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Abstract

There is growing interest in the adoption of residential battery storage because of its ability to
provide bill savings, capture excess solar energy, and provide resiliency value. The resiliency
benefits have become increasingly salient in light of recent large-scale power outages. However,
these benefits may not accrue to all communities. We explore the presence of disparities in
residential battery adoption and the allocation of subsidies under California’s Self-Generation
Incentive Program (SGIP) by measures of income, race and ethnicity, and a vulnerability
index that captures environmental justice (EJ) concerns. We present evidence that battery
adoption and subsidy allocations are concentrated in communities that have higher household
income and lower EJ concerns. Regression analyses demonstrate that there are disparities
in battery adoption rates by household income and race/ethnicity demographic variables,
after controlling for important time-varying and regional factors. These findings persist
despite the fact that the SGIP has specific funds targeting lower income households and
communities, as well as funding targeting wildfire- and outage-vulnerable households. We
demonstrate that these findings are partially, but not fully, driven by SGIP funding eligibility
criteria that correlate with communities that have higher income, lower EJ concerns, and a
lower percentage of residents of color.
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1 Introduction

The electricity sector is facing increasing stress and risk as the result of climate change

and extreme weather events. This is demonstrated by recent large-scale power outages in

California and Texas that affected millions of customers and resulted in the loss of critical

infrastructure and economic output (Roberts, 2019; Bohra, 2021).1 These events are part of

a broader pattern of increasing weather-related power outages which have more than doubled

over the last decade in a number of regions of the United States (Allen-Dumas et al., 2019;

Climate Central, 2020).

Concerns over resiliency and reliability of electricity supply have resulted in increased

interest in the installation of distributed battery storage systems located at consumers’

homes (CCA, 2019; Carpenter, 2021). This can allow a consumer to avoid outages on

the broader electricity grid. However, the economic and resiliency benefits associated with

this technology may not be evenly distributed across all individuals and communities. In

this paper, we investigate if there are socioeconomic and demographic disparities in the

adoption of residential battery storage systems and subsidies provided under California’s

Self-Generation Incentive Program (SGIP).

Disparities in the adoption of energy technologies such as rooftop solar and/or battery

storage have been a growing energy and environmental justice (EJ) concern. These technologies

can reduce household energy costs considerably (Borenstein, 2017). This is particularly

important because utility bills have been shown to place a disproportionate burden on low-

income (Drehobl and Ross, 2016) and Black households (Lybich, 2020). Further, there

are growing concerns that utility costs will be shifted to households that do not invest in

distributed energy resources such as rooftop solar (Boampong and Brown, 2020; Brown et

al., 2020).

A growing number of studies have identified inequalities in the adoption of emerging

energy technologies with a higher incidence of adoption in higher income, white majority,

and lower EJ concern communities. This includes electric vehicles (Borenstein and Davis,

2016), residential rooftop solar (Vaishnav et al., 2017; Sunter et al., 2019; Lukanov and

Krieger, 2019; Barbose et al., 2020, O’Shaughnessy et al. 2020), community solar (Chan et

al., 2017), efficient appliances (Wada et al., 2012), and smart meters (Balta-Ozkan et al.,

2013). A number of possible factors can explain the barriers to adoption for lower income

households and households of color including access to financing, high upfront costs, higher

1In Texas, 111 deaths have been connected to the February 2021 winter storm event. These deaths have
been attributed in large part to the loss of electricity (Bohra, 2021).
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proportion of households that are renters, lack of peer effects and customer referrals (Lukanov

and Krieger, 2019; Carley and Konisky, 2020).

To the best of our knowledge, our analysis provides the first evaluation of socioeconomic

and demographic disparities in the adoption of residential battery storage, which are increasingly

being paired with rooftop solar. The adoption of this technology has unique benefits beyond

the technologies listed above because it allows a household to partially (or fully) avoid the

consequences of power outages. With increasing large-scale power outages, the presence

of inequalities in the deployment of this technology will result in communities of lower

socioeconomic status bearing a heavier burden of reduced electric reliability. There are

rising concerns that these communities will be negatively impacted by and/or lack access

to opportunities associated with the transition to lower-carbon and emerging technologies

in the energy sector (Carley and Konisky, 2020). These concerns are compounded by the

growing evidence that these communities are expected to be disproportionately burdened by

the consequences of climate change (USGCRP, 2018).

We utilize data from California’s SGIP, a subsidy program that targets emerging distributed

technologies with a particular focus on battery storage. The program has established

several carve-out categories targeting households that are lower income, in “disadvantaged

communities”, medically vulnerable customers, and those in high fire threat districts that

are more prone to wildfires or those that have experienced two or more Public Safety

Power Shutoff (PSPS) events.2 We connect these data with socioeconomic and demographic

data from the U.S. Census Bureau’s American Community Survey and the CalEnviroScreen

(CES), an EJ screening tool that is utilized by the California government to define “disadvantaged

communities” (California OEHHA, 2018).3

Our objective is to document observed socioeconomic and demographic patterns in

communities where SGIP-funded residential battery storage investment occurs. Our analysis

focuses on battery storage adoption at the zip code-level, reflecting the geographical granularity

of the SGIP battery installation data. We present an array of summary statistics to detail

the distribution of battery capacity and SGIP subsidies by socioeconomic and demographic

characteristics across California. Using regression analyses that allow us to control for

2PSPS events are a preemptive measure that temporarily shutoffs off power to regions of the grid that are
deemed to have the highest risk of wildfires being started by electric infrastructure (CPUC, 2021).

3The California Environmental Protection Agency defines “disadvantaged communities” to be those that
rank in the top 25% of the CES Environmental Health Screening Tool or the top 5% of the CES Pollution
Burden measure (CalEPA, 2017). This definition of “disadvantaged communities” is utilized to determine
which communities are eligible for certain energy-related subsidy programs targeting communities with high
EJ concerns.
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percentage of homeowners and other regional and time-varying characteristics, we evaluate

if there are disparities in adoption and subsidy rates by race and ethnicity and median

household income.

We find that battery storage adoption is heavily concentrated in zip codes with higher

median income and lower EJ concern. When looking across all zip codes, only 15% of

SGIP-funded battery storage investment arises in the bottom 50th percentile of the median

income distribution. Further, 75% of battery capacity investment occurs in zip codes in the

50 percent least-disadvantaged communities as defined by the CES EJ measure. Consistent

with these results, 82% of the SGIP funding goes to zip codes that fall in the top 50th

percentile of the median income distribution and 80% goes to zip codes in the 50 percent

least-EJ concerned communities.

We demonstrate that these results are in-part driven by SGIP-funding eligibility criteria.

A large proportion of the SGIP funding is allocated to communities located in regions that

have the greatest risk of power shutoffs that are used as a precautionary measure to prevent

electric infrastructure-induced wildfires. These zip codes have higher median income, lower

EJ concern, and a lower percentage of households of color. Focusing only on these regions,

we continue to find that the majority of SGIP-funded battery investment arises in the highest

income and lowest EJ concern communities, but the difference is less stark.4

There are several SGIP carve-out subsidy policies targeting lower income households and

communities that have a higher percentage of people of color. We find that these programs

are relatively more successful at promoting battery investments in communities with lower

median incomes, a higher percentage of residents of color, and higher EJ concerns compared

to the disparities that arise when looking across all SGIP funding categories. These results

suggest that these targeted subsidy programs may be a promising avenue to overcome barriers

faced by these communities in the adoption of emerging energy technologies. However,

these carve-out policies are small in magnitude leading to an overall negligible effect when

compared to the broader SGIP-driven investment.

Our regression analyses demonstrate that there is a strong positive and statistically

significant relationship between household income and the battery storage adoption rate

(i.e., battery systems per household), after controlling for potentially confounding factors.

For example, moving from the 10th to the 90th quartile of the median household (HH)

income distribution results in a 45% increase in the storage adoption rate as a % of mean

4Focusing on this subset of zip codes, 72% and 62% of energy storage capacity investment occurs in
communities in the top 50th percentile by median income and 50 percent least-disadvantaged communities
as defined by the CES EJ measure, respectively.
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adoption. Further, these regression analyses demonstrate that there are economically strong

negative and statistically significant disparities in the battery adoption rates in zip codes

with a larger percentage of Black, Asian, and Hispanic residents. The disparities identified

for percentage of Asian and Hispanic residents persist even after we control for important

regional factors that determine eligibility for key SGIP funding categories.

