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Abstract

A challenge in setting regulated rates for default retail electricity products is the presence of both
price and quantity uncertainty faced by the default retail provider. To address this challenge,
regulators have been increasingly employing competition via full-load (load-following) auctions to
value the costs associated with this uncertainty. In a full-load auction, firms bid to supply a fixed
percentage of the regulated utility’s hourly demand at a fixed price. In this paper, we develop a
model of break-even pricing of electricity forward products. We use this model to evaluate the
performance of full-load auctions in Alberta, where the largest regulated retail provider adopted
such auctions in December 2018. We find that the winning full-load bids exceed break-even levels,
but that the difference falls over time. This reduction coincides with an increase in the number
of bidders active in the full-load auctions. Our paper highlights the importance of sufficient
participation for the success of full-load auctions and the potential role for competitive markets in
determining the value of risk faced by regulated retail providers.
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1 Introduction

Jurisdictions worldwide have restructured their electricity markets to introduce competition

into settings previously controlled by vertically integrated regulated monopolies. In addition to

permitting competition at the wholesale level, many regions now have some degree of competition at

the retail level with the objective of lowering costs and enhancing customer choice of differentiated

retail products (Woo et al., 2014, Borenstein and Bushnell, 2015). In general, the introduction of

retail competition is often coupled with the development of a regulated default product.1 After

restructuring, in a number of jurisdictions consumers would automatically be placed on the default

product, and would remain on this product until they chose to switch to a competitive provider.

The rate charged for the default product is an important policy question. Regulators must

balance the competing objectives of encouraging consumers to transition to a competitive provider

and avoiding a high degree of market power during the transition phase. Notably, while default

products are often introduced as a temporary measure, in many cases they have become key

features of the retail market.2 Low default rates may impede the development of the competitive

segment of the market, while high rates may permit the exercise of high degrees of market power;

see Blumsack and Perekhodtsev (2009) and Littlechild (2018) for a detailed discussion. As a result

of these competing objectives, regulated proceedings and hearings to determine these rates can be

controversial and drawn-out.

A key question regarding the provision of default service and the determination of rates is how

the default provider should procure energy for its retail customers, and how the cost of that energy

should be passed on through retail rates. Different approaches have been taken across jurisdictions,

and procurement methods have evolved over time.3 In general, default providers procure financial

forward contracts in advance to cover their expected demand. In some jurisdictions, these financial

forward contracts are crude in nature, and are either flat contracts which specify a price for a fixed

quantity in every hour of the month, or peak contracts which specify a price for a fixed quantity

in all peak hours of the month (e.g., from 7:00 AM to 11:00 PM).4

As a result of the uncertainty in demand and the crude nature of these contracts, the default

provider will find in a particular hour of the month that its forward contract coverage exceeds or is

less than its retail demand obligations. If its forward obligation exceeds its realized retail demand,

the excess is sold at the wholesale (spot) market price, while if it has too little it faces spot market

prices for the shortfall. Because of a positive correlation between spot prices and demand, the result

is that default providers generally are selling their excess forward market quantity when prices are

low and purchasing additional energy when prices are high. Consequently, default providers face

1See Littlechild (2018) for a detailed discussion of default retail products in U.S. residential electricity markets.
2Examples include Alberta Canada (Brown and Eckert, 2018), Australia (Esplin et al., 2020), and New York
(Littlechild, 2018).

3Procurement and rate setting for default products is discussed in detail in Littlechild (2018).
4Section 2 provides a detailed summary of these financial forward contracts.
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both price-risk associated with wholesale price volatility and quantity-risk associated with the

variability in their demand obligations which is enhanced by the crude nature of forward contracts

it uses to cover these obligations. Default product providers are compensated for these costs by

passing them through to retail rates. This compensation is often determined via regulation leading

to considerable controversy over its value.

In contrast, some jurisdictions attempt to employ market mechanisms to determine default rates

and the magnitudes of price and quantity-risk compensation. In particular, a number of states,

including Connecticut, Massachusetts, Maryland, New Jersey, Ohio, and Pennsylvania employ

full-load or load-following auctions,5 in which firms (e.g., generators) sign fixed-priced forward

contracts that represent a percentage of the default product provider’s realized retail load (Loxley

and Salant, 2004; NERA, 2017; Littlechild, 2018). Under such contracts, the associated costs of

supplying uncertain demand are borne by the holders of the full-load contracts. Hence, in principle

the costs associated with providing the default service obligation are priced into these products.

The winning bids in these auctions are then used to set retail rates.

Full-load procurement auctions have been recently deployed in Alberta Canada, where as of

July 2021 45% of residential customers are signed up to the default rate known as the Regulated

Rate Option (RRO) (MSA, 2021c). RRO rates were previously set by passing through the cost of

procuring the financial forward flat and peak products, plus a regulatory-determined compensation

called the Commodity Risk Compensation (CRC), in addition to other adders. In 2018, Alberta’s

largest RRO provider, EPCOR, transitioned away from setting its retail rates through regulation-

set rules and premia to setting rates using full-load auctions (AUC, 2018).

Coincident with this change, EPCOR’s RRO rate increased relative to those of RRO providers

for other regions who did not transition to full-load auctions.6 Figure 1 plots the difference between

the EPCOR residential RRO rate for the Edmonton region and the RRO rates of two other RRO

providers, ENMAX and Direct Energy, over the period from January 2017 to August 2021. The

vertical line corresponds to April 2019, representing the first month for which EPCOR’s rates were

determined using the full-load auctions.

As illustrated in Figure 1, coincident with the introduction of these full-load auctions in April

2019 was an increase in retail rates in EPCOR’s service area, relative to the service areas of Direct

Energy and ENMAX. To give context to the magnitude, the average price in EPCOR over the

sample period was 6.5 cents per kWh. Over the period before April 2019, on average the EPCOR

price was -0.24 cents per kWh below the Direct Energy price, but 0.48 cents per kWh above it

starting in April 2019. Hence, EPCOR RRO rates increased relative to Direct Energy RRO rates

by 0.74 cents per kWh, representing 11% of the average EPCOR RRO rate.

In this paper, we develop a model to evaluate the performance of EPCOR’s full-load procurement

5These have also been referred to as load-slice or full-requirements auctions.
6As will be discussed in more detail below, ENMAX, the second largest RRO provider, eventually adopted full-load
auctions, with December 2020 being the first month to reflect bids from these auctions.
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Figure 1: EPCOR RRO Rates for Edmonton Minus Direct Energy and ENMAX Rates

auction. This allows us to understand the reason for the increase in EPCOR’s RRO rates, relative

to those of the other default providers. We consider two primary explanations, both related to

the conversion from a regulation-set CRC to the use of a full-load auction to price these costs.

The first possibility is that regulatory proceedings result in compensation that is “too low”, with

pressure from consumer groups leading to inadequate compensation for providers. Alternatively,

the increase in EPCOR’s rates could be the result of a lack of competition in the full-load auctions.

To distinguish between these explanations, we employ data from EPCOR’s procurement auctions

from December 2018 to April 2021, along with data on RRO rates, forward contracts, and spot

prices. Our first question is whether winning bids in the full-load auctions, and the differences

between these bids and those of conventional flat products, simply reflect the additional demand

uncertainty inherent in full-load products. To do this, we develop a theoretical model of break-

even pricing where risk-neutral firms compete to supply the RRO forward contracts. This modeling

framework relies on forecasts of expected wholesale prices and EPCOR demand levels and their

covariance. We employ empirical methods to estimate these variables.

We find that the full-load prices from EPCOR’s auctions exceed break-even levels by 7% on

average, a margin not observed in flat and peak products. We demonstrate that the large differences

between the full-load and flat prices cannot be explained by the additional cost associated with

bearing the quantity uncertainty that arises in the full-load product. We find that the difference

between the full-load and flat prices decreases over time, controlling for differences in the underlying

cost of these products. Because EPCOR’s full-load price determines its commodity risk compensation,

we find that this compensation exceeds the level that would arise using our estimated break-even
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prices. Further, EPCOR’s risk compensation exceeds the regulatory-determined risk compensation

for another large RRO provider by a considerable margin.

We then investigate whether the difference between realized and break-even full-load prices

can be explained by market structure, and in particular the number of bidders for the full-load

contracts. We find that full-load contracts attract fewer bidders per contract than the flat and

peak products. However, we find that the number of bidders per unit being auctioned off nearly

doubles over our sample period. Further, the market concentration of winning bidders for the full-

load product decreases over our sample. These observations coincide with the reduced difference

between the cost-adjusted flat and full-load market-clearing prices.

Our findings are consistent with a high degree of market concentration when EPCOR’s full-load

auction was initially introduced. However, as time progressed, the number of bidders increased

leading to a closer alignment of full-load and flat prices, after controlling for the underlying cost

differences of these products. Our results highlight the importance of ensuring there are a sufficient

number of bidders competing to supply default retail products.

We consider additional explanations for these findings. First, we extend our model and

empirical analysis to incorporate risk aversion, and find that risk aversion does not explain the

difference between the cost-adjusted full-load and flat prices. Second, we discuss the possible role

that learning could have played on RRO auction outcomes.

To the best of our knowledge, our paper is the first to empirically analyze the transition to

default rates set through full-load auctions. Several articles have provided detailed descriptive

analyses of observed prices and patterns in full-load auctions in several U.S. jurisdictions (Loxley

and Salant, 2004; LaCasse and Wininger, 2007; Castro et al., 2008). However, these studies do not

utilize a formal model to analyze the performance of these auctions. We provide a contribution to

this literature by developing a theoretical and empirical framework to evaluate the performance of

full-load auction outcomes used to set default retail rates.7

There is a growing literature that documents the design and role of default service products.

Tschamler (2006), Blumsack and Perekhodtsev (2009), and Littlechild (2018) describe the transition

from regulated markets to those with retail competition that is often coupled with regulated default

service products. These articles provide important institutional details and patterns, but do not

formally assess the mechanisms used to determine the prices for these regulated products.

Several recent studies analyze how regulated retail products interact with the broader competitive

retail electricity market. Brown and Eckert (2018) utilize data from Alberta to analyze the market

structure of competitive retailers and how these firms adjust their prices in response to changes

in the RRO price. However, their study does not analyze the performance of the RRO auction

that determines the RRO price and consider a period where the full-load product did not exist.

Esplin et al. (2020) analyze the impact of a recently deployed regulated default offer in Australia

7Eakin and Faruqui (2000) develop a related break-even analysis for flat/peak and full-load products. However, the
authors do not apply their model to real-world retail market data.
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that serves as a price-cap for competitive retailers’ prices on retail market outcomes. Unlike our

setting, the default offer is determined by either estimating the cost of operating as a retailer using

a “cost-stack” approach or based on the distribution of offers by competitive retailers.

More broadly, our analysis contributes to the literature that analyzes the performance of the

electricity sector which has transitioned from a regulated to a competitive setting in a number of

jurisdictions (Davis and Wolfram, 2012; Cicala, 2015; Borenstein and Bushnell, 2015; Cicala, 2022).

