses to the estimation of the responses of other key macroeconomic

indicators. We find boom-bust dynamics in all the real macrovariables we consider. In

addition, even though we estimate the response of each variable separately, the timing of

the bust roughly coincides across the series. Finally, we argue that the comovement that

we find is informative for business cycle theories.

Responses of other variables We document the macroeconomic responses to an ex-

pectation shock by estimating Equation (3) for several macroeconomic indicators. Fig-

ure 4 shows the responses of (the log of) real investment, real total consumption, real

durable consumption, real non-durable consumption, total hours, labor productivity, and

utilization-adjusted TFP. The response of TFP is never statistically different from zero,

which indicates that we are controlling for enough leads and lags in Equation (1). In-

vestment, consumption, and total hours comove and display similar boom-bust dynamics

to the ones estimated for real GDP in Figure 1.13 The positive response of CPI and the

comovement among variables suggest that we are capturing a source of demand shocks.

Finally, labor productivity decreases during the boom, while it increases during the bust,

albeit the estimated response is inaccurate. This pattern is particularly informative from

a model standpoint. In fact, as we shall discuss in Section 2, the fall in labor productivity

13 Figure 11 in Appendix D reveals that stock prices and commercial and industrial loans also display boom-bust

dynamics.
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Figure 4: Responses of macro-variables to an expectation shock

Note: Impulse responses of macro-variables to a one-standard deviation expectation shock. Sample period:
1970Q3–2020Q1. Blue lines indicate the point estimate and the shaded areas indicate 80% and 90% confi-
dence bands calculated with Eicker-Huber-White heteroscedasticity-robust standard errors. Horizontal axes
measure quarters and vertical axes measure percent deviation from pre-shock trend. All the variables (with
the exception of TFP) are log-transformed and are downloaded (in April 2022) from the quarterly dataset
by McCracken and Ng (2020). TFP is from Fernald (2014).

falsifies models of production externalities and aggregate increasing returns to scale as

candidate explanations of expectation-driven fluctuations.14

Forecast error variance decomposition We follow Gorodnichenko and Lee (2020) and

compute the forecast error variance decomposition of all variables examined in Figures

1 and 4.15 Table 1 reports the estimated share of the forecast error variance explained

by expectation shocks at four, eight, and twenty quarters. The numbers in parentheses

are one standard deviation intervals. Expectation shocks explain up to one third of the

variation of GDP. A similar patter emerges for real investment and total hours. For real

consumption and CPI the variance explained is somewhat smaller. In addition, Table 4 in

14 The difference in the conditional cyclicality of labor productivity can also help explain the reduced-form

acyclicality of labor productivity found in the data (see Stiroh, 2009).

15 See Appendix I for details on the implementation.
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4 quarters 8 quarters 20 quarters

Real GDP 33.0 26.6 16.2
(26.9,39.0) (23.1,30.1) (4.3,28.1)

Forecast revision 39.8 30.1 33.1
(33.3,46.2) (21.2,39.0) (19.1,47.1)

Investment 31.0 27.7 27.9
(24.8,37.2) (19.2,36.2) (12.3,43.5)

Consumption 15.4 6.5 14.4
(10.9,20.0) (4.8,8.3) (2.3,26.4)

Durable C 14.0 5.7 19.6
(11.8,16.1) (0.1,11.4) (3.8,35.3)

Non-durable C 7.7 5.4 22.3
(6.6,8.7) (0.8,9.9) (1.5,43.0)

Total hours 28.2 22.6 21.5
(23.7,32.6) (16.0,29.2) (0.6,42.5)

CPI 7.7 14.1 20.4
(5.7,9.6) (10.3,17.9) (15.3,25.5)

Labor productivity 1.0 4.6 2.5
(-4.8,6.9) (0.9,8.3) (-2.6,7.6)

TFP 0.1 0.1 1.1
(-2.0,2.2) (-1.7,1.9) (-2.0,4.1)

Table 1: Forecast error variance explained by expectation shocks

Notes: Numbers in parentheses are one standard deviation confidence intervals. Forecast error variance
shares are computed as in Gorodnichenko and Lee (2020) (see Equation 10, page 923). See Appendix I for
additional details.

Appendix I reports similar values for the shares of forecast error variance after we control

for other fundamental shocks in Equation (1).

1.3 Technology shocks and conditional spectral densities

We now analyze the difference between expectation and technology shocks, and discuss

the implications for the business cycle literature.

Responses to a technology shock It is extensively documented that TFP follows a near

random-walk process and is the main contributor to long-run fluctuations. Thus, the spec-

ification in Equation (3) is not suitable in this case, as it would inevitably capture both the

permanent and the transitory effects of a TFP shock. Suppose, indeed, that TFP shocks

generated transitory oscillatory dynamics while also affecting the long-run level of output.
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Then, impulse responses estimated using Equation (3) would not cross the zero line, and

we would erroneously conclude that TFP shocks do not account for boom-bust dynamics

at business cycle frequencies. Thus, we choose to study the responses on the detrended

variables, so as to isolate the transitory effects of TFP shocks from the permanent ones.

We begin by estimating an innovation in TFP growth using a modified version of Equation

Figure 5: Responses of macro-variables to a technology shock

Note: Impulse responses of macro-variables to a one-standard deviation technology shock. Sample period:
1970Q3–2020Q1. Green lines indicate the point estimate and the shaded areas indicate 80% and 90%
confidence bands calculated with Eicker-Huber-White heteroscedasticity-robust standard errors. Horizontal
axes measure quarters and vertical axes measure percent deviation from pre-shock trend. All the variables
(with the exception of TFP) are log-transformed and are downloaded (in April 2022) from the quarterly
dataset by McCracken and Ng (2020). TFP is from Fernald (2014).
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(2), that is:

∆ log(TFPt)=
M∑

m=1
αm∆ log(TFPt−m)+

Q∑
q=1

βqPCt−q +εt (5)

where εt takes the interpretation of a technology shock. The number of lags M and Q is

equal to four. Next, we estimate the business cycle responses by detrending the macroeco-

nomic variables using a High-Pass filter that excludes periodicities over 200 quarters. The

responses are estimated following Equation (4). Figure 5 reports the impulse responses of

several macroeconomic aggregates. A technology shock brings about a significant comove-

ment of all variables examined. The responses are hump shaped, but there is no significant

undershooting, unlike the responses to an expectation shock. The response of CPI is neg-

ative and significant confirming the supply-side nature of the shock, and the response of

labor productivity is positive and significant, unlike in the case of expectation shock where

we found labor productivity to be countercyclical.

Overall, results on technology shocks are not surprising. In fact, there is ample evidence

on the effects of technology shocks consistent to what we find (see for example Gali, 1999

and Basu et al., 2006). However, they highlight important differences in the nature and

propagation dynamics between non-fundamental and fundamental shocks.

