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Abstract

Competing explanations for the fat-tailed empirical distribution of aggregate
time series range from exogenous stochastic volatility, boundedly rational agents
reflecting a lot of structural change or that exogenous structural shocks are them-
selves extreme. We build on this literature and show that sunspots in dynamic
models can accumulate as linear recursions with multiplicative noise. Thus, us-
ing known results from the large deviations literature allows us to conclude that
even small sunspot shocks can lead to large movements in endogenous variables.
We apply these results to models that admit indeterminacies to investigate the
empirical relevance of sunspots in accounting for observed fat-tails in output.

∗We wish to thank participants in the 19th SAET Conference, and seminar attendees at the University of
Alberta, University of Naples Parthenope and Loughborough University (School of Business and Economics).



1. Introduction

Amain objective of linear macroeconometric modeling in the dynamic stochastic general

equilibrium (DSGE) tradition is for model variables to replicate the statistical properties of

data, with a focus usually on first and second moments. In both the rational expectations

(RE) econometrics tradition, and its adaptive learning cousin, small exogenous Gaussian

structural shocks cause model variables to cycle around a trend. Absent further assumptions

on the distributions of shocks or other model characteristics, the fixed coeffi cients linear

recursion that characterizes equilibrium of a given model imparts a Gaussian distribution

for the model, which in turn should match that of data.

However, a recent literature has questioned the Gaussian nature of the statistical prop-

erties of data itself, e.g. Christiano (2007), Fagiolo et al. (2008) and Cúrdia et. al. (2014).1

Moreover, in an important contribution, Ascari et al. (2015) provide numerical results show-

ing that the two standard workhorse models - the Real Business Cycle (RBC) model and the

medium-scale New Keynesian (NK) monetary framework - both lack an endogenous mech-

anism able to deliver non-Normality and fat-tailed behavior for growth-rate macroeconomic

time-series distributions. The literature then leaves open the issue of what sort of models

and/or assumptions would admit non-Normality of macroeconomic aggregates.

Here we argue that models exhibiting indeterminacies, and thus admitting (thin-tailed)

sunspot shocks, would allow for a replication of fat-tailed behavior observed in macroeco-

nomic time series. We demonstrate that this happens since indeterminate equilibriummodels

generically admit reduced form representations that can be written as linear recursions with

multiplicative noise (LRMN), and thus the tools of large deviations theory can be brought

to bear upon the problem of reconciling aggregate data characteristics with DSGE models

without assuming the existence of exogenous large shocks or departing from the conventional

RE paradigm.

1See Dave and Malik (2017) for a review.
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As mentioned, previous work in applied business cycle theory has attempted to recon-

cile the higher moments of data with model counterparts. One avenue consists of fat-tailed

specifications and/or stochastic volatility of innovations (e.g. Chib and Ramamurthy, 2014;

Ascari et al., 2015), i.e. the assumption of an appropriate non-Normal distribution from

which exogenous shocks are drawn, which, holding model representation constant as a fixed

coeffi cient recursion, imparts non-Normal characteristics to data-effectively a “fat in-fat out”

approach. Other approaches have explored the role of state dependent and exogenous para-

meter drifting specifications (e.g. Auerbach and Gorodnichenko, 2012; Cogley and Sargent,

2001, 2005), as well as the consequence of bounded rationality alternatives to RE in oth-

erwise standard settings, e.g. variance adjusted adaptive learning (Dave and Feigenbaum,

2018) or endogenous parameter drifting under constant gain learning (Benhabib and Dave,

2014; Dave and Tsang 2014; Dave and Malik, 2017). While under RE, linear model dy-

namics are described by a fixed coeffi cient recursion, adaptive learning specifications allow

for model dynamics to follow a LRMN, where shock accumulation over time delivers, under

a number of regularity conditions, fat-tailed behavior for endogenous variables even with

Normal innovations - effectively a “thin in-fat out”approach albeit having abandoned the

RE construct. In the same spirit, a recent strand of behavioral macroeconomics literature

has set out models based on the idea that cognitive limitations may force economic agents

to exploit simple heuristic rules of behavior, that in turn allow animals spirits to become an

engine for business cycle dynamics and extreme events (e.g. De Grauwe and Ji, 2019).

Our contribution is to put forward a novel theoretical framework that does not relinquish

the RE paradigm while explicitly appealing to equilibrium indeterminacy, which is known

to obtain under reasonable parameterizations of DGSE models (e.g. Lubik and Schorfheide,

2004). By creating room for self-fulfilling (rational) expectations to arise, we formally show

that indeterminacy allows a given DSGE model to endogenously reproduce fat-tailed behav-

ior for endogenous variables from standard i.i.d. Gaussian shocks. It is well known that, in

the presence of an infinite number of admissible equilibrium paths, rational forecast errors
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made by forward-looking agents are not uniquely pinned down by the economy’s fundamen-

tals (e.g. Benhabib and Farmer, 1999; Sims, 2001; Lubik and Schorfheide, 2003; Farmer et

al., 2015). The main intuition behind Lubik and Schorfheide (2003)’s approach to index-

ing indeterminate solutions is that endogenous forecast errors - which need to be serially

uncorrelated per RE requirements - react in a predictable way to current (structural and

sunspot) shocks only, disregarding past observed shocks as a source of expectation revisions

over time. As a result, while possibly driven by non-structural (sunspot) noise and allowing

for ambiguous responses of the model’s dynamics to structural shocks, such an approach pre-

cludes by construction the possibility of random variation in the equilibrium reduced form’s

coeffi cients and/or shock volatility. We show how forecast revisions in RE environments can

be conditioned on current and past observables via randomly varying weights, that need not

be related to fundamentals (sunspots). When such a revision process coordinates into an

RE stable trajectory, small i.i.d. sunspot shocks can produce fat-tailed distributions for the

endogenous variables, which can thereby take on extreme values with a higher probability

than under a Normal distribution.

Our exploration of fat tails within the realm of DSGE models is inspired by Ascari et al.

(2019), who provide a martingale-based equilibrium representation of multivariate DSGE

models to explore the empirical plausibility of temporarily unstable paths, thus focusing

only on the determinate region of the parameter space, for which a (mild) relaxation of

the RE hypothesis is over-imposed in order to meet the asymptotic stability requirement.

The two approaches in fact share the view that RE solutions under indeterminacy can be

constructed by randomizing on the weights that economic agents attach to current and

past observables when building their expectations; the way such expectations are formed

then affect the model’s dynamics. This is akin to the seminal Muth (1961) contribution on

RE as weighted average of past observations, and resembles a generalized adaptive belief

formation process, yet fully coherent with the RE requirement about absence of correlated

forecast errors and optimality according to the minimum variance criterion (e.g. Sorge,
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2013). However, the two approaches produce different properties for the ensuing equilibrium

law of motion, in terms of (i) the statistical dependence between the multiplicative and the

additive noise components, (ii) the way sunspot weights enter the endogenous process of

forecast revision, and most importantly (iii) the degree of adherence to the building blocks

of the RE theoretical construct, for ours fully complies with the latter.