The prior literature has documented improved generation unit efficiency (Davis and Wolfram,

2012), reduced labor and fuel costs (Cicala, 2015), and reduced cost due to more efficient arbitrage

across regional markets (Cicala, 2022). However, there is a large literature that has demonstrated

that restructured wholesale electricity markets are also vulnerable to market power (e.g., Borenstein

et al. (2002), Bushnell et al. (2008), and Brown and Olmstead (2017)). While our question is

unique by focusing on the determination of the price of default retail products in a restructured

market, we parallel the findings in this literature by providing evidence that suggests that market

power can erode the potential benefits of market competition.

The remainder of this paper proceeds as follows. Section 2 provides an overview of the RRO

in Alberta and EPCOR’s RRO Auctions. The data used in the paper are described in Section 3.

Our theoretical model of break-even pricing is described in Section 4, and Section 5 outlines the

empirical methodology. Results are presented in Section 6. Section 7 provides extensions to our

main analysis to investigate alternative explanations for our findings. Section 8 concludes.

2 The Regulated Rate Option and EPCOR’s RRO Auction

The restructuring of Alberta’s electricity markets, which began in the late 1990s, introduced

competition into both the wholesale and retail markets. The wholesale market operates as an

hourly uniform-priced auction where generators submit bids that reflect their willingness to supply

electricity. The wholesale price is determined where the generators’ bids, stacked in order of least-

cost, intersect market demand. Unlike many jurisdictions, Alberta has an energy-only market

where payments to generators only occur through wholesale and ancillary service markets. Further,

there is no location-based pricing; the wholesale market clears at a single price that applies to

generation throughout the province.8

Alberta has a competitive retail market where retailers compete by offering products with

various degrees of price-stability (e.g., variable or fixed). Retailers face wholesale prices to serve

their demand obligations and can sign financial forward market products transacted primarily

on Alberta’s Natural Gas Exchange (NGX) in advance to mitigate their exposure to uncertain

wholesale prices. Forward contracts in our setting represent a financial arrangement that secures a

pre-specified quantity of electricity at a fixed price. The forward contract is transacted relative to

the wholesale (spot) price. If a generator (or financial trader) sells a forward contract to a retailer

and the wholesale price exceeds the forward contracted price, the firm pays the retailer holding

8For additional details on Alberta’s wholesale electricity market, see Brown and Olmstead (2017).
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the contract the difference between the spot price and the forward price for the quantity covered

under the contract. Alternatively, if the forward price exceeds the spot price, the retailer pays this

difference to the seller of the contract. Physical delivery for the quantity specified in a forward

contract is not required. However, for expositional ease, in the subsequent discussion we will refer

to the seller of a financial forward contract as “supplying” the associated MWhs to the buyer.

At the time of restructuring, the government introduced the Regulated Rate Option (RRO), a

regulated default product provided to residential and small commercial and industrial consumers

who have not switched to a competitive retailer.9 While early documents indicate that the RRO

was intended as a temporary measure that would be phased out, the RRO continues to exist with

approximately 45% of residential sites on the RRO as of July 2021 (MSA, 2021c).

RRO providers vary by region, with each being the sole provider for a particular geographic

area; the three largest RRO providers (ENMAX, EPCOR, and Direct Energy) serve approximately

95% of all residential households on the RRO. RRO rates are determined through procedures

established through regulatory hearings; rates change monthly. Consumers pay a price per KWh

that is constant over the month, as well as a fixed charge.

The rules regarding how rates are determined are contained in each provider’s Energy Price

Setting Plan (EPSP). New EPSPs are approved by the Alberta Utilities Commission (AUC)

through regulatory proceedings approximately every three years. The EPSPs specify the methodology

through which the provider procures financial forward products to cover expected RRO retail

demand, and the formulas for determining RRO rates. As required in the RRO Regulation, RRO

rates are designed to cover the costs of the energy procured through forward contracts, various

risks and other costs faced by the provider, and a “reasonable return”. RRO rates are determined

in advance and there are no adjustments to compensation ex-post, for example, if expected and

realized costs differ substantially. Procurement methods, and the formulas determining the various

components of retail pricing, have varied by provider and over time.

Our analysis focuses on EPCOR, the largest RRO provider. EPCOR is a regulated distribution

utility with no generation assets. Since 2011, EPCOR has procured monthly financial forward

contracts to cover expected RRO demand through auctions held on Alberta’s NGX financial trading

platform.10 Until December 2018, these auctions procured a mix of flat and peak monthly forward

contracts, where a flat contract specified a fixed volume for each hour of the specified month, and

a peak contract specified a fixed volume for each peak hour, taken to be from 7:00 AM to 11:00

PM. The quantity purchased of each contract was determined by load (demand) forecasting.

Because the amount procured was determined by forecasting, it would typically be below actual

load in high demand hours, and above in low demand hours. Further, hours in which EPCOR

had underprocured would generally be ones in which demand and prices were high; the opposite

9For an overview of retail restructuring in Alberta and the RRO, see also Brown and Eckert (2018).
10In contrast, Direct Energy (and ENMAX until September 2020) procure forward contracts under the direction of

an Independent Advisor which specifies daily target prices in volumes to the firms’ traders.
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held in hours in which it had overprocured. When EPCOR procured less than its actual demand,

it was exposed to the wholesale price for the remainder. Hence, EPCOR faced both price and

quantity risk because of the uncertainty in demand it must serve and the price it faces if its

hedged quantities deviate from the forecast. This issue was compounded by the crude shape of the

forward contracts being procured, which involved the same quantity for every hour or for every

peak hour, and prevented EPCOR from procuring expected load on an hourly basis. As a result,

even if there were no uncertainty, EPCOR would have procured too little in the highest demand

hours and too much in the lowest demand hours.

Compensation for the fact that the forward quantities chosen were based on forecasted demand

and that hedging used crude instruments was included in EPCOR’s compensation via an adder

called the Commodity Risk Compensation (CRC). Determination of the CRC was based on

deterministic formulas and was a contentious aspect of regulatory hearings.

In their 2018-2021 EPSP application, EPCOR proposed replacing formula-based methods of

determining the CRC with a market-based auction methodology. In particular, while continuing

to procure 50% of expected RRO demand through flat and peak forward contracts, 50% of demand

would be covered through full-load contracts. In their proposed full-load auction, providers are

(financially) obligated to supply a fixed percentage of EPCOR’s realized load in each hour. This

means that the full-load product absorbs the variation in the slice of demand covered.11

Despite the fact that the full-load product is only used to cover 50% of EPCOR’s expected RRO

demand, the auction-clearing full-load price determines the energy charge, including the CRC,

faced by consumers who sign up for EPCOR’s RRO. The general idea of the full-load product

is to allow the market to determine the compensation EPCOR should receive for bearing price

and demand uncertainty, while also removing the crude nature of the flat and peak instruments

because the full-load product tracks variations in EPCOR’s demand by construction. In particular,

according to EPCOR’s 2018-EPSP, its CRC is the difference between the full-load price determined

through its auctions, and the average cost of a MWh procured through flat or peak products.12

The implementation of such auctions was approved by the Alberta Utilities Commission, with the

first auction being held in December 2018 for the April 2019 delivery month (AUC 2018).

Under its 2018-2021 EPSP, EPCOR procures flat, peak, and full-load products simultaneously

through a series of auctions leading up to each delivery month. Four auctions sessions are held in

advance of each delivery month, generally at approximately one, two, three, and four months in

advance. During these auctions, EPCOR procures flat and peak products in 5 MW blocks. The

11EPCOR procured full-load contracts to cover a portion of its demand obligation over the period 2006 - 2010.
However, the industry context was different as these products were quarterly, semi-annual, or annual contracts,
and EPCOR self-supplied a portion of its RRO demand via generation assets that were subsequently divested
(AUC, 2018). Due to data limitations, these full-load contracts will not be considered in our analysis.

12Formally, suppose that the load-following, flat, and peak prices are pLF , pF , and pP , EPCOR procures volumes
qF and qP for the flat and peak products, and that flat and peak products apply for 24 and 16 hours per day.

Then, the CRC for EPCOR is computed as CRC = pLF − pF qF 24+ pP qP 16
qF 24+ qP 16

.
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full-load product, covering approximately 50% of EPCOR’s expected RRO demand, is procured in

strips accounting for a fixed percentage (on average 0.76% during our sample period) of EPCOR’s

hourly realized load. Auctions follow a descending clock format.13 Broadly, in each round

participants face a price for each product and indicate the quantities of each product they are

willing to supply at those prices. If total offers for a product exceed the procurement target for

the session, the price is reduced in the next round. This process continues until the willingness to

supply equals the procurement target for each product. Methods to ensure auction competitiveness

included a cap on the amount that a participant can bid on and win in a particular auction setting.

Importantly, a key focus in the design of the auction format and of the associated AUC hearing

was on ensuring that the auction design would encourage participation and yield competitive

outcomes (NERA, 2017; AUC, 2018). In particular, concerns were raised by representatives of

consumer groups that the set of potential bidders for the full-load product would be limited,

and consist primarily of firms with generating capacity. In contrast, EPCOR’s experts argued

that bidders would include generators, financial traders, and other Alberta retailers. The AUC

in its decision concluded that (AUC, 2018, p. 22) “there is a high number of potential auction

participants with a physical position, and the number of total potential auction participants should

increase when financial entities are considered.”

The use of full-load auction prices to determine the CRC was eventually followed by both

ENMAX and Direct Energy. ENMAX’s first full-load auctions was conducted in September 2020,

with December 2020 being the first month to reflect these rates (AUC, 2020). The most recent

EPSP for Direct Energy, approved by the Alberta Utilities Commission in February 2021, does not

have Direct Energy conducting its own full-load auctions, but uses the EPCOR full-load auction

price as an input into the Direct Energy RRO rates (AUC, 2021). The first month to reflect the

new pricing formula for Direct Energy was July 2021.

3 Data

We use a number of data sets that span the years 2015 - 2021. First, we use data on the RRO

market-clearing auction prices for the flat, peak, and full-load products that occurred between

December 2018 - April 2021, when the full-load auction was active. Second, we use data on

EPCOR’s realized and forecasted demand across all customer types. These data will be used to

establish a model that represents how market participants form their expectations about EPCOR’s

demand for future delivery months. Third, we employ data on forward market settlement prices

on Alberta’s Natural Gas Exchange (NGX).14 These data will be used to compare forward product

prices in EPCOR’s RRO auction to the broader forward market. Fourth, we use data that details

expected generation unit outages (i.e., total MWs on outage) that were reported to the Alberta

Electric System Operator (AESO) for future delivery months. These data will be used in a model

13See NERA (2017) for details on the auction format.
14The NGX is the primary trading platform for forward market transactions outside of the RRO auctions.
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that forms expectations about future spot market prices. These data sets were provided to the

authors by the Alberta Market Surveillance Administrator (MSA).

Fifth, EPCOR’s customer site counts are available on the MSA’s website.15 These data will

be used in forming expectations about EPCOR’s expected demand. Sixth, we use data on hourly

realized wholesale (spot) market prices from the AESO.16 Seventh, we employ daily futures crude

oil prices traded on the New York Mercantile Exchange and daily Henry Hub futures natural gas

prices provided by EIA (2021). Alberta’s electricity demand is driven largely by commercial and

industrial customers that are often tied to the oil and gas industry.17 Further, the consideration of

expected Henry Hub natural gas prices will provide an exogenous proxy for the cost of natural gas

generation in Alberta. Data on expected crude oil and natural gas prices will serve as key inputs

into forming expectations about future market outcomes.

