Exercise 5 : - Acid-Base Reactions

 Camphor is terpene which has many varied uses such as a plasticizer and in fireworks. Even though it is a naturally occurring compound, the high demand for this compound requires an additional synthetic source. Camphene is a readily available terpene and is used in the synthesis. The first step in the reaction involves treatment of camphene with an acetic acid/sulfuric acid mixture.

Write an equation for the first step in this synthetic sequence.

$$CH_2$$
 CH_3
 CH_3
 CH_3
 CH_3

2. The following table lists pKa values for a selection of acids in aqueous solution:

Acid	pKa	Acid	pKa	Acid	pKa
HI	-10	CH ₃ OH ₂ ⁺	-2,5	CH ₃ OH	16
H ₂ SO ₄	-9	H ₃ O ⁺	-1.74	(CH ₃) ₂ C=O	19.2
HBr	-9	CH ₃ CO ₂ H	4.75	HC≡CH	25
HCI	-7	NH ₄ ⁺	9.2	NH ₃	38
(CH ₃) ₂ OH ⁺	-3.8	C ₆ H ₅ OH	9.9	H ₂ C=CH ₂	44
(CH ₃) ₂ C=OH ⁺	-2.9	CH ₃ NH ₃ ⁺	10.6	C ₂ H ₆	50

a. Will dimethyl ether, $(CH_3)_2O$, dissolve in concentrated sulfuric acid, H_2SO_4 ? Explain your answer.

Yes. $(CH_3)_2OH^+$ (pK_a = -3.8) is a weaker acid than H_2SO_4 (pK_a = -9)

b. Will dimethyl ether, (CH₃)₂O, dissolve in acetic acid, CH₃CO₂H? Explain your answer.

No. $(CH_3)_2OH^+$ (pK_a = -3.8) is a stronger acid than CH_3CO_2H (pK_a = 4.75)

3. Arrange the following compounds in order of decreasing acidity:

a.

$$CH_3CH_2CH_3$$
 H_3CC $CH_3CH=CH_2$ $CH_3CH_2CH_3$ H_3CC $CH_3CH=CH_2$ $CH_3CH=CH_2$

b.

c.

$$\begin{array}{cccc} \mathsf{CH_3CH_2CO_2H} & \mathsf{CH_3CHCICO_2H} & \mathsf{CH_3CH_2CH_2OH} \\ \\ \mathsf{CH_3CH_2CO_2H} & \mathsf{CH_3CHCICO_2H} & \mathsf{CH_3CH_2CH_2OH} \\ \\ & 2 & 1 & 3 \\ \end{array}$$