Discussion There are two important implications of our findings. First, business cycles

should be predictable, at least in part. Second, recessions are more likely to occur after an

expansion that has a dominant non-fundamental source. Beaudry et al. (2020) documents

the predictability of boom-bust cycles. Specifically, the authors show that the spectral

densities of U.S. macroeconomic indicators display a peak at business cycle frequencies.16

They then show that standard models of business cycles cannot reproduce the spectral

density peak. Our results complement the findings of Beaudry et al. (2020) in that we

shed light on the source of boom-bust cycles. Building on their work, it is possible to

16 The spectral density is a useful diagnostic tool of boom-bust dynamics because it decomposes the autoco-

variance function at different frequencies. A spectral density peak occurring at a given frequency means that

the economy oscillates according to a predictable cycle with a length equal to the frequency of the peak.
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Figure 6: Spectral density of GDP conditional to expectation and technology shocks

Note: Spectral density of real GDP conditional to expectation shocks (left panel) and technology shocks (right
panel). Sample period: 1970Q3-2020Q1. Blue line indicates the point estimate for expectation shocks, green
line the point estimate for technology shocks, and the shaded areas indicate 80% and 90% confidence bands
calculated using block-bootstrap (see Appendix J.1 for details). Horizontal axes measure periodicities 4 to
60 quarters.

separately compute the spectral densities implied by expectation and technology shocks.

Let the estimated structural moving average of variable yt conditional to a shock ε̂t be

ŷt|ε =
H∑

h=0
θ̂hε̂t−h

where H is a truncation horizon that we set equal to 36 quarters.17 Then, the estimated

conditional spectral density of y at frequency ω implied by the shock ε̂ is

ŝk(ω)= σ̂2
ε

2π

[ H∑
h=0

θ̂(h)eihω
][ H∑

h=0
θ̂(h)e−ihω

]
.

Figure 6 plots the spectral densities of real GDP implied by expectation and technology

shocks. The x-axis is the periodicity, defined as the inverse of the frequency ω. The spec-

tral density of GDP conditional on expectation shocks exhibits a peak at a periodicity of

17 In Appendix J.1 we show that our conclusions do not rely on the truncation horizon.
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about 40 quarters, consistent to what Beaudry et al. (2020) finds in the reduced form

data. The spectral density conditional on technology shocks, in contrast, is monotonically

increasing in the periodicity. A similar contrasting pattern appears when we consider other

macroeconomic indicators (see Figure 16 in Appendix J.2).

Taken together, our findings provide new discipline for models of business cycles. As in

Beaudry et al. (2020), our results favour models that embed a strong endogenous mecha-

nism that is able to reproduce predictable boom-bust dynamics. However, such mechanism

should be shock dependent: boom-bust cycles should stem from expectation shocks and

not from technology shocks. In the remaining part of the paper, we write a model with

one such mechanism.

2 A model of conditional cycles

What is causing the boom-bust dynamics displayed in Figure 1? Given our estimation

strategy, these can result from either shocks to fundamentals that we do not control for

or pure non-fundamental expectation shocks, i.e., sentiments. We argue that the latter is

the more plausible explanation for two reasons. First, there is no evidence to support the

idea that boom-bust dynamics are driven by fundamental shocks.18 In fact, Figure 2 shows

that when we additionally control for a number of fundamental shocks, the boom-bust

dynamics are even more accurately estimated. Second, this section presents evidence that

suggests that boom-bust dynamics can emerge in response to sentiments but not technol-

ogy. We illustrate this in a simple and parsimonious real business cycle model with full

information rational expectations.

The model embeds both fundamental and non-fundamental disturbances. We draw on

a class of models with self-fulfilling (rational) expectations, where business cycle fluctua-

tions are driven by sunspot shocks, i.e., surprise changes in expectations. In this setting,

we model sentiment shocks as the part of sunspots that is independent of fundamentals.

18 With the exception of the response to Romer and Romer shocks as shown by McKay and Wieland (2021).
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The workhorse model in this class is the real business cycle model by Benhabib and Farmer

(1994), where equilibrium indeterminacy arises from a positive production externality re-

sulting in aggregate increasing returns to scale.19 However, due to the production exter-

nality, these models predict procyclical labor productivity in response to both sunspot and

technology shocks. Contrary to this prediction, Figures 4 and 5 show that labor productiv-

ity falls in response to a positive expectation shock, while it rises after an improvement in

technology. To reconcile this evidence, we depart from the model of Benhabib and Farmer

(1994) and propose a different foundation of equilibrium indeterminacy.

2.1 Firms sector

There is a continuum i ∈ [0,1] of firms with gross revenue function F(zt,kt,nt) = ztkθt n1−θ
t .

The variable zt is the stochastic level of technology common to all firms, nt is the labor

input, and kt is the capital input which we assume to be constant and equal to one for

simplicity. The revenue function then reduces to yt ≡ F(zt,1,nt). We assume that firms

issue noncontingent bonds bt+1 at a price bt+1/r t that can be purchased by the households.

In addition, they receive a tax advantage such that given the interest rate r t, the effective

gross interest rate paid by the firm is Rt = 1+ r t(1−τ) where τ is the tax benefit. Thus, for

τ> 0, firms are effectively more impatient than households so that if financial markets are

not too tight, the stock of debt will be positive in equilibrium. Besides the intertemporal

debt, firms raise funds with an intraperiod loan `t to finance working capital. Because

revenues are realized at the end of the period, working capital is required to cover the

intraperiod cash flow mismatch. The loan `t is paid at the end of the period with no

interest.20

19 Other examples of models with equilibrium indeterminacy can be found in Wen (1998) and Benhabib and

Wen (2004).

20 The assumption of two types of debt is made for analytical convenience. In particular, the intratemporal debt

can be replaced with cash that firms carry from the previous period. Cash would then be used to finance

working capital and pay part of dividends.
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The timing of the events is as follows. Firms enter the period with outstanding debt

equal to bt. They first observe the realizations of shocks, and then choose labor expenses

wtnt, the new intertemporal debt bt+1, and the amount of dividends dt to distribute. Since

payments are made before the realization of revenues, the intraperiod loan is

`t = wtnt +χ(dt)+bt −bt+1/Rt.

The term χ(dt) = dt +κ(dt −d)2, where d is the steady state value of dividends and κ ≥ 0,

introduces distribution cost of dividends and captures documented evidence of preferences

for dividend smoothing (Lintner, 1956). The end of period firms’ budget constraint is

bt+1/Rt + yt = wtnt +χ(dt)+bt. (6)

From the budget constraint and the expression for the intraperiod loan above, it follows

that firm revenues are equal to the intraperiod loan, that is `t = yt.

Incentive compatible constraint When revenues realize, firms decide whether or not to

repay the intraperiod loan they owe to households. Consistent with recent evidence on

the procyclicality of unsecured debt (see Azariadis et al., 2015), we assume that contract

enforcement is imperfect so that firms have incentives to default. If a firm defaults, it

can divert its end of period revenues yt. However, a defaulting firm can be caught with

probability γ, in which case its assets will be liquidated, and will cease to operate. If a firm

is not caught, instead, it will continue to retain access to credit in future periods.21 Thus, a

firm defaults if the expected value of defaulting is greater than the expected value of non

defaulting, that is,

yt + (1−γ)E t[mt,t+1Vt+1]> E t[mt,t+1Vt+1]

21 Assuming that in the case of being caught a firm would also lose its revenues does not quantitatively alter

our results.
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where mt,t+1 is the households’ stochastic discount factor, and Vt+1 is the firm future value

defined as the net present value of future dividends.

