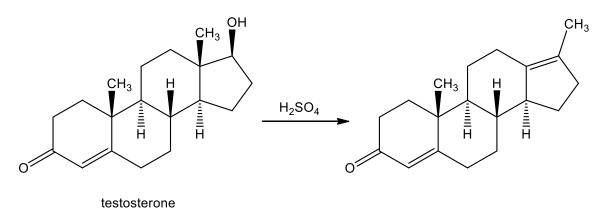

Problem Set 6 – Reactions of alcohols and ethers

1. Propose a mechanism for the transformation of nerol into α -terpineol:



2. The sex attractant of the Douglas fir tussock moth has been synthesized via the following route:

1-heptyne + LiNH₂ \rightarrow "A" (C₇H₁₁Li) "A" + 1-chloro-3-bromopropane \rightarrow "B" (C₁₀H₁₇Cl) "B" + i) Mg ii) *n*-C₁₀H₂₁CHO iii) H⁺ \rightarrow "C" (C₂₁H₄₀O) "C" + H₂/Lindlar catalyst \rightarrow "D" (C₂₁H₄₂O) "D" + CrO₃ \rightarrow sex attractant (C₂₁H₄₀O)

Draw the structure of the sex attractant.

3. Testosterone undergoes dehydration as shown below. Propose a mechanism.

4. Treatment of 4-hydroxycyclohexanone with 1 equivalent of CH₃MgBr gives no alcohol. Treatment with an excess of CH₃MgBr gives a good yield of 1-methyl-1,4-cyclohexanediol. Why?

- 5. What are the products of the reaction of ethoxycyclohexane and aqueous HI?
- 6. When 4-chloro-1-butanol is treated with strong base (eg NaH), tetrahydrofuran (C_4H_8O) is formed. Propose a mechanism.