It is important to highlight that a large proportion of the SGIP funding has eligibility

requirements related to household income or whether the customer has a serious illness or

condition that could be life-threatening during a power outage. Our findings do not suggest

that the SGIP is providing funding to households that do not satisfy these requirements.

Rather, when looking across all zip codes in California, our findings provide evidence that

households in zip codes with a lower average median income, higher EJ concern, and higher

percentage of Black, Asian, and Hispanic residents are less likely to adopt battery storage

and utilize the SGIP funding. This raises questions to whether the SGIP’s equity-focused

subsidies are sufficient to overcome barriers that households in these communities face when

deciding to invest in battery storage.

Section 2 provides background information on the SGIP. Data utilized in our analysis

are detailed in Section 3. Section 4 presents our empirical methodology. Section 5 presents

descriptive statistics of the distribution of battery adoption and SGIP funding allocation

by zip code characteristics. Our regression results are presented in Section 6. Section 7

concludes and summarizes policy implications.

2 Self-Generation Incentive Program

In the wake of the 2000 - 2001 California energy crisis, the Self-Generation Incentive Program

(SGIP) was established in 2001 to provide incentives for the installation of technologies

to meet all or a portion of a facility’s or household’s electricity demand. The objective

was to help shift electricity demand from peak to off-peak periods. The distributed energy

technologies covered include waste to heat, wind turbines, combined heat and power turbines,

fuel cells, biogas, and battery storage (SGIP, 2016).

The SGIP provides incentives to any retail electricity customer that installs an eligible

distributed technology, subject to funding limits. There are a number of budget categories

that determine the size of the incentive received with varying eligibility requirements. If

applications exceed the funds available for any given budget category and/or utility territory,

customers are entered into a lottery (SGIP, 2020).
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The focus of the SGIP and the makeup of its various budget categories have evolved

over time. Starting in 2017, the SGIP shifted its focus towards energy storage where

75% of programs funds were reallocated (CPUC, 2016). In addition, a 2017 decision by

the California Public Utility Commission (CPUC) required 25% of the SGIP’s budget to

be allocated to an equity budget category targeted at providing energy storage for low-

income households (in any location) and businesses and organizations in low-income or

“disadvantaged” communities (CPUC, 2017).

In September 2019, the CPUC made several changes to the SGIP (CPUC, 2019). First,

the decision elevated the equity category’s subsidy levels considerably to address the low

levels of uptake. Second, the decision allocated (approximately) $10 million to fund projects

in the San Joaquin Valley (SJV) where a large number of residents lack access to natural

gas. In these communities, households often utilize propane/wood to meet their heating

needs. Third, the equity resiliency budget category was established due to rising concerns

of power outages as part of California’s Public Safety Power Shutoffs (PSPS) that are used

as preemptive measures to prevent wildfires. To qualify for the equity resiliency budget

category, households must be located in California’s high fire threat districts (HFTDs) where

PSPS events are most likely to occur or have experienced two or more PSPS outages.5 Like

the equity budget, the equity resiliency category targets households based on measures of

income. Unlike the equity budget, households that are classified as medically vulnerable or

have a serious illness/condition that could be life-threatening if their electricity is disconnected

can also qualify for the equity resiliency funding regardless of income.

Table 1 provides a summary of the approved SGIP funding and eligibility requirements by

budget category for the period 2020 to 2024 (SGIP, 2020, 2021), with a focus on funding for

residential systems when it is possible to disentangle the funding allocations. The objective

of this table is to demonstrate the relative size of SGIP funding across the various budget

categories. Further, over the period considered in this study (i.e., January 2017 - March

2021), the majority of SGIP-funded battery storage investment (approximately 70% of

capacity) arises in or after January 2020.

Table 1 demonstrates that the largest proportion of funds (63%) are allocated to the

equity resiliency fund that targets low-income households and communities or medically

vulnerable customers located in HFTDs or regions that have experienced two or more PSPS

events. This funding can be access by both residential and non-residential customers. The

5There are two HFTDs that are relevant for the determination of SGIP funding, HFTDs Tier 2 and Tier 3.
Tier 2 areas have a “high risk” of wildfires, while Tier 3 HFTDs are deemed to have “extreme risk”.
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Table 1: SGIP Energy Storage Funding and Eligibility Summary: 2020 - 2024

Budget Category
Funding
(Millions $)

Eligibility Requirements

General $56.9 Small Residential (≤10 KW)

$81.3 Large-Scale (>10 KW).

Residential Equity $24.4
Residential systems in disadvantaged or
low-income communities or low-income
residential customers.

Equity Resiliency $512.4

Located in a Tier 2 or 3 HFTD or have
experienced ≥ 2 PSPS Events and meet one
of the following:

� Eligible for the equity budget;
� Medical baseline customer; or
� Serious illness or condition that could

be life-threatening if electricity is
disconnected.

San Joaquin Valley $9.76
Carve-out policy targeting residential
customers who lack access to natural gas.

Notes. The funding reflects SGIP’s (2020, 2021) budget allocations for the period 2020 -
2024. Authorized incentives total $813.4 million. 17% of funds go to the General category
which is decomposed into small residential (7%) and large-scale storage (10%) subcategories.
Residential Equity receives 3% of the funds. Equity Resiliency funding (for residential and
non-residential systems) receives 63% of the funding. The San Joaquin Valley pilot project
has been allocated $9.76 million for residential systems. The funding $’s reported above are
calculated by multiplying the percent allocations by the total authorized incentives in SGIP
(2020, 2021).

equity resiliency fund provides a high subsidy level of up to $1.00/Wh. The residential equity

fund, targeted at low-income households (in any location) and “disadvantaged communities”

as determined by the CES, is allocated only 3% of the funding and provides a subsidy

of up to $0.85/Wh. Only single of multi-family residential customers are eligible for this

funding. The general budget category is allocated 17% of the SGIP funding; 7% goes to

small residential systems (≤ 10 KWs) and 10% is allocated to large-scale (> 10 KWs)

residential or non-residential systems. The subsidy for this category is considerably lower

and ranges from $0.15/Wh to $0.50/Wh depending on program enrollment levels. Any

retail electricity customer is eligible to apply for funding from the general budget category.

Finally, the SJV pilot project is a carve-out policy that has been allocated $9.76 million for

residential projects. The subsidy level is high and in-line with the equity resiliency category
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as it provides $1.00/Wh for eligible systems.6

It is important to recognize that the vast majority of SGIP-funded residential battery

systems (96%) are paired with rooftop solar. This demonstrates that the decision to adopt

energy storage is often coupled with the decision to adopt rooftop solar. During our period

of study, California’s net energy metering 2.0 policy was in place requiring households that

install rooftop solar to be on a time-of-use retail rate with non-bypassable charges. While

this creates potential financial incentives to install battery storage, it has been shown that

the financial benefit of adding on battery storage to a rooftop solar system is not sufficient

to offset the capital costs absent a sufficiently large subsidy (Verdant, 2021).

These observations suggests that absent a sufficiently large subsidy, households are adding

on battery storage to rooftop solar for reasons other than pure financial benefits (e.g., energy

resiliency, peer effects, other non-pecuniary benefits). Prior literature has demonstrated

rooftop solar adoption occurs in communities with higher median income, fewer people of

color, and higher EJ concerns (Vaishnav et al., 2017; Lukanov and Krieger, 2019; Sunter et

al., 2019). In absence of a sufficiently large subsidy, the additional cost of battery storage

combined with the absence of a net financial return may magnify these disparities.

3 Data

We utilize several publicly available data sets. First, we utilize data from the California

Distributed Generation Statistics (2021) that publishes SGIP application-level data. This

household-level data includes information on the zip code, technology, system size, customer

segment, date the application was received, application review status, system cost, and SGIP

incentive allocation. Second, we collect census tract-level socioeconomic and demographic

data from the Census Bureau’s American Community Survey (IPUMS, 2021).7

Third, we utilize the CalEnviroScreen (CES) 3.0 as our measure for environmental justice

concerns (California OEHHA, 2018). The CES calculates a census-track level EJ measure

based on 20 different socioeconomic, health, demographic, and environmental variables

grouped into two categories: (1) population characteristics and (2) the pollution burden. The

6The funding levels reported in Table 1 do not add up to the total authorized incentives of $813.4 million. The
remaining funding is allocated to non-residential projects, heat pump water heaters, and other generation
technologies (SGIP, 2021).