Since shocks realize at the beginning of period, there is no intraperiod uncertainty, so

that households can lend an amount that deters default in equilibrium. Using the expres-

sion above, the incentive compatible constraint is

γE t[mt,t+1Vt+1]≥ yt. (7)

This constraint effectively limits both types of firm’s debt. The left-hand side is equal to γ

times the firm market value, and decreases with the amount of intertemporal debt bt+1.

Whereas the right-hand side is equal to the end-of-period revenues yt, which are equal to

the firm’s intraperiod loan `t.

Firm’s optimization problem The problem of the individual firm can be written recur-

sively as

Vt = max
dt,nt,bt+1

{
dt +E t

[
mt,t+1Vt+1

]}
(8)

subject to (6) and (7).

Firm’s first order conditions are

(1+µtγ)E t

[
mt,t+1

χ′(dt)
χ′(dt+1)

]
= 1

Rt
(9)

wt

1−µtχ′(dt)
= (1−θ)

yt

nt
(10)

where µt is the Lagrange multiplier associated to the incentive constraint. Equation (9) is

the first order condition for new intertemporal debt bt+1. The term in squared brackets is

the firm’s effective discount factor, that is the product between the household’s discount

factor and the expected decrease in the cost of adjusting dividends. Equation (10) is the

first order condition for labor input. It shows that financial frictions introduce a time

varying labor wedge that depends positively on µt. Conditions (9) and (10) highlight
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the key propagation mechanism of the model. During a boom, equity prices are elevated

and the stochastic discount factor is high, thus µt decreases according to Equation (9). A

decrease in µt, in turn, shifts the labor demand outward as firms can finance more labor.

2.2 Households sector and general equilibrium

There is a continuum of homogeneous utility-maximizer households. Households are the

owners of firms. They hold equity shares and noncontingent bonds issued by firms. House-

holds’ utility function is

U(ct,nt)=
c1−σ

t −1
1−σ −αn1+φ

t

1+φ

where the parameters σ and φ are both strictly greater than zero. The household’s budget

constraint is

ct + st+1 pt + bt+1

1+ r t
= wtnt +bt + st(dt + pt)−Tt (11)

where st is the equity shares and pt is the market price of shares. The government finances

the tax benefits to firms through lump-sum taxes equal to Tt = Bt+1/[1+r t(1−τ)]−Bt+1/(1+
r t), where Bt+1 is the aggregate stock of firms bonds.

Household’s optimization problem The household problem is standard. The household

maximizes its utility function subject to the budget constraint in Equation (11). The first

order conditions with respect to nt, bt+1, and st are

wt =αcσt nφt (12)

c−σt =β(1+ r t)E t[c−σt+1] (13)

pt =βE t

{(
ct+1

ct

)−σ
(dt+1 + pt+1)

}
. (14)
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The first two conditions determine the labor supply and the interest rate. The last con-

dition pins down the price of shares.22 Firm’s problem is consistent with households’

optimization. Thus, the stochastic discount factor is mt,t+1 =β(ct/ct+1)σ.

General equilibrium Given the aggregate states s, that are technology z and aggregate

bonds B, a recursive competitive equilibrium is defined as a set of functions for (i) households’

policies ch(s,b), nh(s,b) and bh(s,b); (ii) firms’ policies d(s,b), n(s,b), and b(s,b); (iii) firms’

value V (s,b); (iv) aggregate prices w(s), r(s), and m(s′,s); (v) law of motion for the aggregate

states s′ =ψ(s). Such that: (i) household’s policies satisfy Conditions (12) and (13); (ii) firm’s

policies are optimal and V (s,b) satisfies the Bellman’s Equation (8); (iii) the wage and the

interest rate clear the labor and bond markets; (iv) the law of motion ψ(s) is consistent with

individual decisions and stochastic processes for technology.

2.3 Inspecting the mechanism

We now turn to the explanation of the model and derive several propositions. To simplify

the analysis, we assume that there are no dividend adjustment costs, i.e., κ= 0, and work

with the loglinearized equilibrium equations around the steady state. The steady state is

derived in Appendix F.1, which also shows that it is unique. Additionally, Appendix F.2

presents the loglinearized system of equations.

Amplification and indeterminacy Let’s consider the loglinearized labor market clearing

condition that equates the labor supply to the labor demand

φn̂t +σĉt = ẑt −θn̂t − µ

1−µµ̂t (15)

where hats denote variables expressed as loglinear deviations from the steady state, and

µ= τ(1−β)
γ(1−τ+τβ) is the steady state value of the Lagrange multiplier µt. Note that when the tax

benefit parameter τ is equal to zero, µ is also equal to zero, so that the financial constraint

22 We normalize the quantity of shares to be equal to 1 in equilibrium.
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is slack, the last term on the right-hand side of Equation (15) vanishes, and the model

reduces to the standard RBC model. When τ is positive, instead, µ is also positive, and the

financial constraint binds in the steady state. In this case, time variations in µ̂t shift the

labor demand, potentially leading to self-fulfilling changes in autonomous consumption.

To see this, we combine the loglinearized version of Equations (9) and (13), and rear-

range them to obtain

µ̂t =−(1+µγ)
βσ

1−β [ĉt −E t(ĉt+1)]. (16)

Equations (15) and (16) capture the key amplification channel due to financial frictions.

Specifically, Equation (16) shows that µ̂t falls when current consumption is relatively high.

In turn, a decrease in µ̂t increases labor demand in Equation (15), leading to higher con-

sumption and further reducing µ̂t. This dynamic arises because, during temporary eco-

nomic booms, households tend to increase their desire to save, which relaxes the financial

constraint and leads to a higher supply of credit. By borrowing more, firms increase their

labor demand, output, and households’ labor income.

Combine Equations (15) and (16) to obtain

φn̂t +σĉt = ẑt −θn̂t + µ(1+µγ)
1−µ

βσ

1−β︸ ︷︷ ︸
≡ζ

[ĉt −E t(ĉt+1)]. (17)

The term ζ is the elasticity of labor demand to the inverse of expected consumption growth,

and captures the strength of the amplification channel induced by financial frictions. In

fact, ζ increases with the tax advantage τ and decreases with the probability of being

caught γ. Note that when ζ is zero, Equation (17) becomes static. For large values of

ζ, instead, expectations of future consumption matter, and the model can admit local

indeterminacy of equilibria. The following proposition formally solves for the emergence

of self-fulfilling equilibria.
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Proposition 1 Let κ = 0. The model admits local indeterminacy around the steady state if

and only if ζ> ζ̄, where ζ̄≡ σ(1−θ)+φ+θ
2(1−θ) .