A sketch of our analysis facilitates sailing over technical details. Let yt be any endogenous

variable with equilibrium dynamics governed by

yt =
1

θ
Et(yt+1) + εt, εt ∼ WN(0, σ2

ε), (1)

where εt is a structural shock (defined on the same probability space as yt), Et(·) denotes the

conditional expectation operator and θ ∈ <. E.g., yt can be the inflation rate in a Fisherian

model of inflation augmented with an interest rate rule (e.g. Cochrane, 2011). Any solution

to (1) satisfies

yt = θyt−1 − θεt−1 + ηt, (2)

where ηt = yt − Et−1(yt) is the RE forecast error.

When θ ≤ 1 (indeterminacy), the RE forecast error is not constrained by stability re-

quirements, hence any covariance-stationary martingale difference sequence (MDS) ηt will

deliver a non-explosive RE solution of the form (2). Lubik and Schorfheide (2003) express ηt

as a linear (time invariant) combination of the model’s current structural disturbance and a

reduced form sunspot shock ξ∗t , i.e. ηt = m̃εt+ξ
∗
t , where m̃ is an arbitrary constant unrelated

to θ. The full set of non-explosive solutions under indeterminacy is thus described by the

ARMA(1,1) process

yt = θyt−1 + m̃εt − θεt−1 + ξ∗t . (3)

It is possible to show that the very same model (1) generically admits randomly varying
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solutions in the indeterminacy region which display the LRMN form

yt = αtyt−1 + βt (4)

where (αt, βt) satisfy Et−1(αt) = θ, Et−1(βt) = m̃, and emerge when ηt follows

ηt = ξ1,tg(ξ2,t−i, εt−j, ξ1,t−k; θ) + (m̃+ ξ2,t)εt, i, j, k ≥ 1,

where g(·) ∈ Hε,ξ(t) is a deterministic transformation of past shocks weighted by the sunspot

shock ξ1,t, which is orthogonal to the t-dated information set. Thus Et−1(ηt) = 0 for all t

as the RE construct requires. Most importantly, the multiplicative component αt in the

LRMN (4) is such that E (αt) < 1 (thus the process for yt contracts on average) and satisfies

Pr (αt > 1) > 0 when the distribution of the sunspot shock ξ1,t, though possibly thin-tailed,

displays some mass to the right of (1− θ) ∈ (0, 1). This property makes the recurrence (4)

expand with positive probability, i.e. it allows small i.i.d. shocks to accumulate over time so

as to lead to high-frequency large movements in the endogenous variable.2

In multidimensional settings, constructing solutions in LRMN form requires decoupling

the (linearized) equilibrium conditions into their stable and unstable components, and iden-

tifying the dimension of indeterminacy by imposing restrictions on the endogenous forecast

errors so as to satisfy the asymptotic stability requirement for the unstable block (Sims,

2001). RE forecast errors can then be taken to depend linearly on both lagged values of

the observed endogenous variables and structural shocks, where the time-varying, random

loading matrices are selected in order for the t-dated RE forecast errors (i) to be measurable

with respect to the current information set, as well as orthogonal to information available

at period t − 1 (martingale difference property), and (ii) to fulfill the asymptotic stability

2Dave and Sorge (2020) presents numerical results for the simple model (1) establishing that, as the
model’s parameterization enters the indeterminacy territory, the ensuing LRMN equilibrium representation
delivers a remarkably lower Pareto tail index relative to its determinate counterpart, thereby suggesting fat
tails for the model-implied distribution.
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requirement providing for existence of stable solutions.

Here, we offer a general algorithm to compute LRMN solutions for indeterminate equi-

librium DSGE frameworks. We then investigate the ability of LRMN representations to

replicate observed patterns of aggregate data, with a particular focus on output in our es-

timation exercise. We show that both NK and RBC models under indeterminacy do allow

fat-tailed behavior stemming from sunspot-driven forecast revisions, in contrast to the re-

sults in Ascari et al. (2015) that those workhorse models fail to replicate such statistical

regularities due to weak propagation mechanisms. We offer insights into the role of sunspot

shocks in amplifying the propagation mechanisms embedded in standard DSGE models, and

contribute to the quantitative implications of equilibrium indeterminacy for business cycle

dynamics and the realizations of extreme macroeconomic outcomes.

The paper is organized as follows. In Section 2 we formally show that multivariate mod-

els that admit indeterminacies, and thus the occurrence of sunspot noise, can be written as

LRMNs that can qualify as generalized Kesten processes (e.g. Kesten, 1973) and thus allow

application of standard results on proportional random growth models in order to charac-

terize properties of the upper tail of the ensuing time-invariant distribution (e.g. Gabaix,

2009). In Section 3 we illustrate our solution algorithm by means of a standard small-scale

NK model, that admits a closed-form solution under either equilibrium regime. While allow-

ing a direct comparison between the standard way of computing sunspot solutions (Lubik

and Schorfheide, 2003) and our approach, this exercise clearly shows that the LRMN equi-

librium representation does indeed deliver lower tail indices (characteristic of non-Normality

as argued in Section 2) in indeterminate regions of the parameter space, irrespective of how

sunspot solutions à la Lubik and Schorfheide (2003) are selected. In Section 4 we provide

simulated moments estimates in an RBC framework, which suggests that in matching data

tail index estimates for aggregate output the data may prefer model indeterminacy over

determinacy. Section 5 offers concluding remarks.
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2. General Framework

We consider Sims (2001)’s canonical form for linear rational expectations (LRE) models

Γ0yt = Γ1yt−1 + Ψεt + Πηt, t ≥ 1, (5)

where yt is an n-dimensional vector of endogenous variables, εt is an l-dimensional vector

of exogenous (structural) shocks, satisfying Et(εt) = εt and Et−1(εt) = 0, and the vector

ηt = yt − Et−1(yt) collects k ≤ n non-zero endogenous forecast errors. Here, Et(·) denotes

the expectation operator conditional on the information set Hε,ζ(t), i.e. the closure of the

span of present and past components of εt and ζt, the p-dimensional martingale difference

sequence of sunspot shocks, which are taken to be orthogonal to the structural ones at all

lags and leads (Lubik and Schorfheide, 2003). All random variables are defined with respect

to a common probability space. The matrices Γ0, Γ1, Ψ and Π have as elements a models’

parameters and are of dimension (n× n), (n× n), (n× l) and (n× k), respectively.

An RE equilibrium is a stable and causal solution to the LRE model (5), i.e. any square

integrable process (yt) included in Hε,ζ(t) which, for given initial conditions y0 = ȳ, satisfies

the structural relationship (5) for all t ≥ 1 as well as the asymptotic growth restriction

Et(ξ
−hyt+h)

h→∞→ 0, ξ ≥ 1. (6)

When such a solution is non-unique, then the LRE model is said to be indeterminate.