Finally, the authors were provided information on the identify of bidders and individual price

and quantity bids in EPCOR’s RRO auction over the period December 2018 - April 2021. These

data will be used in Section 6.2 to analyze how the market structure and degree of competition in

EPCOR’s RRO auction changed over time.18

Table 1 presents summary statistics for a number of the key variables used in our subsequent

analysis. Summary statistics for the RRO auction outcomes are for the period April 2019 - March

2021 when EPCOR’s RRO auctions with full-load products were operating, all other statistics

cover the period November 2015 - March 2021. The RRO auction flat and peak forward prices

closely reflect prices arising from the broader NGX forward market. The full-load prices determined

in EPCOR’s RRO auction, which are not transacted on the broader NGX, are closely aligned with

peak prices on average. Table 1 demonstrates that there is considerable variability in the wholesale

(spot) market prices and EPCOR demand over our sample period. This variability provides an

initial indicator of the price and demand uncertainty faced by suppliers of the full-load product.

Figure 2 presents the average clearing prices for EPCOR’s flat, peak, and full-load auctions for

each delivery month. Full-load prices have essentially tracked auction prices for the peak product,

falling slightly below peak prices, particularly near the end of the sample.19

4 Model

Our primary objective is to evaluate the performance of the full-load product in the RRO

auction. For each auction session, we construct a break-even price for the flat, peak, and full-load

products that represents the forward price that would arise if the forward market were perfectly

competitive. We use this framework to compare observed full-load prices to the break-even full-load

15For details, see https://www.albertamsa.ca/documents/retail-and-rate-cap/retail-statistics/.
16Historical Alberta wholesale prices are available at: http://ets.aeso.ca/.
17In Alberta, 85% of electricity demand arises from commercial and industrial customers (NERA, 2021).
18The data used in Section 6.1 are either publicly available, can be purchased via the NGX, or provided by the

Alberta MSA. In contrast, because of the sensitive nature of the data, the data used in section 6.2 were provided
to the authors under a non-disclosure agreement and are not publicly available.

19Prices in Figure 2 are unweighted averages of clearing prices in the four auction sessions for each delivery month.
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Table 1: Summary Statistics

Unit Mean Std. Dev. Min Max
RRO Flat $/MWh 55.86 8.98 34.49 77.82
RRO Peak $/MWh 67.44 12.23 39.08 98.99
RRO Full-Load $/MWh 66.48 12.54 38.75 99.87
NGX Flat $/MWh 55.34 8.92 33.89 76.81
NGX Peak $/MWh 66.98 12.29 40.50 96.75
Spot Price $/MWh 53.99 98.22 0.00 999.99
EPCOR Demand MWhs 536.04 102.24 332.64 917.00
Avg. Spot Price (30-Day Lag) $/MWh 52.13 23.00 22.49 149.01
Oil Futures Price $/Barrel 48.51 9.67 28.14 60.24
Gas Futures Price $/MMBTU 3.23 0.45 2.52 4.07
Site Counts Count 573,012.86 12,023.66 555,301.25 592,024.50
Expected Outages MWs 1,865.88 364.98 1,107.50 2,657.50

Notes. All prices are in Canadian Dollars. RRO flat, peak, and full-load prices reflect observed market-

clearing prices from EPCOR’s RRO auctions. NGX flat and peak are prices from Alberta’s NGX market.

Spot Price and EPCOR Demand are the observed wholesale price and EPCOR’s demand. Avg. Spot

Price (30-Day Lag) represents the average wholesale market price over the 30 days prior to EPCOR’s

RRO auctions. Oil and Gas Futures Price are the daily crude oil and Henry Hub natural gas futures

prices. Site Counts are the number of customers served by EPCOR. Expected Outages are the number

of MWs that are expected to be on outage for future delivery months. Summary statistics for the RRO

outcomes are for the period April 2019 - March 2021, all other summary statistics cover the period

November 2015 - March 2021.

Figure 2: Average Clearing Prices by Delivery Month: Flat, Peak, and Full-Load Products

benchmark. In our main analysis, we treat the firms that compete to supply these forward products
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(i.e., generators, retailers, financial traders) as risk-neutral. As discussed below, we extend our

model to include risk-aversion using a mean-variance utility function.

Consider a single RRO procurement auction session that occurs several months in advance of

the month covered by the forward market products. There are three products traded: (i) Flat (F),

(ii) Peak (P), and (iii) Load-Following (LF). Denote the hour by t. The flat and full-load products

cover all hours of the month represented by the set T (i.e., 24 hours, 7 days a week). The peak

product covers only a subset of hours Tp ⊂ T (i.e., hours ending 8 to 23, 7 days a week).

Define qjt to be the realized quantity committed in period t by signing contract type j ∈
{F, P, LF}. For the flat and peak products, this is a fixed quantity (i.e., each flat and peak

product represents 5 MWhs). This implies that qjt = qj = 5 MWhs for j = {F, P}. For the load-

following contract, supplying a contract “strip” obligates the firm to supply a percentage α ∈ (0, 1)

of EPCOR’s realized demand Qt. This implies that qLFt = αQt.

Define St to be the realized spot price in period t (in $/MWh) and pjF to be the forward market

price (in $/MWh) paid to the provider of contract type j set in advance of the wholesale market.

Because forward contracts are cleared at the prevailing wholesale (spot) price, the realized payment

for the seller (supplier) of the forward contract of type j for each period t is:

πj
t = pjF q

j
t − St q

j
t . (1)

If pjF ≥ St, then the seller of the contract is paid the difference by EPCOR for the quantity (qjt )

covered by the forward contract. Otherwise, the seller of the contract pays EPCOR the difference

between the spot and forward price.

The seller of contract j evaluates its payoff over the t periods covered by the forward contract.

Consequently, recognizing that the quantity covered by the flat and peak products are time-

invariant, (1) implies that the break-even price that yields zero expected payoff for contract j ∈
{F, P} (pjF ) is:

∑
t∈Tj

E
[
pjF q

j − St q
j
]

= 0 ⇒ pjF =
1

|Tj|
∑
t∈Tj

E[St]. (2)

where |Tj| denotes cardinality of the set Tj which represents the hours covered by contract type

j. (2) demonstrates that the flat and peak break-even prices reflect the average of the expected

wholesale prices for the relevant hours covered by the contract.

Characterizing the break-even price for the load-following contract is more complicated. Unlike

the flat and peak products, the quantity of electricity covered by the load-following contract

depends on EPCOR’s realized demand (i.e., qLFt = αQt). Using (1), the break-even full-load price

(pLFF ) satisfies:
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∑
t∈T

E[ pLFF αQt − St αQt ] = 0 ⇔ pLFF
∑
t∈T

E[αQt ]−
∑
t∈T

E[St αQt ] = 0

⇔ pLFF =

∑
t∈T E[St αQt ]∑
t∈T E[αQt ]

=

∑
t∈T E[St ]E[αQt ] + cov(St, αQt)∑

t∈T E[αQt ]
(3)

where the numerator reflects the expected cost of holding a full-load strip of size α and the

denominator is the expected quantity covered by the full-load product. Unlike the flat and peak

products whose quantities are fixed, the uncertain quantity covered by the full-load product results

in expected cost that depend both on the expected spot price and full-load quantity levels and

their covariance which is often positive in practice. Compared to the flat product, which covers

the same hours, these additional factors are expected to increase the full-load break-even price.

In order to compute the break-even flat, peak, and full-load prices, we need to estimate the

expected values of the random variables Qt and St and their covariance. In the next section, we

describe our empirical methods for estimating these variables. Appendix A extends our modeling

framework to allow for risk-aversion using a mean-variance utility function.

5 Empirical Methodology

In this section, we describe our empirical methodology to estimate the expected values of the

spot market price St and EPCOR demand Qt, as well as the covariance of these random variables.

Recall that for each delivery month, there are four RRO auctions where the forward products are

traded. The first auction is held approximately four months in advance, followed by the second,

third, and fourth auctions which are held approximately three, two, and one month prior to the

delivery period, respectively. When firms are forming their expectations about the future delivery

month, they are doing so with the information that existed as of the time of the auction.

To formalize this idea with notation, define m to be the delivery month covered by the forward

product with T hours of wholesale market transactions. For each delivery month m, our objective

is to build an empirical model to estimate spot prices St,m and EPCOR demand Qt,m for all

t = 1, 2, ..., T based on information available at time m − k for k = 1, 2, 3, 4 (when the RRO

auctions are held). We employ a regression analysis to model the properties of these two random

variables as follows:

Ytm = Xt,m−k ~β + δt,m + εt,m (4)

where Yt,m reflects the dependent variables St,m and Qt,m, δt,m reflects a set of calendar controls,

and Xt,m−k are variables that contain information that form expectations about the level of Yt,m

that are known prior to the auction held in month m−k. The calendar controls capture systematic

time-based variation in prices and EPCOR demand including indicator variables for each month,

hour, month-by-hour, day-of-week, and a linear month-year time trend.
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For the spot market price regression, Xt,m−k contains four variables that capture information

that was available to market participants just prior to when the RRO auction was held that would

help form expectations about spot market prices for the delivery month m. First, for each hour

of the day, we include the average spot price of that hour in the 30 days prior to the day the

RRO auction is held. This aims to capture trends in recent spot market prices. Second, we include

information on expected generation unit outages (i.e., total MWs on outage) for the delivery month

m available just prior to the day the RRO auction was held.20

Third, we utilize the New York Mercantile Exchange’s daily futures Crude Oil prices for future

delivery month m on the morning of the RRO auction. This forward-looking variable captures

market expectations about the profitability of oil production, a key industry in Alberta’s economy

that is often cited as being a driver of electricity demand (e.g., MSA (2021a)). Fourth, we utilize

the Henry Hub natural gas price for future delivery month m on the morning of the RRO auction.

This variable captures expectations on the cost of natural gas which is a critical input into the

cost of electricity generation in Alberta. We utilize the Henry Hub gas futures price because it

is exogenous to electricity generation decisions in Alberta. We allow the effect of expected total

MWs on outage, oil futures price, and natural gas futures price to vary by peak and off-peak hours

reflecting the fact that we expect these variables to have an asymmetric impact on supply and

demand conditions in these hours.

For the EPCOR demand regression, Xt,m−k contains three variables. First, we utilize data on

the number of customer sites just prior to the RRO auction for all customers types in its delivery

area. This variable is a fundamental component of how EPCOR formulates its own demand

forecasts for a future delivery month (EPCOR, 2017, Schedule C). Second and third, we include

NYME’s daily futures Crude Oil price and the Henry Hub natural gas futures price for future

delivery month m on the morning of the RRO auction. As noted above, these variables aim to

capture the fact that electricity demand is closely linked to the oil and gas industry in Alberta. We

allow the effect of the oil and natural gas futures prices on EPCOR’s demand to vary by peak and

off-peak hour to capture the possible asymmetric effect these variables have on demand conditions

throughout the day.

