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Residential electricity pricing in Texas’s competitive retail market  

D.P. Browna,*, C.H. Tsaib, C.K. Wooc, J. Zarnikaud, S. Zhue 

Abstract 

Using a large sample of residential retail electricity plans advertised on the Public Utility 
Commission of Texas’s Power-to-Choose website between during January 2014 to December 
2018, our panel regression analysis finds changes in the projected wholesale price of 
electricity are not fully reflected as changes in these plans’ price quotes. The estimated rates 
of wholesale price pass-through range from 43% to 45%. Retailers tend to charge risk premia 
that increase with wholesale price volatility. Prepayment and time-of-use plans likely contain 
price premia. The price premia associated with higher-than-average renewable energy 
contents in the early years of our sample have largely vanished by 2018. Longer contract 
terms come at a higher price. Finally, increased customer switching tends to reduce retail 
price quotes, implying that Texas’s residential retail market can be made more price 
competitive through consumer education on plan choices and dissemination of credible price 
information. 
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1. Introduction 

Over the last thirty years, the electricity industry has transformed considerably 

worldwide through market restructuring with the objective of fostering competition, reducing 

costs, and providing consumers with greater choices at lower prices (Sioshansi, 2013; 

Borenstein and Bushnell, 2015). A key feature of market restructuring in the U.S. has been 

the introduction of competition at the wholesale level and the formation of regional 

transmission organizations (RTOs) (Cramton, 2017). An often more controversial debate has 

been around the role and performance of retail market competition (e.g., Littlechild, 2002; 

Morey and Kirsch, 2016; Hortacsu et al., 2017). 

Following the California electricity market crisis in 2000 – 2001, enthusiasm for retail 

competition waned, and much of the subsequent restructuring activity has focused on the 

establishment of competitive wholesale markets (Borenstein and Bushnell, 2015). That said, 

14 states in the U.S. have retail competition despite 13 of them still keeps a default service 

for consumers without choosing a retail supplier (Littlechild, 2018). The only good case in 

fact is Texas, whose energy-only wholesale market design and limited oversight of retail 

prices have unleashed market forces to a greater extent than other regions of North America 

(Hortacsu et al., 2017). As a result, Texas is an ideal environment to analyse competitive 

retail electricity pricing, which is the focus of our analysis. 

Retail price plans enable product differentiation (Woo et al., 2014). By offering plans 

with diverse attributes, competitive retailers satisfy choice preferences of consumers 

(Lancaster, 1990; Goett et al., 2000; Littlechild, 2002). In addition, a long-standing concern 

has been the absence of a close link between wholesale and retail markets due to cost-of-

service regulation’s lag in approving retail rate changes to reflect wholesale price changes 

(Kahn, 1978). In contrast, retailers serve as a link between wholesale market prices and retail 
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consumption (Woo et al., 2019). As a result, retail competition is viewed as efficient, in part 

based on the degree to which wholesale price changes are passed down to consumers.  

In this paper, we analyse retail price formation in Texas’s retail electricity market for 

residential sales. To do so, we employ a large sample of over 5,000 retail price plans offered 

by 80 Retail Electric Providers (REPs) during January 2014 to December 2018. We explore 

how residential retail price quotes for monthly usage levels of 500 kWh, 1,000 kWh and 

2,000 kWh respond to wholesale price changes and how the features of various retail plans 

may affect a REP’s price quotes.   

A key attribute of a retail price plan in Texas is the content of renewable energy that is 

emissions-free (e.g., solar and wind). If renewable energy is more costly to procure than 

conventional electricity generated by plants that burn fossil fuels, a retail plan for green 

energy tends to command a price premium (Woo and Zarnikau, 2019). We evaluate if 

Texas’s retail price quotes for residential usage vary by renewable energy content.  

To meet its delivery obligation, a REP may use electricity derivatives to manage its 

procurement cost risk because wholesale prices are highly volatile with occasional large price 

spikes (Eydeland and Wolyniec, 2003; Deng and Oren, 2006; Kleindorfer and Li, 2005; Woo 

et al., 2004a, 2004b, 2006). Electricity forward prices contain risk premia (Bessembinder and 

Lemmon, 2002; Longstaff and Wang, 2004; Woo et al., 2001, 2011; Zarnikau et al., 2015). 

As little known is about risk premia in retail price plans, we test if Texas’s retail price quotes 

have risk premia that increase with wholesale price volatility.1   

Our key findings are as follows. First, Texas’s REPs do not fully pass wholesale market 

price changes through their retail price quote changes. The estimated rates of wholesale price 

pass-through range from 43% to 45%.  

                                                             
1 A REP may also hedge against the wholesale price risk by owning generation assets or signing bilateral power 
purchase agreements. Because the forward price is the opportunity cost for future electricity delivery, this does 
not materially alter our theoretical analysis detailed in Section 2.2 that assumes a REP buying spot and forward 
electricity for resale to its customers.  
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Second, these REPs charge a risk premium that increases with wholesale price 

volatility. This premium is statistically significant (p-value < 0.05) at the 500-kWh monthly 

consumption level, though not at the 1,000- and 2,000-kWh levels. 

Third, while REPs charged a statistically significant premium for retail price plans with 

an above-average renewable energy content at the beginning of our sample period, this 

premium had largely vanished by 2018, mirroring the declining cost of renewable energy in 

Texas.  

Fourth, retail price quotes vary considerably by plan attributes such as contract term, 

time-of-use (TOU) pricing and payment method. These variations are all statistically 

significant. Plans with long contract terms tend to have higher price quotes than those with 

short contract terms because they increase retailers’ wholesale price risk exposure (Eydeland 

and Wolyniec, 2003). TOU plans tend to have higher price quotes than non-TOU plans 

because when consumers with relatively low on-peak consumption can self-select TOU 

pricing, they likely reduce a REP’s revenue (Woo et al., 1995). Prepayment plans contain 

price premia, plausibly due to higher administration costs of accounting and billing (Woo and 

Zarnikau, 2019) and their targeted customers who likely lack good credit (Eryilmaz and 

Gaffor, 2018).2  

Finally, as the number of consumers who switch retailers increase, there is a 

statistically significant reduction in retail price quotes, consistent with retailers’ reduced 

market power over inattentive or captive consumers with high switching and/or search costs 

(Giulietti et al., 2014; Hortacsu et al., 2017). This finding implies that Texas’s residential 

retail market can be made more price competitive through consumer education on retail plan 

choices and dissemination of credible price information. 