The matrix Γ0 can be non-singular and so the generalized Schur (QZ) decomposition (e.g.

Moler and Stewart, 1973) is exploited to decouple the system into its stable and unstable

components, see Sims (2001). Formally, one has

Q′ΛZ ′ = Γ0,

Q′ΩZ ′ = Γ1,
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where Q and Z are orthogonal matrices, and Λ and Ω are upper-triangular matrices.3 Since

Q is non-singular, the system (5) can be equivalently rewritten as

Λwt = Ωwt−1 +Q (Ψεt + Πηt) , (7)

where wt = Z ′yt. Rearranging the system so that the n2 ≤ n unstable generalized eigenvalues

{ωii/λii} - i.e. those larger than ξ - correspond to the lower right blocks of Λ and Ω yields

 Λ11 Λ12

0 Λ22


 w1,t

w2,t

 =

 Ω11 Ω12

0 Ω22


 w1,t−1

w2,t−1

+

 Q1

Q2

 (Ψεt + Πηt) , (8)

where Q1 and Q2 are of dimension (n− n2 × n) and (n2 × n), respectively.

As shown in Sims (2001), provided w2,0 = 0, a non-explosive solution of a model in (5)

exists if and only the column space of Q2Ψ is contained in that of Q2Π, i.e.

span (Q2Ψ) ⊆ span (Q2Π) , (9)

which requires n2 ≤ k. For the purposes of our analysis, let the existence condition (9) be

fulfilled. Then LRMN solutions can be constructed by assuming that the RE forecast errors

depend linearly on both lags of the endogenous variables yt−1 and on the structural shocks

εt as follows We let

ηt = A1,ζtεt + A2,ζtyt−1, (10)

where the time-varying (random) matrices
(
A1,ζt , A2,ζt

)
are selected in order for ηt to fulfill

(i) the RE orthogonality requirement Et−1(ηt) = 0 for all t, and (ii) the actual stability

restrictions imposed by the existence condition (9).

3Thus, QQ′ = In = ZZ ′, where the ′ symbol denotes transposition. The QZ-decomposition always exists,
and is unique up to the ordering of the generalized eigenvalues. The matrices Q, Z, Λ and Ω can always
be chosen so that the absolute values of the generalized eigenvalues are displayed in descending order. If
λii = 0, then the corresponding generalized eigenvalue is infinity.
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As for the former, by causality of any RE equilibrium process (yt), it is suffi cient that the

entries of the matrices A1,ζt and A2,ζt be taken to be t-dated i.i.d. sunspot variables which

are orthogonal to any other variable in the information set Hε,ζ(t− 1). In particular, we can

simply let

A1,ζt = A1︸︷︷︸
k×l

ζ1,t︸︷︷︸
l×l

, A2,ζt = A2︸︷︷︸
k×n

ζ2,t︸︷︷︸
n×n

(11)

where - letting p = n + l - ζ1,t and ζ2,t are diagonal random matrices whose entries are

distinct elements of the sunspot vector ζt, and (A1, A2) are conformable matrices. This is

without loss of generality, since the number p of sunspot variables ζt is arbitrary, provided

they are all H(t)-measurable.

As for the stability requirement, following Lubik and Schorfheide (2003) it is crucial to

take into account potential rank deficiencies in the (n2×k) matrix Q2Π, which imposes only

r ≤ n2 restrictions on the RE forecast errors ηt that have to be fulfilled for the unstable part

of the LRE system (8) to admit an asymptotically stable solution. Specifically, consider the

singular value decomposition (SVD)

Q2Π = UDV ′ = U1︸︷︷︸
n2×r

D11︸︷︷︸
r×r

V ′1︸︷︷︸
r×k

(12)

whereD11 is a diagonal matrix and U and V are orthonormal matrices. Notice that existence

of (at least one) stable solution implies that the span condition (9) be equivalent to existence

of a (real) k × l matrix Υ such that Q2Ψ = Q2ΠΥ. Thus the stability requirement can be

rewritten as

U1D11V
′

1 (Υεt + ηt) = 0 (13)

or, given (10) and (11) and labeling as ζ̃t the (l × 1) random vector ζ1,tεt, one has

U1D11V
′

1Υεt + U1D11V
′

1A1ζ̃t + U1D11V
′

1A2ζ2,tyt−1 = 0 (14)
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which must hold for any εt and any arbitrary selection of (conditionally mean zero) sunspot

shocks (ζ1,t, ζ2,t); this in turn requires that both A1 and A2 belong to the right null space of

V1, which is spanned by the columns of V2. Since U is orthonormal, if Q2Π is not of full (row)

rank, then the (internal) dimension of indeterminacy is k− r and the full set of solutions for

the forecast errors (10) can be written as

ηt = −V1D
−1
11 U

′
1Q2Ψεt + V2 M1︸︷︷︸

(k−r)×l

ζ̃t + V2 M2︸︷︷︸
(k−r)×n

ζ2,tyt−1 (15)

where M1 and M2 are arbitrary matrices, whose entries do not depend on the structural

parameters of the LRE model (5).

Notice that any stable and causal solution for w2,t in the unstable block in (8) is identically

zero by force of the existence requirement. We can therefore obtain a causal and stable

solution for w1,t by exploiting the upper part of (8) and the equilibrium process for the RE

forecast errors (15) as follows

w1,t = Λ−1
11 Ω11w1,t−1 + Λ−1

11 Q1Ψεt + Λ−1
11 Q1Π

(
−V1D

−1
11 U

′
1Q2Ψεt + V2M1ζ̃t + V2M2ζ2,tZwt−1

)
(16)

where wt−1 = [w1,t−1, 0] because of the stability requirement. Thus one has

 w1,t

w2,t

 =

 Λ−1
11

(
Ω11 +Q1Π

[
V2M2ζ2,tZ

]
n−n2

)
0

w1,t−1

+

 Λ−1
11 Q1

0

[Ψ− Π
(
V1D

−1
11 U

′
1Q2Ψ− V2M1ζ1,t

)]
εt (17)

where
[
V2M2ζ2,tZ

]
n−n2

is the selection of the first n − n2 columns of the k × n matrix

V2M2ζ2,tZ. This system can then easily be solved for the original variables by using yt =

Zwt = Z1w1,t, where Z1 is the sub-matrix collecting the first n − n2 columns of Z, so that

the process for yt will inherit the same properties as that for w1,t.
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Given that with indeterminacy and attendant sunspot shocks, LREmodels can be written

as LRMNs, our next step is to investigate their relationship to the processes studies in Kesten

(1973). The LRMN (16) is in the form of a random difference equation of the type

Xt+1 = (ρ+ αt+1)Xt + βt (18)

where Xt := w1,t and

ρ := Λ−1
11 Ω11,

αt+1 := Λ−1
11 Q1Π

[
V2M2ζ2,t+1Z

]
n−n2

and

βt+1 := Λ−1
11 Q1

[
Ψ− Π

(
V1D

−1
11 U

′
1Q2Ψ− V2M1ζ1,t

)]
εt.