We use the model in (4) to establish out-of-sample estimates of the dependent variables to

represent their expected values. More specifically, to estimate the four-month ahead expectations

for April 2019, we first estimate the model on a three-year window starting in November 2015 to

November 2018. We then estimate the dependent variables out-of-sample based on information

available as of December 2018 for four, three, two, and one full months in advance. We move

forward a month estimating the model on the window December 2015 - December 2018, then

predict the dependent variables out-of-sample as of January 2019 for four, three, two, and one

month ahead. This process continues until the end of our sample period and establishes four, three,

20This data is available for any day where there was a trade on the broader Alberta NGX market. We take the
expected outage measure on the last day where a trade occurred on the NGX prior to the RRO auction.
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two, and one-month forward-looking estimates for each of our dependent variables. We chose a

three-year window to train the model to balance providing sufficient variation for our model to

identify off of, but limit the time window to account for the fact that the market environment

changes over time so we want to avoid using data that is too dated.21

Next we describe how we establish estimates on the covariance values for our dependent

variables. For each month, we multiply the difference of predicted and observed prices by the

difference in EPCOR observed and predicted demand. These covariance terms are averaged by

hour to give us an hourly covariance measure for each month in our sample.22

The aim of this approach is to capture the strong seasonal patterns we observe in the covariance

values of these random variables. However, this approach utilizes realized spot prices and demand

to compute these measures. We employ several robustness checks to evaluate the sensitivity of

our results to this approach. First, we employ an approach that computes the observed hourly

covariance measures as above, but average these across all years in our sample at the month level.

This approach captures the observed seasonal variation in the covariance measures while relaxing

the perfect foresight assumption because an individual hour’s value will have a small effect on

these measures. The downside with this approach is that it fails to capture changes in the market

over time. Further, this approach uses price and demand levels from future months that occur

potentially far in advance of the current delivery month.

Second, we estimate the covariance estimates discussed above, but use the values that occurred

11, 12, and 13 months ago. That is, we use the one-year lagged realized values that would have been

observed by the firms and one month before and after to smooth out possible outliers associated

with an individual month’s value. This approach relaxes the perfect foresight assumption on spot

prices and demand, while capturing the observed seasonality in these measures.

An alternative approach would be to take observed covariance values for spot market prices

and EPCOR demand and build similar regression models to forecast out-of-sample values for

these variables in a similar manner to our approach above. However, this approach would not

appropriately account for the fact that there is uncertainty in the expected value of the price and

demand variables. Rather, this approach would be based on estimating the variation in observed

prices (demands) around the observed mean price (demand) level.

For a given delivery month m, these methods establish empirical estimates for the expected

value and covariances for each of our dependent variables on a four, three, two, and one month

21Using the three year window, or a shorter 2.5 year window, we find that our forecasted expected spot prices align
with the price expectations arising on the broader Alberta Natural Gas Exchange (NGX). In contrast, we find
that shorter time periods result in volatile forecasted expected spot prices that deviate substantially from the
broader Alberta NGX forward prices.

22More formally, spot prices and EPCOR demand can be thought of as jointly distributed random variables
(St,m, Qt,m). We empirically estimate the month-by-hour specific expected value E[St,m] and E[Qt,m] of these
random variables using the regression model in (4). Subsequently, for a given hour t in month m, we observe
N values on St,m,j and Qt,m,j for j = 1, 2, ..., N . We compute the covariance of these random variables by
1
N

∑
j (St,m,j − E[St,m] ) (Qt,m,j − E[Qt,m] ).
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forward-looking basis. For each RRO auction, we utilize these values to estimate the break-even

flat, peak, and load-following prices in (2) and (3).

In the results below, we drop two outlier months (January 2020 and February 2021). These

two months had extreme unexpected and prolonged periods of cold weather. This caused both

prices and demand to be higher than expected (MSA, 2020, 2021b). This yields excessively large

values on our variance measures for demand and prices. To avoid having two outlier months drive

our quantitative results, we have dropped these months. However, as discussed in the next section,

the key qualitative conclusions drawn from our analysis are unaffected by including these months.

6 Results

In this section, we present the results of our empirical analysis. We begin by summarizing

the results of our regression analyses and the estimated break-even prices. We then investigate

possible drivers of our results by investigating changes in the market structure of EPCOR’s RRO

auction. Finally, we present two extensions to our main modeling framework that consider the

role of risk-aversion and experience/learning that could change bidding behaviour over time.

6.1 Empirical Results

We first highlight several key observations from the results of our forecasting regressions for

spot prices and EPCOR demand. Recall that the motivation for Commodity Risk Compensation

and the introduction of the full-load product comes from several observations regarding retail

electricity markets: (a) uncertainty regarding hourly load, creating demand risk; (b) a positive

correlation between spot prices and retail demand, so that a retailer who has under-procured for

a high-demand hour is subject to a high spot price; and (c) the crude nature of flat and peak

forward products, which are unable to match daily demand profiles.

To illustrate the last point first, Figure 3 presents average hourly EPCOR load, along with

the averaged hourly forecasts from the EPCOR demand regressions. Figure 3 illustrates that

our forecasts capture hourly patterns in demand well on average. Further, the forward hedge line

represents the average load in peak and off-peak hours, as an example of an hourly hedging pattern

that can be achieved by purchasing a combination of flat and peak products. As can be seen in

Figure 3, this hedging portfolio would under-procure on average in the late afternoon and evening

(HE 17 - 21), but would over-procure in early morning (HE 2 - 6) and mid-morning (HE 8 - 11).23

Figure 4 plots observed average prices by hour, along with hourly averages of the price forecasts

from the spot price forecasting regressions. First, we note that our forecasting approach results in

expected spot price levels that closely match the overall level and profile of spot prices throughout

23The flat and peak procurement strategy illustrated in Figure 3 is a simplification in that it assumes that EPCOR
procures up to its expected average load in flat and peak hours. In practice, it was possible for RRO providers to
over-procure peak products in order to reduce commodity risk. For example, according to its 2014-2018 EPSP,
EPCOR would procure to the 60th percentile of its average hourly load in peak hours. This followed an initial
request to procure to the 75th percentile (AUC, 2015).
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Figure 3: Observed, Expected, and Forward Hedged Demand by Hour.

Figure 4: Observed and Expected Prices by Hour.

the day. Second, Figure 4 shows that the hourly pattern in EPCOR load is closely reflected in

hourly average spot prices. As a result, under a flat/peak procurement approach, those hours in

which EPCOR would be under (over) procured would also be those hours in which the wholesale

price is high (low).

We use the estimate wholesale price and EPCOR demand to compute a correlation coefficient
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between spot price and load for each month. The average correlation coefficient is 0.25 for all

hours and 0.28 for peak hours, suggesting a moderate positive correlation between expected spot

prices and demand. While the estimated expected demand levels in Figure 3 are close to observed

demand on average, the estimated standard deviation in EPCOR’s demand at the hourly level is

48.5 MWhs. This demonstrates that holders of full-load contracts face quantity risk when forming

expectations about the demand they are obligated to serve when securing a full-load slice.

In addition to observing that our forecast regressions fit observed values well on average, it is

also instructive to look at the distribution of parameter values and fit of our price and demand

regressions detailed in (4). As discussed in Section 5, we run a large number of regressions because

we use these regressions to establish out-of-sample expectations on spot prices and EPCOR

demand on a rolling basis. Figures A1 and A2 present box and whisker plots that summarize

the distribution of parameter estimates and adjusted R-squared values for the price and demand

regressions, respectively. While our objective of these regressions is to establish out-of-sample

estimates on expected demand and prices, the distribution of statistically significant coefficient

estimates yield the expected signs on average. See Appendix C for a discussion of these results.

Table 2: Average Observed and Break-Even Forward Prices

Product Observed Break-Even
Flat 55.86 58.20
Peak 67.44 67.07
Full-Load 66.48 61.78

Notes. Break-Even represents the estimated risk-neutral break-even

flat, peak, and full-load prices from (2) and (3).

Table 2 presents the average observed and estimated break-even forward prices by product

in EPCOR’s RRO auction. Table 2 demonstrates that the average observed prices are closely

aligned with our estimated average break-even prices for the flat and peak products. In fact, the

observed flat price is below our risk-neutral estimate suggesting that firms’ expectations were for

even lower expected wholesale prices across all hours than our estimated values. The fact that

firms’ expectations appear more aggressive than our model’s estimates magnify the concerns over

the large observed differences between the observed full-load price and our estimated break-even

price for this product. Our results show that the average observed full-load price exceeds our

average break-even value by approximately 7%.

To investigate how the full-load price markup above the flat price varies over time (reflecting

the added quantity-risk), we compare the full-load and flat prices, controlling for differences in the

underlying costs of providing these two forward products. Figure 5 presents the difference between

the full-load and flat prices, net of the difference in the two products’ break-even prices to control

for relative changes in the underlying costs of providing these forward products.24

24More specifically, using the notation from Section 4, Figure 5 graphs pLF
F −pFF−(pLF

F −pFF ) = pLF
F −pLF

F −( pFF−pFF ).
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Figure 5: Observed Full-Load Minus Flat Prices, Net of Differences Between Break-Even Prices.

Figure 5 demonstrates that there was a considerable difference between the observed full-load

and flat prices, adjusted by differences in their underlying break-even risk-averse prices, at the

beginning of our sample. Over our sample period, we observe a considerable reduction in the level

of this difference from $5/MWh to $19/MWh early in our sample to $-3/MWh to $10/MWh near

the end of our sample period. More specifically, the average difference is $7.04/MWh over the full

sample. The difference declines from an average of $9.67/MWh between April 2019 - March 2020

to $4.41/MWh between April 2020 - March 2021.

These results suggest that while the full-load product has a higher break-even price than the

flat product, this price difference is not sufficient to explain the observed differences between these

two products. Further, we have documented a considerable reduction in this difference over our

sample period. However, a positive difference remains that cannot be explained by differences in

the underlying costs of these products.

We can compare the Commodity Risk Compensation (CRC) awarded to EPCOR to the CRC

based on the same formula, but using the break-even flat, peak, and full-load prices from our

analysis. In addition, we compare our model-estimated CRC values to the actual CRC awarded to

Direct Energy through its regulatory hearings. These comparisons allow us to investigate whether

regulatory hearings provide sufficient commodity risk compensation, and whether market-based

mechanisms are better able to provide appropriate levels of compensation.

Recall from Section 2 that according to EPCOR’s 2018-2021 EPSP, its CRC is the difference

between the full-load price determined through its auctions, and the average cost of a MWh

procured through flat and peak products. Using observed clearing prices, and the volumes of

The line represents the conditional means estimated from a local-linear kernel regression.
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flat and peak products procured by EPCOR in its auctions, the average realized EPCOR CRC

over our sample period is $8.49/MWh. In contrast, the CRC values generated using the break-

even flat and peak prices is $1.93/MWh. The average CRC for Direct Energy over the sample

period was $3.10/MWh, suggesting that while Direct Energy’s CRC determined through regulatory

proceedings also exceeded the break-even benchmarks, it was much closer than the market-determined

CRC paid to EPCOR.25 Further, EPCOR’s regulatory-determined CRC for the Edmonton region

was $2.38/MWh on average in the 12 months prior to the implementation of the market-based

CRC considered in our analysis.