                                                             
2 Commonly used by lower-income households and college students, a prepayment plan does not require good 
credit to obtain electricity service from a retailer. This is because a prepayment customer adds money to his/her 
account in advance for settling the retailer’s monthly bill. When the customer’s account balance becomes zero, 
the retailer can stop service.  
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Our analysis contributes to the growing literature on the performance of retail 

electricity markets. Most relevant to our analysis is the work by Hartley et al. (2019) who 

provide important insights into retail pricing behavior in Texas during 2002 to 2016. The 

authors classify the state’s retail market into competitive and non-competitive regions, 

finding that retail prices move more closely with wholesale prices in the competitive regions 

than the non-competitive regions.  

Our analysis contributes to the findings provided by Hartley et al. (2019) by exploiting 

a larger sample of retail price plans marketed through the Public Utility Commission of 

Texas’s (PUCT’s) retail shopping website Power-to-Choose, whereas Hartley et al. (2019) 

consider a smaller set of plans from the PUCT’s Retail Rate Survey. Importantly, our sample 

allows us to control for plan attributes that likely impact retailers’ pricing decisions. Unlike 

their analysis which utilizes contemporaneous wholesale prices, we construct forward-

looking wholesale price forecast levels and volatility, mirroring a REP’s future delivery 

obligations during a retail price plan’s contract term.  

Looking beyond Hartley et al. (2019), our paper is related to a growing literature that 

estimates the degree and impact of search frictions and switching costs on consumer and firm 

behavior in retail electricity markets (e.g., Wilson and Waddams Price, 2010; Waddams Price 

et al, 2013; Giulietti et al., 2014; Hortacsu et al., 2017). These studies primarily focus on 

estimating frictions, finding evidence of search and/or switching frictions that help explain 

observed retail price dispersion and market power. Our analysis takes these frictions as given 

and empirically analyses a retailer’s price quote decision. 

Our paper contributes to an extensive literature that evaluates the degree of price pass-

through resulting from a cost shock. In the electricity industry, there are a multitude of papers 

that assess the degree of wholesale price pass-through to retail prices in the United Kingdom 

(e.g., Ofgem, 2011), Netherlands (e.g., Mulder and Willems, 2019), and Norway (e.g., Mirza 
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and Bergland, 2012). These studies often find evidence of imperfect or delayed wholesale 

price pass-through. Our analysis corroborates these studies by documenting Texas’s retail 

price quotes’ incomplete pass-through of the changes in wholesale price forecast level.  

As a case study of wholesale price pass-through in Texas’s competitive retail electricity 

market, our paper provides a contribution to a broader literature that analyses cost pass-

through in an array of settings, ranging from retail gasoline (Borenstein et al., 1997; Eckert, 

2013), carbon emissions from electricity generation (Fabra and Reguant, 2014), the coffee 

industry (Nakamura and Zerom, 2010), to exchange rates to prices of imported goods 

(Goldberg and Hellerstein, 2013).3   

The rest of this paper proceeds as follows. Section 2 justifies our geographic choice of 

Texas, describes the retail plan data, presents an illustrative model of retail price quotation, 

sets up the retail price regressions, and discusses the estimation strategy. Section 3 presents 

our regression results. Section 4 concludes.  

2. Materials and methods 

2.1 Why Texas? 

2.1.1 General overview 

Texas’s RTO, the Electric Reliability Council of Texas (ERCOT), is an important and 

interesting case study for the following reasons. First, ERCOT accounts for over 9% of the 

nation’s total electricity generation. It serves 90% of the electric load in the nation’s leading 

state in electricity generation and consumption, reaching a peak demand of 74,666 MW on 

August 12, 2019 (ERCOT, 2019). It has consistent load growth in recent decades due to a 

strong economy, unlike other U.S. RTOs with little growth. 

                                                             
3 See Fabra and Reguant (2014) for a summary of the Industrial Organization literature and the analysis of pass-
through. In particular, the authors provide a detailed literature review of the studies that document incomplete 
price pass-through for reasons varying from price rigidities to strategic adjustments of price markups in 
imperfectly competitive markets.  
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Second, ERCOT has limited interconnection with out-of-state grids, and thus operates 

with considerable independence. As a fully intrastate system, there is limited federal 

jurisdiction over the ERCOT market. With vibrant competition in both the generation and 

retail sectors of the market, ERCOT is generally recognized as one of the most successful 

electricity market reforms in North America (DEFG, 2015).   

Third, Texas leads the U.S. in wind generation development, thanks to the state’s 

enormous resource potential and favorable government policies and market rules (Zarnikau, 

2011). After completing the Competitive Renewable Energy Zone in January 2014, it now 

has 3,600 miles of 345kv transmission line, accommodating an installed system-wide 

capacity 23.86 GW in 2019 and an expected addition of 12.6 GW by 2022.4 Because of its 

weather dependence, however, the projected total wind generation capacity installed by 2022 

can only provide ~9 GW of operation capacity at the annual firm peak load hour.5 

Finally, Texas has had retail competition since 2002. Efforts to introduce competition 

into the retail sector of the state’s electricity market began in June 1999 with the Texas 

Legislature’s passage of Senate Bill 7 (SB 7) (Adib and Zarnikau, 2006; Wood and Gülen 

2009). Retail competition commenced on January 1, 2002, allowing REPs to serve retail 

customers in the service areas of investor-owned electric utilities within ERCOT.    

During our estimation period of 2014-2018, 80 REPs appear on the PUCT’s Power-to-

Choose website. We use customer count data from the Energy Information Administration’s 

2018 Form 861 to establish a snapshot of the prevailing market structure in Texas’s retail 

electricity market. Fig. 1 reports the market shares across ownership structures; REPs serve 

                                                             
4 ERCOT Capacity Changes by Fuel Type Charts, February, 2020, available at: 
http://www.ercot.com/gridinfo/resource. A list of existing and planning wind and solar generation resources 
along with their capacities and on-line dates can be found in this report. 
5 ERCOT Capacity, Demand and Reserves (CDR) Report, December 2019. Available at: 
http://www.ercot.com/gridinfo/resource. ERCOT assumes its wind resource has the following Peak Average 
Capacity Contribution (% of installed capacity): Coastal Wind - 63% of installed capacity; Panhandle Wind-
29% of installed capacity; Other Wind-16% of installed capacity. 
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66% of the market. It demonstrates that within this ownership category, over 50% of the 

market is served by three REPs: TXU, Reliant Energy, and Direct Energy. While over 50% of 

this market segment is served by three REPs: TXU, Reliant Energy, and Direct Energy, the 

standard four-firm concentration ratio equals 57%, demonstrating moderate market 

concentration in areas opened to retail competition.    

 

 

Fig. 1:  Residential market shares of REPs based on customer counts 
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2.1.2 Texas’s retail price plans 

With frequent price updates, REPs in Texas offer retail plans with diverse attributes, 

including renewable energy content, contract term, fixed vs. variable pricing, TOU vs. non-

TOU pricing, prepayment vs. no prepayment, and plan language: Spanish vs. English. 