7Race/ethnicity variables are complicated by the fact that individuals can self-identify as multiple
races/ethnicities. For our % Black and % Hispanic residents variables, we utilize measures that capture if
an individual identifies as Black alone or in combination with one or more other races and Hispanic/Latino
of any race to capture the many possible Hispanic/Latino combinations in the census data.
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measure ranges from 0 to 100 where a higher number represents a community with higher

EJ concerns. The CES is employed by a number of California agencies to identify areas

eligible for certain subsidies, including the SGIP.8 Fourth, we use the US Census’s (2021)

crosswalk data file to translate the census tract-level socioeconomic, demographic, and CES

measures to the zip code-level via population-weighting.9 Fifth, we use the CPUC’s SGIP

Eligibility Maps to identify regions of California that are eligible to receive funding from the

equity resiliency budget category because they fall within a Tier 2 or 3 HFTD or have been

exposed to two or more PSPS events (CPUC, 2020).

Our analysis focuses on SGIP-funded residential battery storage between January 1,

2017 and March 31, 2021. Prior to 2017, the SGIP data does not provide information

on the budget category a system was funded under. Further, there were limited SGIP-

funded battery investments during this time period. Investments prior to January 1, 2017

represent 0.8% of battery capacity installed under the SGIP. We focus on residential projects

because our objective is to evaluate the socioeconomic and demographic characteristics of the

communities where household-level distributed battery storage capacity is adopted. Single-

or multi-family residential housing received approximately 54% of SGIP funding during our

sample period. We consider SGIP projects that have received payment or are in the process

of receiving payment having cleared the reservation review stage. We removed projects

that have been wait-listed because of enrollment limits or are in the initial phases of review

because it is possible that a submitted application is eventually ruled ineligible for a specific

budget category.

4 Empirical Methodology

Our empirical method proceeds in two steps. First, we carry out descriptive statistics

that summarize battery storage adoption and allocation of SGIP funding by zip code-level

socioeconomic and demographic characteristics. Second, we evaluate how storage adoption

and SGIP funding correlates with zip code characteristics through regression analyses. Our

objective is not to evaluate all possible drivers of residential battery storage adoption.

Rather, our objective is to understand how battery adoption relates to key socioeconomic

8For a detailed review of the CES, see California OEHHA (2018) and Lukanov and Krieger (2019).
9More specifically, this crosswalk data file provides an estimate of each census tract’s population that lies
within a specific zip code. This data is then used to assign a population-based weight to the census
track-level variables for the (often) multiple census tracts that intersect a given zip code. These population-
weights are then used to aggregate the census track-level variables up to the zip code-level. We utilize these
population-weighted zip code-level variables in the subsequent analysis.
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and demographic variables, controlling for essential time-varying and regional characteristics

that could confound these relationships.

As shown in Table 1, a large portion of SGIP funding is allocated to the equity resiliency

budget category. A key eligibility criteria for this budget category is that households must

be located in a Tier 2 or 3 HFTD, or have been expose to two or more PSPS events.

Consequently, it will be important that we account for the likelihood that a household in a

given zip code will satisfy one or more of these criteria. To account for this fact, we utilize

geospatial files made available by the CPUC (2020) that document the regions of California

that are covered by HFTD Tiers 2 and 3, and regions that have been exposed to two or more

PSPS events. For each zip code, we compute an index ranging from 0 to 100 that reflects the

population-weighted area that falls within a HFTD Tier 2, HFTD Tier 3, or has experience

2 or more PSPS events. For a detailed summary of how these measures are calculated, see

Appendix B.

In our analysis of storage adoption, our dependent variable, Adoption Ratezt ∈ [0, 1],

represents the ratio of battery storage adopters to the number of housing units in zip code

z and year t. We employ a Fractional Logit model by modeling the conditional expectation

of the fractional dependent variable as follows:

E[ Adoption Ratezt|Xzt ] =
exp(Xztβ)

1 + exp(Xztβ)

where Xzt are zip code characteristics including the % of individuals that self-identify as

Black, Hispanic, Asian, or American Indian or Alaskan Native (hereon, Indigenous), median

household income and its squared value, % of owner occupied housing, our HFTD Tiers 2

or 3 and PSPS ≥ 2 Event indices, year controls, and utility territory controls variables.10

The existing literature has demonstrated that home ownership is an important driver of

distributed technology (e.g., rooftop solar) adoption (Sunter et al., 2019). The year controls

capture time-dependent variation such as changes in SGIP subsidy policies, the cost of

installing batteries, and/or changes in preferences that could impact adoption incentives.

The utility territory control variables capture regional factors such as differences in retail

rates and utility-specific programs to promote adoption of distributed technologies. As noted

above, SGIP’s equity resiliency funding is tied to whether or not a household is located in a

HFTD or has experienced 2 or more PSPS events. Our population-weighted indices control

10We find that there is a statistically significant concave relationship between median HH income and our
dependent variables. The results of the other coefficients are robust to the inclusion of only a linear income
term.
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for the likelihood that a given household lies within one of these regions.

We employ a fractional logit model rather than an ordinary least squares (OLS) regression

because it explicitly accounts for the fact that our dependent variable is bounded between

[0, 1]. Failure to account for this fact can lead to negative estimated dependent variable values

and a model that fits the mass of observations at 0 poorly.11 This model is estimated via

quasi-likelihood estimation and permits cluster-robust standard errors at the zip code-level

(Papke and Wooldridge, 1996, 2008).

In our analysis of SGIP funding, our dependent variable Incentive Ratezt represents the

ratio of SGIP incentive dollars received to the total number of housing units in zip code z

and year t. We utilize a Poisson pseudo-maximum-likelihood (PPML) regression model with

conditional expectation modeled as follows:

E[ Incentive Ratezt|Xzt ] = exp(Xztβ)

where Xzt are the same zip code-level socioeconomic, demographic, time, and regional

characteristics detailed above. The standard errors are cluster-robust at the zip code-level.

We utilize a PPML regression because Incentive Ratezt is rightward skewed and includes

a sizable number of zero observations. This specification is preferred over a log-linear OLS

regression which is often employed to handle skewed data for several reasons.12 First, we are

interested in the conditional expectations on the incentive rate, not the log of the incentive

rate. This difference is important because by Jensen’s inequality lnE[Y |X] 6= E[ ln Y |X ].

This property has been shown to lead to bias in log-linearized models in the presence of

heteroskedasticity (Santos Silva and Tenreyro, 2006). Second, a log-linear specification is

inappropriate because our data contain a non-trivial amount of zero values on the dependent

variable. Adding one to the zero-valued dependent variables before taking logs, a common

approach to circumvent this issue, has been shown to lead to biased coefficient estimates

(Bellego and Pape, 2019). Third, Santos Silva and Tenreyro (2006) raise concerns over the

validity of the assumptions imposed on the error term in a log-linear specification and note

that the PPML regression requires fewer assumptions and imposes a less rigid structure.

In both regression analyses, the coefficient estimates demonstrate the sign and statistical

significance. However, because these models are non-linear regressions, we cannot directly

use the coefficients to evaluate the magnitude of the effects. To illustrate the estimated

11We present OLS regression results and a discussion of the issues with this approach in Table A1 in the
Appendix.

12We present the results of our Incentive Rate regression for a number of specifications, including a log-linear
OLS, in Appendix Table A2.
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relationships, we compute marginal effects to quantify the economic significance of the

regression results. For variables that reflect percentages, the marginal effects represent the

predicted change in the dependent variable when the characteristic of interest goes from

0 to 1, holding all other variables at their mean values. For the remaining variables (i.e.,

household median income, and our HFTD Tier 2 and 3 and PSPS ≥ 2 Events indices), the

marginal effect reflects the effect of a one standard deviation increase in these variables from

their mean values, holding all other variables at their mean values.