It is apparent that, provided sunspot shocks are mean zero i.i.d. and also independent

of structural shocks at all lags and leads, then the sequences of random matrices (αt) and

vectors (βt) are themselves i.i.d., with E [ρ+ αt] = ρ being a stable matrix since it consists

of stable generalized eigenvalues. More generally, there exist families of distributions for the

arbitrary sunspot shocks
(
ζ1,t, ζ2,t

)
under which the random difference equation complies

with a set of restrictions that characterize Kesten processes (Kesten, 1973).

To see this, let |v| denote any norm of a vector v ∈ Rd, where the dependence on the

dimension of v is suppressed for notational convenience. For any square d× d matrix M the

norm ||M || is defined as

||M || = sup
v∈Rd,|v|=1

|Mv|

If E
[
log+ ||ρ+ α0||

]
< ∞ (where x∗ = max {0, x}) then the Lyapunov exponent λ =

limt→∞
1
t

log ||(ρ + α0) · (ρ + α1) · · · (ρ + αt)|| exists and it is constant almost surely (see

Furstenberg and Kesten, 1960). Notice this condition follows from ρ being stable and αt

being a mean zero i.i.d. sequence, by Jensen’s inequality. If λ < 0 and E
[
log+ |β0|

]
< ∞,
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then the process (18) converges in distribution to the random vector

X =
∞∑
t=0

(ρ+ α0) · · · (ρ+ αt−1) · βt

whose law µ is the unique stationary measure of the process {Xt}. Kesten (1973) establishes

that, if a number of mild conditions hold, the main being that first

lim
t→∞

1

t
E [|| ((ρ+ α0) · (ρ+ α1) · · · (ρ+ αt))

κ ||] = 1, (19)

and that E [|βt|κ] < ∞ for some κ > 0, then the measure µ is regularly varying at infinity

with index κ. That is, there exists a positive constant C such that xκ · µ(X > x) → C as

x→∞, i.e. the upper tail of the stationary distribution for X is asymptotically equivalent

to a Pareto law

µ(X > x) ∼ Cx−κ.

3. A New Keynesian Model: Simulations

The previous section formalized that models with indeterminacies and attendant sunspot

shocks can take the form of LRMNs. Thus, as a function of those shocks along with inno-

vations to usual structural processes, model variables can, in theory, exhibit fat tails, but

do they reliably do so? In this section we provide simulation results based on an analytical

New Keynesian model (see Lubik and Schorfheide (2004)) to demonstrate the value of the

LRMN approach. The model we adopt is described by three equations

yt = Et(yt+1)− τ(rt − Et(πt+1)) + ε1t, (20)

πt = βEt(πt+1) + κ(yt − ε2t), (21)

rt = ψπt + ε3t, (22)
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in which the first is a dynamic IS curve, the second a Phillips curve and the third a simple

inflation rule. The parameter ψ governs indeterminacy (ψ < 1) and determinacy (ψ > 1),

and structural innovations (ε’s) as well as sunspot shocks are all assumed to be Normally

distributed. Appendix A describes how we derive both the conventional solution in the form

of Lubik and Schorfheide (2003) and our LRMN representation, both as a function of the

(in)determinate regions.

To conduct simulations we first drew (and subsequently held fixed) M = 500 standard

Normal shocks of length T = 1100 (with the first 100 discarded) for all structural innovations

and sunspot shocks; the parameters {β, τ , κ} were held fixed at {0.99, 1, 0.5}. (Since these

were standard Normal innovations, we were able to vary their standard deviations as part of

the simulations.) Our next step given a shock series (m ∈M) was to recursively construct the

LRMN representation of the model above, and given the recursion, estimate the tail indices

of simulated output (yt), inflation (πt) and interest rates (rt) series using the maximum

likelihood methods of Clauset et al. (2009). Third, indices were estimated for the width of a

simulationM for each value of the simulation parameter so that averages could be plotted as

the main simulation parameter ψ varied (see Dave and Sorge (2020) for a univariate analog

of the procedure).

Our first set of simulations are presented in Figure 1 below in which all standard devia-

tions were unitary (i.e. all structural innovations and sunspot shocks were standard Normal).
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Figure 1. All Innovations as Standard Normal.

The results plotted in Figure 1 confirm that in the indeterminate region (ψ < 1) the

average estimated tail index falls to levels closer to empirical counterparts (as reported for

instance in Dave and Malik (2017)). In the determinate region (ψ > 1) the average estimated

tail index rises. Since the results plotted in Figure 1 held all shocks to be standard Normal, we

also reduced the standard deviation of shocks to 0.5 and 0.005 with plots of those respective

results in Figures 2 and 3 below.
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Figure 2. Innovations with 0.5 Standard Deviations.
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Figure 3. Innovations with 0.005 Standard Deviations.

Figures 2 and 3 demonstrate that as the standard deviation of the structural and sunspot

shock deviations tend to zero, and the LRMN begins to increasingly resemble a fixed coef-

ficient recursion, that tail indices rise. This is of course unsurprising as we have shown in

the previous section that a model with indeterminacies and thus a role for sunspot shocks

can be written as a LRMN when those sunspot shocks are in operation in the multiplicative

portion of the recursion.

Finally, in order to compare our LRMN representation with the conventional fixed coeffi -

cient representation of Lubik and Schorfheide (2004) we conducted a final set of simulations

in which we employed the fixed coeffi cient representation. The prior of course is that without

the LRMN model representation, the simulations should result in high values for average es-
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timated tail coeffi cients for all model variables, the results plotted in Figure 4 below confirm

that prior.
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Figure 4. Simulations with a Fixed Coeffi cient Model Representation.

In summary, simulations for a simple three equation new Keynesian model in which

the (in)determinate region is governed by a single parameter suggest two results. First,

tail indices are lower in the indeterminate region when the model representation takes the

form of a LRMN. Second, as the model representation tends to a fixed coeffi cient variety

(either by diminishing the importance of sunspot shocks or by explicitly employing a fixed-

coeffi cient model representation) tail indices rise. These simulation results lead us to our

final exercise in the next section: an empirical assessment of the contributions of sunspot
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shocks in accounting for the tail behavior of output in a real business cycle model featuring

indeterminacy.

4. A Real Business Cycle Model: Estimates

A main thrust of our analysis is that models that admit indeterminacy and thus space

for sunspot shocks can, under an LRMN representation, account for fat-tailed behavior of

aggregate time series. While the methods of Clauset et al. (2009) can be used to estimate

empirical tail indices (see Dave and Malik (2017)) a particularly useful framework to evaluate

empirical relevance is the workhorse RBC model. This model was previously rejected by

Ascari et al. (2015) as lacking the necessary propagation mechanisms to replicate empirical

fat tails. Here we adapt such a model, following Benhabib and Wen (2004), to allow for

indeterminate solutions and thus LRMN representations in which sunspot shocks could help

account for fat tails in aggregate output. The key difference to extant analyses (e.g. Ascari

et al. (2015)) being of course that our structural innovations and sunspot shocks are thin

tailed with the LRMN representation leading to fat tails for model variables, a “thin in, fat

out”approach afforded by the results in Kesten (1973).