Proof. Rearrange Equation (17) using the production function and the resource constraint,

as

E t(ĉt+1)= ζ(1−θ)−σ(1−θ)−φ−θ
ζ(1−θ)︸ ︷︷ ︸

≡λ

ĉt + 1+φ
ζ(1−θ)

ẑt (18)

then local indeterminacy obtains if and only if |λ| < 1. Thus, the following two conditions

must be satisfied

(i) θ+σ(1−θ)+φ> 0

(ii) ζ> φ+σ(1−θ)+θ
2(1−θ) .

where condition (i) is always satisfied since the parameters θ, σ, and φ are all positive by

assumption.

The proposition above states that when financial frictions are severe, so that ζ is large,

changes in relative consumption are self-fulfilling. Condition (ii) is instructive. Consider

a one percent increase in consumption, keeping technology at steady state. Using the fact

that ĉt = ŷt = (1−θ)n̂t, the effective labor supply increases by φ

1−θ +σ. The labor demand,

instead, decreases by θ
1−θ as in the standard RBC, while it increases by ζ(1−E t(ĉt+1)) due

to the amplification from financial frictions. Thus, an equilibrium exists if φ

1−θ +σ = ζ(1−
E t(ĉt+1))− θ

1−θ . However, future consumption cannot fall more than one percent otherwise

the dynamics will be explosive. It follows that 2ζ− θ
1−θ > ζ(1−E t(ĉt+1))− θ

1−θ =
φ

1−θ+σ which

results in condition (ii) after solving for ζ.

Indeterminacy and boom-bust dynamics We now turn to the discussion about boom-

bust dynamics. Equation (18) above indicates that the model admits a simple univariate

autoregressive representation. This occurs because we assumed no dividend adjustment

costs, so that the amount of outstanding debt can be absorbed by firm’s equity issuance

without affecting real outcomes in equilibrium. The proposition below provides conditions
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for the emergence of boom-bust dynamics in this simple case. The same intuition applies

in the presence of dividend adjustment costs. We operationalize the notion of boom-bust

dynamics as a negative autocorrelation function of consumption (and output).

Proposition 2 Let κ= 0 and ẑt = 0. The model features negative consumption (and output)

autocorrelation if and only if −1<λ< 0, that is, iff

σ(1−θ)+φ+θ
2(1−θ)

< ζ< σ(1−θ)+φ+θ
1−θ .

Proof. The autocorrelation function of consumption is Γ(h) = λh, with h = 0,1, .., if the

model features indeterminacy of equilibria, otherwise Γ(h) = 0, ∀ h. Then Γ(h) is negative

at some horizons if and only if −1<λ< 0.

In words, in order to obtain boom-bust dynamics, Proposition 2 states that the degree of

financial frictions should be strong enough to obtain indeterminacy of equilibria – so that

consumption is a persistent process – but not too large. The reason why ζ is bounded from

above can be seen again from the labor clearing in Equation (15). For sufficiently small val-

ues of ζ, an increase in current consumption is an equilibrium only if future consumption

falls.

Conditional boom-bust dynamics Under indeterminacy, the forecast error of consump-

tion can arise from either pure sunspot shocks, also known as sentiments, or technology

shocks. As a result, the model solution becomes

ĉt+1 =λĉt + 1+φ
ζ(1−θ)

ẑt +εs
t+1 +ψεz

t+1 (19)

where εs is a sentiment shock, and εz is a technology shock. The parameter ψ governs the

impact response of consumption to a technology shock which we assume to be positive.

Equation (19) reveals that under indeterminacy of equilibria, not only consumption

depends upon its past value – effectively introducing an additional state variable to the

31



system – but also from the past value of technology zt. Importantly, since the loading

of current consumption on past technology is positive, the autocorrelation of consump-

tion conditional on technology shocks can be positive even if counsumption is negatively

autocorrelated in response to sentiments. This is the key finding of the model.

The intuition behind this result is that during an expansion, equity prices rise and the

financial constraint relaxes, leading to an improvement in economic activity. However, the

nature of the equity price increase matters greatly for the dynamics that follow. During

sentiment-driven expansions, equity prices rise due to higher current consumption relative

to future consumption, which raises households’ stochastic discount factor. In contrast,

technology improvements lead to higher equity prices because of higher firm profitability.

As the expansion progresses, households decide how much firm assets to sell based

on the nature of the expansion. If the expansion is sentiment-driven, households sell

off firm assets in anticipation of a future slowdown in economic activity, resulting in a

recession due to their failure to internalize the adverse effects of their asset sales on the

financial constraint. If the expansion is technology-driven, however, households recognize

that equity prices are elevated due to higher profitability and not just optimism, and do

not reduce credit to firms, preventing a recession. The proposition below provides the

parameter conditions for the emergence of conditional boom-bust dynamics.

Proposition 3 Let κ = 0, zt ∼ i.i.d., and −1 < λ < 0. The autocorrelation of consumption is

negative conditional on sentiment shocks, and positive conditional on technology shocks if and

only if −λ<ψζ(1−θ)
1+φ <− 1

λ
.

Proof. The proof is relegated to the Appendix F.3.

2.4 Parametrization and impulse responses

Let the dividend adjustment cost κ be positive, the sentiment shock be i.i.d., and technol-

ogy follow an autoregressive process with persistence parameter ρz > 0. We first describe
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the parametrization, and then show the theoretical impulse responses to technology and

sentiment shocks.

Parametrization We calibrate the model to a quarterly frequency. We set β to match a

3% annual interest yield on bonds. The utility parameter α is such that the steady state

value of hours worked equal to .3. As in Jermann and Quadrini (2012), the tax shield τ

and capital’s share of income θ are equal to .35 and .36, respectively. We set the inverse

of households’ intertemporal elasticity of substitution σ to 1.06, a value between the log-

utility case and the estimates of 1.4-1.5 obtained by Evans (2005) and Groom et al. (2019).

We set φ equal to 10 which implies a Frisch elasticity equal to 0.1, which is within the range

of the microeconometric estimates of MaCurdy (1981) and Altonji (1986). The probability

of being caught γ is equal to 0.085, and the degree of adjustment cost to dividends κ to

20. As per the shock processes, we set ψ equal to .24 in order to match the empirical

impact response of output to a technology shock, whereas we set the persistence parameter

ρz equal to .93 so to match the estimated law of motion of detrended TFP. Finally, the

standard deviation ratio between sentiment and technology shocks is equal 0.94 so as to

match the forecast error variance of output explained by sentiment shocks relative to the

share explained by technology shocks.

Theoretical impulse responses Figure 7 shows the theoretical impulse responses to a

sentiment shock (solid line) and to a technology shock (dashed line). Following a posi-

tive sentiment shock, the economy displays boom-bust dynamics qualitatively in line with

what we found in the data. A positive sentiment shock stems from agents’ expectations

of a boom. Due to the temporary nature of the boom, households increase their demand

for firms’ assets, easing the financial constraint and leading to an initial fall in µt. Con-

sequently, firms borrow more and hire more labor. Since technology doesn’t change, the

increase in labor input leads to a fall in labor productivity, consistent with the empirical

findings portrayed in Figure 4. Unlike in models of noisy signals about future TFP, house-

holds are well aware that technology has not changed, and that equity prices will fall.
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In fact, boom-bust dynamics result from agents’ failure to internalize the effects of their

coordinated actions on the financial constraint. As the expectation-led expansion unfolds,

households sell firms assets, leading to a tightening of the financial constraint. Since firms

are forced to deleverage, production decreases and the economy goes into a recession.