We run a number of robustness checks to ensure these results are not affected by specific features

of our sample period or modeling approach. First, as noted above, we removed January 2020 and

February 2021 because these months had unexpectedly large price levels. We analyze the results

of our model when these months are included in our analysis. Second, we remove RRO auctions

that occurred in March, April, and May of 2020 during the initial wave of the Covid pandemic.

In these months, there was considerable uncertainty regarding future wholesale market prices and

electricity demand. Third and fourth, as discussed in Section 5, we also compute the covariance

measures averaged at the monthly level across all years in our sample and as the average of their

observed values 11, 12, and 13 months prior to each RRO auction. These results are presented in

order in Tables A2 – A5.26

While the precise estimates can vary, these results demonstrate that our qualitative conclusions

are robust to these alternative samples and approaches. In particular, we find that the average

difference between the cost-adjusted full-load and flat prices demonstrated in Figure 5 are initially

large and this margin decreases over our sample period. For each of these robustness checks, our

qualitative conclusions regarding the Commodity Risk Compensation, that EPCOR’s CRC based

on auction-clearing rates is more than double both the regulated CRC given to Direct Energy and

the rates based on our model estimated break-even forward prices, persists.27

6.2 RRO Market Structure Analysis

We will now investigate possible causes for these trends in the data and evaluate if changes in

the market structure and degree of competition in EPCOR’s RRO auction can help explain the

observed patterns. For each product, we document the number of bidders, present concentration

ratios, and evaluate the characteristics of the types of bidders participating and winning in

EPCOR’s RRO auction.
25Considering only the years 2020 and 2021, EPCOR’s average CRC was $6.77/MWh when using observed RRO

auction prices. The CRC that arises by using our estimated break-even prices is $2.21/MWh. In comparison,
Direct Energy’s average CRC for this period was $3.41/MWh. Hence, the large difference between EPCOR’s
CRC based on observed clearing prices and those based on break-even prices, or compared to the observed CRC
paid to Direct Energy, is not simply the result of the high full-load prices observed when the full-load auction was
first introduced.

26In each table, we also present the results for our model extension that includes risk-aversion. This extension is
discussed in detail in Section 7.1.

27See Table A6 and the associated discussion in the Appendix for detailed results on the CRC calculation.
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(a) Number of Bidders (b) Number of Bidders per Unit

(c) Number of Winning Bidders (d) Number of Winning Bidders per Unit

Figure 6: Number of Bidders by Product

Figure 6 illustrates how the number of bidders competing for each product and number of

winning bidders vary over our sample period.28 We also divide these variables by the number of

units being sold for each product to appropriately frame the relative degree of competition for

each product. Figure 6(a) demonstrates that the flat product has the largest number of bidders

with an average of 9.1. Alternatively, the full-load and peak products averaged 6.7 and 6 over our

sample period, respectively. There is a considerable increase in the number of bidders competing

to supply the full-load product, increasing from an average of 3.75 in the first delivery month to

7.8 near the end of our sample.29 The increase in the number of bidders competing to supply the

full-load product is consistent with the observed reduction in the full-load markup in Figure 5

28In Appendix C, Figure A3 presents the average number of active bidders per unit by auction round for each
product, providing insight into how the number of bidders varies as EPCOR’s descending clock auction progressed.

29NERA (2017) documents evidence on the number of bidders competing to supply full-load products in Maryland,
New Jersey, and Ohio. The number of bidders ranges from 2 to 7 for 5 out of the 7 utilities listed. This is in
line with the number of bidders in our setting. The remaining two utilities have a considerably higher number
ranging from 8 to 17. However, the number of units being auctioned off are not provided so we cannot normalize
the number of bidders as we do in our analysis.
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suggesting the full-load auction is becoming more competitive over time.

Figure 6(b) shows that the number of bidders per unit is highest for the peak product followed

by the flat and then full-load products. This ranking is driven in part by the fact that there is

an average of 3.5 peak product units, 10.6 flat units, and 16.3 full-load units being procured per

auction over our sample. This suggests that the full-load product has the lowest relative degree of

competition. While it is hard to observe in Figure 6(b), it is important to note that the number

of firms competing for the full-load product per unit has more than doubled from 0.23 in the first

delivery month auctions to 0.49 on average near the end of our sample. This continues to suggest

that there has been enhanced competition for the full-load product over our sample period.

Figure 6(c) demonstrates that the flat and full-load products have the highest number of

winning bidders with an average of 3.75 and 4.20, respectively. The number of winning bidders in

the full-load auction has increased from an average of 2.5 in the first delivery month to 4.8 near the

end of our sample. Figure 6(d) demonstrates that when normalized, the flat and full-load products

have 0.36 and 0.26 number of average winning bidders per unit over our sample. Consistent with

the increase in the number of bidders, the average number of winning bidders per unit for the

full-load product has increased from 0.16 in the first delivery month to 0.30 near the end of our

sample. These results are consistent with enhanced competition for the full-load product leading

to additional firms competing and winning the full-load product.

Looking at the number of winning bidders for each product does not provide information on

the concentration of contracts won among those bidders. To address this, Table 3 reports the four

firm concentration ratios (CR4) for each product, aggregated to the level of the delivery year; for

example, the first column reports the combined percentage of contracts won by the four largest

firms for each product from April to December 2019. Notably, Table 3 indicates that for months

in 2019 for which all three products were auctioned, full-load products had a CR4 of 95%, which

was substantially higher than those of peak (82%) and flat (77%) products. In subsequent years,

concentration of the three products converged to approximately 85% in 2021.30

Table 3: Four Firm Concentration Ratios (%) by Product and Year

Product 2019 2020 2021
Peak 82 87 85
Flat 76 73 85
Full-Load 95 88 86

Finally, we evaluate the configuration of bidders by type and how bidder characteristics change

over our sample period. When the full-load auction was being debated, there were considerable

concerns over whether or not there is a sufficient pool of competitors willing to compete to supply

the full-load product. In particular, it was argued that only firms with generation assets would

30Table A7 in the Appendix presents analogous results using the Herfindahl-Hirschman Index (HHI). The HHI
demonstrates the same general pattern as the CR4, with higher concentration in the full-load product initially
and a reduction in the full load product’s concentration by 2021.
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participate in teh full-load auctions, and that financial traders are unlikely to compete effectively

against generators who have a distinct advantage of managing the risk of holding a full-load

product.31 Stakeholders advocating for the full-load product noted that financial traders can

hedge the risk of the full-load product by signing other financial forward products. In addition, it

was suggested that retailers are likely to find the full-load product to be attractive because they

are used to managing the risk of such a product which has many similarities to signing a customer

with uncertain demand to a fixed-priced contract (NERA, 2017; AUC, 2018).

Table 4: Percentage of Bidders and Contracts Won by Product and Bidder Type

Product Type % of Bidders % of Contracts Won
Generators 41.16 59.87

(4.67) (27.81)
Flat Retailers with RRO 17.74 5.84

(1.44) (6.88)
Financial Traders 41.10 34.28

(4.19) (26.60)
Generators 34.56 63.74

(8.56) (23.65)
Peak Retailers with RRO 24.08 5.83

(3.71) (8.27)
Financial Traders 41.36 30.43

(10.77) (24.13)
Generators 36.61 50.73

(5.79) (10.97)
Full-Load Retailers with RRO 20.09 29.54

(7.68) (10.15)
Financial Traders 43.30 19.73

(5.03) (11.63)

Notes. Standard deviations are in parentheses. “Financial Traders” contains 6 companies

that specialize in financial trading in energy markets. “Generators” contains 5 companies

that own generation assets in Alberta. “Retailers with RRO” contains 2 companies that

are retailers in Alberta that also offer the RRO product in their respective jurisdictions.

To investigate these questions, we define three types of bidders: Generators, Retailers, and

Financial Traders. We observe two retailers that actively participate in EPCOR’s auction. These

retailers also provide the RRO product in their respective jurisdictions so we label this type as

Retailers with RRO.32

Table 4 provides the percentage of bidders and contracts won by product and firm type over

our sample period. The configuration of bidders is similar across all three products. Financial

traders and generators make up the majority of bidders. Importantly, we observe all three types

31For details, see Section 6.1.1 in AUC (2018).
32One of these two retailers is a vertically integrated that also owns generation units. However, to ensure anonymity,

we are unable to provide the market shares of these two individual retailers separately.
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of firms competing to supply the full-load product. This suggests that concerns raised during the

regulatory hearing regarding the lack of participation by financial traders were not realized.

However, by looking only at the percentage of bidders by type, we are missing the intensity to

which bidders of certain types compete to supply each individual product. Table 4 presents the %

of contracts won by firms of each type. The flat and peak products have similar configurations,

the majority of contracts are won by generators followed by financial traders and then a small

percentage are won by retailers with RRO products.

Alternatively, for the full-load product, while generators continue to have the highest market

share, retailers with RRO products have the second highest percentage of contracts won. Compared

to the flat and peak products, retailers win a considerably larger amount of the full-load product.

This high market share may be driven by the logic outlined above that retailers will find this

product attractive given its similarities to the risk entailed with signing customers to retail service

contracts. However, it is important to note that the relatively high percentage of contracts won

by retailers is driven by a single retailer, while a number of generators and financial traders supply

the full-load product. This raises some concerns over the strength of the incentives that retailers

face to compete to supply the full-load product more broadly.

In summary, our analysis demonstrates a sizable divergence between the full-load price and its

break-even benchmarks. We demonstrate that this difference has decreased considerably over time.

This decrease coincides with a sizable increase in the number of firms competing to supply the

full-load product. Further, we provide evidence that financial traders and retailers are interested in

supplying the full-load product, alleviating concerns raised by stakeholders that generators would

have an advantage when competing for this unique and new product.

7 Extensions

In this section, we consider additional possible explanations for our findings that full-load prices

exceed estimated break-even prices in a way not observed for the flat or peak products.

7.1 Risk-Averse Preferences

One potential explanation for why we observe a full-load price that exceeds our estimated

break-even price is the presence of risk-aversion among the suppliers of the RRO products. This

can put upward pressure on the break-even full-load price in particular because it entails both price

and quantity uncertainty. We adjust our model used to characterize the break-even flat, peak, and

full-load prices to allow the suppliers to be risk-averse. We utilize a mean-variance utility function.

The formal model and derivations can be found in Appendix A, along with a discussion of how

risk aversion affects our empirical approach and how the risk aversion parameter is estimated.

Intuitively, the introduction of risk aversion in the model results in an additional premium in the

break-even prices of all three forward products. While the risk premia in flat and peak forward

prices reflect simply the variance of spot prices over the relevant hours, the risk premia in full-load
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prices also incorporates the additional uncertainty in load.

A detailed discussion of the results with risk aversion can be found in Appendix B. In general,

the estimated average risk margins, which reflect the difference between the risk-averse and risk-

neutral break-even prices, are small and range from $0.56/MWh for flat contracts to $0.81/MWh

for peak contracts. The estimated average risk margin for full-load contracts is $0.64/MWh,

which is greater than the flat risk margin as expected, but less than the risk margin for peak

contracts. Importantly, the observed full-load price is $4.06/MWh higher than the estimated risk-

averse break-even full-load price on average. This suggests that risk-aversion explains only a small

portion of the difference between the observed and risk-neutral full-load break-even price. Further,

the estimated additional risk-premium in the full-load product for carrying the quantity risk, which

is represented by the difference in the risk margins for the full-load and flat product, is small and

comes in at only $0.08/MWh on average.