Examples of retail price plans are available at http://powertochoose.org/. 

Texas’s renewable energy policies affect REPs by setting a minimum “greenness” or 

renewable energy content requirement for the electricity sold. The restructuring legislation, 

SB 7, set initial targets. SB 20 of 2005 increased the goal for renewable energy to 5,880 MW 

in 2015 and set a “voluntary” target of 10,000 MW of wind power for 2025, which Texas has 

already met. Further, each REP must have Renewable Energy Credits (RECs) equal to its 

share of the renewable energy goals in effect during a given year. It can procure more RECs 

to develop green energy price plans to target environmentally conscientious customers, 

potentially causing such plans to have a renewable energy premium.      

2.1.3 Key research question 

Competitive retail pricing arguably leads to efficiency gains by better matching prices 

to short-run locational marginal costs of electricity generation (Stoft, 2002). Regulatory 

delays are avoided, at least for the generation component of the final price. Further, customer 

choices made possible by diverse retail price plans offered by many REPs likely improve 

consumer welfare (Lancaster, 1990). Such benefits, however, cannot occur sans a close 

linkage between retail and wholesale prices. Hence, our key research question is: how do 

Texas’s retail price quotes move with wholesale market prices? 

2.2 Theory  

We develop an illustrative model of retail price quotation for the sole purpose of setting 

up our retail price regression. As such, our model is not intended to accurately portray the 

reality that Texas have heterogenous REPs, each offering a menu of diverse retail price plans.  
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Our model development begins by assuming a hypothetical REP offering a fixed price 

plan with a specific contract term.6 To match the plan data used in our retail price regression 

analysis, it further assumes each plan’s price quote applies to a fixed MWh quantity, thus 

circumventing the thorny issue of quantity risk due to a REP’s obligation to serve fluctuating 

retail consumption (Woo et al., 2004a, 2004b, 2006). For clarity and ease of exposition, it 

assumes the plan has a specific renewable energy content.7       

To complete the model, we first define: 

• R = retail price quote ($/MWh) of a plan with renewable energy content K (%) for 

delivery obligation of 1 MWh per month.  

• P = wholesale market spot price ($/MWh) whose expected value is µ and variance s2. 

• PF = wholesale market forward price ($/MWh) whose expected value is µ + f s where f 

is a positive scalar, implying the forward price embodies a risk premium of f s that 

increases with the spot market price volatility s (Woo et al., 2001, 2011a). 

• C = renewable energy procurement cost ($/MWh) = per MWh cost of procuring 

renewable energy, which is assumed to be is known with certainty based on recently 

signed power purchase agreements. 

• M = per MWh cost for marketing and operation, which is based on the REP’s known cost 

before contract signing. 

                                                             
6 We consider fixed pricing because of its popularity among Texas’s REP, see Table 1 below in Section 2.3.1. We 
do not consider TOU pricing for the following reasons. First and foremost, our sample of price plan data only 
contains average prices by monthly usage level. Second, modelling TOU price quotes require on- and off-peak 
retail price regressions, a challenging estimation effort that entails producing wholesale price forecasts by TOU 
period. Finally, introducing TOU price plans in the presence of fixed price plans vastly complicates our theory’s 
development due to consumers’ adverse self-selection (Woo et al., 1995), an issue well beyond our paper’s 
intent and scope. Finally, the materials in this section do not depend on the length of a contract term because 
they are qualitatively identical for terms of varying lengths. That said, our retail price regression recognizes the 
numerical impact of a contract term’s length on the REP’s price quotes. 
7 Expanding the menu of price plans with varying renewable energy contents requires introducing a subscript for 
plan type, which does not add material insights in the model’s formulation and inferences. 
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• 𝐺#(𝑅,𝐾) = 𝑃(𝑁 = 𝑁#	|𝑅, 𝐾) to be the probability mass function of the REP signing a 

discrete number (= 𝑁# between 0 and 𝑁./0for 𝑖 = 0, 1, 2,… , 𝑁./0) of contracts with 

known attributes of R and K. We assume: (a) 𝜕𝐺#/𝜕𝑅 < 0 for 𝑖 = 1, 2,… ,𝑁./0 because 

lowering the price quote improves the chance of contract signing; (b) 𝜕𝐺#/𝜕𝐾 > 0 for 𝑖 =

1, 2, … , 𝑁./0 because raising the renewable content improves the chance of contract 

signing, as consumers are willing to pay more for cleaner energy (Woo and Zarnikau, 

2019 and references thereof).  

Using the above definitions, we define 𝑌# 	= 	𝑅	𝑁# to be the revenue from serving 𝑁# 

contracts. The cost of serving 𝑁# contracts is 𝑍# ={C K + (1 – K) [l P + (1- l) PF] + M]}𝑁#, 

representing the sum of: (a) renewable procurement cost = C K 𝑁#; (b) wholesale market 

procurement cost = (1 – K) 𝑁# at the per MWh cost of [l P + (1- l) PF], where l ≥ 0 is the 

fraction of the REP’s wholesale market procurement at spot P and (1-l) ≥ 0 is the remaining 

fraction at forward price PF (Woo et al., 2004a, 2006);8 and (c) total marketing and operation 

cost = M	𝑁#. 

A REP’s expected total profit is 𝐸{𝜋} = ∑ 𝐺#(𝑅, 𝐾)
?@AB
#CD 𝐸(𝑌#	– 𝑍#), the probability-

weighted average of the expected profits from serving all possible numbers of contracts. The 

REP is assumed to set R to maximize expected profits, yielding the following first order 

condition for an interior solution for the optimal R* > 0: 

∂p / ∂R  =  A – B = 0,                                                     (1)  

                                                             
8 The condition of 1 ≥ l  ≥ 0 reflects that the hypothetical REP’s wholesale procurement is solely for meeting its 
obligation of retail delivery. The remainder of this section treats l as given, exogenously determined by the 
REP’s portfolio management strategy in a real-world setting (Kleindorfer and Li, 2005; Woo et al., 2004a, 
2006). The following two cases shows how l financially affects the hypothetical REP: 
• Case 1: If the hypothetical REP is risk-neutral and totally relies on spot purchases, l = 0 and the REP’s total 

expected profit is 𝐸{Π} = ∑ 𝐺#(⋅)𝑁#
?@AB	
#CD 	×{R – [C K + (1 – K) µ + M]} and total expected profit variance 

is  𝑣𝑎𝑟(E{Π}) = 	 M∑ 𝐺#(⋅)𝑁#
?@AB	
#CD N

O
(1- K)2 s2 > 0 for K < 1.  