The dynamics to a surprise improvement in technology are very different from those in

response to a positive sunspot shock. As in the data, a technology shock generates hump-

shaped dynamics in all the main macroeconomic variables. Importantly, both the Lagrange

multiplier µt and the intertemporal debt bt+1 increase, indicating that despite firms’ ability

to borrow more, financial frictions dampen the responses to technology shocks. As formally

shown in Proposition 3, the technology-driven expansion does not culminate in a recession.

This is because the increase in firm value primarily stems from higher profitability, rather

than expectations of the future consumption path.

Figure 7: Model-implied impulse responses to a sentiment and a technology shock

Note: Model-implied impulse responses to a one-standard deviation sentiment shock (solid blue lines) and
a one-standard deviation technology shock (dashed green lines). Horizontal axes measure quarters and
vertical axes measure percent deviation from the steady state.

34



Conditional spectral density To compare the model performance with the results pre-

sented in Section 1.3, Figure 8 shows the model-implied spectral density of output con-

ditional to sunspot and technology shocks. The oscillatory dynamics implied by sunspot

shocks are associated with a pronounced peak in the conditional spectral density of output.

As in the data counterpart, technology shocks don’t generate a spectral density peak.

2.5 Sentiments and recession probability

The results presented so far bolster the argument that expansions and recessions should

not be studied separately, rather, they are a figment of an endogenous propagation mech-

anism. Here we broaden the scope of our analysis and look for evidence of recession pre-

dictability in the reduced form data. After all, our results suggest that we should be able to

detect at least some predictability of recessions, without having to identify the sources of

variations. Thus, we take the U.S. quarterly real GDP series used in the foregoing analyses,
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Figure 8: Spectral density of output y conditional to sentiment and technology shocks

Note: Spectral density of output y conditional to sentiment shocks (left panel) and technology shocks (right
panel). To estimate the theoretical spectral density we employ the same procedure described in Section
1.3 using the model-implied impulses responses from Figure 9 (truncation horizon is 20). Horizontal axes
measure periodicities from 4 to 60 quarters.
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Figure 9: Probability of a recession after an expansion

Note: Probability of a recession in a two-quarter window after an expansion. Sample period: 1970Q3-
2020Q1. The black line indicates the point estimate and the shaded areas indicate 80% and 90% confidence
bands calculated with heteroskedasticity and autocorrelation-consistent standard errors (Newey and West,
1987). Horizontal axis measures quarters and vertical axis measures the probability of a recession. Other
solid lines are obtained using simulated data from several models.

and estimate the following linear probability model

RECt+h =β0,h +β1,hEX Pt +ut+h

where, on the left-hand side, RECt is a recession indicator that takes value equal to one

when the real GDP growth falls into the bottom quintile of its distribution for at least two

consecutive quarters, and zero otherwise. Likewise, on the right-hand side, EX Pt is an

expansion indicator that equals one when the real GDP growth is above the top quintile

for at least two consecutive quarters. The black line in Figure 9 shows the estimated

probability that the economy will be in a recession in a two-quarter window around time

t+h, given an expansion at time t. Conditional on an expansion at time t, the probability

of a recession rises and peaks approximately after two years. Then, it converges to its long

run value in an oscillatory fashion.
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In addition, Figure 9 shows the prediction using data simulated from three business

cycle models: the textbook RBC model, the medium-scale DSGE model of Smets and

Wouters (2007), and the incomplete information model with noise shocks of Blanchard

et al. (2013). As a benchmark, we plot the results from a simulated random walk process

for the real GDP. For each model, we run a Monte Carlo simulation where we set the num-

ber of observations equal to the sample size of the real GDP series. The figure plots the

mean estimates. The three models predict that recessions are effectively unforecastable.

In fact, results are virtually indistinguishable from the predictions of a random walk. The

conditional probability of a recession quickly converges to its unconditional mean after

an expansion, failing to replicate neither the spike nor the oscillation that we see in the

data. The reason is that these models do not feature an endogenous boom-bust propaga-

tion mechanism, but recessions originate from negative shocks only. The red line reports

the predictions of our model. In contrast to the other models, our model captures both

the spike in the conditional probability of a recession and the overall oscillatory dynamics

fairly well.

3 Conclusion

Much of the business cycle literature focuses on models featuring no connection between

expansions and recessions. A smaller literature, instead, proposes models of limit cycles

and chaos wherein cycles occur even absent of any perturbation. In this paper, we have

uncovered new empirical findings that call for business cycle theories where these two

views coexist. In particular, our results suggest that changes in sentiments, defined as

changes in expectations unrelated to fundamentals, propagate in a way that is consistent

with the predictions of endogenous cycles theories. Technology shocks, on the other hand,

bring about economic fluctuations that are in line with the predictions of the dominant

business cycle view. We offer one such unifying theory. The main ingredient of our theory is

a pecuniary externality stemming from an endogenous financial constraint. We show that,
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even under rational expectations, this is enough for purely expectation-driven fluctuations

to be an independent source of fluctuations, and to shape the economy in a profoundly

different way than fundamental-driven fluctuations.
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A Data Appendix

Variable Code Source Transformation

TFP dtfp_util Fernald (2014) Cumulated
Forecast xt+h−2|t RGDPh, h = 1,2, . . . ,6 Croushore (1993) Mean estimate
GDP GDPC1 McCracken and Ng (2020) Logarithmic
Investment GPDIC1 McCracken and Ng (2020) Logarithmic
Consumption PCECC96 McCracken and Ng (2020) Logarithmic
Durable C PCDGx McCracken and Ng (2020) Logarithmic
Non-durable C PCNDx McCracken and Ng (2020) Logarithmic
Total hours HOANBS McCracken and Ng (2020) Logarithmic
CPI CPIAUCSL McCracken and Ng (2020) Logarithmic
Labor productivity OPHNFB McCracken and Ng (2020) Logarithmic
Nasdaq Composite NASDAQCOM McCracken and Ng (2020) Logarithmic
S&P 500 SP500 McCracken and Ng (2020) Logarithmic
Industrial loans BUSLOANSx McCracken and Ng (2020) Logarithmic

Table 2: Details on aggregate US data

B Expectation shock series

Figure 10: Expectation shocks and forecast revisions

Note: Time series of expectation shocks ν̂t (solid blue line) and forecast revisions St (dashed black line).
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C Regressions table

Model Equation (1) Equation (2) Equation (5)
Dep. variable St TFPt+3 −TFPt−1 ∆TFPt

Constant 1.0851 Constant 0.0062 Constant 0.0022
(0.2276) (0.0011) (0.0007)