In addition, to facilitate a graphical interpretation of our results, we present the estimated

value of our dependent variables evaluating the median income variables in increments of

$5,000 and the remaining covariates at values based on the average characteristics of White,

Black, Asian, and Hispanic-majority zip codes.13 We categorize zip codes in the race-majority

categories when 50% or more residents identify as being one race/ethnicity.

5 Descriptive Statistics

We begin by presenting descriptive statistics that summarize residential battery storage

adoption and allocation of SGIP funding by zip code-level socioeconomic and demographic

characteristics. Table 2 presents the summary statistics of the socioeconomic and demographic

variables for all zip codes in California, and focusing only on zip codes that have at least

one storage system adopted under the various SGIP budget categories. We present both the

level of household (HH) median income and its distribution across various income bins.

Across all zip codes and years, there is an average 2.14 SGIP-funded battery storage

systems adopted per 1,000 households demonstrating that residential storage is a relatively

nascent technology as we are in the early stages of its deployment. The average characteristics

of zip codes that had at least one storage system adopted under the general budget category

closely reflect the averages across all zip codes. Alternatively, zip codes that have storage

system(s) funded by the equity resiliency fund have higher average median HH incomes,

a rightward shifted income distribution, a lower percentage of Black, Hispanic, and Asian

residents, a higher percent of owner occupied housing, and a lower EJ concern measure.

This is somewhat surprising because the eligibility of this program is at least in part

targeting lower-income households and communities, with additional eligibility for medically

vulnerable households regardless of HH income. As expected, zip codes that have battery

adoption funded under the equity resiliency fund have the highest values for our HFTD Tier

13We are unable to carry out this exercise for the Indigenous race/ethnicity because few zip codes have more
than 2% of individuals that self-identify as American Indian or Alaskan Native in the census data.
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Table 2: Socioeconomic and Demographic Summary Statistics by Budget Category

SGIP Budget Category
All General Equity Resiliency Equity SJV

Median HH Income (thousands) 81.27 83.07 92.45 79.53 55.95
(32.85) (32.32) (34.36) (33.01) (8.26)

% HH Income < 15,000 0.09 0.09 0.07 0.12 0.11
(0.05) (0.04) (0.04) (0.05) (0.03)

% HH Income ∈ [15, 000, 35, 000) 0.15 0.15 0.13 0.16 0.19
(0.07) (0.06) (0.06) (0.06) (0.05)

% HH Income ∈ [35, 000, 75, 000) 0.26 0.26 0.24 0.24 0.35
(0.07) (0.07) (0.07) (0.08) (0.02)

% HH Income ∈ [75, 000, 150, 000) 0.29 0.29 0.30 0.26 0.27
(0.06) (0.06) (0.06) (0.05) (0.05)

% HH Income ≥ 150,000 0.21 0.22 0.26 0.22 0.09
(0.14) (0.14) (0.14) (0.15) (0.03)

% Black 0.07 0.07 0.05 0.08 0.03
(0.08) (0.08) (0.06) (0.08) (0.02)

% Hispanic 0.35 0.35 0.27 0.39 0.62
(0.23) (0.22) (0.18) (0.25) (0.14)

% Asian 0.14 0.15 0.12 0.15 0.04
(0.14) (0.14) (0.13) (0.12) (0.01)

% Indigenous 0.008 0.007 0.008 0.008 0.013
(0.016) (0.009) (0.013) (0.005) (0.008)

CalEnviroScreen (EJ Concern) 26.40 25.77 19.25 29.71 41.60
(13.99) (13.57) (10.36) (13.34) (4.78)

% Owner Occupied Housing 0.55 0.56 0.64 0.42 0.57
(0.18) (0.17) (0.14) (0.18) (0.06)

HFTD Tier 2 11.25 10.81 25.56 1.87 0.00
(19.77) (18.55) (22.67) (4.20) (0.00)

HFTD Tier 3 7.08 7.37 19.01 4.07 0.00
(18.83) (19.12) (27.17) (14.88) (0.00)

PSPS ≥ 2 Events 1.56 1.64 4.30 0.69 0.00
(6.23) (6.41) (9.63) (3.42) (0.00)

Storage Systems Per 1000 HHs 2.14 2.28 4.39 1.18 2.08
(3.17) (3.21) (4.35) (1.11) (5.53)

Incentive $’s Per 1000 HHs (thousands) 20.45 21.59 51.73 19.45 35.49
(55.73) (56.28) (86.43) (17.02) (148.61)

Number of Zip Codes 1,737 1,231 563 27 6

Notes. Standard deviations are in parenthesis. Data are weighted by the number of households in each
zip code. All represents all zip codes in California. The remaining columns are zip codes with positive
storage adoptions under a specific SGIP budget category.

2 and 3 and PSPS ≥ 2 Event measures. This reflects the fact that eligibility for this budget

category is tied to HHs being located in one or more of these regions.
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In contrast, zip codes that have storage system(s) adopted under the equity fund have

modestly lower median HH income, a higher percentage of HH income in the lowest bins,

a higher percentage of Black and Hispanic residents, lower percentage of owner occupied

housing, and a higher EJ concern metric compared to all zip codes. Finally, the small number

of zip codes that have SJV funded storage systems have considerably lower average median

income, a leftward shifted median income distribution, a higher percentage of Hispanic and

Indigenous residents, a lower percentage of Black and Asian residents, and a considerably

higher EJ concern measure. These statistics suggest that these targeted categories may

be more successful at inducing storage adoption in certain lower socioeconomic communities

with higher EJ concerns. However, the magnitude of these programs are considerably smaller

(recall Table 1).

Figure 1: MWhs of Storage Capacity by Socioeconomic and Demographic Deciles

Notes. Bar graphs present the MWhs of battery storage capacity installed at the zip code-level
over our entire sample period for all SGIP budget categories by median income, CalEnviroScreen,
% Black, % Hispanic, % Asian, and % Indigenous deciles.
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Figure 1 summarizes the MWhs of energy storage capacity by zip code-level median HH

income, CalEnviroScreen (CES), and the percent Black, Hispanic, Asian, and Indigenous

deciles for each budget category. The vast majority of energy storage capacity is adopted

under the general budget category followed by the equity resiliency fund. Further, the

majority of storage capacity is adopted in zip codes with median incomes in the top 50th

percentile and CES scores in the bottom 50th percentile, demonstrating that zip codes with

the highest EJ concern receive relatively limited SGIP-funded battery storage investment.

85% and 75% of energy storage capacity arises in the top and bottom 50th percentiles of

the median income and CES distributions, respectively. As will be discussed in more detail

below, these stark patterns are driven in part by the fact that a sizable portion of the

SGIP funding comes from the equity resiliency fund which is only eligible for communities

in HFTDs or that have experienced 2 or more PSPS events.

Figure 1 demonstrates a more nuanced relationship for the race/ethnicities. With the

exception of percent Asian, the majority of battery investment arises in the bottom 50th

percentiles for the remaining race/ethnicities. However, the distribution across deciles is

relatively more uniform than those that arise when looking at median income and the CES

measures. We will employ regression analyses below to evaluate these relationships in a more

empirically robust manner.

Figure 2 isolates the energy storage capacity provided under the considerably smaller in

magnitude equity and SJV budget categories. Figure 2 demonstrates that the SJV funding

has been allocated to battery storage projects in areas with a high CES EJ measure, a

high percentage of Hispanic residents, and median incomes at or below the 50th percentile.

Compared to the distributions of adoption in Figure 1, storage projects funded by the equity

category arise in zip codes with a relatively higher CES scores and percentage of Black, Asian,

and Indigenous residents, while the median HH income of these zip codes is more uniformly

distributed across income percentiles. These results continue to demonstrate that these two

programs are relatively more successful at promoting battery investment in communities

with lower median incomes, higher EJ concerns, and a higher percentage of people of color.

Figures A.1 and A.2 in the Appendix demonstrate our results are unchanged if we consider

the rated power capacity (in MWs) rather than the energy capacity (in MWhs).14

14Storage capacity is measured in both the rated power capacity (i.e., MWs) and energy capacity (i.e.,
MWhs). Rated power capacity reflects the amount of energy that can flow into or out of the battery at
any given instant. Energy capacity is the amount of energy that can be stored. Batteries have different
rated power capacity and energy capacity depending on the targeted use of the battery system. Our results
are robust to the consideration of either measure.