• Case 2: If the hypothetical REP is highly risk-averse and only buys electricity forwards that guarantee 
wholesale price certainty, l = 1 so that 𝐸{Π} = ∑ 𝐺#(⋅)𝑁#

?@AB	
#CD ×{R – [C K + (1 – K) PF + M]} and 

𝑣𝑎𝑟(E{Π}) = 0.  
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where 𝐴 = ∑ 𝐺#(⋅)𝑁# + 𝜕𝐺#/𝜕𝑅	(𝑅	𝑁#)
?@AB
#CD ; and 𝐵 = 	∑ 𝐻	𝑁#	𝜕𝐺#/𝜕𝑅

?@AB
#CD  with H = C K + 

(1 – K) [µ + (1- l) f s] + M. Using equation (1), the optimal retail price quote equals: 

																																																					𝑅∗ = 𝐻 +
∑ UV(⋅)?V
W@AB
VXY

Z∑ 	
[\V
[	]

W@AB
VXY	 ?VZ	

.               (2) 

Equation (2) yield the following inferences. First, the REP sets a mark-up above 

marginal cost H because the second right-hand-side term (RHS) of equation (2) is the positive 

mark-up that equals the expected sales divided by the expected marginal sales loss caused by 

a rising price quote. This mark-up shrinks as the size of ∂Gi/∂R increases, suggesting that R* 

converges to H when consumers become increasingly price sensitive. 

Second, the optimal retail price is increasing in its marginal cost parameters 𝜇, 𝐶, 𝜙, 𝜎, 

and 𝑀:  

																
𝜕𝑅∗

𝜕𝑀 = 1;	
𝜕𝑅∗

𝜕𝐶 = 𝐾;	
𝜕𝑅∗

𝜕𝜇 = 1 − 𝐾; and	
𝜕𝑅∗

𝜕𝜎 = (1 − 𝐾)(1 − 𝜆)𝜙.																		(3)	 

Third, assuming the probability mass function 𝐺#(𝑅,𝐾) is additively separable in 𝑅 and 

𝐾 (such that kUV
k	l

 is independent of 𝐾 for all 𝑖 = 1, 2, 3, … , 𝑁./0), equation (2) implies:  

     kl
∗

km
= {𝐶 − [𝜇 + (1 − 𝜆)	𝜙	𝜎]} + D

Z∑ 	
[\V
[	]

W@AB
VXY	 ?VZ	

∑ kUV(⋅)
km

𝑁#
?@AB
#CD .                  (4)  

The first RHS term in {  } of equation (4) is the impact on the retailer’s marginal cost 

due to increased renewable procurement. It is positive (negative) when renewable energy’s 

per MWh procurement cost C is above (below) conventional electricity’s expected per MWh 

procurement cost [µ + (1 – l) f s]. The second RHS term is the impact of expanding 𝐾 on 

the REP’s mark-up. It is positive because raising 𝐾 increases the chance of contract signing. 

Hence, ∂R*/∂K > 0 when 𝐶 > [𝜇 + (1 − 𝜆)	𝜙	𝜎], as later confirmed by our regression results.   
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In the analysis that follows, we will reference the equilibrium condition in equation (2) 

and derivatives in equations (3) and (4) to set up our regression analysis and interpret its 

ensuing findings.   

2.3 Retail price plan data 

2.3.1 Descriptive statistics 

Our empirical exploration is made possible by a large sample of 5,171 retail price plans 

downloaded from the website www.powertochoose.com managed by the PUCT.  These plans 

were offered in the 60-month period of Jan 2014 – Dec 2018.  

These retail plans are diverse, as indicated by Panel A of Table 1 that presents the 

descriptive statistics of these plans’ energy prices ($/MWh) for three monthly usage levels of 

500 kWh, 1,000 kWh and 2,000 kWh.9 With means of $52/MWh to $63/MWh and standard 

deviations of $16/MWh to $19/MWh, these prices are highly disperse. Fig. 2 presents box 

and whisker plots of the retail prices across the five transmission-distribution-utility (TDU) 

service areas and three monthly usage levels during our sample period.10 It portrays 

considerable price dispersion across the retail plans in our sample, necessitating the need for 

an empirical analysis to understand the key drivers of these price differences. 

Panel A of Table 1 also shows that the price plans have contract terms of one to 36 

months and renewable energy content of 0 to 100%.11 Further, 2% of the plans have TOU 

pricing, 85% fixed pricing and 5% prepayment. Finally, 10% of the plans have description in 

Spanish to target the state’s Latino households. 

                                                             
9 Each energy price is based on the difference between (a) a usage level’s total bill and (b) charges for customer 
service and transmission and distribution.  The 1,000-kWh level approximates the average monthly usage of a 
Texas household. Data of transmission and distribution charges of each transmission-distribution-utility (TDU) 
area is available at: https://www.puc.texas.gov/industry/electric/rates/TDArchive.aspx.  
10 The five TDU service areas in our sample are: AEP Central, AEP North, CenterPoint Energy (CenterPoint), 
Oncor, and Texas New Mexico Power Company (TNMP). 
11 We have excluded plans with: (a) contract terms of 48 months and 60 months due to limitation of our 
wholesale price forecast; (b) negative prices due to aggressive usage credit; or (c) extremely large prices that 
likely reflect data errors. For information about the total number of residential customers on TOU, real-time 
pricing, and other forms of dynamic pricing, see Raish (2020). 
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Table 1. Retail price plans  
 
Panel A. Descriptive statistics of 5,171 plans offered in the 60-month period of Jan 2014 – Dec 2018 

Variable Mean Standard 
deviation 

Minimum Maximum 

Retail price ($/MWh) for 500 kWh per month  63.27 19.36 0.84 119.95 

Retail price ($/MWh) for 1,000 kWh per month  52.33 19.36 0.09 119.57 

Retail price ($/MWh) for 2,000 kWh per month 55.73 16.61 0.55 119.40 

Contract term (month) 12.94 9.55 1 36 

Renewable energy content (%) 29.99 38.12 0 100 

TOU pricing indicator = 1 if yes, 0 otherwise 0.02 0.14 0 1 

Fixed pricing indicator = 1 if yes, 0 otherwise  0.85 0.35 0 1 

Prepayment indicator = 1 if yes, 0 otherwise 0.05 0.21 0 1 

Spanish language indicator = 1 if Spanish, 0 
otherwise 

0.10 0.30 0 1 

 
Panel B. Descriptive statistics of the monthly supplemental data for the retail price regressions 

Variable Mean Standard 
deviation 

Minimum Maximum 

Nominal weekly wage ($/week) 955.50 34.49 898 1,020 

No. of move-in customers (thousands) 49.41 42.85 3.76 135.29 

No. of move-out customers (thousands) 24.74 21.55 2.04 67.12 

No. of switching customers (thousands) 17.81 15.65 1.16 82.40 

 
Note: Nominal weekly wage proxies a retailer’s operation costs (Hartley et al., 2019). A TDU area’s numbers 
of move-in and move-out customers measure the area’s changes in aggregate demand for retail service. The 
number of with-area switching customers measures local competition for customer sign-ups.   
 