∆TFPt+12 2.6703 ∆TFPt 1.0074 ∆TFPt−1 -0.1638
(8.7574) (0.1281) (0.0771)

∆TFPt+11 25.9644 PC1,t 0.0027 PC1,t−1 0.0060
(8.4582) (0.0045) (0.0027)

∆TFPt+10 4.5776 PC2,t 0.0125 PC2,t−1 0.0035
(8.6576) (0.0069) (0.0041)

∆TFPt+9 13.6385 PC3,t -0.0019 PC3,t−1 0.0053
(8.3278) (0.0053) (0.0032)

∆TFPt+8 6.0410 PC4,t -0.0001 PC4,t−1 -0.0082
(8.4339) (0.0087) (0.0052)

∆TFPt+7 -6.8380 ∆TFPt−1 0.1202 ∆TFPt−2 0.0637
(8.2177) (0.1293) (0.0779)

∆TFPt+6 -3.9403 PC1,t−1 -0.0057 PC1,t−2 -0.0047
(8.2170) (0.0059) (0.0036)

∆TFPt+5 2.2566 PC2,t−1 0.0054 PC2,t−2 0.0092
(8.1869) (0.0079) (0.0048)

∆TFPt+4 30.7886 PC3,t−1 -0.0011 PC3,t−2 -0.0012
(8.2071) (0.0062) (0.0038)

∆TFPt+3 7.8477 PC4,t−1 0.0135 PC4,t−2 0.0030
(8.5582) (0.0087) (0.0053)

∆TFPt+2 -4.0209 ∆TFPt−2 -0.0213 ∆TFPt−3 0.0625
(8.4117) (0.1271) (0.0764)

∆TFPt+1 -13.3822 PC1,t−2 0.0072 PC1,t−3 0.0058
(8.4549) (0.0060) (0.0036)

∆TFPt 94.2108 PC2,t−2 -0.0003 PC2,t−3 -0.0009
(17.9040) (0.0078) (0.0046)

∆TFPt−1 52.2800 PC3,t−2 -0.0007 PC3,t−3 -0.0064
(19.4755) (0.0062) (0.0037)

∆TFPt−2 45.4575 PC4,t−2 0.0028 PC4,t−3 0.0068
(19.0424) (0.0087) (0.0052)

∆TFPt−3 17.8812 ∆TFPt−3 -0.0627 ∆TFPt−4 -0.0237
(18.1003) (0.1239) (0.0744)

∆TFPt−4 41.6766 PC1,t−3 0.0039 PC1,t−4 -0.0008
(17.6503) (0.0053) (0.0032)

bt -76.3258 PC2,t−3 -0.0010 PC2,t−4 -0.0021
(17.0869) (0.0057) (0.0034)

bt−1 -36.3364 PC3,t−3 0.0095 PC3,t−4 0.0073
(18.5829) (0.0057) (0.0034)

bt−2 -40.9222 PC4,t−3 -0.0147 PC4,t−4 0.0013
(18.4549) (0.0079) (0.0047)

bt−3 -20.5774
(17.9761)

bt−4 -41.9186
(17.3232)

St−1 0.3118
(0.0733)

R-squared 0.4881 0.3346 0.1690
F-test 0.0000 0.0000 0.0273

N observations 180 193 195

Table 3: Estimates of Equation (1), Equation (2), and Equation (5)

Notes: Standard errors in parenthesis. TFP is log transformed.
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D Responses of financial variables to an expectation shock

Figure 11: Responses of financial variables to an expectation shock

Note: Impulse responses of Nasdaq Composite, S&P 500, and of commercial and industrial loans to a one-
standard deviation expectation shock. Sample period: 1970Q3–2020Q1. Blue lines indicate the point es-
timate and the shaded areas indicate 80% and 90% confidence bands calculated with Eicker-Huber-White
heteroscedasticity-robust standard errors. Horizontal axes measure quarters and vertical axes measure per-
cent deviation from pre-shock trend. All the variables are downloaded (in April 2022) from the quarterly
dataset by McCracken and Ng (2020), deflated using PCE, and log-transformed.
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E Variance decomposition after controlling for several fundmental

shocks

4 quarters 8 quarters 20 quarters

Real GDP 28.2 30.3 37.7
(22.1,34.4) (25.0,35.5) (10.1,65.3)

Forecast revision 33.8 31.6 38.0
(26.4,41.1) (23.3,40.0) (26.0,50.0)

Investment 21.4 26.7 45.5
(17.3,25.5) (18.3,35.1) (8.8,82.2)

Consumption 16.5 7.7 36.3
(10.5,22.5) (5.0,10.3) (14.7,57.9)

Durable C 7.2 5.3 43.6
(5.2,9.1) (-0.4,11.1) (20.6,66.6)

Non-durable C 4.5 4.6 38.2
(2.5,6.5) (-0.4,9.7) (7.3,69.2)

Total hours 22.8 23.2 24.3
(19.3,26.3) (18.3,28.1) (-0.6,49.2)

CPI 8.9 23.4 41.0
(5.6,12.3) (15.2,31.6) (29.6,52.4)

Labor productivity 0.8 5.1 11.4
(-1.1,2.8) (2.9,7.3) (-0.5,23.3)

TFP 0.2 0.4 1.7
(-0.7,1.1) (-1.0,1.8) (-9.7,13.1)

Table 4: Forecast error variance explained by expectation shocks

Notes: Forecast error variance explained by expectation shocks after controlling for the Romer and Romer
(2004) monetary policy shocks series extended by Wieland (2021), military spending series of Ramey
(2011), unanticipated and anticipated tax shocks by Mertens and Ravn (2012), and the oil price shocks
estimated in Kilian (2008), and the financial uncertainty series of Ludvigson et al. (2021). Numbers in
parentheses are one standard deviation confidence intervals.

F Model Appendix

F.1 Steady state values

r =β−1 −1 (20)

R = 1+ r(1−τ) (21)
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m =β (22)

z = 1 (23)

µ= 1
γ

[
1
βR

−1
]

(24)

n =
[

1
α

(1−µ)(1−θ)
] 1
σ(1−θ)+φ+θ

(25)

w =αnσ(1−θ)+φ (26)

y= zn1−θ (27)

c = y (28)

V = 1
γβ

y (29)

d = (1−β)V (30)

b =
(
1− 1

R

)−1
(y−wn−d) (31)

F.2 Loglinearized equations

E t
[
m̂t,t+1 + V̂t+1

]= ŷt (32)

V̂t = d
V

d̂t +βE t
[
m̂t,t+1 + V̂t+1

]
(33)

µγ

1+µγµ̂t + R̂t +E t(m̂t,t+1)+2κd(d̂t − d̂t+1)= 0 (34)

ŵt = ẑt −θn̂t − µ

1−µ
(
µ̂t +2κdd̂t

)
(35)

ŷt = ĉt (36)

ŵt =σĉt +φn̂t (37)

E t

[
m̂t,t+1 + R

R−τ R̂t

]
= 0 (38)