The representative agent of our model solves the following program

max
{Ct, Nt, et, Kt+1}

Γ = E0

∞∑
t=0

βt
[
log (Ct)−

N1+γ
t

1 + γ

]
, γ ≥ 0, (23)

s.t. Yt = Ct + It, (24)

Kt+1 = [1− δ (et)]Kt + It, (25)

Yt = ZtΦt [etKt]
αN1−α

t , α ∈ (0, 1), (26)

δ (et) =
ν

θ
eθt , θ > 1, 0 < ν < θ, (27)

Zt ∼ CSSP (ρ, σ2), (28)

where Φt =
[
[etKt]

αN1−α
t

]η
(with η ≥ 0) is taken as given by the representative agent. In this
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environment, the parameter η governs indeterminacy stemming from production. We cali-

brate all parameters in the linear system of expectational difference equations characterizing

the model, except for η and the standard deviation of sunspot shocks (σζ), at usual values:

β = 0.99, α = 0.36, γ = 0.001 (so that we have near linearity in hours worked), θ = 1.2,

ρ = 0.97 and σ = 0.007. Appendix B provides further detail on the linear representation of

this model.

In order to estimate, we again draw and fix a set of structural innovations and sunspot

shocks and conduct a simulated minimum distance exercise, as follows. Given fixed shocks,

the linear version of the model admits a LRMN representation as discussed formally above.

Using this representation we construct the output series and estimate its’tail index using

the methods of Clauset et al. (2009). Thus, for a given parametrization (η, σζ) we can

calculate the squared distance between the empirical tail index of output (set at 4, see Dave

and Malik (2017)) and the corresponding simulated output tail index. We then minimize

this distance by choice of various parametrizations for (η, σζ); since this surface will have

curvature, standard errors can be calculated as measures of how sharp the estimates are (see

Benhabib and Dave (2014), Dave and Tsang (2014), Dave and Malik (2017) and DeJong

and Dave (2011)). Our estimation results are provided in Table 1 below along with other

relevant statistics for the cyclical component of data.

Table 1. Tail Index Estimates For Cyclical Components

HP-Filtered Data RBC Model

Variable (Frequency) Tail index estimate (s.e.) Parameter Estimate (s.e.)

Output (Quarterly) 3.6395 (0.7147) η 0.1201 (0.0003)

Output (Annual) 3.5418 (1.7982) σζ 0.0046 (0.0079)

In Table 1 above we note that the estimated tail index of the cyclical component of

aggregate output, irrespective of frequency, is approximately 4; estimation carried out using

the methods of Clauset et al. (2009). Under an LRMN assumption on the underlying

data generating process, this estimate suggests that the tail of the stationary distribution
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of data only has its’first 3 moments. Were the data Normal in nature, a much larger tail

index estimate would have resulted as, for instance, the Normal distribution has all of its’

moments. Next, the estimates in Table 1 suggest that our estimate of η is within the range of

indeterminacy with sunspot shocks helping to account for the empirical tail index of output.

This result is comfortably close to the calibration employed in Benhabib and Wen (2004) and

is in fact was expected to be; we demonstrated how the LRMN representation can produce

thick tails and the estimation does indicate the same given the results in Benhabib and Wen

(2004).

5. Conclusion

That aggregate economic data cannot always be characterized as Gaussian (cf. Ascari et al.

(2015)) has led to much change in otherwise standard DSGE macroeconometric modeling.

The extant literature has considered “fat in-fat out”options in which fat-tailed structural

shocks, when fed through otherwise standard workhorse models, yield fat-tails for endogenous

variables represented with a model written as a fixed coeffi cient recursion. The literature

has also considered adaptive learning versus rational expectations to yield a “thin in-fat out”

option in which thin-tailed shocks accumulate in a model written as a stochastic coeffi cients

recursion with the result that model variables can exhibit fat tails. The drawback of course

is that rational expectations, a workhorse assumption in of itself, needs to be sacrificed.

Our contribution here is to open up the possibility that models featuring indeterminacy

and thus a role for sunspot shocks may help reconcile models with fat-tailed behavior of

macroeconomic aggregates, without abandoning the assumption of rational expectations.

Our results are driven by the fact that such models can also be written as linear recursions

with multiplicative noise and thus we are able to use certain tools from the large deviations

theory.

We conducted simulations with an explicit version of a New Keynesian model to demon-
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strate the contribution in practice. We also estimated key parameters in a Real Business

Cycle model featuring indeterminacies to again show the empirical plausibility of our ap-

proach. These exercises suggest continuing down the path of investigating models featuring

indeterminacy as the sunspots they allow for can help account for non-Normal behavior in

macroeconomic aggregates. Increasing the fit of workhorse models to data then allows for

potentially improved forecasting as global economies face severe fluctuations due to otherwise

low probability shocks like COVID-19.
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Appendices for Online Publication

Appendix A

Consider the model in Section 4 of Lubik and Schorfheide (2004), hereafter, LS,

yt = Et(yt+1)− τ(rt − Et(πt+1)) + ε1t, (29)

πt = βEt(πt+1) + κ(yt − ε2t), (30)

rt = ψπt + ε3t. (31)

For this simplified version of their model, LS exploit an equivalent canonical representation

as in Sims (2001) which features a block-triangular structure: the upper block simply relates

the endogenous variables (yt, πt, rt) to the endogenous forecast errors ηt = [ηyt , η
π
t ] where

ηyt = y − Et−1[yt] and ηπt = πt − Et−1[πt]; the lower block features the recursion of the

one-step ahead conditional expectations ξt = [ξyt , ξ
π
t ] = [Et[yt+1], Et[πt+1]] as forced by the

structural shocks εt and the forecast errors ηt.

