
Exercise 14: - Reactions of alkenes and alkynes

- 1. In carbon tetrachloride solution, bromine adds to (*E*)-3-hexene to yield meso 3,4-dibromohexane. Propose a mechanism that explains this behavior.
- 2. Myrcene a fragrant component found in bayberry wax, has the formula C₁₀H₁₆ and is known not to contain any triple bond. On catalytic hydrogenation, myrcene is converted to 2,6-dimethyloctane. Ozonolysis of myrcene followed by treatment with zinc and water yields 2 mol of formaldehyde, HCHO, 1 mol of acetone (CH₃COCH₃) and a third compound with formula C₅H₆O₃.
 - a. How many units of unsaturation are present in myrcene?
 - b. What is the structure of myrcene?
- 3. At the beginning of the biogenesis of squalene isopentenyl pyrophosphate, CH₂=C(CH₃)CH₂CH₂OPP, is enzymatically isomerized to dimethylallyl pyrophosphate, (CH₃)₂C=CHCH₂OPP. These two compounds then react together to yield geranyl pyrophosphate, (CH₃)₂C=CHCH₂CH₂(CH₃)C=CHCH₂OPP. Assuming that the weakly basic pyrophosphate anion is, like the protonated hydroxyl group, a good leaving group, R-OPP → R⁺ + OPP⁻ suggest a mechanism by which geranyl pyrophosphate might be formed.
- 4. In methanol solution, bromine adds to ethene to yield not only 1,2-dibromoethane but also Br-CH₂-CH₂-O-CH₃. Write a mechanism that explains this behavior.
- 5. Compound "A", C₁₀H₁₈O, reacts with dilute H₂SO₄ at 250C to yield a mixture of two alkenes, C₁₀H₁₆. The major product, "B", gives cyclopentanone, as the sole product on ozonolysis:

- a. What is the structure of "A"?
- b. What is the structure of "B"?
- 6. Propose a mechanism for the following reaction:

$$H_2C=CHCH_2CH_2CH_2OH$$
 Br_2 , H_2O

- 7. Starting from 1-methylcyclohexene, propose a synthesis for each of the following:
 - a. 1-methylcyclohexanol
 - b. 2-methylcyclohexanol
 - c. 1-bromo-1-methylcyclohexane
 - d. 1-bromo-2-methylcyclohexane
- 8. Muscalure is the sex pheromone of the common house fly. On the basis of the following synthesis, give the structure of muscalure:

$$n$$
-C₁₃H₂₇C \equiv CH + n -BuLi \rightarrow "A" (C₁₅H₂₇Li)
"A" + n -C₈H₁₇Br \rightarrow "B" (C₂₃H₄₄)
"B" + H₂, Lindlar catalyst \rightarrow muscalure (C₂₃H₄₆)

- 9. Hydrocarbon "A", C₉H₁₂, absorbs three equivalents of H₂ on catalytic hydrogenation. "A" forms two isomeric ketones on treatment with aqueous H₂SO₄/mercuric ion. Oxidation of "A" with KMnO₄ gives a mixture of ethanoic acid, CH₃CO₂H, and acid CH(CH₂CO₂H)₃. What is the structure of "A"?
- 10. Compound "A", C₉H₁₂, absorbs three equivalents of H₂ on catalytic hydrogenation. Ozonolysis gives cyclohexanone and other products. "A" reacts with NaNH₂ in liquid ammonia followed by CH₃I to give compound "B", C₁₀H₁₄. What is the structure of "A"?