ŷt = wn
y

(ŵt + n̂t)+ d
y

d̂t + B
y

B̂t − B/R
y

(
B̂t+1 −Rt

)
(39)

ŷt = ẑt + (1−θ)n̂t (40)

m̂t,t+1 =−σE t (ĉt+1 − ĉt) (41)

ẑt = ρz ẑt−1 +εz
t (42)
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E t(ĉt+1)= ĉt +εs
t+1 +ψεz

t+1 (43)

F.3 Proof of Proposition 3

The moving average of consumption conditional on technology shocks is

ĉt =ψεz
t + Aεz

t−1 +λAεz
t−2 +λ2Aεz

t−3 + ...

where A ≡λψ+ 1+φ
ζ(1−θ) . Then Cov(ĉt, ĉt−1)=σ2

z A
(
ψ+ A λ

1−λ2

)
. Since ψ> 0 and −1<λ< 0, the

first order autocorrelation of consumption conditional on technology shocks is positive if

only if A > 0 and ψ+ A λ
1−λ2 > 0, or

−λ 1+φ
ζ(1−θ)

<ψ<−1
λ

1+φ
ζ(1−θ)

.
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G Additional robustness checks

Figure 12: GDP responses to an expectation shock using different specifications

Note: Impulse responses of real GDP to a one-standard deviation expectation shock using different specifi-
cations. The red line is the point estimate and the shaded areas indicate 80% and 90% confidence bands
calculated with Eicker-Huber-White heteroscedasticity-robust standard errors. Circled and dashed blue lines
are the point estimates and the 80% confidence bands, respectively, of the baseline specification presented
in Figure 1. Horizontal axes measure quarters and vertical axes measure percent deviations from pre-shock
trend. In the first row, the specification in the first panel controls in Equation (1) for 16 leads (instead of 12)
of the TFP growth; the second specification controls in Equation (1) for eighth lags (instead of four) of the
TFP growth; and the specification in the third panel controls in the Equation (2) for four lags (M =Q = 5) of
the TFP growth and the principal components. In the second row, the specification in the first panel controls
in Equation (2) for three principal components (instead of four); the second specification excludes estimated
residuals from the regression in Equation (3); and the specification in the third panel controls for 12 lags
(instead of four) of the past of the expectation shocks and the endogenous variable in Equation (3).

H Responses to expectation shocks estimated as in LPN

We follow LPN and estimate a VAR with TFP, real GDP, real consumption, hours, and the

mean SPF forecasts of the real GDP one quarter ahead, for the sample period between

1968Q4 to 2010Q3.23 We identify the expectation shock series as the one that maximizes

the share of forecast error variance of analysts’ forecast up to two quarters, while being or-

23 Table A reports the source of the variables we used.
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thogonal to surprise and news shocks of TFP. Figure 13 shows the results of our replication

exercise.

Figure 13: Impulse response functions to an expectation shock as in LPN

Note: Impulse responses of US TFP, GDP, consumption, hours, and the forecast of the US GDP to a one-
standard deviation expectation shock. The black solid line is the point estimate and the shaded areas indicate
90% confidence bands calculated with the Efron bootstap. Horizontal axes measure quarters and vertical
axes measure percent deviations from pre-shock trend.

I Forecast Error Variance Decomposition

Consider the following model,

yt+h − yt−1 = θhεt + ch +
L∑

l=1
(εt−l , ∆yt−l)Γh,l +γr t+1,t+h + r t,t+h (44)

where ch is a scalar; θh is the impulse response to a shock εt of variable yt at horizon

h; L = 4 is the desired number of lags for εt and ∆yt; for any given h and l; Γh,l is a

bi-dimensional row vector; r t+1,t+h is the error in the h−1 stage forwarded by one period;

and r t,t+h is the error in the stage h.
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We estimate Equation (44) using OLS. Define matrix X t as,

X t = [εt, ι, εt−1, . . . εt−L, ∆yt−1, . . .∆yt−L, r̂ t+1,t+h]

where ι is a (T − h+ 1) constant vector and r̂ t+1,t+h is the estimator of r t+1,t+h, i.e., the

residual of the regression at horizon h−1 forwarded by one period. Note that when h = 0,

r t+1,t+h cannot be estimated and therefore it is not included in X t. At this point, the

vector of estimated coefficients B̂h = (θ̂h, ĉh, Γ̂h,1, . . . , Γ̂h,L, γ̂) of dimension Q = 3+2×L is

estimated as follows,

B̂h = (
X ′

tX t
)−1(X ′

t(yt+h − yt−1)
)

where r̂ t,t+h is defined as (yt+h− yt−1)−X tB̂h. From B̂h we obtain θ̂h, the empirical impulse

responses shown in the main text of the paper.

To estimate the variance decomposition, we follow the LP-B method of Gorodnichenko

and Lee (2020) (Equation 10, page 923). First, consider the augmented counterpart of

Equation (44):

yt+h − yt−1 = θhεt + ch +
L∑

l=1
(εt−l , ∆yt−l , xt−l)ΓV D

h,l + rV D
t,t+h (45)

where xt is a set of additional stationary controls of size (T, J) that we define as the first

5 principal components of the large dataset of US macro variables of McCracken and Ng

(2020). It follows that the main differences between Equation (44) and Equation (45) are

that ΓV D
h,l is now a J +2 row vector and that the error term r t+1,t+h from the regression at

horizon h−1 is not anymore on the right-hand size. Given these changes, net of εt, we can

interpret the error term rV D
t,t+h as the forecast error of yt+h − yt−1. This is what we estimate

in the next step.

As before, we estimate Equation (45) using OLS. Define matrix XV D
t as,

XV D
t = [εt, ι, εt−1, . . . εt−L, yt−1, . . . yt−L, xt−1, . . . xt−L],
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and the vector of estimated coefficients B̂V D
h of dimension Q = 2+ (J +2)×L is estimated

as follows,

B̂V D
h = [(XV D

t )′XV D
t ]−1[(XV D

t )′(yt+h − yt−1)]

where r̂V D
t,t+h is defined as (yt+h − yt−1)− XV D

t B̂V D
h . Define then X̃V D

t equal to XV D
t without

the first column vector εt,

X̃V D
t = [ι, εt−1, . . . εt−L, yt−1, . . . yt−L, xt−1, . . . xt−L],

and obtain

ε⊥t = εt − X̃V D
t B̃V D

h

where

B̃V D
h = [(X̃V D

t )′ X̃V D
t ]−1[(X̃V D

t )′εt].

Finally, the estimated forecast error is f̂et,t+h of variable yt+h − yt−1 with information up to

t−1 equal to,

f̂et−1,t+h = r̂V D
t,t+h + θ̂0ε

⊥
t .24

An estimator for the forecast error variance decomposition is,

ŝh =
∑H

h=0 θ̂
2
hσ̂

2
ε∑H

h=0 θ̂
2
hσ̂

2
ε +

∑T−h
t=L

(
f̂et−1,t+h −

∑H
h=0 θ̂H−hεt+h

)2
/(T −L−h)

where σ̂ε is the estimator of the variance of the shock σε and is equal to

σ̂2
ε =

1
T −1

T∑
t=0

(εt)2.