To provide a comparison to our estimated risk-margins, we compute the ex-post (realized)

forward market premium. More specifically, we compute the difference between the observed

forward price and spot market prices. For the realized flat (peak) risk premium, we compute the

difference across all hours (only using peak hours). This approach has been commonly employed

in the empirical literature to estimate forward risk-premia in electricity markets (e.g., Redl and

Bunn (2013)).33 This literature emphasizes the importance of having a longer time-series of data

to estimate realized forward risk-premia. Consequently, we utilize forward market transactions

on Alberta’s NGX over the period January 2017 – April 2021. We find that the average realized

risk-premium for flat and peak products are $2.02/MWh and $3.55/MWh. These premia represent

3% to 5% of the observed average price levels for these products. While these numbers are larger

than the estimates using our empirical methodology, they continue to show relatively modest

risk-premium values for the flat and peak products.34

The model with risk aversion was re-estimated under the various robustness checks discussed

in Section 6.1; see Appendix B for a detail discussion. While the quantitative values vary, the

finding that the cost-adjusted differential between the full-load and flat prices is initially large and

decreases over time remains. These results continue to show that there is a differential between

the full-load and flat prices that cannot be explained by the underlying cost of these products.

7.2 Experience

An additional possible factor that could help explain the initial large margin between full-

load and flat prices, and its subsequent decline (see Figure 5), is that auction participants were

33Pena and Rodriguez (2022) provide a detailed summary of this literature and highlight the empirical caveats that
come with employing ex-post prices to measure the forward premium. The authors note that this literature finds
a wide range of estimates on the ex-post forward premium ranging from negative, zero, to large positive values.

34If we use forward market prices and transactions that occurred on EPCOR’s RRO auction over our sample period
(which represents a shorter time-series of data), the ex-post forward premium is $1.20/MWh and $2.77/MWh.
The estimates are closer to those that arise from our model, but remain higher than our estimates.
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initially uncertain about how to bid on a new product, and how to account for quantity-risk in

their bids. According to this explanation, firms would initially submit conservative bids due to

this uncertainty, but bid more aggressively after they have learned more about the product. It is

also possible that firms would chose to not submit any bids initially in the full-load auction. This

explanation is fundamentally linked with the concerns that the full-load auctions were initially

heavily concentrated, but they became more competitive over time.

Note first that auctions for flat and peak products were conducted by EPCOR since at least

2011, so that by the introduction of the full-load auctions, suppliers would be familiar with valuing

these products and bidding in these auctions. Experience with flat and peak products would also

come from the forward market more broadly. Hence, an experience/learning explanation for the

initially high full-load prices would need to be based specifically on the introduction of quantity risk.

While some potential bidders may lack experience in valuing full-load products, such experience

could be present among existing retailers in Alberta and elsewhere, along with firms supplying

full-load contracts in other jurisdictions.35 In addition, as noted in Section 2 footnote 11, EPCOR

procured full-load products to cover a portion of its demand between 2006 - 2010 (AUC, 2018).

This suggests some experience with full-load auctions may have existed in the province when

EPCOR’s 2018 full-load auctions were introduced. Finally, we note that even by the end of our

sample, the margin between observed and break even full-load prices remains positive.

It is possible, however, that the initial high full-load auction prices may be the result of

asymmetric information and experience when the full-load product was introduced. Breaking down

the results in Table 4 by year indicates that retailers involved in the RRO in other Alberta regions

accounted for 36%, 28% and 24% of contracts won in 2019, 2020 and 2021 respectively. Given

that these firms would be expected to have the most initial experience regarding the valuation

of Alberta retail load, this downward trend is consistent with an informational advantage at the

introduction of the full-load product that dissipates as other providers gain more experience.

8 Conclusion

Regulators have increasingly been employing full-load auctions as a method of valuing the price

and quantity risk inherent in default retail electricity provision and to set default rates. While it

has been understood that the effectiveness of these auctions depends on sufficient participation, the

literature assessing the performance of full-load auctions has been limited and largely descriptive.

In this paper we presented a model of break-even pricing for flat, peak, and full-load forward

electricity products. We apply this framework to winning bids from EPCOR’s full-load auctions

in Alberta, where such auctions replaced regulatory price-setting mechanisms. We find that

winning full-load bids in these auctions exhibit a margin over break-even prices, even allowing

for risk-aversion, that is not observed in the winning bids for flat and peak forward contracts.

35Online documents indicate that certain firms supplying full-load products in EPCOR’s auctions also supply similar
products in New Jersey; see Bates White (2022).
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We demonstrate that the observed market-determined risk compensation provided to EPCOR far

exceeds the risk compensation that would arise at break-even prices via our model, as well as the

regulatory-determined risk compensation for another large RRO provider during the same period.

The margin between observed and break-even full-load prices declines over our sample period

as participation in the full-load auctions increased, with the number of bidders per full-load unit

doubling from the beginning to end of the sample period. In general, our paper highlights

the importance of sufficient participation for the success of full-load auctions and the potential

for regulated rates determined through full-load auctions to exceed those determined through a

regulatory process until the auctions have attracted a sufficient number of bidders.

In addition, our paper highlights that different types of participants may be expected in full-

load auctions compared to auctions for other forward electricity contracts. As anticipated by

EPCOR’s experts, full-load auctions may be expected to attract bidders beyond those bidding on

flat and peak products, and who may have particular expertise in evaluating quantity risk and the

interaction of retail price and quantity; this particularly includes electricity retailers. Results from

EPCOR’s auctions suggest that the relative attractiveness of these products to such bidders could

have the potential to create dominant firms, at least initially.

Our analysis leaves several fruitful directions for future research. One question raised by the

above discussion is the role and incentives of regulated retail providers as bidders in the full-

load auctions of other regulated providers. For example, instead of introducing its own full-load

auctions, Direct Energy’s most recent EPSP bases its RRO rate on the winning bids from EPCOR’s

auction (AUC, 2021). The effect of this change on Direct Energy’s participation and bidding in

other full-load auctions is a subject of future research.

A second direction for future research is a structural analysis of bidding in EPCOR’s full-load

auctions. Results in the current paper suggest that winning bids in these auctions exceed break-

even levels. To understand this result further would require a structural model of bidding in these

auctions, and an analysis of specific bids.

Third, our analysis abstracts from the impact of the full-load auction and its role in determining

the regulated default product price on the broader competitive retail market. The regulated retail

product serves nearly 45% of residential sales as of July 2021 (MSA, 2021c). Consequently, the

pricing of the default product may impact the pricing decisions of competitive retailers. Fourth,

while we discuss the potential role of experience and how it could explain our findings, we are

unable to formally estimate the degree of learning and separate this from the impacts of market

concentration on RRO auction outcomes. Future research that develops a structural model to

evaluate the relative weight of these interrelated factors is warranted.36

36Dorazelski et al. (2018) develop an equilibrium framework to evaluate the effects of learning in a procurement
auction setting. Similar methods could be employed in our context to formally quantify the role of learning in
the full-load auctions.
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Appendix

A Model with Risk-Aversion

We adjust our modeling framework to include risk-averse preferences. We employ a mean-

variance utility function to represent preferences of the sellers that compete in the auction. This

has been utilized broadly in the asset pricing and economics literature as a model of risk-aversion.

For example, see Bessembinder and Lemmon (2002), Willems and Morbee (2010), and Aid et al.

(2011). The expected utility of signing the forward contract type j covering period t is:

U j
t = E[πj

t ]−
A

2
V (πj

t ) (5)

where A ≥ 0 is the risk-aversion parameter, E[ · ] represents expected value, and V ( · ) is the

variance.

Recognizing that the quantity covered by the flat and peak products are time-invariant, (1)

and (5) imply the break-even flat product price (pFF ) that yields zero expected utility over the t

periods covered by the contract is:

UF =
∑
t∈T

{
E
[
pFF q

F − St q
F
]
− A

2
V
(
pFF q

F − St q
F
) }

= 0

⇒ pFF =
1

|T |
∑
t∈T

{
E[St] +

A

2
qF V (St)

}
. (6)

where |T | denotes cardinality of the set T . Similar calculations reveal that the break-even peak

product price (pPF ) is:

pPF =
1

|Tp|
∑
t∈Tp

{
E[St] +

A

2
qP V (St)

}
. (7)

(6) and (7) demonstrate that the presence of risk-aversion (i.e., A > 0) imposes a premium on

these products that depends on the variance of spot market prices. This reflects the exposure to

price-risk associated with the forward product because the financial contract is settled based on

the difference between the pre-specified forward price and the realized spot price.

Using (1) and (5), the utility from purchasing a load-following forward product is defined by:

ULF =
∑
t∈T

{
E[ pLFF αQt − St αQt ]− A

2
V ( [ pLFF − St ]αQt )

}
. (8)
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Using (8), the break-even full-load price (pLFF ) satisfies:

∑
t∈T

{
E[ pLFF αQt − St αQt ]− A

2
V ( [ pLFF − St ]αQt )

}
= 0

⇔ pLFF
∑
t∈T

E[αQt ]−
∑
t∈T

E[St αQt ]− A

2

∑
t∈T

V ( [ pLFF − St ]αQt ) = 0. (9)

The first term in (9) reflects the expected revenue in the forward market. The second term

reflects the expected cost of the full-load product that has to be paid back at the prevailing spot

market price (St). The third term reflects the variability in the payoff from holding a full-load

product which now arises due to uncertainty in both the revenue ( pLFF αQt) and cost (St αQt).

