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On One-Step GM Estimates and Stability of
Inferences in Linear Regression
D. G. SIMPSON, D. RUPPERT, and R. J. CARROLL*

The folklore on one-step estimation is that it inherits the breakdown point of the preliminary estimator and yet has the same large
sample distribution as the fully iterated version as long as the preliminary estimate converges faster than n~!/4, where # is the sample
size. We investigate the extent to which this folklore is valid for one-step GM estimators and their associated standard errors in linear
regression. We find that one-step GM estimates based on Newton-Raphson or Scoring inherit the breakdown point of high breakdown
point initial estimates such as least median of squares provided the usual weights that limit the influence of extreme points in the
design space are based on location and scatter estimates with high breakdown points. Moreover, these estimators have bounded
influence functions, and their standard errors can have high breakdown points. The folklore concerning the large sample theory is
correct assuming the regression errors are symmetrically distributed and homoscedastic. If the errors are asymmetric and homoscedastic,
Scoring still provides root-n consistent estimates of the slope parameters, but Newton-Raphson fails to improve on the rate of
convergence of the preliminary estimates. If the errors are symmetric and heteroscedastic, Newton-Raphson provides root-# consistent
estimates, but Scoring fails to improve on the rate of convergence of the preliminary estimate. Our primary concern is with the
stability of the inferences associated with the estimates, not merely with the point estimates themselves. To this end we define the
notion of standard error breakdown, which occurs if the estimated standard deviations of the parameter estimates can be driven to
zero or infinity, and study the large sample validity of the standard error estimates. A real data set from the literature illustrates the
issues.

KEY WORDS: Asymmetry; Heteroscedasticity; Least median of squares; Minimum volume ellipsoid; Robust inference; Standard

error breakdown.

Consider the linear model y; = zi8 + ¢, fori=1,...,
n, where z; = (1x%)’, x; is a known (p — 1)-dimensional
vector of explanatory variables, and y; is an observed re-
sponse. Two standard assumptions are: (1) ¢, ..., ¢, are
identically distributed according to some F, and (2) F = N(O0,
o?) for some o2 > 0. The earlier robust regression estima-
tors—for example, M estimators (Andrews 1974; Bickel
1975; Huber 1973), rank estimators (Hettmansperger and
McKean 1977; Jaeckel 1972), and trimmed least squares
(Ruppert and Carroll 1980)—were designed to maintain
efficiency under violations of (2), especially when the error
distribution is heavy-tailed. However, it is as important to
protect against violations of (1), particularly at outlying x
observations, where heteroscedasticity or nonlinearity is
likely. The generalized M estimators (GM estimators), such
as the proposals of Mallows (1975), Hampel (1978), Krasker
(1980), and Krasker and Welsch (1982), and the weighted
trimmed least squares estimators of De Jongh, DeWet, and
Welsh (1988) were intended to produce stable results when
there are possible response outliers at outlying values of x,
as can occur when (1) fails. In particular, they have influence
functions bounded in both x and y. Unfortunately these
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bounded-influence estimators have breakdown points of at
most 1/(p + 1), where p is the number of predictor variables
(Maronna, Bustos, and Yohai 1979), suggesting that they
can be overwhelmed by a cluster of outliers; see, for example,
Rousseeuw (1984).

The low breakdown point of the GM estimators has been
viewed as a serious deficiency, particularly for multidimen-
sional problems and exploratory data analysis. Several high
breakdown point (HBP) estimators have been proposed that
achieve breakdown points near 1 for each p, including the
least median of squares estimator of Rousseeuw (1984 ), the
S estimators of Rousseeuw and Yohai (1984), and the es-
timators of Yohai (1987) and Yohai and Zamar (1988),
which combine good asymptotic efficiency under the normal
linear model with HBP. These estimators do not have
bounded influence functions.

The HBP property provides some confidence that one will
not be completely fooled by a cluster of poorly fit data. In
practice, however, one would like the inferences to be robust
to outliers, leverage points, and so on. If a few points can
change the estimate by many standard errors or change dras-
tically the standard error, it is small consolation that the
change in the estimate is bounded. Routine data are thought
to contain 1%-10% gross errors (Hampel, Ronchetti, Rous-
seeuw, and Stahel 1986). Although this is below the break-
down point of HBP estimators currently available, such a
fraction of anomalous data can have a substantial effect if
the influence function is unbounded. See, for instance, table
1 of Yohai and Zamar (1988), in which the bias of the Kras-
ker—Welsch bounded-influence estimator is considerably less
than that of the HBP unbounded-influence estimators if the
level of contamination is 5%. We therefore contend that the
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local stability associated with the bounded-influence property
is as important as the global stability suggested by a high
breakdown point. Moreover, the stability of the standard
errors themselves is important and worthy of investigation.