14



Figure 2: MWhs of Storage Capacity by Socioeconomic and Demographic Deciles - Equity
and SJV Budget Categories

Notes. Bar graphs present the MWhs of battery storage capacity installed at the zip code-level
over our entire sample period for the Equity and San Joaquin Valley SGIP budget categories by
median income, CalEnviroScreen, % Black, % Hispanic, % Asian, and % Indigenous deciles.

Figure 3 provides the distribution of SGIP-funding by zip code-level median income,

CES EJ score, and percent Black, Hispanic, Asian, and Indigenous deciles for each budget

category. Consistent with the results above, the majority of the SGIP-funding flows to higher

income zip codes with relatively low CES EJ scores. In particular, $237 million (82%) and

$230 million (80%) goes to zip codes that fall in the top and bottom 50th percentile of

the median income and CES distributions, respectively. The race/ethnicity patterns are

consistent with those detailed above in Figure 1. In contrast to Figure 1 which shows the

majority of capacity is installed under the general budget category, the majority of funding

goes to the equity resiliency fund due to the higher subsidy allocated to each battery system

in this category.
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Figure 3: SGIP-Funding by Socioeconomic and Demographic Deciles

Notes. Bar graphs present the SGIP funding received at the zip code-level over our entire sample
period for each budget category by median income, CalEnviroScreen, % Black, % Hispanic, %
Asian, and % Indigenous deciles.

Figure A.3 in the Appendix presents the SGIP-funding focusing only on the equity and

SJV budget categories. Analogous to Figure 2, we continue to find that these budget

categories are relatively more successful at motivating adoption and providing SGIP-funding

in communities with lower median income, higher EJ concerns, and a higher percentage of

households of color.

The results that have been reported so far have focused on all zip codes in California.

While we believe it is informative to demonstrate that there are socioeconomic and demographic

disparities in SGIP-funded battery and storage adoption when looking across all zip codes,

this approach masks the fact that there are eligibility criteria to receive SGIP funding.

Table 1 demonstrates that the majority of the SGIP funding is allocated to the equity

resiliency budget category. Recall that HHs must be in a HFTD Tier 2 or Tier 3 or have

16



experienced two or more PSPS events, among other criteria, to receive funding under this

budget category. Further, Table 2 demonstrates that zip codes that have installed storage

under the equity resiliency category have higher median incomes, a higher percentage of

owner occupied housing, a lower percentage of Black, Hispanic, and Asian residents, and a

considerably lower EJ concern measure on average.

Consequently, to have a more complete understanding of the relationship between SGIP-

funded battery storage and socioeconomic and demographic characteristics, we need to

present our descriptive statistics for zip codes that were in HFTDs and/or those that

experienced 2 or more PSPS events. To do so, we focus only on zip codes that had

SGIP-funded battery investment under the equity resiliency budget category to capture

zip codes that have households located in these regions.15 We redefine the socioeconomic

and demographic deciles using the distribution of values in this subset of zip codes.

Figure 4 presents the storage capacity (in MWhs) by zip code-level median income, the

CES EJ measure, and the percent Black, Hispanic, Asian, and Indigenous declies for each

budget category in zip codes that received any equity resiliency funding. Compared to the

results for the full set of zip codes in Figure 1, the disparities across the median income and

CES EJ measure are less severe. However, it continues to be the case that the majority of

battery adoption arises in zip codes with a higher median income and lower EJ concern (i.e.,

lower CES values) in these regions. 72% and 62% of battery storage adoption arises in the

top and bottom 50th percentiles of median income and the CES EJ measure, respectively.16

With the exception of percent Black, the distribution of adoption by the race/ethnicity

variables continue to follow the same general patterns as in the full sample. In these zip

codes, the majority of battery storage capacity arises in the top 50th percentile of the percent

Black distribution.

6 Regression Results

In this section, we employ the regression analyses detailed in Section 4 to evaluate if the

disparities in storage adoption and SGIP-funding allocation rates by socioeconomic and

demographic characteristics remain after controlling for important covariates. Throughout

this section, we will report two model specifications, one that does and does not include the

15We also considered zip codes that had a value on the HFTD Tier 2 index that was greater than 0, above the
25th percentile, and above the 50th percentile. The conclusions are robust to these alternative definitions.

16Figure A.4 provides the descriptive statistics of SGIP funding by socioeconomic and demographic deciles
for zip codes that received equity resiliency funding. The results parallel those in Figure 4.
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Figure 4: MWhs of Storage Capacity by Socioeconomic and Demographic Deciles - Equity
Resiliency Zip Codes

Notes. Bar graphs present the MWhs of battery storage capacity installed at the zip code-level
over our entire sample period for zip codes that received Equity Resiliency funding by median
income, CalEnviroScreen, % Black, % Hispanic, % Asian, and % Indigenous deciles.

HFTD Tier 2, HFTD Tier 3, and PSPS ≥ 2 Event indices. These variables are essential

criteria to be eligible for the equity resiliency budget category which is the largest slice of

current SGIP funding (see Table 1).

Presenting the results in this manner allows us to get at two key questions. First, are there

socioeconomic and demographic disparities when looking across all zip codes in California,

unconditional on eligibility criteria? This allows us to understand the relationship between

SGIP-funded battery investment and key socioeconomic and demographic variables when

looking across the entire state of California. Second, do these disparities persist once we

control for the eligibility of the equity resiliency funding? This allows us to determine if

these disparities are driven in part by the fact that only certain communities are eligible to
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receive this funding, and these communities have certain socioeconomic and demographic

characteristics. Tables A1 and A2 in the Appendix provide additional regression results as

we adjust the model specification.

Table 3 presents the results for our adoption rate fractional logit regression. First, we

will focus on the specification that doesn’t control for our HFTD or PSPS ≥ 2 Event indices.

Columns (1) - (3) demonstrate that there is a statistically significant negative relationship

between the adoption rate and % Black, % Hispanic, and % Asian. These effects are

economically significant with marginal effects ranging from a 27.5% to 45.3% reduction

in the SGIP-funded battery storage adoption rate relative to the mean adoption rate when

these covariates change from 0 to 1. Alternatively, for % Indigenous, we find a positive and

statistically and economically significant effect. Unlike the other race/ethnicity categories

which span the full range of 0 to close to 1, % Indigenous takes on a value that is often less

than 1%. To evaluate economic significance in a more meaningful manner, we also compute

the marginal effect for % Indigenous as a one standard deviation increase from its mean

value (see † in columns (2) and (3)) and find that the SGIP adoption rate increases by 3.9%

relative to the mean adoption rate.

Columns (1) - (3) demonstrate that there is a statistically significant positive and concave

relationship between a zip code’s median HH income and the adoption rate. The marginal

effect of an increase in median HH income (i.e., a one standard deviation increase above

its mean value) yields a 20.9% increase in storage adoption as a % of mean adoption.17 As

expected, % owner occupied housing has a positive statistically and economically significant

effect on the battery adoption rate. These findings are consistent with the literature that

demonstrates that home ownership is an important driver of distributed technology adoption

(Sunter et al., 2019).

Columns (4) - (6) in Table 3 present the results of our adoption rate regression, controlling

for the HFTD Tier 2, HFTD Tier 3, and PSPS ≥ 2 indices. As expected, each of these

variables have a positive and economically significant effect on the adoption rate. A one

standard deviation increase in these variables above their mean values result in a 5.3% to

11.5% increase in the adoption rate as a % of the mean adoption rate. Median Income and

% Owner Occupied continue to have positive and statistically and economically significant

effects. Although the economic significance of % Owner Occupied is reduced.