Since St and Qt are dependent random variables and α and pLFF are constants, the variance

term in (9) can be written as:

V ( [ pLFF − St ]αQt ) = V ( pLFF αQt − St αQt ) = (pLFF )2 (α)2 V (Qt) + α2 V (StQt)

−2 pLFF (α)2 cov(Qt, StQt). (10)

Using (10) and setting (9) equal to zero implies the break-even full-load price satisfies:

∑
t

{
E[ pLFF αQt − St αQt ]− A

2
V ( [ pLFF − St ]αQt )

}
= 0

⇔ pLFF α
∑
t

E[Qt ]− α
∑
t

E[StQt ]

−A
2

∑
t

V ( [ pLFF − St ]αQt ) = 0

⇔ pLFF α
∑
t

E[Qt ]− α
∑
t

E[StQt ]

−A
2

∑
t

(
(pLFF )2 (α)2 V (Qt) + α2 V (StQt)− 2 pLFF (α)2 cov(Qt, StQt)

)
= 0

⇔ pLFF α
∑
t

E[Qt ]− α
∑
t

E[StQt ]− A

2
(pLFF )2 (α)2

∑
t

V (Qt)

−A
2
α2
∑
t

V (StQt) + ApLFF (α)2
∑
t

cov(Qt, StQt) = 0
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⇔ pLFF
∑
t

E[Qt ]−
∑
t

E[StQt ]− A

2
(pLFF )2 α

∑
t

V (Qt)

−A
2
α
∑
t

V (StQt) + ApLFF α
∑
t

cov(Qt, StQt) = 0

⇔ −A
2

(pLFF )2 α
∑
t

V (Qt) + pLFF

(∑
t

E[Qt ] + Aα
∑
t

cov(Qt, StQt)

)

−A
2
α
∑
t

V (StQt)−
∑
t

E[StQt ] = 0

⇔ H2 (pLFF )2 +H1 p
LF
F +H0 = 0

where

H2 ≡ − A

2
α
∑
t

V (Qt)

H1 ≡
∑
t

E[Qt ] + Aα
∑
t

cov(Qt, StQt)

H0 ≡ − A

2
α
∑
t

V (StQt)−
∑
t

E[StQt ]

= − A

2
α
∑
t

V (StQt)−

(∑
t

E[St ]E[Qt ] + cov(Qt, St)

)
. (11)

We solve for the break-even pLFF using the quadratic equation in (11). In particular, we need

to expand the expressions cov(Qt, StQt) and V (StQt) further in order to utilize the spot market

and EPCOR demand regressions detailed in Section 5 to compute their values. To do so, we

characterize several general statistical properties. Suppose X, Y, u, v are all dependent random

variables. Using equation (11) in Bohrnstedt and Goldberger (1969):

Cov(XY, uv) = E[X]E[u]Cov(Y, v) + E[X]E[v]Cov(Y, u)

+E[Y ]E[u]Cov(X, v) + E[Y ]E[v]Cov(X, u)− Cov(X, Y )Cov(u, v)

+E

[
(x− E[X]) (Y − E[Y ]) (u− E[u]) (v − E[v])

]
+E[X]E

[
(Y − E[Y ]) (u− E[u]) (v − E[v])

]
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+E[Y ]E

[
(X − E[X]) (u− E[u]) (v − E[v])

]
+E[u]E

[
(X − E[X]) (Y − E[Y ]) (v − E[v])

]
+E[v]E

[
(X − E[X]) (Y − E[Y ]) (u− E[u])

]
. (12)

Suppose X and Y are two dependent random variables. It is well documented that:

V (XY ) = E[X2 Y 2]− (E[X Y ])2 = E[X2]E[Y 2] + Cov(X2, Y 2)− (E[X]E[Y ] + Cov(X, Y ))2

=
(
V (X) + (E[X])2

) (
V (Y ) + (E[Y ])2

)
+ Cov(X2, Y 2)− (E[X]E[Y ] + Cov(X, Y ))2 .

(13)

Suppose X = Y = St and u = v = Qt. (12) implies:

Cov(S2
t , Q

2
t ) = E[St]E[Qt]Cov(St, Qt) + E[St]E[Qt]Cov(St, Qt)

+E[St]E[Qt]Cov(St, Qt)+E[St]E[Qt]Cov(St, Qt)−Cov(St, St)Cov(Qt, Qt)

+E

[
(St − E[St]) (St − E[St]) (Qt − E[Qt]) (Qt − E[Qt])

]
+E[St]E

[
(St − E[St]) (Qt − E[Qt]) (Qt − E[Qt])

]
+E[St]E

[
(St − E[St]) (Qt − E[Qt]) (Qt − E[Qt])

]
+E[Qt]E

[
(St − E[St]) (St − E[St]) (Qt − E[Qt])

]
+E[Qt]E

[
(St − E[St]) (St − E[St]) (Qt − E[Qt])

]
= 4E[St]E[Qt]Cov(St, Qt)− V (St)V (Qt)

+E

[
(St − E[St])

2 (Qt − E[Qt])
2

]
+2E[St]E

[
(St − E[St]) (Qt − E[Qt])

2

]
+2E[Qt]E

[
(St − E[St])

2 (Qt − E[Qt])

]
. (14)

(13) and (14) imply:

V (StQt) =
(
V (St) + (E[St])

2
) (
V (Qt) + (E[Qt])

2
)

+Cov(S2
t , Q

2
t )− (E[St]E[Qt] + Cov(St, Qt))

2
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=
(
V (St) + (E[St])

2
) (
V (Qt) + (E[Qt])

2
)
− (E[St]E[Qt] + Cov(St, Qt))

2

+4E[St]E[Qt]Cov(St, Qt)− V (St)V (Qt)

+E

[
(St − E[St])

2 (Qt − E[Qt])
2

]
+2E[St]E

[
(St − E[St]) (Qt − E[Qt])

2

]
+2E[Qt]E

[
(St − E[St])

2 (Qt − E[Qt])

]
. (15)

Suppose X = 1, Y = Qt, u = St, v = Qt. Using (12) and recognizing that E[X] = 1, E[X −
E[X] ] = 0, and Cov(X, v) = Cov(X, u) = Cov(X, Y ) = 0 because X is a constant implies:

Cov(Qt, StQt) = E[St]Cov(Qt, Qt) + E[Qt]Cov(Qt, St)

+E

[
(Qt − E[Qt]) (St − E[St]) (Qt − E[Qt])

]
= E[St]V (Qt) + E[Qt]Cov(Qt, St)

+E

[
(Qt − E[Qt])

2 (St − E[St])

]
. (16)

We utilize (11), (15), and (16) to characterize the break-even LF price with risk-aversion. In

particular, we compute the expected value and variance expressions using our spot market price

and EPCOR demand equations detailed in Section 5. To estimate the variance terms, for each

month, we compute the squared difference between the predicted and observed price and average

these by hour to give us hourly price and demand variances. The objective of this approach is to

capture the strong seasonal patterns we observe in the variance values of these random variables.

As we discuss in detail in Section 5, this approach utilizes realized prices and demand to compute

these measures. We carry out the robustness checks detailed for the covariance term in Section 5

to compute the variance and covariance terms required to solve for the full-load break-even price

under risk-aversion detailed in (11). These results are presented in Tables A4 and A5.

In order to compute the break-even full-load product price in (11), we also need to estimate the

risk-aversion parameter A. We estimate the degree of risk-aversion A of the sellers in EPCOR’s

RRO auction by utilizing the difference between the market-clearing prices for the flat and peak

products. We assume that the flat and peak products trade at their break-even levels. Unlike the

full-load product, these products have been traded on the broader financial exchange market (i.e.,

the NGX) for several decades and the RRO auctions since 2011. To defend this assumption, we

compare the RRO flat and peak prices to the prices of these products on the broader financial

exchange prior to each RRO auction.37 The difference between the RRO flat and peak prices and

37More specifically, we compare the RRO flat and peak prices to the last traded flat and peak price transactions on
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NGX prices are $0.51/MWh and $0.54/MWh on average representing a 0.95% and 0.79% difference

in the prices, respectively. The minimal difference in prices on these products helps demonstrate

the competitiveness of these products on EPCOR’s RRO auction.

The general idea behind using the difference between the market-clearing flat and peak products

to estimate the risk-aversion parameter is the following. These products are for a fixed quantity

(i.e., 5 MWhs) for all days of the month, but differ in the hours they cover. The peak forward

product covers hours with a higher expected spot price level and variance.38 This helps explain

the higher price on the peak versus the flat product. Importantly, as shown in (6) and (7), the

presence of risk-aversion adds on a premium on the peak and flat products that varies with A and

is dependent on the variance of the spot market price. The higher the degree of risk-aversion, the

more sensitive the firm will be to the higher spot price variance in peak hours and as a result, the

higher the value on the peak price relative to the flat price. We estimate the A parameter that is

consistent with the price differential across the flat and peak product, controlling for differences

in the expected spot price level and variance covered by the two products.

More formally, using (6), (7), and that the flat and peak products are the same size (i.e.,

qP = qF ), the difference in the observed peak and flat product prices can be written as:

pPF − pFF =
1

|Tp|
∑
t∈Tp

{
E[St] +

A

2
qP V (St)

}
− 1

|T |
∑
t∈T

{
E[St] +

A

2
qF V (St)

}

⇒

pPF − 1

|Tp|
∑
t∈Tp

E[St]

−(pFF − 1

|T |
∑
t∈T

E[St]

)
=

A

2
qP

 1

|Tp|
∑
t∈Tp

V (St)−
1

|T |
∑
t∈T

V (St)


(17)

where the first and second terms on the left-hand side reflect the difference between the peak and

flat forward prices and the time-weighted expected peak and flat spot prices, respectively. These

two terms capture the relative markup of the forward market prices above their respective average

expected spot prices. The term on the right-hand side captures the difference in the time-weighted

wholesale market price variances. This term captures the relative difference in the exposure to

price risk during the peak and flat contract periods.

We utilize data on market-clearing forward prices for the peak and flat products across the

various EPCOR RRO auctions in our data set, and empirical estimates on the expected spot

price levels and variances (discussed below) to estimate equation (17) via a regression analysis. In

particular, the terms on the left-hand side reflect the dependent variable. The independent variable

is equal to the difference between the peak and flat time-weighted spot market price variances.

the NGX. We also compared the RRO prices to the quantity-weighted average NGX flat and peak prices for the
15 and 30 days prior to the RRO auction yielding analogous conclusions.

38Recall that the flat product covers all hours of the day, while the peak product only covers a subset of hours from
7:00 AM - 11:00 PM. The average ratio of the peak-to-off-peak expected spot price and variance are 1.15 and
1.38, respectively.
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The coefficient estimate in the regression equation allows us to back out our estimate on A (i.e.,

β̂ = A
2
qp).

B Results Under Risk-Aversion

The average estimated break-even prices under risk aversion, and associated risk margins, are

reported in Table A1, along with the average observed prices are risk-neutral break-even prices

from Table 2 for comparison.

Table A1: Average Observed and Estimated Break-Even Forward Prices -
Risk-Aversion

Product Observed Break-Even Risk-Averse Risk Margin
Flat 55.86 58.20 58.76 0.56
Peak 67.44 67.07 67.88 0.81
Full-Load 66.48 61.78 62.42 0.64

Notes. Break-Even represents the estimated risk-neutral break-even flat, peak, and full-load

prices from (2) and (3). Risk-Averse represents the break-even values with risk-aversion for

the flat, peak, and full-load detailed in (6), (7), and (11). Risk Margins reflect the risk-averse

minus risk-neutral break-even prices.

For each forward product, the estimated (risk-averse) break-even prices exceed the risk-neutral

prices. This is driven by the fact that we find a positive risk-aversion parameter A using the

methodology detailed in (17).39 For the flat and peak products, the risk-averse break-even price

is larger than its risk-neutral counterpart by $0.56 and $0.81 per MWh on average, respectively.

These results demonstrate that there is a relatively modest estimated risk margin (premium) for

these products. Looking at the full-load product, we also observe a small increase in the estimated

break-even price. This yields a risk-margin of $0.64/MWh on average that lies between the flat

and peak risk-margins. Importantly, the observed full-load price is $4.06/MWh higher than the

estimated risk-averse break-even full-load price on average. This demonstrates that risk-aversion

explains only a small portion of the difference between the observed and risk-neutral full-load price.