To construct regression estimators that have bounded in-
fluence functions and high breakdown points, we follow a
strategy that exists in the folklore: Start with a high break-
down point estimator and perform one iteration of a New-
ton-Raphson-type algorithm towards solution of the GM
estimating equations. Hampel et al. (1986, p. 330) men-
tioned the possibility of using a one-step GM estimator but
gave no details. We find one detail to be crucial for a high
breakdown point, namely, the x-dependent weights asso-
ciated with the GM iteration need to be based on high break-
down point location and scatter estimates rather than on the
customary multivariate M estimates. Section 1 provides the
specific definitions of our one-step GM estimates. Section 2
provides the breakdown analysis. Clearly one can iterate a
fixed finite number of times and retain the breakdown point
of the one-step. As a rough measure of the stability of infer-
ences based on the estimates, we consider breakdown of the
standard errors as well as the parameter estimates. The in-
fluence functions are derived in Section 3.

The large sample theory of the one-step GM estimators
requires some care, as one natural initial estimator (least
median of squares ) converges only like #7!/ rather than the
n~'2 rate usually associated with parametric estimation
(Davies 1990; Kim and Pollard 1990; Rousseeuw 1984).
However, results presented in Section 4 establish that both
Newton-Raphson and Scoring versions of the one-step GM

estimators converge at the root-n rate provided that the pre-

liminary estimate is better than fourth root-z consistent and
that the regression errors are symmetric and homoscedastic.
Using a different method of proof, Jureckova and Portnoy
(1987) established this kind of result for certain one-step
Huber estimators. We find that if the errors are asymmetric
and homoscedastic, Scoring still provides root-z consistent
estimates of the slope parameters, whereas Newton-Raphson
fails to improve on the rate of convergence of the preliminary
estimate. On the other hand, if the errors are heteroscedastic
and symmetric then Newton-Raphson provides root-n con-
sistent estimates, whereas Scoring fails to improve on the
rate of convergence of the preliminary estimate. We study
asymptotic validity of the standard errors as well.

A potential objection to bounded-influence estimators is
their low efficiency in cases where most of the sample infor-
mation about 8 is contained in a few high leverage points.
However, Morganthaler (1988) and Stefanski (1991) have
shown that no estimator with a breakdown point greater
than 1/7 can have high finite-sample efficiency in the pres-
ence of extreme leverage points. In such instances, which
involve a kind of extrapolation, it requires considerable faith
in the linear model to take seriously the efficiency under the
model. Our principal motivation for requiring a bounded-
influence function as well as a high breakdown point is sta-
bility of inference. Section 5 illustrates some of the issues
with a particularly vexing data set.
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1. ONE-STEP MALLOWS ESTIMATES

Define residuals, 7; = y; — z% 8o, where £, is a high break-
down preliminary estimate with breakdown value at least
m/n. For instance, a modified least median of squares (LMS)
estimate has m = [(n — p)/2] + 1 (Rousseeuw and Leroy
1987). Let 6o = med{|r;|}/«, where « is a standardizing
constant, and let m, and C, be multivariate location and
scatter for the {x;} with breakdown point at least m/n. A
possible choice for (m,, Cy), the minimum volume ellipsoid
(MVE) estimator, is given by the center and covariance of
the smallest ellipsoid containing at least [(n + p + 1)/2]
points. It has m = [(n — p + 1)/2], the best possible for
affine equivariant covariance estimators (Rousseeuw and van
Zomeren 1990). Cook and Hawkins ( 1990) discussed certain
difficult computational issues associated with MVE.

The estimators we use are one-step estimators taking the
form

n
8 = 0o 2 W(ri/Go)w;z;,

i=1

B =00+ Hs',
where there are two viable choices for Hy:

Newton-Raphson: Hy = ¥ w;z;ziy (D(r;/60);

i=1
n n
Scoring: Hy = n~' 3 ¢y (r;/60) 2 wizjz}.
i=1 Jj=1
In the regression we employ Mallows weights,

. b al2
wT mm[ . {(xi — m,)'C (x; — mx)] } - (D

The case a = 0 is the one-step Huber estimate discussed by
Bickel (1975) and Jureckova and Portnoy (1987). Jureckova
and Portnoy (1987) imposed a nonequivariant bound on
the step size to get HBP when a = 0. We show that if «
> 1, the Mallows weights automatically bound the step size.
The case o« = 1 is usual for GM estimators, whereas o = 2
was used by Giltinan, Carroll, and Ruppert (1986) to force
a bounded change of variance function, indicating local sta-
bility of the asymptotic variance. Ronchetti and Rousseeuw
(1985) gave the form of the change of variance function for
GM estimators. An even more extreme case, o = o0, deletes
any observation in which the robust Mahalanobis distance
from m, exceeds b. Rousseeuw and van Zomeren (1990)
discussed this possibility. We set b equal to the (1 — ) quan-
tile of the chi-squared distribution on p — 1 degrees of free-
dom, where v = .1 or .05.

Scoring and Newton-Raphson are asymptotically equiv-
alent if the errors {¢; } are independent and identically and
symmetrically distributed; see Section 4. Another common
choice for Hj is based on iterative weighted least squares,
but the resulting one-step estimator has a different asymptotic
distribution that depends on that of the initial estimate; we
forego the details. For either Newton—Raphson or Scoring,
the large sample theory estimate of the covariance matrix of
Bis D = Hy'MyHg', where M, has one of two forms:
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n

Nonexchangeable: M, = 63 >, w?z;ziy?(r;/60);
i=1

n

2,
2 Wizzh.
j=1

Exchangeable: M, = n"'63 > ¥2(r;/60)
i=1

If the ¢; are heteroscedastic, then in general D is consistent
only if H is “Newton-Raphson” and M, is “Nonexchange-
able.”

2. BREAKDOWN ANALYSIS

The finite sample breakdown point was introduced by
Donoho and Huber (1983). Let X = {(x;, y;):i=1,...,
n} and let T'be an estimator of 8. Then the breakdown point
of T at X is given by

BP(T, X) = min{m/n: sup IT(X) - T(X*)|l = o0},

where the supremum is over all choices of X* consisting of
(n — m) points from X and m arbitrary points. A HBP es-
timator like Rousseeuw’s (1984 ) LMS estimator has BP ~ 1
for any data set where the z,’s are in general position; that
is, any p of them are linearly independent. For the scatter
matrix, C,, breakdown is defined as driving Ay.,(Cy)
+ { Amin(Cyx) } ! to infinity, where Apin(4) and Ay (A) are
the minimum and maximum eigenvalues of the matrix 4.
We obtain breakdown points for the one-step GM estimators
defined in Section 1 and then consider breakdown of their
covariance estimates.

2.1 Breakdown of Estimates

In what follows, we will assume that the first n — m ob-
servations are the “good” ones and that the remaining m
observations are free to roam. We assume that n — m = n/
2 + 1 = p, and, without loss of generality, that the first p
observations are such that (zi, . . ., z,) are linearly indepen-
dent. As usual, Y(v) is odd and bounded. We make use of
the following additional assumptions:

A. Assume that y is nondecreasing with the properties

v(v)/v=dy>0 if0< |v]| <g (2.1)
yPD)=d, >0 if0 < |v| =g (2.2)

and
a> k. (2.3)

B. Ify is redescending, assume (2.1)-(2.3) as well as
sup [¢ D(v)| = dy, (2.4)

|v|=a

where d, > d,.

C. Assume that any set of n — m — n/2 “good” points
has a linearly independent subset of size p.

Theorem 2.1. Either of Assumptions A or B suffice for
the breakdown value of the one-step Mallows to be at least
m/n under Scoring. For Newton-Raphson, the breakdown
value is at least m/n under Assumptions A and C taken
together.
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Remark 2.1. If ¢ is redescending, then ¢ (*)(r;/5,) can
g0 negative. We conjecture that in this case it is possible to
manipulate p data points so that the Newton-Raphson ver-
sion of H, equals 0.

2.2 Standard Error Breakdown

Let D be the covariance estimate of § given in Section 1.
Standard-error breakdown occurs if either Ay, (D) = oo or
Amin(D) = 0. The former usually is the only concept con-
sidered, as in Hampel et al. (1986), but the latter is important
as well. For instance, even if the estimate does not break
down, the Wald-type tests for the parameters can break down
if D breaks down to 0. He, Simpson, and Portnoy (1990)
have discussed breakdown of tests in general. A simple anal-
ysis shows that Aoy (D) < Amax(Mo)/ N2in(Hp), and we show
in the Appendix that A;,(H,) > 0. It is clear that, because
o = 1, Max(Mp) has a finite upper bound under any ar-
rangement of the “bad” points, and hence the same holds
for Apax (D).

Unfortunately, breakdown to 0 may occur unless o = 2.
Because A, (D) = 0 if det(D) — 0, this breakdown occurs
if either det(M,) = 0 or det(H,') — 0, the latter occurring
if Apax (Hp) = 00 . A detailed analysis as presented in Section
2.1 shows that under any arrangement of the “bad” points,
Amin(Mp) > 0. Thus Ay, (D) = 0 if we can show that
Amax(Hp) = co. This may happen if a < 2.

Lemma 2.1. Define d; = z;/||z;|| and let | z;|| = oo for
j=n—m+ 1in such a way that for a positive definite
matrix S, Z?:n—m+l d,df — S. Then Amax(HO) - oo if «
< 2, whereas Ao (Hp) = O(1) if a = 2.

3. INFLUENCE ANALYSIS

Influence analysis is a method of studying the local stability
of estimators in terms of the effect of point-mass perturba-
tions of the data or the underlying distribution. Two ap-
proaches to influence analysis of linear regression are in
common use: (1) treat {(x;, y;)} as a random sample and
define the influence function on the space of distributions
for (x, y) (Hampel et al. 1986) and (2) define the influence
function via asymptotic linearity of the estimator (Krasker
and Welsch 1982). We show that in either case the influence
function of the one-step Mallows estimator is bounded when
evaluated at the model. Method ( 1) requires that the prelim-
inary estimates have influence functions, but they need not
be bounded. Method (2) requires only a rate of convergence.
Method (2) is perhaps more appropriate for regression, be-
cause it yields an influence function even when an iid as-
sumption on the x;’s is inappropriate.

First act as if {(x;, »;)} is a random sample from a dis-
tribution Fy and consider the effect of perturbation of Fj.
We suppose that the preliminary estimates and the location
and scatter functionals for x have influence functions, but
the influence functions need not be bounded. For instance,
the preliminary regression estimate might be a regression S
estimate (Rousseeuw and Yohai 1984), and the location
scatter estimate might be a multivariate S estimate (Davies
1987; Lopuhai 1989). The alternative definition of the in-
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fluence function via asymptotic linearity allows treatment
of the minimum volume ellipsoid.

Consider a generic matrix-valued functional T(F) defined
on the space of distributions for (x, y). Let F, be a fixed
distribution representing the target model and let F, be a
point-mass contamination of Fo: F, = (1 — N)Fp + AA,,,
for 0 < A < 1. Following Hampel et al..(1986), T has an
influence function, which we shall denote by IF(x, y; T),
if it has a directional derivative at A = 0:

IF(x,y; T) = lg{)l {T(F) — T(Fo)}/\

The IF operation preserves matrix dimensions and satisfies
the multiplication and chain rules of scalar differentiation.

The one-step Newton-Raphson estimators described in
the preceding section correspond to the functional S( F)
= Bo(F) + { H(F)}~'g(F), where

&(F)
_ a(,(F)EF[w(Y—_%)w(X, m(F), C(Fx))Z]
and
H(F)
Y — Z'8y(F)

Go(F)

=EF['//“)(

For Scoring, H(F) instead takes the form

Y — Z'Go(F)
E"["“’( 50(F) )]

)W(X, m(F~), C(F"))ZZ‘] .

H(F)=

X Ep[w(X, m(F*), C(F*))ZZ').

Here Er denotes expectation with respect to F, Bo(F ) and
oo( F) are the functionals corresponding to the preliminary
regression and scale estimates, F* is the marginal distribution
for x, m(F~) and C(F*) are the location and scatter func-
tionals for x, and the weight function w is of the same form
asin (1.1). Assuming Fj is such that the conditional distri-
bution of (Y — Z'8,(F,)) given Z = z is independent of z,
Newton-Raphson and Scoring reduce to the same functional
at Fy. If F,, is the empirical distribution of {(x;, y,)} then
statistics and functionals are related as follows: B = B(F,),
Bo = B(F,), & = ng(F,), and Hy = nH(F,).

For both Newton-Raphson and Scoring the multiplication
rule yields

IF(x, y; B)
= IF(x,y; o) + {H(Fo)} ' IF(x,y;8), (3.1)

because g(Fp) = 0. In the following we suppress the depen-
dence of IF on (x, y). Fisher consistency and symmetry of
the residual distribution for F, yield
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y—z'8

1F(g) = 0\0( )W(x m(Fg), C(F3))z
—Epo[s//“)(y——UZtg)W(X, m(Fé‘),C(Fé‘))ZZ’]

X IF(B,) + o' g(Fo)IF(5,)

+ aEFo[s&( Y-z% )IF(w(X, m(-), C(-)))Z]
+IF(&o)EF0[(Y Z‘B)W,(Y—GZ'B)

X w(X, m(F3), C(Fs))Z]
- aw(y%fﬁ)w(x m(F%), C(F¥))z

— H(Fo)IF(Bo).
Inserting the latter expression in (3.1) gives

IF(x, y; B)

o (Y= 2Z8
= (1) ot EEE i, mF), i)
This expression agrees with the influence function of the
fully iterated GM estimate with weight function w (Hampel
et al. 1986).
Alternatively, observe that by Theorem 4.1 the one-step
GM estimator has the following asymptotic representation:

B=8+n" i Q_lZiWiU'//(

i=1

Z;GZ—B) +0,(n"117), (3.2)

where Q is as in D1 of Section 4.3. The summand in (3.2)
shows the contributions of the observations to the deviation
of 8 from B Following Krasker and Welsch (1982) we call
the corresponding function, Q~'zw(z) s W((y — z'8)/ ¢), the
influence function.

Remark 3.1. If an estimator has an influence function,
then general results of He and Simpson (in press) imply that
the bounded-influence property is necessary rather than suf-
ficient for local stability of the estimator. A stronger result
would be to establish that the bias sensitivity is bounded.
Martin, Yohai, and Zamar (1989) studied bias properties of
certain S estimators and GM estimators.

The Huber estimates, which used bounded ¢ but w(-)
= 1, bound the residuals but not the influence of the position
in the design space. These estimators are susceptible to le-
verage points; that is, to outliers in the design space. On the
other hand, if ¥ and |z|w(z) are both bounded, then the
Mallows estimators bound the joint influence of the residuals
and the position in the design space.

4. LARGE SAMPLE THEORY

To provide a rigorous large sample theory on which to
base precision estimates and other inferences, we derive
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asymptotic representations for the one-step GM estimators.
The preliminary estimates (5o, &) need only be n’-consistent
for some 7 € (4, 1. For instance, 8, might be the LMS
estimate, which converges at the rate n~!/3 (Davies 1990;
Kim and Pollard 1990; Rousseeuw 1984), or the least
trimmed sum of squares estimate (Rousseeuw 1984 ), which
converges at the rate n~'/2,

The rate of convergence of the remainder in the asymptotic
representation depends on the rate of convergence of the
preliminary estimator. Although any rate better than n~1/4
suffices for the one-step estimator to be root-# consistent and
asymptotically normal, a better rate of convergence for the
preliminary estimator implies a better rate of convergence
for the remainder. In the following let

= zn:E['//(l)(Ci/U)]WiZiZi- (4.1)
i=1

Theore{n 4.1. Assume conditions A1-D2 of Section 4.3.
Suppose 8o — 8 = O,(n"") and 6o — 0 = O,(n"") for some
7 € (4, 4]. Then for Newton-Raphson, n™!(Hy — Q,)

,(n~7) and
n~'2Hy(B — B)
=n""2¢ 3 Wi/ o)wiz; + O, (n'?77).  (4.2)

i=1

The same is true of Scoring if n™! 27, ||z;|| = O(1).
Theorem 4.1 implies that Hy(8 — ﬁ) is asymptotically
normal with mean 0 and covariance A4,,, where

Ay = 0 S varlile/ o) whziz!.

i=1

(4.3)

In practice we estimate A,, by M,. The following result shows
that this works.

i Theorem 4.2. Assume conditions A1-D2 and suppose
60 - 6 = Op(l’l—‘r) and 6'0 -0 = Op(l’l_r). If n! 7=|
w#|lz]|* = O(1), then nonexchangeable M, satisfies

n~ (Mo — A4,) = 0,(n™7), (4.4)

and hence M2 Hy(B — B) = Z, + O,(n'/*7?"), where Z,
has mean 0, covariance I, and is asymptotically normal. The
same is true for exchangeable M, if instead n™' 27, |z
= 0(1).

4.1 Effect of Asymmetry

Condition D2 of Theorem 4.1 is essentially symmetry of
the error distribution. Carroll and Welsh (1988) and Welsh
(1989) noted that the Huber and Mallows GM estimates of
the slope are consistent even when the errors are asymmetric.
This kind of result extends to the one-step versions as well.
We show that if the errors are iid, then the asymptotic bias
introduced by asymmetry is absorbed in the intercept, and
we provide asymptotic expansions for the slope estimates.
Asymmetry implies that the Scoring and Newton-Raphson
estimators have different limiting behavior. In particular, the
Scoring estimate of the slope vector is root-n consistent,
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whereas the Newton-Raphson estimate fails to improve on
the rate of convergence of the preliminary estimate.

Partition 8 = (9, v ’) into intercept 7 and slope vector v,
and do the same for §, and 8. Even if the error distribution
is asymmetric, + is identifiable as the value such that the
distribution of y; — x!+ is independent of x; (Carroll and
Welsh 1988). Hence it is reasonable to expect n"(yo — v)
= 0,(1) even in the asymmetric case, as long as the errors
are homoscedastic. For a fully iterated GM estimate the in-
tercept n may be defined by the condition

E‘I/(%’) = El,,(y’%‘_xl’y) =0.

As different choices of ¢ give different values of # in the
asymmetric case, we can expect only that n'(7o — no) = O,(1)
for some 7 not necessarily the same as 7.

Let 8o = (no, v")" be the limiting value of the preliminary
estimator and define u; = y;, — ziBp=¢; + n — o fori =1,

, n. Replace ¢; by u; 1n the deﬁmtlon of Q,. In corre-

spondence with the partition of 3, we partition the Hessian
matrix and Q,:

(4.5)

Ho—[h“ h[(l)] 0 =[6111 qt(l)]
hay Hp)’ " lany O
Here A, and g,, are scalars and H,, and Q,, are (p — 1)
X (p — 1) symmetric matrices. Define H,,., = H,,

— h(yh{1y/ by and similarly define Q,;.,. To simplify the
analysis, we center the x’s by their Mallows-weighted means
so that

z Xiw; = 0.

i=1

(4.6)

This centering implies that Q,,.; = Q) and, for Scoring,

Hy,., = Hyp.

Lemma 4.1. Assume conditiqns A1-C2. Assume DI,
replacing {¢; } by { % }. Suppose 8o — Bo = O,(n~") and 4,
— 0 = 0,(n""). Then for Scoring, n ™' (Hy — 0n) = 0,(n™7)
and

RV HL (R = ) = 1720 S xows (W /)

i=1
— E[{(u1/0)]} + Op(n'/>7%).

Assume also that y ®) has derivative ¢ ) with ||y ®|,, and
()% ®(+)|lsup both finite. Then for Newton-Raphson,
n~'(Hy.1 — Q) = O,(n"") and

§=v+ 00 3 xiw {Ww/o) - E[W(w/0)]}

i=1

aoa;

+ —(Yo ¥) + Op(n'137%),

where ¥(1) = Y(t) — aoai'¥ () and @, = E[Y ¥ (u,/0)]
fork=0,1,2.
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Remark 4.1. Ifthe preliminary estimate converges more
slowly than n~!/2 then the expansion for Newton-Raphson
implies n"(¥ — v) = (aoa2/at)n" (%o — v) + 0,(1), and the
asymptotic relative efficiency of Newton-Raphson versus
4o is atag?a;z?. This approaches infinity as the error distri-
bution approaches symmetry.

Remark 4.2. Both the Scoring and Newton-Raphson
versions of 7 converge in probability to 4y + oay/a;, which
is one step of a Newton—-Raphson algorithm for solving (4.5).
Hence, iteration can drive a, to 0. In theory, iterating k,
times to achieve ay = o(n""'/2) implies that the Newton-
Raphson k, step has the same asymptotic distribution as
does the fully iterated version.

Remark 4.3. In the asymmetric case, asymptotically
valid Wald-type inferences on the slope parameters may be
obtained by the Scoring method coupled with the following
modification of the exchangeable Mj:

n n
My =n7'65 2 {¥(ri/o0) — ¥}* 2 wix;xt,
i=1 j=1
where ¢ = n~' 27, Y(r:/ o). In this case M33/2Hp (5 — v)
= Zn2 + 0,(n'/*7?"), where Z,, has mean 0 and covariance
I,_, and is asymptotically normal.

4.2,

We next consider the large sample behavior of one-step
estimators when the errors are symmetrically distributed but
heteroscedastic. We show that Newton-Raphson and the
nonexchangeable version of M, provide valid large sample
inferences, whereas Scoring fails to improve on the rate of
convergence of the initial estimator.

Effect of Heteroscedasticity

Lemma 4.2. Suppose the errors ¢y, . . . , ¢, are indepen-
dent with ¢; ~ F;. Assume A2-D1 of Section 4.3, and assume
D2 holds for each F;. Suppose n"(Bp — 8) = O,(1) and
n(6o— o) = O,(1). Then both Newton-Raphson and Scor-
ing have expansions of the form

" Ho(f — B) = n'a 3 Wer/ o) wizs + Ty + Op(n~).

i=1

For Newton-Raphson 7, = 0, whereas for Scoring 7, is
asymptotically equivalent to T',(8, — 8) for a symmetric
nonstochastic matrix T,,.

Because of the heteroscedasticity, the limiting value of
0o depends on the estimator. Although ¢ has an effect on
the efficiency of 8, the Newton—-Raphson covariance estimate
Hy'MyH{! is asymptotically correct.

Theorem 4.3. Assume the conditions of Lemma 4.2. For
the Newton-Raphson version of H, and nonexchangeable
M, we have Mg'?Ho(f — B) = Z, + O,(n'/*2r), where Z,
has mean 0 and covariance I and is asymptotically normal.

4.3 Technical Conditions and Remarks

Al. Theerrors ¢, ..
bution function F.

., &, are independent with distri-
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A2. The score function ¥ is bounded and continuous.

Bl. ¢ has derivative ¢ (") such that (a) [|[¢ V| < o0
and (b) [ (+)¥ P(+) llsup < 00, Where || « ||syp is the supremum
norm.

B2. " hasderivative ¥ such that (a) [|¢ ®| 4 < 0,
(b) "(')¢(2)(')"sup < 00, and (C) "(')2¢(2)(°)"sup < 0.

Cl. Asn — oo the design satisfies (a) n™' 27, |z
Xwi=0(1)and (b) n™! 27, ||lz;]|*w; = O(1).

C2. The design satisfies lim,..,max, |z 2w?/
2 lzll*w? = 0.

Dl. lim,.n"'4, = 4 andlim,.n"'Q, = Q for some
symmetric positive definite matrices 4 and Q.

D2.  Ep[¥(ev)] = 0 and Er[evyV(ev)] = O for any
nonnegative scalar v. For example, ¢ is odd and F has a
density symmetric about 0.

Remark 4.4. We place heavy conditions on ¥ but weak
conditions on F. In the context of robust inference it seems
appropriate to place conditions on Y (which is under our
control ) rather than on F. The differentiability of ¢ (V) given
in B2 can be weakened by Lipschitz-type conditions, as in-
dicated in Lemma A.1.

Remark 4.5. For appropriately chosen Mallows weights
the present design conditions are weaker than the standard
conditions for Huber regression. In particular, taking o = 2
in (2.1) ensures that ||z;||2w; < Anax(Cy), so it is sufficient
that Amax(cx) = 0( 1 )a n_l 2 "Zi " = 0( 1 )a and E:‘=l
w? ||z;[| 2 > co. The asymptotics of the preliminary estimator
may require additional conditions; for instance, the condi-
tions given by Kim and Pollard (1990) or Davies (1990) for
least median of squares.

Remark 4.6. The conditions on y exclude piecewise lin-
ear score functions such as Hampel’s three-part redescender.
Simpson, Ruppert, and Carroll (1989) gave an alternative
proof for such estimators. Discontinuities in ¢ (1) can lead
to instability in the large sample variance if there is substantial
discreteness in the data (Simpson, Carroll, and Ruppert
1987).

5. LAND USE/WATER QUALITY

Haith (1976) collected data relating land use to water
quality. Each case was a river basin in New York State. Basins
were selected by two criteria: independence (no basin in the
sample being a tributary of another basin in the sample) and
completeness of the data. All 20 basins satisfying these criteria
were included in the sample. The data, which also were given
in Allen and Cady (1982, table 2.1), include five variables,
nitrogen concentration and four land use variables given as
a percentage of total land usage: N = total nitrogen; AC
= active agriculture; FR = forest, brushland, or plantation;
RS = residential; and CI = commercial/industrial. Haith
(1976 ) developed linear regression models relating N to sub-
sets of the four other variables. Because the purpose of mod-
eling was to attribute nonpoint source pollution to the various
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types of land use, the parameter estimates and their standard
errors were of primary interest.