17The marginal effect of an increase in HH median income is considerably larger if we consider a move
from a lower to a higher quartile. A movement from the 10th to 90th quartile of the HH median income
distribution, holding all other variables at their means, results in a 44.5% increase in storage adoption as
a % of mean adoption.
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Table 3: Fractional Logit Regression Results: Adoption Rate

(1) (2) (3) (4) (5) (6)
Marginal Effect Marginal Effect

Per 1,000 HHs % Adoption Per 1,000 HHs % Adoption
% Black -1.204** -0.155 -0.275 -0.428 -0.071 -0.127

(0.469) (0.434)
% Hispanic -1.140*** -0.201 -0.358 -0.632** -0.114 -0.203

(0.259) (0.249)
% Asian -2.715*** -0.254 -0.453 -1.680*** -0.193 -0.343

(0.249) (0.225)
% Indigenous 2.063** 1.382 2.457 1.535** 0.713 1.268

(0.894) 0.022† 0.039† (0.764) 0.016† 0.028†

% Owner Occupied 1.897*** 0.379 0.674 1.097*** 0.208 0.369
(0.286) (0.281)

Median Income 0.0218*** 0.117 0.209 0.0232*** 0.123 0.218
(0.0031) (0.0030)

(Median Income)2 -0.00005*** -0.00005***
(0.00001) (0.00001)

HFTD Tier 2 0.00876*** 0.065 0.115
(0.00138)

HFTD Tier 3 0.00864*** 0.050 0.089
(0.00118)

PSPS ≥ 2 Events 0.0190*** 0.030 0.053
(0.00247)

Mean Adoption 0.562 0.562
Year Controls Yes Yes
Utility Controls Yes Yes
# Zip Code – Years 8,130 8,130

Notes. Statistical Significance * p < 0.10, ** p < 0.05, and *** p < 0.01. Standard errors are reported in the
parentheses and are clustered at the zip code-level. For the covariates % Black, % Hispanic, % Asian, % Indigenous,
and % Owner Occupied, the marginal effects reflect the effect of moving the characteristic from zero to one. † denotes
the marginal effect of a one standard deviation increase in % Indigenous from its mean value. For the covariates
Median Income, HFTD Tier 2, HFTD Tier 3, and PSPS ≥ 2 Events, the marginal effects reflect a one standard
deviation increase from their mean values. All marginal effects hold the other characteristics at their sample means.
% Adoption reflects the marginal effects as a percentage of the mean adoption rate of 0.562.

Columns (4) - (6) demonstrate that the economic and statistical significance of the

race/ethnicity variables are reduced once we control for the HFTD and PSPS Event indices.

% Hispanic and % Asian remain negative and statistically and economically significant with

marginal effects that represent a -20.3% and -34.3% reduction in the adoption rate as a

percentage of the mean adoption rate, respectively. % Indigenous remains positive and both

economic and statistically significant. However, the effect of % Black is no longer statistically

significantly different from zero. These results demonstrate that part of the disparities in the

adoption rate by race/ethnicity are driven by the demographics of the population in areas

that are eligible to receive equity resiliency funding.
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Table 4: PPML Regression Results: Incentive Rate

(1) (2) (3) (4) (5) (6)
Marginal Effect Marginal Effect

Per 1,000 HHs % Incentive Per 1,000 HHs % Incentive
% Black -2.458** -1,188.43 -0.159 -0.658 -501.75 -0.067

(1.119) (0.975)
% Hispanic -1.321*** -1,264.94 -0.169 -0.353 -333.39 -0.045

(0.501) (0.500)
% Asian -4.977*** -1,871.53 -0.250 -2.711*** -1,231.61 -0.164

(0.630) (0.482)
% Indigenous 2.883*** 18,487.33 2.468 2.245*** 8,204.55 1.095

(1.028) 173.10† 0.023† (0.844) 116.51† 0.016†

% Owner Occupied 2.810*** 3,339.50 0.446 1.486*** 1,415.84 0.189
(0.479) (0.434)

Median Income 0.0197*** 535.42 0.071 0.0227*** 562.68 0.075
(0.0047) (0.0046)

(Median Income)2 -0.00005*** -0.00006***
(0.00002) (0.00002)

HFTD Tier 2 0.0172*** 741.32 0.099
(0.00213)

HFTD Tier 3 0.0171*** 560.36 0.075
(0.00165)

PSPS ≥ 2 Events 0.0214*** 170.35 0.023
(0.00490)

Mean Incentive Rate 7,490.90 7,490.90
Year Controls Yes Yes
Utility Controls Yes Yes
# Zip Code – Years 8,130 8,130

Notes. Statistical Significance * p < 0.10, ** p < 0.05, and *** p < 0.01. Standard errors are reported in the
parentheses and are clustered at the zip code-level. For the covariates % Black, % Hispanic, % Asian, % Indigenous,
and % Owner Occupied, the marginal effects reflect the effect of moving the characteristic from zero to one. † denotes
the marginal effect of a one standard deviation increase in % Indigenous from its mean value. For the covariates
Median Income, HFTD Tier 2, HFTD Tier 3, and PSPS ≥ 2 Events, the marginal effects reflect a one standard
deviation increase from their mean values. All marginal effects hold the other characteristics at their sample means.
% Incentive reflects the marginal effects as a percentage of the mean incentive rate of 7,490.90.

Table 4 presents the results for our incentive rate regression. Columns (1) - (3) present

the results of our regression analysis absent the HFTD and PSPS ≥ 2 Event indices. The

results parallel those in the adoption rate regressions above. There is a statistically significant

negative relationship between % Black, % Hispanic, and % Asian and the incentive rate. This

effect is economically significant with a 16% to 25% reduction in the SGIP incentive rate when

these covariates move from 0 to 1, relative to the mean incentive rate. % Indigenous has a

positive and significant relationship with the incentive rate. There continues to be a positive

and statistically and economically significant relationship between % Owner Occupied and

Median Income and the incentive rate.
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Columns (4) - (6) present the results of the incentive rate regressions, controlling for the

HFTD and PSPS ≥ 2 Event indices. These covariates are particularly important in the

incentive rate regression because the majority of SGIP funding has been allocated to the

equity resiliency fund (see Table 1). This is in contrast to the MWhs of installed storage

capacity (e.g., see Figure 1).18 As expected, the HFTD Tier 2, HFTD Tier 3, and PSPS

≥ 2 Events covariates are all statistically significant. Importantly, % Black and % Hispanic

are no longer statistically significant once these covariates are added to the regression. This

could be driven by the fact that the majority of SGIP funding arises in regions that are

eligible to receive equity resiliency funding, and these regions have fewer individuals that

self-identify as Black or Hispanic. The remaining socioeconomic and demographic variables

maintain their signs and statistical significance.

Another way to illustrate our regression results is to present the predicted adoption and

incentive rates for certain socioeconomic and demographic characteristics. More specifically,

we define White, Black, Hispanic, and Asian-majority zip codes as those with 50% or more

households that self-identify as a specific race/ethnicity. We use our models to compute the

predicted value of the adoption and incentive rates at different income thresholds, holding

all other regressors at their mean values in White, Black, Hispanic, and Asian-majority

zip codes. As noted above, we are unable to carry out this exercise for the Indigenous

race/ethnicity because few zip codes have more than 2% of individuals that self-identify

as American Indian or Alaskan Native in the census data. We also consider the average

zip code which presents the predicted values of our dependent variables, evaluating the

regressors at their average values across all zip codes in our sample. The results are run

using the regression specifications that include the HFTD and PSPS ≥ 2 Event indices.

Figure 5 demonstrates that the predicted adoption and incentive rates differ considerably

by income and race/ethnic-majority zip code characteristics. White-majority zip codes have

unambiguously higher estimated adoption and incentive rates at all income levels, while

Hispanic and Asian-majority zip codes have the lowest point-estimates on the adoption

and incentive rates, respectively. Evaluated at the average median income (i.e., $76,357),

Hispanic, Asian, and Black-majority zip codes have a 72%, 69%, and 65% lower estimated

adoption rates compared to White-majority zip codes. At the average median HH income,

estimated SGIP funding is $17,428 per 1,000 HHs in White-majority zip codes compared to

only $3,220, $2,298, and $3,348 in Hispanic, Asian, and Black-majority zip codes, respectively.