Formally, the upper block reads as


yt

πt

rt

 =


1 0

0 1

0 ψ


 ξyt−1

ξπt−1

+


0 0 0

0 0 0

1 0 0



ε3t

ε1t

ε2t

+


1 0

0 1

0 ψ


 ηyt

ηπt

 , (32)
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whereas the lower block reads as

 1 τ

0 β


 ξyt

ξπt

 =

 1 τψ

−κ 1


 ξyt−1

ξπt−1

+

 τ −1 0

0 0 κ



ε3t

ε1t

ε2t

+

 1 τψ

−κ 1


 ηyt

ηπt

 ,
(33)

which, upon inversion of the the square coeffi cient matrix on the LHS, can be equivalently

rewritten as

ξt =

 1 + κτ
β

τ(ψ − 1
β
)

−κ
β

1
β


︸ ︷︷ ︸

Γ∗1

ξt−1 +

 τ −1 −τκ
β

0 0 κ
β


︸ ︷︷ ︸

Ψ∗

εt +

 1 + κτ
β

τ(ψ − 1
β
)

−κ
β

1
β


︸ ︷︷ ︸

Π∗

ηt. (34)

To solve the model under either equilibrium regime, LS exploit this block-triangular

structure by (i) first focusing on the lower block (34) to solve for the forecast errors ηt by

imposing the appropriate existence condition in order to eliminate the explosive dynamics,

if any; (ii) then using the equilibrium forecast errors to pin down, again within the lower

block (34), the equilibrium law of motion for the conditional expectations ξt; (iii) finally

plugging equilibrium values of conditional expectations as well as equilibrium forecast errors

into the upper block (32) in order to derive the equilibrium law of motion for the endogenous

variables (yt, πt, rt).

Step (i) above requires decoupling stable from unstable components, which can be easily

done here by means of the Jordan decomposition of Γ∗1 = JΛJ−1 where

J =

 1
κ
(1− βl1 + βl2) − 1

κ
(1− βl1 − βl2)

1 1

 (35)
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Λ =

 λ1 0

0 λ2

 (36)

J−1 =
1

2βl2

 κ −1 + βl1 + βl2)

−κ 1− βl1 + βl2

 (37)

where the eigenvalues (λ1, λ2) are

λ1 = l1 − l2; λ2 = l1 + l2 (38)

with

l1 =
1

2

(
1 +

1 + κτ

β

)
; l2 =

1

2

√(
1 + κτ

β
+ 1

)2

+
4κτ

β
(1− ψ) (39)

Notice that ψ > 1 implies |λ2| > |λ1| > 1, whereas ψ ∈ (0, 1) implies |λ2| > 1 > |λ1|.

Letting ωt = J−1ξt the lower block (34) can be thus diagonalized as

ωt = Λωt−1 + J−1Ψ∗εt + J−1Π∗ηt (40)

Determinacy

When both eigenvalues are larger than one in absolute value, then (40) explodes over time

for any given initial condition. In order to prevent that, it must be the case that ω0 = 0

(which is equivalent to requiring ξ0 = 0 due to non-singularity of J) and

J−1Ψ∗εt + J−1Π∗ηt = 0, t ≥ 1 (41)

which is a square system leading to uniquely determined equilibrium forecast errors

ηDt = −Π∗
−1

Ψ∗εt = − 1

1 + κψτ

 τ −1 −τκψ

κτ −κ κ

 εt (42)
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where the apex D stands for determinacy.

Plugging (42) into (32) and recalling that ξ0 = 0 joint with (41) implies ξt = 0 for all t,

one has
yt

πt

rt

 =

[
0 0 1

]
ε3t

ε1t

ε2t

− 1

1 + κψτ


1 0

0 1

0 ψ


 τ −1 −τκψ

κτ −κ κ



ε3t

ε1t

ε2t

 (43)

which simplifies to


yt

πt

rt


︸ ︷︷ ︸

xt

=
1

1 + κτψ


−τ 1 τκψ

−κτ κ −κ

1 κψ −κψ



ε3t

ε1t

ε2t


︸ ︷︷ ︸

εt

(44)

Indeterminacy

When only one eigenvalue (here λ2) is larger than one in absolute value, then only the second

row of (40) defines an explosive autoregressive process, so that ηt must be chosen in order

to eliminate it; this requires ω2,0 = J−1
2 ξ0 = 0 (where J−1

2 is the second row of the matrix

J−1) and (
J−1Ψ∗

)
2
εt +

(
J−1Π∗

)
2
ηt = 0, t ≥ 1 (45)

where (·)2 denotes the second row of the matrix in square brackets. Since

J−1Ψ∗ =
1

2βl2

 κ −1 + βl1 + βl2

−κ 1− βl1 + βl2


 τ −1 −τκ

β

0 0 κ
β

 (46)

and

J−1Π∗ =
1

2βl2

 κ −1 + βl1 + βl2

−κ 1− βl1 + βl2


 1 + κτ

β
τ(ψ − 1

β
)

−κ
β

1
β

 (47)
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the existence condition (45) is equivalent to the following restriction

[
−κτ κ κ(λ2 − 1)

]
εt =

[
κλ2 1 + κτψ − λ2

]
ηt (48)

i.e. an indeterminate system: for any given vector of structural shocks εt, there exists an

infinity of pairs (ηyt , η
π
t ) solving (48), for the latter always admits the solution ηDt as defined

in (42). In order to find out all such solutions, LS exploit the Singular Value Decomposition

(SVD) of (J−1Π∗)2 i.e. (
J−1Π∗

)
2

= U·1D11V
′
·2 (49)

where U1 = 1, D11 = d =
√

(κλ2)2 + (λ2 − 1− κτψ)2 and

V ′2 =
1

d

[
λ2 − 1− κτψ κλ2

]
(50)

so that, following Lubik and Schorfheide (2003), the full set of equilibrium forecast errors

solving (48) is

ηIt = ηDt + V2M̃1εt + V2M̃2ζt (51)

where M̃1 = dM1 with M1 being a 1× 3 matrix with arbitrary (real) entries, and M̃2 = dM2

withM2 being 1×p matrix with arbitrary (real) entries; p denotes the (arbitrary) dimension

of the vector of sunspot shocks ζt which behave as martingale difference sequences with

respect to the t-dated information set (notice we have w.l.o.g. normalized both arbitrary

matrices by d in order for the latter not to show up in the equilibrium representation below).

Let ζ∗t = M2ζt be the reduced form sunspot shock and denote by η∗t the forecast error

component which arises only under indeterminacy, i.e.

η∗t = V2

(
M̃1εt + ζ∗t

)
=

 λ2 − 1− κτψ

κλ2

 (M1εt + ζ∗t ) . (52)
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One has ηIt = ηDt +η∗t and thus the stable (first) row of the diagonalized system (40) becomes

(recall that by the existence condition ω2,t = 0 for all t)

ω1,t = λ1ω1,t−1 +
(
J−1Ψ∗

)
1
εt +

(
J−1Π∗

)
1
ηIt . (53)

Recalling that ηDt is such that Ψ∗εt + Π∗ηDt = 0 the above recursion then reduces to the

following

ω1,t = λ1ω1,t−1 + (J−1Ψ∗)1εt + (J−1Ψ∗)1η
∗
t (54)

= λ1ω1,t−1 +
1

2βl2


κτ

−κ

−κ2τ
β

+ κ
β

(−1 + βl1 + βl2)


′

εt + (55)

1

2βl2

 κ
(

1 + κ
β

)
+ κ

β
(1− βl1 − βl2)

κτ
(
ψ − 1

β
− 1

β
(1− βl1 − βl2)

)

′  λ2 − 1− κτψ

κλ2

 (M1εt + ζ∗t ) (56)