24 Note that θ̂0 as well as θ̂h in the definition of the estimato ŝh is the one estimated using Equation (44).
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I.1 Inference

Following Gorodnichenko and Lee (2020), we estimate the confidence intervals of the

estimator sh from the following result

p
T

(
ŝh − sh

)
d−→N (0,Vh)

where the variance Vh is

Vh =∆h(Gh)−1Ωh(G′
h)−1∆′

h.

In addition,

1. Matrix Ωh of dimension (K ,K), where K = 2+ (H+1)Q, is equal to

Ωh =
+∞∑

l=−∞
Γ(l)

where Γ(l) is the autocovariance of gt+h(θ0) at lag l, and gt+h(θ0) is a K-dimensional

vector equal to

gt+h(θ0)=



(XV D
t )′(yt − yt−1 − XV D

T BV D
0 )

...

(XV D
t )′(yt+h − yt−1 − XV D

T BV D
h )

ε2
t −σ2

ε

(fet−1,t+h −
∑h

i=0θh−iεt+i)2 −σ2
v,h


and

σ2
v,h = var

(
fet−1,t+h −

h∑
i=0

θh−iεt+i

)
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2. Matrix Gh of dimension (K ,K) is equal to

Gh =−


Ih+1 ⊗ (XV D

t )′XV D
t 0 0

· · · 0 · · · 1 0

· · · 0 · · · 0 1


where Ih+1 is a (h+1)-dimensional identity matrix, and ⊗ is the kronecker product.

3. ∆h is a k-dimensional row vector equal to

∆h = 1− sh

σ2
f ,h



2θ0σ
2
ε ι1

...

2θhσ
2
ε ι1∑h

i=0θ
2
i

−sh/(1− sh)



T

where ι1 is a Q-dimensional column vector equal to one in the first entry and zero

otherwise, while σ2
f ,h = var(fet−1,t+h).

The objective is to estimate the objects Ωh, Gh, and ∆h using estimators Ω̂h, Ĝh, and ∆̂h.

1. Estimator Ĝh is

Ĝh =−dial
(
Ih+1 ⊗

1
T −L−h

(XV D
t )′XV D

t , I2

)
where diag(A,B) is the block diagonal matrix whose diagonal components are A and

B in order, and In is the n-dimensional identity matrix.
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2. To derive estimator Ω̂h, we need to define matrix Zt+h of dimension (T,K) equal to

Zt,h =



(XV D
t )′(yt − XV D

T B̂V D
0 )

...

(XV D
t )′(yt+h − XV D

T B̂V D
h )

ε2
t − σ̂2

ε

(f̂et−1,t+h −
∑h

i=0 θ̂h−iεt+i)2 − σ̂2
v,h



T

σ̂2
v,h =

T−h∑
t=L

(
f̂et−1,t+h −

h∑
i=0

θ̂h−iεt+i

)
/(T −L−h).

The estimator of the long-run variance Ωh is

Ω̂h = Γ̂Zh,0 +
1

1+LLNW

(
Γ̂Zh,1 + (Γ̂Zh,1)′

)
+·· ·+ LNW

1+LLNW

(
Γ̂Zh,LNW + (Γ̂Zh,LNW )′

)

where

- Γ̂Zh,0 = (Z′
tZt)/(T −L−h)

- Γ̂Zh,i = [(Zt,h)′Zt+i,h]/(T −L−h) (when moving Zt forward, append zeros at the

beginning)

- LNW ≈ 3/4× (T −L−h)
1
3

3. Estimator ∆̂h is equal to

∆h = 1− ŝh

σ̂2
f ,h



2θ̂0σ̂
2
ε ι1

...

2θ̂hσ̂
2
ε ι1∑h

i=0 θ̂
2
i

−ŝh/(1− ŝh)



T

where σ̂2
f ,h =∑T−h

t=L

(
f̂et−1,t+h

)
/(T −L−h).
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The estimator V̂h for Vh is

V̂h = ∆̂h(Ĝh)−1Ω̂h(Ĝ′
h)−1∆̂′

h/(T −L−h),

and confidence intervals are

ŝCI = ŝh ± tα,d f

√
V̂h

where tα,d f is the (100×α)% critical value of a t-distribution with d f = T−L−h degrees of

freedom.

J Conditional spectral density

J.1 Inference

We estimate confidence intervals of the conditional spectral density using the block boot-

strap procedure of Kilian and Kim (2011). Define the tuple:

Th = [yt+h − yt−1, εt, ι, εt−1, . . . εt−L, yt−1, . . . yt−L, xt−1, . . . xt−L]. (46)

To preserve the correlation in the data, build the set of all Th tuples for h = 0,1, . . . ,H. For

each tuple Th, employ the following procedure:

1. Define g = T − l+1 overlapping blocks of Th of length l.25

2. Draw with replacement from the blocks to form a new tuple T b
h of length T.

3. Obtain θ̂b
h from T b

h using the local projection estimator.

4. Use bootstrapped impulse response θ̂b
h with h = 0,1, . . . ,H to estimate ŝb

k(ω) as follows

ŝb
k(ω)= σ̂2

ε

2π

[ H∑
h=0

θ̂b
heihω

][ H∑
h=0

θ̂b
he−ihω

]
.

25 Notice that l = (T − I − J + 2)
1
3 is defined following Berkowitz et al. (1999). Results are not sensitive to

alternative choices of l.
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5. Repeat 1. to 4. 2000 times and select confidence intervals for the conditional spectral

density.

J.2 Additional figures

Figure 14: Spectral density of GDP conditional to expectation and technology shocks

Note: Spectral density of real GDP conditional to expectation shocks (left panel) and technology shocks
(right panel). Sample period: 1970Q3-2020Q1. Solid blue line and solid green line indicate the baseline
point estimates presented in Figure 6. Grey solid lines represent estimates using truncation horizon from 30
to 50 quarters.
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Figure 15: Spectral density of macroeconomic variables conditional to expectation shocks

Note: Spectral density of investment, consumption, durable consumption, non-durable consumption, total
hours, CPI, labor producitivity, and TFP conditional to expectation shocks. Sample period: 1970Q3-2020Q1.
Blue lines indicate the point estimate for expectation shocks and the shaded areas indicate 80% and 90%
confidence bands calculated with the block-bootstrap (see Appendix J.1 for details). Horizontal axes measure
periodicities 4 to 60 quarters.
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Figure 16: Spectral density of macroeconomic variables conditional to technology shocks

Note: Spectral density of investment, consumption, durable consumption, non-durable consumption, total
hours, CPI, labor producitivity, and TFP conditional to technology shocks. Sample period: 1970Q3-2020Q1.
Green lines indicate the point estimate for technology shocks, and the shaded areas indicate 80% and 90%
confidence bands calculated with the block-bootstrap (see Appendix J.1 for details). Horizontal axes measure
periodicities 4 to 60 quarters.
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