18This decoupling of MWhs of capacity and % of funding by category arises because the majority of storage
systems adopted under the SGIP falls under the general budget category which has considerably less
funding per Watt-hour of storage capacity.
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Figure 5: Estimated Adoption and SGIP Incentive by Race/Ethnicity and Median Income

(a) Adoption Rate

(b) Incentive Rate

Notes. (a) and (b) present the estimated adoption and incentive rates from the fractional logit
and PPML regressions, respectively, evaluated at intervals of $5,000 and the remaining covariates
at their mean values in White, Black, Asian, and Hispanic-majority zip codes. Average reflects
the estimated adoption and incentive rates evaluating the covariates at the sample average values.
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It is important to acknowledge that there is considerable variability in the estimated

adoption and incentive rates segmented by race categories within a $5,000 income bin. This

should be kept in mind when interpreting the estimated adoption and incentive rates in

Figure 5. However, these figures demonstrate broad patterns and relationships in the data

that suggest that there are disparities in battery storage adoption and incentive rates by

income and race and ethnicity at the zip code-level after controlling for important regional

and time-vary factors.

Taken together, the regression results demonstrate that there is a strong relationship

between a zip code’s median income and battery storage adoption and SGIP-funding allocations.

This is consistent with the descriptive results report in Figures 1 and 3. Further, these results

demonstrate that there is a negative relationship between % Black, % Hispanic, and % Asian

and SGIP-funded battery adoption rates. Although the results for % Black are sensitive

to the inclusion of variables that control for the eligibility for equity resiliency funding.

This suggests that disparities in battery adoption rates exist for these race/ethnicities.

Interestingly, there is a positive relationship between % Indigenous and storage capacity

adoption and incentive rates throughout. Unfortunately, without household-level data, or

at least more granular location information on SGIP funded projects, we are unable to dig

deeper into the source of this positive relationship.

7 Conclusion and Policy Implications

Residential battery storage has experienced a period of rapid growth in California. With

the growing concerns over the inequitable burdens of climate change, electricity network

resiliency, and energy and environmental justice (EJ), it is essential to evaluate if there are

disparities in the adoption of and subsidies for residential battery storage.

Despite the fact that a subset of the Self-Generation Incentive Program (SGIP) funds are

tied to household income, we find the majority of SGIP-funded battery storage is adopted

in zip codes with higher average median incomes and low EJ concerns. When looking across

all zip codes in California, 85% and 75% of battery capacity is installed in zip codes with

average median income and an EJ concern metric in the top and bottom 50th percentiles,

respectively. As a result, 82% ($237 million) and 80% ($230 million) of the utilized SGIP

funding goes to zip codes that fall in the top and bottom 50th percentiles of the average

median income and EJ concern distributions.

We demonstrate that these patterns are partially driven by the fact that a large proportion
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of SGIP funding is tied to being located in regions with the highest vulnerability to wildfires.

These zip codes tend to have higher median incomes, a larger proportion of homeowners,

lower EJ concerns, and a lower percentage of households of color. While the disparities

across median income and EJ concern are reduced, we demonstrate that these disparities

continue to exist when focusing on these regions.

We present descriptive evidence that carve-out programs targeted at specific “disadvantaged”

and low income communities help reduce disparities in battery deployment. This suggests

that these types of programs may prove to be a valuable avenue to ensuring equitable

deployment of battery storage. However, because these programs are small in magnitude

and target a small number of communities, we are limited in our ability to draw broad

conclusions about their performance.

Regression analyses demonstrate that the strong relationship between median income and

battery adoption and subsidy rates persists even after controlling for potentially confounding

factors. Further, we find statistically significant evidence of disparities in battery storage

adoption rates by race and ethnicity. Zip codes with a higher percentage of Black, Asian,

and Hispanic residents are less likely to install battery storage. For example, the predicted

battery adoption rates decrease by 20% and 34% relative to the mean adoption rate as we

move to Hispanic and Asian-majority zip codes. Alternatively, we find a positive relationship

between the percentage of households that self-identify as Indigenous and SGIP-funded

battery adoption. The effects identified for Hispanic, Asian, and Indigenous race/ethnicities

persist even after controlling for important regional and time-varying factors (e.g., such as

being eligible for SGIP’s equity resiliency funding).

We find that SGIP-funded residential battery storage is almost always coupled with

rooftop solar. It has been shown that the financial returns for adding on battery storage to

a rooftop solar system is not sufficient to offset the additional costs (Verdant, 2021). This

suggests that absent a sufficiently large subsidy, the decision to invest in energy storage is

driven by other non-financial factors (e.g., resiliency value, other non-pecuniary benefits).

These observations suggests that the barriers to adoption such as access to financing, high

upfront costs, lower home ownership, and/or a lack of peer effects that have been shown

to play an important role in the adoption of rooftop solar (Bollinger and Gillingham, 2012;

Lukanov and Krieger, 2019) may be magnified in this setting.

While residential battery storage is a relatively infant industry at its beginning stages,

numerous states have designed programs to enhance its development (Twitchell 2019; EIA,

2020). Previous literature has demonstrated that lags in deployment for certain communities
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can enhance disparities relative to other communities over time because of “peer” and

“seeding effects” that speed up deployment (Graziano and Gillingham, 2015; Sunter et

al., 2019). Consequently, when designing programs to support residential battery storage

investment, it is important to ensure that these programs are designed to promote widespread

access to its various benefits.

It is important to acknowledge that our analysis is limited by the geographical granularity

of the battery storage data, which is only available at the zip code-level. Zip codes vary in

size and population and can mask potentially important socioeconomic and demographic

patterns. Availability of more geographically granular data (e.g., at the census block group-

level) would enhance researchers’ abilities to evaluate and quantify disparities in battery

adoption and SGIP funding allocations.19 These data would be further enriched by household-

level information for individuals that receive SGIP-funding and/or invest in battery storage.

These data could be used to isolate key drivers of battery investment and allow researchers

to establish testable hypotheses of the barriers that non-adopters of battery storage face.

19In addition, having more granular location-specific information would help identify whether or not a specific
household is located in a HFTD or has experienced 2 or more PSPS events. This would provide a more
accurate measure of the likelihood that a household is eligible for equity resiliency funding.
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Appendix

A HFTD and PSPS Indices

We utilize the CPUC’s (2020) geospatial shapefiles that define the locations of HFTD Tiers
2 and 3, and regions that have experienced two or more PSPS events. Our objective is to
construct a zip code-level measure to proxy for the likelihood that a household falls within
one or more of these regions. A challenge we face is that the HFTD regions are often located
in rural, less populated, regions. To account for this fact, we compute a population-weighted
measure of the area covered by each of these regions for each zip code in California.

We employ methods established by the geography literature to determine the population
weights across all of California. We utilize the 2020 WorldPop data set that provides a
population weight for approximately every 1,000 meters in California (WorldPop, 2020).20

The WorldPop data set employs granular census data (at the block group level), projects
land cover topology layers (e.g., rivers, elevation, etc.), utilizes the geography literature’s
estimates on where humans live by land use types, and employs empirical methods to project
the census population onto a more granular scale. For additional details on these methods,
see Sorichetta et al. (2015) and Gaughan et al. (2016).

The WorldPop data set provides population weight points for (approximately) every 1,000
meters. Since our objective is to calculate a measure of the population-weighted area covered
by HFTD Tier 2, HFTD Tier 3, or that has been exposed to two or more PSPS events, we
project this data from a point-based measure to a spatial measure using Inverse Distance
Weighting Interpolation to fill the gaps between the points to assign a population weight to
all locations in California. This yields a 1,000-by-1,000 meter grid of population estimates
across the state.

We use the gridded population estimate to compute our indices as follows. It is without
loss of generality to focus on the HFTD Tier 2 measure. For a given zip code z, define
j = 1, 2, ..., Jz to be the number of WorldPop grid cells contained within zip code z. The
population weight for each WorldPop cell is wj ≥ 0. Define Aj to be the area of WorldPop
cell j in zip code z that lies within a HFTD Tier 2. Define Bj to be the total area within
WorldPop cell j in zip code z:

HFTD Tier 2z =

∑Jz

j=1 wj Aj∑Jz

j=1 wj Bj

.

This approach provides a population-weighted area covered by each measure for each zip
code in our sample. An analogous approach is employed for the HFTD Tier 3 and PSPS
two or more measures. For the PSPS ≥ 2 Event measure, it is important to acknowledge
that the CPUC’s (2020) geospatial file often locates individual households rather than large
geographical areas. As a result, the magnitude of this index will be smaller than the HFTD
measures which capture large geographical areas. However, for zip codes that have a larger

20More specifically, we use the 2020 unconstrained top-down data set at a 1,000 meter resolution.
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proportion of households that have experienced PSPS events, the PSPS ≥ 2 Event measure
will take on a larger value.