Interestingly, Table A1 demonstrates that the estimated full-load product’s observed and

break-even risk-averse values lie between the flat and peak products. It is clear from an ex-ante

perspective that in the presence of risk-aversion, the full-load price would exceed the price of the

flat product because it covers the same hours (i.e., all hours of the day) but entails greater risk due

to the uncertainty in the quantity covered by the contract. However, it is not clear ex-ante that

the full-load price would be below the peak price. In fact, Figure 2 demonstrates that the full-load

price is closely aligned with and sometimes above the peak price in EPCOR’s RRO auctions. The

peak product only covers a subset of hours of the day with higher average spot price levels and

39More specifically, our estimated Â = 0.00004182. While this estimated value is small in magnitude, it is important
to recognize that this parameter is multiplied by the variance in expected profits (i.e., recall (5)). In our sample,
this variance is large in magnitude leading to a non-trivial effect on expected utility.
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volatility, but it does not entail the quantity risk associated with the full-load product.40

Finally, we can compare the Commodity Risk Compensation awarded to EPCOR to the CRC

based on the same formula, but using the risk-averse break-even flat, peak, and full-load prices

from our analysis. These results are presented in Table A6. The results parallel those in the

risk-neutral setting summarized in Section 6.1. As expected, the CRC values in the risk-averse

setting increase when compared to the risk-neutral CRC values. This arises because of the (small)

risk-premia. However, the key conclusions remain. The risk-averse CRC values arising from our

analysis are considerably below the value observed in EPCOR, and are more closely aligned with

Direct Energy’s CRC. These results continue to support the evidence from the main analysis that

the full-load price determined in EPCOR’s auction exceeded the break-even value and resulted in

an elevated CRC.

We rerun the robustness checks discussed in our main analysis (see Section 5) in the setting

under risk-aversion. First, we include the months of January 2020 and February 2021 which were

excluded from the main analysis. Second, we remove RRO auctions that occurred in March, April,

and May of 2020 during the initial wave of the Covid pandemic. In these months, there was

considerable uncertainty regarding future wholesale market prices and electricity demand. Third

and fourth, as discussed in Section 5, we also compute the variance and covariance measures

averaged at the monthly level across all years in our sample and as the average of their observed

values 11, 12, and 13 months prior to each RRO auction. These results are presented in order in

Tables A2 – A5.

While the precise estimates can vary, these results demonstrate that our qualitative conclusions

are robust to these alternative samples and approaches. In particular, we find that the average

difference between the cost-adjusted risk-averse full-load and flat prices demonstrated in Figure 5

range from $5.18/MWh to $7.74/MWh across the full sample in these robustness checks. Further,

the finding that this margin falls over the sample is robust to different specifications. Across the

robustness checks, we find an average difference of $7.47/MWh to $9.55/MWh in the early sample

(April 2019 - March 2020) which declines to $2.89/MWh to $5.16/MWh in the latter sample

period (April 2020 - March 2021). For each of these robustness checks, our qualitative conclusions

regarding the Commodity Risk Compensation, that EPCOR’s CRC based on auction-clearing rates

is more than double both the regulated CRC given to Direct Energy and the rates based on our

model estimated risk-averse and risk-neutral break-even forward prices, persists (See Table A6).

40Using Table A1, even if we assume the risk-premium on the full-load product is as high as the peak product’s
risk-premium, the difference between the observed average full-load price and the risk-averse break-even full-load
price is sizable at $3.25/MWh (i.e., the observed full-load price ($66.48) minus the risk-neutral break-even full-load
price ($62.42) minus the peak risk-premium ($0.81)).
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C Additional Results

Figure A1: Distribution of Key Coefficients from Price Regressions

Notes: The box represents the inner quartile range with the median value being represented by the interior line.
The 5th and 95th percentiles are represented by the bottom and top lines. Dots represent outliers.

Figure A2: Distribution of Key Coefficients from Demand Regressions

Notes: The box represents the inner quartile range with the median value being represented by the interior line.
The 5th and 95th percentiles are represented by the bottom and top lines. Dots represent outliers.
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Figure A1 demonstrates that lagged average spot price, oil futures prices, and natural gas

futures prices tend to have a positive effect on spot prices. The effect of oil futures prices are

magnified in peak hours. While the coefficients on these variables can be negative in a subset of

regressions, we find that these estimates are systematically statistically insignificant. The expected

outage capacity variable tends to be statistically insignificant, but when interacted with a peak hour

dummy it is often significant and positive taking on the expected sign. The adjusted R-squared

value ranges from 0.06 to 0.13. This value is consistent with the high degree of variability observed

in hourly prices, and the fact that our regressions aim to establish month-ahead expectations on

spot prices using only covariates that were observed months prior to the realization of spot market

outcomes. However, as shown in Figure 4, we fit hourly average prices reasonably well.

Figure A2 demonstrates that we fit EPCOR demand quite well with adjusted R-squared values

ranging from 0.835 to 0.89. We find that the site count, oil futures price, and the natural gas

futures price variables are systematically statistically insignificant and distributed around zero.

These findings suggest that EPCOR’s demand patterns are primarily driven by seasonal and

hourly variation that are picked up by the calendar control variables.

Table A2: Average Observed and Estimated Forward Product Prices - EPCOR’s RRO
Auction - Including Outlier Months January 2020 and February 2021

Product Observed Break-Even Risk-Aversion Risk Margin
Flat 56.80 58.66 60.83 2.17
Peak 68.54 67.35 70.47 3.12
Full-Load 67.60 63.70 66.45 2.74

Notes. Break-Even represents the estimated risk-neutral break-even flat, peak, and full-load

prices from (2) and (3). Risk-Averse represents the break-even values with risk-aversion for the

flat, peak, and full-load detailed in (6), (7), and (11). Risk Margins reflect the risk-averse minus

risk-neutral break-even prices. Results include outlier months of January 2020 and February

2021.
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Table A3: Average Observed and Estimated Forward Product Prices - EPCOR’s RRO
Auction - Remove March, April, and May 2020 Auctions

Product Observed Break-Even Risk-Aversion Risk Margin
Flat 57.63 58.94 61.03 2.10
Peak 69.79 66.94 69.97 3.03
Full-Load 68.82 62.15 64.48 2.33

Notes. Break-Even represents the estimated risk-neutral break-even flat, peak, and full-load

prices from (2) and (3). Risk-Averse represents the break-even values with risk-aversion for

the flat, peak, and full-load detailed in (6), (7), and (11). Risk Margins reflect the risk-averse

minus risk-neutral break-even prices. Results remove observations that were determined in

RRO auctions held in March, April, and May 2020.

Table A4: Average Observed and Estimated Forward Product Prices - EPCOR’s RRO
Auction - Variance and Covariance Measures Averaged by Month

Product Observed Break-Even Risk-Aversion Risk Margin
Flat 55.86 58.20 58.31 0.11
Peak 67.44 67.07 67.23 0.16
Full-Load 66.48 62.50 62.65 0.15

Notes. Break-Even represents the estimated risk-neutral break-even flat, peak, and full-load

prices from (2) and (3). Risk-Averse represents the break-even values with risk-aversion for

the flat, peak, and full-load detailed in (6), (7), and (11). Risk Margins reflect the risk-averse

minus risk-neutral break-even prices. These results represent the approach where variance and

covariance measures are averaged across all years at the monthly level.
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Table A5: Average Observed and Estimated Forward Product Prices - EPCOR’s RRO
Auction - Variance and Covariance Measures (11, 12, 13 Month Lagged)

Product Observed Break-Even Risk-Aversion Risk Margin
Flat 55.86 58.20 59.72 1.52
Peak 67.44 67.07 69.27 2.20
Full-Load 66.48 61.78 63.90 2.12

Notes. Break-Even represents the estimated risk-neutral break-even flat, peak, and full-load

prices from (2) and (3). Risk-Averse represents the break-even values with risk-aversion for

the flat, peak, and full-load detailed in (6), (7), and (11). Risk Margins reflect the risk-averse

minus risk-neutral break-even prices. These results represent the approach where variance and

covariance measures are set equal to the average of their realized values 11, 12, and 13 months

ago.

Table A6 reports, for our primary specification and for each of the robustness checks reported

in Section 6.1, four different measures of average Commodity Risk Compensation over our sample

period: the average observed CRC awarded to Direct Energy, the average observed EPCOR CRC

using auction-clearing prices for full-load, flat and peak contracts, and the simulated CRCs using

the estimated risk-neutral and risk-averse prices for full-load, flat, and peak contracts via our

model. While precise magnitudes vary, we find that for all specifications the observed EPCOR

CRC using auction-clearing prices substantially exceeds both the CRC awarded to Direct Energy,

and the simulated CRCs using risk-neutral or risk-averse break-even forward prices. The simulated

CRCs prices fall below Direct Energy’s observed CRC for all specifications except for the second

row, which includes the outlier months of January 2020 and February 2021.

Table A6: Commodity Risk Compensation - Summary of Results

Direct Energy EPCOR
Specification Observed Observed Risk-Neutral Risk-Averse

Main Specification 3.10 8.49 1.93 1.97
Include Outlier Months 3.17 8.69 3.45 3.86
Remove Covid Months 3.10 8.71 1.85 2.01
Var-Cov. - Average by Month 3.10 8.49 2.65 2.68
Var-Cov. - Lagged Window 3.10 8.49 1.93 2.40

Notes. Direct Energy Observed reflects Direct Energy’s realized CRC set via regulation.

Observed, Risk-Neutral, and Risk-Averse reflects EPCOR’s CRC calculated using observed,

model estimated risk-neutral break-even, and model estimated risk-averse break-even flat, peak,

and full-load prices, respectively. Main Specification represents the results for the model

specification reported in the text. Include Outlier Months includes January 2020 and February

2021. Remove Covid Months drops RRO auctions that occurred in the initial wave of Covid. Var-

Cov. - Average by Month and Var-Cov. - Lagged Window are our third and fourth robustness

checks listed in Section 6.1 that consider alternative methods for computing the variance and

covariance measures.
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Table A7: HHI by Product and Year

Product 2019 2020 2021
Peak 1,937 2,535 2,575
Flat 2,174 2,083 2,481
Full-Load 2,744 2,259 2,146

EPCOR’s RRO auction is a descending clock auction where there is a sequence of rounds and

a posted price in each round. The posted price declines until the auction clears where supply and

demand are balanced for each product. Consequently, it is informative to not only look at the

level on the number of bidders competing, but also how the number of active bidders varies as the

auction progresses.

Figure A3 presents the average number of active bidders per unit by auction round for each

product. The vertical lines indicate the average number of auction rounds before the auction clears

for each product. The number of active bidders can increase as rounds progress because bidders

can adjust the quantity they offer in one of the three products upward (e.g., from 0 to a positive

number) as the relative prices change across the three products (NERA, 2017).41

Figure A3: Average Number of Bidders by Auction Round and Product.

Figure A3 demonstrates that the peak product has the most active bidders per unit for all

auction rounds followed by the flat and then full-load products. For the flat and full-load products,

the number of active bidders are quite stable as the number of rounds progress. There is a larger

41In addition, as the number of rounds increase, fewer auctions are “active”. As a result, when calculating the
average number of bidders in a given round, the averaging is being done over a different sample of auctions. This
can cause the average number of bidders to increase as auctions with a lower number of average bidders drop off
because the auction ends.
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decline in the average number of active bidders per unit for the peak product, but it remains higher

for nearly every auction round. The full-load product is typically the last product to clear as its

average number of auction rounds before clearing is 9. This contrasts with only 6 rounds for the

flat and 8 rounds for the peak product.
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