Finally, recalling that

ξt = Jωt = J1ω1,t =

 1
κ
(1− βl1 + βl2)

1

ω1,t (57)

where J1 is the first column of the matrix J , one can use the upper block (32) together

with the equilibrium recursion for the conditional expectations ξt as well as the equilibrium

forecast errors ηIt to recover the equilibrium dynamics for the original endogenous variables,
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i.e.
yt

πt

rt

 =


1 0

0 1

0 ψ


 1

κ
(1− βl1 + βl2)

1

ω1,t−1 (58)

+


0 0 0

0 0 0

1 0 0



ε3t

ε1t

ε2t

+


1 0

0 1

0 ψ


 −1

1 + κψτ

 τ −1 −τκψ

κτ −κ κ

 εt + η∗t

(59)

which, upon slight rearrangement, delivers

xt =
1

1 + κτψ


−τ 1 τκψ λ2 − 1− κτψ

−κτ κ −κ κλ2

1 κψ −κψ ψκλ2


 εt

ζt

+


β(λ2−1)−τκ

κ

1

ψ

ω1,t−1 (60)

where

ω1,t−1 = λ1ω1,t−2 + µ1(θ)η∗t−1 (61)

and µ1(θ) is the following function of the parameter vector θ:

µ1(θ) =
1

2βl2

 κ
(

1 + κτ
β

)
+ κ

β
(1− βl1 − βl2)

κτ
(
ψ − 1

β
− 1

β
(1− βl1 − βl2)

)

′

. (62)

LRMN representation

Let ψ < 1, i.e. let the model be in the indeterminacy regime. Existence of non-explosive

solutions is still governed by condition (45). However, we now assume that the forecast errors

are a function of the (past) actual states Xt−1 = [yt−1, πt−1]′ as well as structural shocks εt

with random loadings i.e.

ηt = A1,ζtεt + A2,ζtXt−1 (63)
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where

A1,ζt = A1︸︷︷︸
2×3

ζ1,t︸︷︷︸
3×3

, A2,ζt = A2︸︷︷︸
2×2

ζ2,t︸︷︷︸
2×2

(64)

where ζ1,t and ζ2,t are diagonal random matrices whose entries are diagonal random matrices

whose entries are mutually independent (and independent of the structural shocks εt) MDSs

with respect to the t-dated information set, and (A1, A2) are conformable matrices whose

coeffi cients have to be determined.

Following the general procedure described in Dave and Sorge (2020), the equilibrium

forecast errors under indeterminacy are fully characterized by the following

ηIt = ηDt + V·2 M1︸︷︷︸
1×3


ζ1

1,t 0 0

0 ζ2
1,t 0

0 0 ζ3
1,t

 εt + V·2 M2︸︷︷︸
1×2

 ζ1
2,t 0

0 ζ2
2,t

Xt−1 (65)

where M1 and M2 are arbitrary matrices, whose entries do not depend on the structural

parameters of the RE model.

Denote by η∗t the forecast error component which arises only under indeterminacy, one

has ηIt = ηDt + η∗t , while conditional expectations ξt under indeterminacy evolve along the

equilibrium path according to the following

Et (Xt+1) = J1ω1,t = J1

[
λ1ω1,t−1 +

(
J−1Ψ∗

)
1
εt +

(
J−1Π∗

)
1
η∗t
]

(66)

Notice now the RE model (29)-(31) can be rewritten (upon inserting the third equation into

the first one) as

 1 τψ

−κ 1


 yt

πt

 =

 1 τ

0 β

Et
 yt+1

πt+1

+

 −τ 1 0

0 0 −κ

 εt (67)
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or in more compact form

AXt = BEt (Xt+1) + Cεt (68)

Plugging (66) into (68) and using the definition of ηIt one has

AXt = BJ1

[
λ1ω1,t−1 +

(
J−1Ψ∗

)
1
εt +

(
J−1Π∗

)
1
η∗t
]

+ Cεt (69)

Using the fact that ω1,t−1 = J−1
1

(
Xt − ηIt

)
, where J−1

1 is the first row of the matrix J−1, one

finally has the LRMN representation

Xt = αtXt−1 + βt (70)

where

αt := (A−Θ0)−1Θ1; βt := (A−Θ0)−1Θ2εt (71)

Θ0 := BJ1λ1J
−1
1 (72)

Θ1 :=
[
−Θ0 +BJ1

(
J−1Π∗

)
1

]
V·2M2ζ2,t (73)

Θ2 := C + Θ0

[
Π∗

−1
Ψ∗ + V·2M1ζ1,t

]
+BJ1

[(
J−1Ψ∗

)
1

+
(
J−1Π∗

)
1
V·2M1ζ1,t

]
(74)

For convenience we report below all the vectors and matrices that are needed for computing

αt, βt, Θ0, Θ1 and Θ2:

A =

 1 τψ

−κ 1

 ; B =

 1 τ

0 β

 ; J1 =

 1
κ
(1− βl1 + βl2)

1

 (75)

λ1 = l1 − l2; J−1
1 =

1

2βl2

[
κ −1 + βl1 + βl2

]
(76)

(
J−1Π∗

)
1

=
1

2βl2

[
κ
(

1 + κτ
β

)
− κ

β
(−1 + βl1 + βl2) κτ

(
ψ − 1

β

)
+ 1

β
(−1 + βl1 + βl2)

]
(77)
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V·2 =
1

d

 λ2 − 1− κτψ

κλ2

 ; C =

 −τ 1 0

0 0 −κ

 (78)

Π∗
−1

Ψ∗ =
1

1 + κψτ

 τ −1 −τκψ

κτ −κ κ

 (79)

(
J−1Ψ∗

)
1

=
1

2βl2

[
κτ −κ − τκ2

β
+ κ

β
(−1 + βl1 + βl2)

]
(80)

where M1, M2, ζ1,t and ζ2,t are all defined in (65).

Appendix B

The optimization problem is

max
{Ct, Nt, et, Kt+1}

Γ = E0

∞∑
t=0

βt
[
log (Ct)− a

N1+γ
t

1 + γ

]
, γ ≥ 0, a > 0, (81)

s.t. Yt = Ct + It, (82)

Kt+1 = [1− δ (et)]Kt + It, (83)

Yt = ZtΦt [etKt]
αN1−α

t , α ∈ (0, 1), (84)

δ (et) =
ν

θ
eθt , θ > 1, 0 < ν < θ, (85)

Zt ∼ CSSP (ρ, σ2), (86)
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where Φt =
[
[etKt]

αN1−α
t

]η
(with η ≥ 0) is taken as parametric by the representative agent.