B Additional Results

Figure A.1: MWs of Storage Capacity by Socioeconomic and Demographic Deciles

Notes. Bar graphs present the MWs of battery storage capacity installed at the zip code-level
over our entire sample period for all SGIP budget categories by median income, CalEnviroScreen,
% Black, % Hispanic, % Asian, and % Indigenous deciles.
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Figure A.2: MWs of Storage Capacity by Socioeconomic and Demographic Deciles - Equity
and SJV Budget Categories

Notes. Bar graphs present the MWs of battery storage capacity installed at the zip code-level
over our entire sample period for the Equity and San Joaquin Valley SGIP budget categories by
median income, CalEnviroScreen, % Black, % Hispanic, % Asian, and % Indigenous deciles.
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Figure A.3: SGIP-Funding by Socioeconomic and Demographic Deciles - Equity and SJV
Budget Categories

Notes. Bar graphs present the SGIP funding received at the zip code-level over our entire sample
period for each budget category by median income, CalEnviroScreen, % Black, % Hispanic, %
Asian, and % Indigenous deciles.
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Figure A.4: SGIP-Funding by Socioeconomic and Demographic Deciles - Equity Resiliency
Zip Codes

Notes. Bar graphs present the SGIP funding received at the zip code-level over our entire sample
period for each budget category for zip codes that received Equity Resiliency funding by median
income, CalEnviroScreen, % Black, % Hispanic, % Asian, and % Indigenous deciles.
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Table A1 presents the results of our Adoption Rate Fractional Logit regression analysis
with varying control variables in columns (1) - (5), and considering an ordinary least squares
(OLS) regression in column (6). Columns (1) - (5) demonstrate that the sign and statistical
significance are in general robust, but their magnitudes decrease. The most consequential
effect is when the HFTD and PSPS ≥ 2 Events control variables are added reflecting the
fact that the SGIP equity resiliency funding is tied to being in these regions.

Column (6) presents the OLS regression results which indicates limited statistically
significant for the race/ethnicity variables. However, the OLS regression fails to account
for the fact that the dependent variable is constrained to be in the set [0, 1] with a mass of
observations at zero. Further, the predicted Adoption Rate using the OLS regression results
in approximately 30% of predicted values being negative indicating it performs relatively
poorly at modeling the relationships between the covariates and the dependent variable.

Table A1: Adoption Rate Regression Results - Robustness

(1) (2) (3) (4) (5) (6)
Model Frac. Logit Frac. Logit Frac. Logit Frac. Logit Frac. Logit OLS
% Black -3.264*** -1.821*** -1.204** -1.204** -0.428 0.00013

(0.688) (0.546) (0.469) (0.469) (0.434) (0.00016)
% Hispanic -1.267*** -0.867*** -1.139*** -1.140*** -0.632** 0.00002

(0.235) (0.253) (0.258) (0.259) (0.249) (0.00010)
% Asian -3.498*** -2.878*** -2.711*** -2.715*** -1.680*** -0.00082***

(0.318) (0.271) (0.249) (0.249) (0.225) (0.00014)
% Indigenous 2.579** 2.355** 2.060** 2.063** 1.535** 0.00143

(1.002) (1.021) (0.892) (0.894) (0.764) (0.0012)
% Owner Occupied 2.016*** 1.895*** 1.897*** 1.097*** 0.0004***

(0.294) (0.286) (0.286 ) (0.281) (0.00013)
Median Income 0.0310*** 0.0288*** 0.0217*** 0.0218*** 0.0232*** 0.00001**

(0.00372) (0.00337) (0.00305) (0.00306) (0.00295) (0.000002)
(Median Income)2 -0.00007*** -0.00007*** -0.00005*** -0.00005*** -0.00005*** 0.000001

(0.000015) (0.000013) (0.000012) (0.000012) (0.00001) (0.000001)
HFTD Tier 2 0.00876*** 0.000005***

(0.00138) (0.000001)
HFTD Tier 3 0.00864*** 0.000009***

(0.00118) (0.000002)
PSPS ≥ 2 Events 0.0190*** 0.00003***

(0.00247) (0.000007)
Year Controls No No No Yes Yes Yes
Utility Controls No No Yes Yes Yes Yes
Zip Code – Years 8,130 8,130 8,130 8,130 8,130 8,130
Pseudo–R2 0.038 0.043 0.057 0.111 0.120
R2 0.109
χ2 489.4*** 574.3*** 989.4*** 1,957.2*** 2,314.2***
F -Stat 37.88***

Notes. Statistical Significance * p < 0.10, ** p < 0.05, and *** p < 0.01. Standard errors are reported in the
parentheses and are clustered at the zip code-level. Columns (1) – (5) reflect the Fractional Logit regression.
Column (6) reflects Ordinary Least Squares (OLS).
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Table A2 presents the results of our Incentive Rate PPML regression analysis with varying
control variables in columns (1) - (5), and considering an OLS log-linear regression in column
(6). Columns (1) - (4) demonstrate that the sign and statistical significance are robust to
the addition of control variables, but their magnitudes decrease. % Black and % Hispanic
are no longer statistically significant once the HFTD and PSPS ≥ 2 Events control variables
are added.

Column (6) presents the log-linear OLS regression with the dependent variable Log(Incentive
Ratezt) that is a common approach to handle rightward skewed data. Compared to column
(5), % Black and % Hispanic are more statistically significant and the remaining patterns
persist with the exception that % Indigenous is not statistically significant. For reasons
discussed in Section 4, the log-linear regression has a number of issues that are accounted
for in the PPML regression.

Table A2: Incentive Rate Regression Results - Robustness

(1) (2) (3) (4) (5) (6)
Model PPML PPML PPML PPML PPML Log - OLS
% Black -6.107*** -3.559*** -2.458** -2.458** -0.658 -0.366**

(1.538) (1.281) (1.119) (1.119) (0.975) (0.163)
% Hispanic -1.679*** -1.050** -1.321*** -1.321*** -0.353 -0.211***

(0.434) (0.481) (0.501) (0.501) (0.500) (0.0667)
% Asian -6.373*** -5.356*** -4.977*** -4.977*** -2.711*** -0.826***

(0.735) (0.652) (0.630) (0.630) (0.482) (0.116)
% Indigenous 3.430*** 3.346*** 2.883*** 2.883*** 2.245*** 0.112

(1.126) (1.138) (1.028) (1.028) (0.844) (0.362)
% Owner Occupied 2.847*** 2.810*** 2.810*** 1.486*** 0.290***

(0.496) (0.479) (0.479) (0.434) (0.0907)
Median Income 0.0318*** 0.0289*** 0.0197*** 0.0197*** 0.0227*** 0.00404***

(0.00570) (0.00513) (0.00473) (0.00473) (0.00457) (0.00145)
(Median Income)2 -0.00008*** -0.00008*** -0.00005*** -0.00005*** -0.00006*** 0.00002***

(0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.000007)
HFTD Tier 2 0.0172*** 0.00553***

(0.00213) (0.000590)
HFTD Tier 3 0.0171*** 0.00874***

(0.00165 ) (0.000852)
PSPS ≥ 2 Events 0.0214*** 0.0125***

(0.00490) (0.00284)
Year Controls No No No Yes Yes Yes
Utility Controls No No Yes Yes Yes Yes
Zip Code – Years 8,130 8,130 8,130 8,130 8,130 8,130
Pseudo–R2 0.165 0.194 0.255 0.573 0.641
R2 0.336
χ2 261.1*** 315.9*** 549.7*** 1,783.4*** 2,012.0***
F -Stat 100.6***

Notes. Statistical Significance * p < 0.10, ** p < 0.05, and *** p < 0.01. Standard errors are reported in the
parentheses and are clustered at the zip code-level. Columns (1) – (5) reflect the Poisson pseudo-maximum-
likelihood (PPML) regression. Column (6) reflects an Ordinary Least Squares (OLS) log-linear regression with
the dependent variable Log(Incentive Ratezt). When Incentive Rate is zero, we use the common approach of
adding 1 to account for the fact that log(0) is undefined (Bellego and Pape, 2019).
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