 
 

Panel B of Table 1 presents the descriptive statistics of the supplemental data for our 

retail price regression analysis. Following Hartley et al. (2019), we collect data from the U.S. 

Bureau of Labor Statistics on the nominal average weekly wage in the “Private Trade, 

Transportation, and Utilities” category to proxy for a REP’s operating cost. A TDU area’s 

market conditions are measured by (a) the numbers of move-in and move-out customers that 

measure the area’s total demand for retail plans; and (b) the number of switching customers 
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that measure the area’s intra-market competition among REPs.12 Chronologically matching a 

plan’s offering months and observable customer numbers, both (a) and (b) are one-month 

lagged values.13 

 
 
 
 
 
 

 

(a) 500-kWh usage level 

                                                             
12 These data come from ERCOT “Retail Monthly Transaction Totals,” available at 
http://www.ercot.com/mktinfo/retail. We utilize the following three main types of transactions recorded by 
ERCOT to proxy consumer movements and switching behavior within a TDU area: [814_01] Switch Request 
Received by ERCOT from new customer; [814_16] Move-In Request Received by ERCOT from new customer; 
and [814_24] Move-Out Request Received by ERCOT from current customer.  
13 Our regression analysis results in Table 3 below are virtually identical to those obtained using 
contemporaneous or three-month lagged values. 
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(b) 1,000-kWh usage level 

 

 

(c) 2,000-kWh usage level 

Fig.2: Retail price dispersions by TDU area and usage level. 
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2.3.2 Retail price correlations 

The box plots in Fig. 3 suggest that nearly all retail price quotes in our sample are more 

than twice the wholesale price forecast levels developed in Appendix 1 that match the plans’ 

contract terms. This suggestion, however, can be misleading because it ignores the retail price 

effects of other factors that enter a REP’s quote determination. 

 

Fig. 3: Box plots of ratios of retail price quote to wholesale price forecast level 

 

We use retail price correlations for the purpose of an initial exploration. Table 2 

presents retail price correlations with the metric regressors in the retail price regression 

detailed below. Based on Section 2.2, the first two regressors are wholesale price forecast 

level and error, whose calculations are detailed in Appendix 1.  

Table 2 shows all retail price correlations are weak (|r| < 0.2), incapable of convincingly 

establishing how retail prices move with wholesale price forecast level and error, plan 

attributes, nominal wage, and market conditions. Hence, the next section formulates a 

regression analysis to untangle the price effects of these regressors. 
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Table 2. Retail price correlations with metric regressors for the purpose of an initial exploration 
Regressor Monthly usage level 

500 kWh 1,000 kWh 2,000 kWh All levels 

Wholesale price forecast level  0.0960 0.1362 0.1763 0.1295 

Wholesale price forecast error 0.1395 0.1660 0.1446 0.1447 

Contract term 0.0890 0.0828 0.0432 0.0706 

Contract term squared 0.0873 0.1037 0.0490 0.0787 

Renewable content -0.0108 -0.0091 0.0467 0.0065 

Nominal weekly wage 0.0730 0.1185 0.1501 0.1081 

No. of move-in customers -0.0524 -0.0746 -0.0690 -0.0629 

No. of move-out customers -0.0540 -0.0786 -0.0749 -0.0665 

No. of switching customers  -0.0039 -0.0182 -0.0005 -0.0077 

 
Note: All retail price correlations are weak (|r| < 0.2), necessitating a regression analysis to identify and 

quantify their retail price effects. 
 

2.4 Retail price regression 

For each plan 𝑗	offered by retailer 𝑟 in month 𝑡 (= 1 for Jan 2014, …, T = Dec 2018), 

we assume the data generation process of the retail price quotes is characterized by the 

following panel regression with random error ejrt:  

Rjrt = at + r Fjt + q Sjt + Sk bk Xjkt + g Wt + Sq jq Qjqt + Sr gr Zr + ejrt;   (5)  

where Rjrt is the retail price quote (converted from $/kWh to $/MWh) of plan j offered by 

retailer r in month t. The first regressor is at, a time-varying intercept which is assumed to be 

a linear function of monthly and yearly dummies.  

The second regressor is Fjt ($/MWh), which is month t’s wholesale price forecast level 

for future delivery in plan j’s contract period.14 Its coefficient is r > 0, measuring the 

marginal price effect of Fjt. To better understand r, we recall from equation (3) that ∂R*/∂µ = 

(1 – K) ≤ 1, implying a retailer’s optimal price quote increases by $(1 – K)/MWh in response 

to a $1/MWh increase in the expected wholesale price level. Hence, unless the REP is 100% 

                                                             
14 Appendix 1 details how we calculate the wholesale price forecast level (𝐹tu) and error (𝑆tu) discussed below.  
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green at K = 0, ∂R*/∂µ presages that REPs may not fully pass a $1/MWh change in the 

wholesale forecast level on a dollar-for-dollar basis to their retail price quotes. As the size of 

r is an empirical issue best settled by our regression analysis, the null hypotheses to be tested 

are: H1: r  < 1 for incomplete pass-through; H2: r = 1 for 100% pass-through; and H3: r = 1 

for over 100% pass-through. 

The third regressor is Sjt ($/MWh), the wholesale price forecast error. Its coefficient is 

q, measuring the marginal price effect of Sjt. Using equation (3) that shows ∂R*/∂s = (1 – K) 

(1 – l) f ≥ 0, the null hypotheses to be tested are: H4: q = 0 for risk neutrality;15 and H5: q > 

0 for risk aversion.  

The next set of regressors are {Xjkt}, with Xjkt = attribute k of plan j offered in month t 

(e.g., fixed vs. variable pricing, contract term, renewable energy content, kWh level, TOU vs. 

non-TOU, …, etc.). We include a quadratic term on contract length to test for the presence of 

a nonlinear relationship between contract length and retail pricing decisions. In addition, we 

consider interactions between renewable energy content and year indicators to test if the 

impact of renewable energy content on retail pricing behaviour has changed over our sample 

period. The marginal price effect of Xjkt is given by coefficient bk.  

We use Wt, the hourly nominal wage in month t to proxy non-energy costs. The 

coefficient g is the marginal price effect of Wt.   