We let the Lagrange multiplier be denoted as Λt to obtain equations

Λt =
1

Ct
(87)

(1− α)Λt
Yt
Nt

= aNγ
t (88)

αZtΦt [etKt]
α−1N1−α

t = α
Yt

[etKt]
= νeθ−1

t → α
Yt
Kt

= νeθt (89)

Λt = βΛt+1

[
α
Yt+1

Kt+1

+ 1− ν

θ
eθt+1

]
(90)

Ct = Yt −Kt+1 +
[
1− ν

θ
eθt

]
Kt (91)

Kt+1 =
[
1− ν

θ
eθt

]
Kt + It (92)

Yt = ZtΦt [etKt]
αN1−α

t (93)

Φt =
[
[etKt]

αN1−α
t

]η
(94)

Zt ∼ CSSP (ρ, σ2) (95)

which constitute a 9 × 9 system in {Yt, Ct, It, Nt, et, Kt, Zt,Λt,Φt} with parameter vector

µ = {α, a, γ, θ, β, ν, η, ρ, σ}. Without loss of generality we can reduce the system by 2

variables that are otherwise redundant: Λt and Φt. Doing so yields the following 7 × 7
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system in {Yt, Ct, It, Nt, et, Kt, Zt} with parameter vector µ,

(1− α)
Yt
Ct

= aN1+γ
t (96)

α
Yt
Kt

= νeθt (97)

1

Ct
= βEt

{
1

Ct+1

[
α
Yt+1

Kt+1

+ 1− ν

θ
eθt+1

]}
(98)

Ct = Yt −Kt+1 +
[
1− ν

θ
eθt

]
Kt (99)

Kt+1 =
[
1− ν

θ
eθt

]
Kt + It (100)

Yt = Zt
[
[etKt]

αN1−α
t

]1+η
(101)

Zt ∼ CSSP (ρ, σ2) (102)

Note the lack of a deterministic trend in the model specification (that is, no balanced growth).

We therefore assume that the stochastic process for Zt is such that eventually all linearized

variables will be interpreted as logarithmic deviations from a HP-filtered trend, and move

directly to the steady state derivation.

The Nonstochastic Steady State

We now derive the nonstochastic steady state around which we log-linearize the system for

eventual use in Sims (2001) in order to solve the model. In a nonstochastic steady state we

begin by assuming that the steady state value of Zt (Z) is in hand. Then using (98) we know

that
1

C
= β

{
1

C

[
α
Y

K
+ 1− ν

θ
eθ
]}
→ 1− β

β
+
ν

θ
eθ = α

Y

K
(103)

which itself can be inserted into (97) to yield

α
Y

K
= νeθ → 1− β

β
+
ν

θ
eθ = νeθ (104)

→ e =

[
θ(1− β)

νβ(θ − 1)

] 1
θ

. (105)
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Now assume that we have Y in hand then we know from (98)

1− β
β

+
ν

θ
eθ = α

Y

K
→ Y

K
=

1− β
αβ

+
ν

αθ
eθ (106)

→ K =

(
αβ(θ − 1)

θ(1− β)

)
Y (107)

which in turn implies from (100) that

K = [1− ν

θ
eθ]K + I → I

K
=
νeθ

θ
→ I =

νeθ

θ
K → I =

1− β
β(θ − 1)

K (108)

I =
1− β
β(θ − 1)

(
αβ(θ − 1)

θ(1− β)

)
Y → I =

α

θ
Y (109)

Next, use the previous relations in (99) to yield

C = Y −K + [1− ν

θ
eθ]K → C = Y −K +K − ν

θ
eθK (110)

→ C =
θ − α
θ

Y (111)

The steady state value of labor is now readily obtained using (96) as

(1− α)
Y

C
= aN1+γ → (1− α)

a

Y

C
= N1+γ (112)

→ N =

(
θ(1− α)

a(θ − α)

) 1
1+γ

(113)

Now, to obtain Y we insert all elements into (101) keeping in mind that e and N are purely

functions of parameters,

Y = Z
[
[eK]αN1−α]1+η → Y = Z

[[
eK
]α(1+η)

N
(1−α)(1+η)

]
(114)

→ Y =

[
Z

(
αβ(θ − 1)

θ(1− β)
e

)α(1+η)

N
(1−α)(1+η)

] 1
1−α(1+η)

(115)
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Linearized System

In terms of notation let x̂t = logXt− logX and then linearize each equation individually to

obtain

−ĉt − (1 + γ)n̂t + ŷt = 0 (116)

ŷt = θêt + k̂t (117)

ŷt − (1 + η)(1− α)n̂t = ẑt + α(1 + η)êt + α(1 + η)k̂t (118)

θ(1− β)Et(êt+1) + θ(1− β)k̂t+1 = (θ − 1)ĉt − (θ − 1)Et(ĉt+1) + θ(1− β)Et(ŷt+1) (119)

αβ(θ − 1)k̂t+1 = θ(1− β)ŷt − αθ(1− β)êt − (θ − α)(1− β)ĉt + α(βθ − 1)k̂t (120)

β(θ − 1)k̂t+1 = −θ(1− β)êt + (βθ − 1)k̂t + (1− β)̂it (121)

ẑt = ρẑt−1 + εt. (122)

We can further reduce the dimensionality of the system by noting that investment (It) is a

redundant variable in the nonlinear system, thereby reducing the linear system to

ŷt = Et−1(ŷt) + ιyt (123)

ĉt = Et−1(ĉt) + ιct (124)

êt = Et−1(êt) + ιet (125)

−ĉt − (1 + γ)n̂t + ŷt = 0 (126)

ŷt − θêt = k̂t (127)

ŷt − (1 + η)(1− α)n̂t − ẑt − α(1 + η)êt = α(1 + η)k̂t (128)

θ(1− β)Et(êt+1) + θ(1− β)k̂t+1 − (θ − 1)ĉt + (θ − 1)Et(ĉt+1)− θ(1− β)Et(ŷt+1) = 0

(129)

αβ(θ − 1)k̂t+1 − θ(1− β)ŷt + αθ(1− β)êt + (θ − α)(1− β)ĉt = α(βθ − 1)k̂t (130)

ẑt = ρẑt−1 + εt (131)
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where ιt is an ‘expectations error’requiring identities to be added to the system so as to

match the notation of Sims (2001).

Estimation

We denote the empirical tail index fromTable 1 as κ = 4. The RBCmodel can be written as a

LRMN recursion and for fixed draws of the sunspot and structural shocks the implied T = 250

long simulated series for endogenous variables created, given a candidate parametrization

µ = [η σζ ]
′. Thus for a candidate µ the tail index of model implied output, estimated using

the maximum likelihood methods of Clauset et al. (2009), is denoted as κ(µ). We then

search over the parameter space to minimize the squared difference between κ and κ(µ) in

order to estimate values for µ; i.e., our estimates are delivered by

min
µ

z = [κ − κ(µ)]′[κ − κ(µ)] (132)

with standard errors computed using the Hessian of the above objective function at the pa-

rameter estimates. This simulated minimum distance estimation method is not just distrib-

ution free but also does not necessarily entail the matching of any particular set of moments

if the empirical targets are not moments but tail indices, see Dave and Malik (2017) for

further details albeit in a different context.
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