

Problem Set 4 – Electrophilic aromatic substitution

- 1. The nitration of *N*,*N*-dimethylaniline, C₆H₅N(CH₃)₂, in 85% H₂SO₄ gives 45% *m*-nitro product and 38% *p*-nitro product.
 - a. What is the species actually undergoing nitration to give the *meta* product?
 - b. How is it formed?
 - c. What is its relative reactivity to that of benzene?
 - d. Why does this species under go meta substitution?
- 2. The nitroso group, -N=O, is *ortho-para* directing but deactivating. Explain in terms of resonance and inductive effects.
- 3. Hexachlorophene, a substance used in the manufacture of germicidal soaps, is prepared by reaction of 2,4,5-trichlorophenol with formaldehyde in concentrated sulfuric acid. Propose a mechanism.

- 4. Propose a synthesis of 2-bromo-4-nitrotoluene from benzene.
- 5. Two alcohols, "A" and "B", have the same molecular formula C₉H₁₀O and react with sulfuric acid to give the same hydrocarbon "C". Compound "A" is optically active and compound "B" is not. Catalytic hydrogenation of "C" gives a hydrocarbon "D", C₉H₁₀, which gives two and only two products when nitrated once with HNO₃/H₂SO₄. Give the structures of "A", "B", "C", and "D".
- 6. Propose a mechanism for the following reaction:

