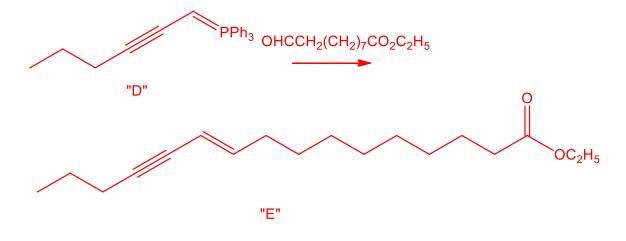
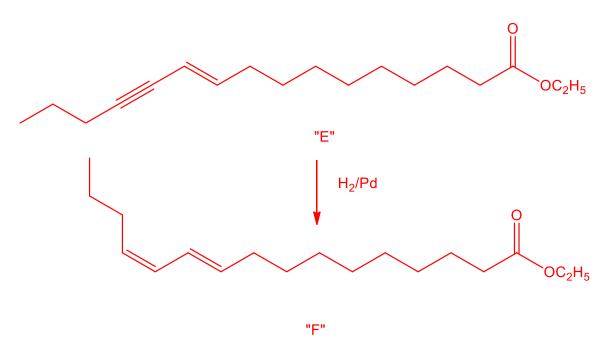
Problem Set 7 – Reactions of aldehydes and ketones

- 1. Outline a synthesis of the following compounds starting from either benzene or toluene:
 - a. *n*-butylbenzene

b. 1-phenyl-2-propanone


2. Outline a synthesis of 3-hexene from propene.



3. Bombykol, the sex pheromone of the silkworm moth, has been prepared in the following way:

1-pentyne + n-C₄H₉MgBr
$$\rightarrow$$
 A (C₅H₇MgBr)
A + HCHO; then H⁺ \rightarrow B (C₆H₁₀O)
B + PBr₃ \rightarrow C (C₆H₉Br)
C + Ph₃P, base \rightarrow D (C₂₄H₂₃P)
D + OHCCH₂(CH₂)₇CO₂C₂H₅ \rightarrow E (C₁₈H₃₀O₂)
E + H₂/Pd \rightarrow F (C₁₈H₃₂O₂)
F + LiAlH₄ \rightarrow bombykol (C₁₆H₃₀O)

Give the structures of compounds A to F and that of bombykol.

4. Propose a mechanism for the following reaction:

$$(CH_3)_2C=CHCH_2CH_2C(CH_3)=CHCHO$$
 H_3O^+

OH

5. Compound "A", C₆H₁₂O₂, was found to be optically active. Reaction with Tollens reagent gave "B", C₆H₁₂O₃, an optically active carboxylic acid. Oxidation of "A" by pyridinium chlorochromate in dichloromethane gave an optically inactive compound which reacted with Zn(Hg)/HCl to give 3-methylpentane. Vigorous oxidation of "A" yielded "C", C₆H₁₀O₄, an optically inactive dicarboxylic acid. Give the structures of compounds "A", "B", and "C".

$$A = C_6H_{12}O_2$$

$$A + Ag(NH_3)_2^+ \longrightarrow B - C_6H_{12}O_3$$
aldehyde carboxylic acid
$$PCC$$

$$A \text{ is also an alcohol}$$

$$Zn(Hg),HCI$$

Vigorous oxidation of A gives a dicarboxylic acid therefore A is a primary alcohol. The diacid is optically inactive therefore the aldehyde and alcohol groups must be at the two ends of the chain. A is therefore: