Problem Set 10 – Reactions of amines

- 1. Putrescine and cadaverine are found in rotting flesh. Putrescine (C₄H₁₂N₂) may be synthesized by treating 1,2-dibromoethane with KCN followed by hydrogenation. Treatment of 1,5-dibromopentane with ammonia gives cadavrine (C₅H₁₄N₂).
 - a. What is the structure of putrescine?

$$H_2N$$
 NH_2

b. What is the structure of cadavrine?

$$H_2N$$
 NH_2

- 2. Choline, C₅H₁₅O₂N, is a constituent of phospholipids. It dissolves in water to give a basic solution. It can be prepared by reaction of ethylene oxide with trimethylamine in the presence of water. Acetylcholine, C₇H₁₇O₃N, is its acetyl derivative.
 - a. What is the structure of choline?

$$H_3$$
C CH_3 OH^-

b. What is the structure of acetylcholine?

$$H_3C$$
 O
 CH_3
 CH_3
 CH_3

- 3. Write equations for each step in the following syntheses:
 - a. toluene $\rightarrow p$ -fluorotoluene

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

b. toluene \rightarrow *m*-fluorotoluene

4. Coniine, C₈H₁₇N, is the toxic ingredient of poison hemlock, drunk by Socrates. When subject to exhaustive methylation and Hofmann elimination, coniine

gives 5-(*N*,*N*-dimethylamino)-1-octene. If coniine is a secondary amine, what is its structure?

5. Atropine, $C_{17}H_{23}NO_3$, is a poisonous alkaloid isolated from *Atropa belladonna*, deadly nightshade. Base hydrolysis gives tropic acid, $C_6H_5CH(CH_2OH)CO_2H$, and tropine, $C_8H_{15}NO$. Tropine, an optically inactive alcohol reacts with H_2SO_4 to give tropidene:

What is the structure of atropine?

Propose a structure for pethidine.

 $C_{14}H_{16}O_2$