The next three regressors portray market activities in plan j’s TDU service area in 

month t. They are denoted by Qjqt for q = 1 for the number of move-in customers, 2 for the 

number of move-out customers, and 3 for the number of switching customers. Their  

marginal price effects are j1 > 0, j2 < 0, and j3 < 0 because as more (less) consumers are 

available in a region, market demand for a firm’s product increases (decreases) and an 

                                                             
15 See footnote 8 on the role of l in determining the REP’s expected profit and profit variance based on 
wholesale market procurement of spot and forward electricity. 



20 
 

increase in the incidence of customer switching is expected to mitigate a retailer’s market 

power over inattentive/captive consumers.   

The remaining set of regressors in {Zr} represent retailer and TDU service area fixed 

effects to control for time-invariant retailer and regional market characteristics. The 

corresponding set of marginal price effects is {gr}.  

Finally, the random error ejrt is heteroskedastic robust and clustered at the retailer plan 

by usage level by TDU service area.  

2.5 Estimation strategy 

As many of the 5,171 retail price plans retail plans have multiple monthly observations 

in the sample period of Jan 2014 – Dec 2018, we use a panel regression analysis to estimate 

equation (5) (Wooldridge, 2010).  

 Since each retail price plan has three price quotes for usage levels of 500 kWh, 1,000 

kWh and 2,000 kWh, we estimate three kWh-specific retail price regressions. We also pool 

the retail price data to estimate a single regression for all usage levels that includes usage 

level fixed effects.  

We present two retail price regressions models. Our primary specification is equation 

(5) that includes fixed effects at the retailer and TDU service area. By assuming retailer plan-

specific effects to be random, it permits us to quantify the retail price effects of time-invariant 

retailer plan characteristics (e.g., contract term, prepayment, and renewable energy content). 

As a sensitivity check, we run an alternative specification that includes retailer plan by 

TDU service area fixed effects. While this specification controls for time-invariant factors 

beyond the observed retail plan covariates detailed above, this specification does not identify 

the retail price impacts of a plan’s time-invariant attributes.  
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3. Regression results  

Panel A of Table 3 presents the panel regression results from our primary specification. 

All regressions have empirically reasonable fit, as indicated by their relatively high R2 values. 

Across all usage levels, the wholesale price forecast level’s coefficient estimates are 

between 0.43 and 0.45. As their 95% confidence intervals have lower bounds of ~0.39 and 

upper bounds of ~0.51, they lend support to H1: r  < 1 for incomplete pass-through.16 

The wholesale price forecast error’ coefficient estimate is statistically significant when 

looking across all usage levels, lending support to H5: q > 0 for risk aversion. Decomposing 

this effect by usage level demonstrates that this effect is driven by price quotes for the 500-

kWh usage level.  

The positive and statistically significant coefficient estimates for contract term 

demonstrate that fixed-price plans with longer durations are associated with a considerable 

price premium. For example, when looking across all usage levels, a 36-month fixed-price 

plan comes at a retail price premium of $6.32/MWh compared to a 2-month fixed-price plan, 

holding all else constant.17 This finding is likely driven by the higher wholesale price risk 

imposed on a retailer for providing the longer duration contracts.  

The positive and significant coefficient estimates for renewable content capture the 

renewable energy price premium. In 2014, moving from 0 to 100% renewable energy content 

is associated with an approximate increase of $6.0/MWh in retail prices. However, the 

interaction terms’ coefficient estimates demonstrate that the renewable energy premium has 

systematically decreased since 2014. The premium is no longer statistically different from 

                                                             
16 We also performed a Wald test and verified that these coefficients are statistically different from 1.  
17 Using the All Levels results in Table 3, the difference in the contract term coefficients implies: 0.300 ∗ 36 −
0.003 ∗ 36O − (0.300 ∗ 2 − 0.003 ∗ 2O) ≈ 6.32. 
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zero in 2018,18 an outcome coincident with the observed reduction in the levelized cost of 

renewable energy and substantial growth in wind output during our sample period.  

We find positive and statistically significant coefficient estimates for TOU price plans 

that offers free electricity consumed on weekends or during evening hours. This is expected 

because voluntary TOU pricing causes adverse self-selection, attracting consumers with 

relatively low usage during weekday daytime hours (Woo et al., 1995). To mitigate the 

potential revenue loss due to self-selection, a REP increases these plans’ price quotes.  

We find positive and statistically significant coefficient estimates for retail plans that 

offer prepayment. Consumers who sign up for prepayment accounts are subject to a 

significant premium ranging from $9.11 to $13.97/MWh, over a one standard deviation 

change in retail prices (see Table 1). In addition, we find that retail plans targeted at Spanish-

speaking consumers are priced lower by a statistically significant amount of $2.74 to 

$4.68/MWh.  

As expected, there is a positive relationship between nominal weekly wages and retail 

price quotes. However, this effect is modest. A one standard deviation increase in nominal 

weekly wages is estimated to cause a $1.28 to $1.41/MWh increase in retail price quotes, 

holding all else constant.19  

The coefficient estimates for the 1-month lagged number of move-in and move-out 

customers have the expected signs and are statistically significant. As the number of 

consumers that move into (out of) a TDU service area increase, it tends to increase (decrease) 

in the retail price level.  

                                                             
18 The renewable content’s estimated price effects in 2018 are -0.01 for the 500-kWh usage level, -0.007 for the 
1,000-kWh usage level, 0.014 for the 2,000-kWh usage level, and -0.002 for all usage levels. These estimated 
price effects are all statistically insignificant, corroborating the recent finding by Woo and Zarnikau (2019) of 
Texas’s vanishing renewable price premium. 
19 Using the results in Table 3 for All Usage Levels and 500 kWh, a one-standard deviation increase in nominal 
weekly wage (34.49 from Table 1) implies: 34.49*0.037 ≈ 1.28 and 34.49*0.041 ≈ 1.41. 
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Finally, as the number of consumers switching retailers increases, retail price quotes 

decline by a statistically significant amount. This finding makes sense because equation (2) 

shows that an increase in the number of switching consumers increases the expected marginal 

sales loss caused by a rising price quote, thus causing downward pressure on retail price 

quotes. It is also consistent with the findings in the literature that retailers are able to exercise 

more market power over inattentive/captive consumers who face higher switching and/or 

search costs and are less likely to switch to lower-priced retailers (Giulietti et al., 2014; 

Hortacsu et al., 2017).   

As a sensitivity analysis, Panel B of Table 3 presents results from our model 

specification where we include retailer plan by TDU service area fixed effects. It 

demonstrates that the results in Panel A are robust. Specifically, we continue to find 

statistically significant and incomplete wholesale price pass-through in the range of 0.42 to 

0.45. Second, we detect retailer risk aversion across all usage levels; this is notwithstanding 

that this result is mainly driven by 500-kWh price quotes. We also find statistically 

significant evidence that retail prices rise as nominal wages increase and are lower for 

Spanish language plans.20 Finally, the switching, move-in, and move-out variables remain 

statistically significant with the expected signs.  

 

 

 

 

 

 

                                                             
20 We can identify the Spanish coefficient in this retailer-plan by TDU service area fixed effects model because 
within a retailer’s plan, there is variation in whether the plan was offered in English or Spanish.  



24 
 

 

Table 3. Retail price regressions; sample period = Jan 2014 – Dec 2018; clustered robust standard errors used to 
determine statistically significant (p-value < 0.05) estimates in bold  
 
Panel A: Plan-specific effects are assumed to be random   

Variable Monthly usage level 

500 kWh 1,000 kWh 2,000 kWh All levels 

No. of observations 50,347 49,782 50,777 150,906 

R2: within 0.354 0.389 0.439 0.392 

R2: between 0.387 0.507 0.465 0.417 

R2: overall 0.396 0.480 0.482 0.430 

Wholesale price forecast level  0.430 0.453 0.448 0.442 

Wholesale price forecast error 0.358 0.128 0.086 0.198 

Contract term 0.286 0.372 0.367 0.300 

Contract term squared -0.002 -0.004 -0.006 -0.003 

Renewable content 0.064 0.062 0.060 0.061 

Renewable content × 2015 indicator -0.017 -0.018 -0.017 -0.017 

Renewable content × 2016 indicator -0.030 -0.032 -0.030 -0.031 

Renewable content × 2017 indicator -0.025 -0.031 -0.030 -0.029 

Renewable content × 2018 indicator -0.074 -0.069 -0.046 -0.063 

Prepayment indicator  9.111 13.970 12.430 11.850 

TOU pricing indicator  4.987 12.100 6.480 7.735 

Fixed pricing indicator -0.247 -1.418 -0.016 -0.292 

Spanish language indicator -2.737 -3.851 -4.687 -3.733 

Nominal weekly wage 0.037 0.047 0.037 0.041 

No. of move-in customers 0.072 0.091 0.072 0.079 

No. of move-out customers -0.115 -0.133 -0.101 -0.118 

No. of switching customers  -0.022 -0.031 -0.028 -0.026 

500 kWh indicator    5.012 

1,000 kWh indicator    -4.779 
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Panel B: Plan-specific effects are assumed to be fixed  
Variable Monthly usage level 

500 kWh 1,000 kWh 2,000 kWh All levels 

No. of observations 50,347 49,782 50,777 150,906 

R2: within 0.355 0.391 0.440 0.393 

R2: between 0.057 0.163 0.201 0.120 

R2: overall 0.112 0.184 0.248 0.161 

Wholesale price forecast level  0.429 0.455 0.433 0.439 

Wholesale price forecast error 0.388 0.177 0.183 0.247 

Spanish language indicator -2.619 -3.823 -4.176 -3.554 

Nominal weekly wage 0.040 0.049 0.041 0.043 

No. of move-in customers 0.077 0.093 0.085 0.085 

No. of move-out customers -0.125 -0.138 -0.130 -0.131 

No. of switching customers  -0.023 -0.031 -0.022 -0.025 

 
Notes: (1) Omitted from this table for brevity are the significant coefficient estimates for (a) the intercepts; and 

(b) the binary indicators for (i) 2015, 2016, 2017 and 2018; (ii) months of the year; (iii) retailer IDs; and 
(iv) TDU service areas. 

 (2) The coefficient estimates are mostly significant; and all have expected signs.  
 (3) Panels A and B have similar empirics for regressors listed in Panel B, attesting these empirics’ 

insensitivity to the assumption on the plan-specific fixed effects.    
 

4. Conclusion  

Texas’s competitive retail market provides residential energy consumers with retail 

price plans that have a vast array of features, including fixed pricing with varying contract 

terms, different levels of renewable energy content, prepayment option, and TOU pricing. Up 

to 80 retailers provide such plans, with highly disperse price quotes during our sample period.  

Using a large sample of residential retail electricity plans advertised on the Power-to-

Choose website between during January 2014 to December 2018, we find changes in the 

projected wholesale price of electricity over retail plans’ contract terms not fully reflected as 

retail price quote changes in areas of Texas open to retail competition. Our panel regression 

analysis estimates wholesale price pass-through rates in the range of 43% to 45%. Further, 
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these price quotes tend to increase with the wholesale price forecast errors because of REPs’ 

risk aversion. 

Our regression analysis also shows that retail plan attributes affect price quotes. 

Prepayment and TOU plans are available at a premium price. Longer contract terms come at 

a higher price. Increased customer switching leads to a reduction in retail prices, likely 

reflecting REPs’ reduced ability to exercise market power over captive/inattentive 

consumers. While there are significant price premia associated with higher renewable energy 

content in the early years of our sample, such premia have largely vanished by 2018, 

supporting the contention that renewable energy is now cost-competitive with fossil-fuel 

generation traded in Texas’s wholesale market (University of Texas at Austin Energy 

Institute 2020; EIA, 2020). 

In summary, our empirics indicate that after accounting for factors that likely enter a 

REP’s pricing decision, changes in Texas’s retail price quotes incompletely pass through 

wholesale spot price changes. Nevertheless, retail price quotes tend to decrease as consumer 

switching increases. Hence, Texas’s retail market for residential usage can be made more 

price competitive through consumer education on retail plan choices and dissemination of 

credible price information.21   

We would be remiss had we ignored a possible limitation of this study, which is its 

reliance upon data which is “self-reported” by REPs on the PUCT’s Power-to-Choose 

website. While the PUCT’s website is the “richest” publicly available data source, some 

REPs have been accused of posting deceptive information about their price plans.22 In 

response, the PUCT has taken positive steps to improve its website’s data quality, including 

admonishing the offending retailers, removing the retailers from the website that refuse to 

                                                             
21 These findings and policy implications are consistent with recent findings in Texas’s retail electricity market 
(e.g., Hortacsu et al., 2017).  
22 For details, see Mosier (2018) and Lieber (2018).  
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provide accurate price information, and threatening to close the website (Davis, 2018; Sixel, 

2018).  As our data sample is large and we have taken steps to remove negative price quotes 

and other outliers, our regression results are deemed reasonably accurate. 
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Appendix 1. Wholesale market price forecast level and error 

This is an online appendix. Table A.1 presents the wholesale market data used to 

produce the wholesale market forecast price level and error variables. As an overview, Panel 

A reports the descriptive statistics. Panel B indicates that natural gas price and system load 

have relatively high positive price correlations (r > 0.3). Nuclear generation’s correlation is 

oddly positive because rising nuclear generation is expected to reduce wholesale market 

prices. This could be driven by incentives to increase nuclear capacity utilization in high 

priced periods. Both solar and wind generation have negative correlations, mirroring their 

merit-order effects.  

To construct the forecast price levels and errors, we use the following wholesale price 

regression with random error µn:  

Pn = fn + Sm gm Ymn + µn;        (A.1) 

where Pn = Zone-specific wholesale energy price ($/MWh) in month n = monthly MWh-

weighted average of the 15-minute settlement prices. This regression’s estimation period is 

the 36 months prior to a retail price plan’s first delivery month.  

In equation (A.1), fn = time-varying intercept = linear function of monthly dummies; 

and Ymn = fundamental driver m in month n. Coefficient gm is the marginal price effect is of 

Ymn. Based on Zarnikau et al. (2019), the two fundamental drivers are natural gas price 

($/MMBtu) and system net load (MWh) (= total load – non-dispatchable generation by 

nuclear, solar and wind).  

We use net load for the following reasons. First, ERCOT’s wholesale energy price 

determination is based on net load. Second, had we allowed natural gas price, total load, solar 

generation and wind generation to have individually separate coefficients, two empirically 

implausible outcomes would occur. First, the market-based heat rates based the natural gas 

price’s coefficient estimates would vastly differ from natural-gas-fired generation’s 
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engineering-based heat rates of 7 to 10 MMBtu/MWh. Second, the forecast price levels could 

become negative, contradicting our sample of monthly wholesale price data. 

ERCOT has eight wholesale price zones: North, South, Houston, West, AEN, CPS, 

LCRA, and Rayburn. The LCRA, Rayburn, AEN and CPS zones are not used in our analysis 

because they do not contain REPs that offered retail price plans in our retail data. 

A given zone has 36 estimation samples, each with a sample period’s beginning month 

that equals Jan 2011, Feb 2011, …, Dec 2013. As a result, the number of wholesale price 

regressions is 144 = 4 zones × 36 beginning months.  

Figures A.1 summarizes these regressions’ voluminous results. It shows that the 

average R2 values are around 0.65. The averages of natural gas price’s coefficient estimates 

are approximately 7 to 8 MMBtu per MWh, matching the engineering-base heat rates of 

natural-gas-fired generation. The averages of net load’s coefficient estimates are around 

0.001, indicating that a 1-GWh increase in system load tends to raise the wholesale market 

price by $1/MWh. By the same token, a 1-GWh increase in renewable generation tends to 

reduce the wholesale market price by $1/MWh.   

Construction of wholesale price forecast data entails the following steps:  

• Step 1: Use PROC ROBUSTREG in SAS to estimate a given zone’s wholesale price 

regression for each of the following rolling 36-month samples: Jan – 2011 to Dec – 2013; 

Feb – 2011 to Jan 2014; …, etc. We use robust regression instead of OLS because the 

latter produce implausible coefficient estimates caused by the presence of outliers. 

Figure A.2 reports the mean bias estimates and their 95% confidence intervals by 

forecast period based on the differences between actual and forecast price levels. As all 

mean bias estimates are not statistically different from zero, the wholesale price forecasts 

generated through equation (A.1) are deemed accurate. 
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• Step 2: Produce the monthly wholesale price forecast’s level f and standard error s for the 

next 36 months. For example, the first forecast period is Jan 2014 – Dec 2016. The 

second forecast period is Feb 2014 – Jan 2017.  

• Step 3: For plan j offered in month t, create Fjt and Sjt, the averages of the f and s values 

that match plan j’s contract term. Suppose plan j offered in Jan 2014 has a contract term 

of 12 months. Its Fjt and Sjt values are the averages of the 12 monthly price forecast levels 

and errors for Feb 2014 to Jan 2015.  

• Step 4: Repeat Step 3 for all rolling subsamples to find Fjt and Sjt for all plans offered in 

Jan 2014 to Dec 2018. 

We end this appendix by explaining how we construct the retail price regression’s 

estimation sample. The retail data file contains the plan-specific data for price Rjt and 

attributes {Xjkt}. The wholesale data file contains the plan-specific forecast data for level Fjt 

and volatility Sjt. The supplemental data file contains the nominal weekly wage and each 

TDU area’s customer activities. Merging these three files yields our estimation sample for the 

retail price regression. Finally, ERCOT’s wholesale price zones do not always match TDU 

areas. Based on Table A.2, the AEP North TDU area’s wholesale price forecasts are the 

average wholesale price forecasts for the North and West zones. The TNMP TDU area’s 

wholesale price forecasts are the average wholesale price forecasts for the North, West and 

South zones. 
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Table A.1. Monthly data used for wholesale price regressions and forecasts; sample period = Jan 2011 – May 
2019 

Panel A: Descriptive statistics 
Variable Mean Standard 

deviation 
Minimum Maximum 

Wholesale price ($/MWh): North 31.86 15.86 15.83 158.47 

Wholesale price ($/MWh): South 34.28 16.75 16.32 151.36 

Wholesale price ($/MWh): Houston 32.82 14.98 15.20 155.14 

Wholesale price ($/MWh): West 34.01 17.00 14.35 152.04 

Natural gas price ($/MMBtu): Henry Hub 3.24 0.77 1.72 5.89 

System load (MWh) 28,774,464 4,665,279 21,186,722 39,628,860 

Nuclear generation (MWh) 3,300,207 478,211 1,844,380 3,846,057 

Solar generation (MWh) 93,515 110,402 1,416 408,384 

Wind generation (MWh) 3,819,433 1,520,492 1,509,672 7,148,327 

 
Panel B: Wholesale price correlations with fundamental drivers 

Driver Wholesale price zone 

North South Houston West 

Natural gas price  0.4885 0.4931 0.4670 0.4602 

System load  0.3373 0.3245 0.3582 0.4125 

Nuclear generation  0.1180 0.1042 0.0726 0.1469 

Solar generation  -0.0796 -0.0048 -0.0377 -0.0712 

Wind generation  -0.2468 -0.1529 -0.1938 -0.2920 

 
Note: The wholesale market data include monthly observations in 2011 –2013 and 2019 for developing price 

forecasts for the retail pricing analysis’s period of 2014 –2018. 
  
 

Table A.2. Mapping between TDU areas and wholesale price zones 
TDU area Wholesale price zone 

CenterPoint Houston 
AEP Central South 

Oncor North 
AEP North Average of North and West 

TNMP Average of North, West, and South 
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Fig. A.1: Box plots of wholesale price regression results: R2 and coefficient estimates 
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Fig. A.2: Mean bias of wholesale price forecast levels 
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