The covariates exhibit sizeable linear dependencies, and
there are design outliers. AC and FR have a negative asso-
ciation, except for case #5 (the Hackensack River), which
is an outlier in the design space with low AC and FR values
and high RS and CI values. Much of the variation in RS
and CI is due to five rivers, and the observed RS and CI
values exhibit a strong positive association. Their sample
correlation is .86; their sample correlation excluding the riv-
ers with the two highest RS values is .93. With such a design
it is difficult to disentangle the residential and commercial
effects reliably. To alleviate the collinearity, we replace RS
and CI by their sum, UR := RS + CI = percent urban land
usage. If the goal were to predict N, one might instead use
stepwise regression to select a subset of the variables; this
was Haith'’s strategy. However, simpler models do not attain
a goal of relating all land uses to water quality. Aggregating
RS and CI is a compromise made necessary by the design
that still allows us to relate all land uses to pollution.

Case #5 (the Hackensack River) is such a severe design
outlier that data analysts likely would set this point aside
rather than including it in a linear least squares analysis. We
shall present results both with and without case #5. Although
inferences that rely heavily on this point are too unstable to
be trusted, it would be of interest to determine whether the
Hackensack River conforms roughly to the model suggested
by the other rivers or whether it points to some alternative
phenomenon in urban rivers. The Mallows weights that we
use essentially delete case #5 in the fitting algorithm. Such
downweighting of design outliers and response outliers is
meant to limit their influence on the fitted model and as-
sociated inferences, but it also has the benefit of accentuating
the inadequacy of the model for these points, possibly making
it easier to discover alternative and more satisfactory models.
Thus, although outliers may be downweighted or even de-
leted during the fitting of the model, this does not imply that
they are “discarded” in the analysis of the data. They are in
fact emphasized.

For the full data, ordinary least squares (OLS) regression
of N on the land use variables yields (with standard errors
in parentheses):

N = 1.43(£1.29) + .0085(*.016)AC
— .0084(+.015)FR + .029(+.028) UR.
Omitting case #5 yields instead
N = 1.70(£.76) + .0021(%.0094)AC
— .014(£.0086)FR + .16(*.028) UR.

Table 1. Linear Model Parameter Estimates and
Standard Errors for New York Rivers Data

oLS LMS M GM
AC .0028 (.0043) .0157 .0175 (.0021) .0164 (.0030)
FR .0058 (.0020) .00019  .0022 (.00096) .0026 (.0014)
UR .0437 (.016) A7 179 (.0077) .203 (.046)
OTHER  .0143 (.013) .0364 .0251 (.0063) .0239 (.0077)
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Table 2. Linear Model Parameter Estimates and Standard

Errors Excluding the Hackensack River

oLS LMS M GM
AC .0191 (.0026) .0175 .0177 (.0018) .0162 (.0029)
FR .00322 (.0013) .00114  .0023 (.00089) .0024 (.0013)
UR 173 (.025) 136 .156 (.018) 195 (.052)
OTHER .0170 (.0076) .0335 .0276 (.0054) .0263 (.0070)

It is clear that case #5 would have considerable effect on the
OLS inferences about urban effects were it included.

The parameter estimates and standard errors for the co-
variates in the above model are somewhat difficult to inter-
pret, because the parameters represent incremental effects
over other land uses not measured. We therefore repara-
meterize the model by replacing the intercept with the con-
structed variable OTHER := 100 — AC — FR — UR. This
reparameterization leaves the design space intact but provides
directly interpretable parameters. For instance, the AC pa-
rameter is the nitrogen that can be attributed to each per-
centage of agricultural use.

Tables 1 and 2 give estimates and standard errors using
several methods: OLS; LMS; a three-step Huber estimator
(M)—that is, Mallows with a = 0, starting from LMS; and
a three-step Mallows estimator (GM) with o = 2, starting
from LMS. The three-step estimates used the scoring method,
exchangeable standard errors, and a three-part redescending
Hampel ¢ function with tuning constants (a, b, ¢) = (1.5,
3, 8). The normalizing constant in the scale estimate was
set equal to x = .6745, but standard errors were inflated by
the factor { W/(W — p)}'/?, where W is the number of ob-
servations with nonzero weight. The Mallows weights for
GM used b = X?(.95; p — 1). MVE estimates of location
and scatter for the covariates were computed using a
FORTRAN program supplied by B. van Zomeren. LMS was
computed via the S-plus (Statistical Sciences, Inc.) function,
LMSREG. S functions for the GM steps and diagnostics are
available from the authors on request.

On deletion of case #5, the nitrogen concentration attrib-
uted to urban use by OLS quadruples and the standard errors
become considerably smaller. It is clear that the nitrogen
concentration for case #5 is much less than was predicted
by linear extrapolation from the remaining data. The LMS
and M parameter estimates are not affected drastically by
the presence or absence of case #5; however, the M standard
error for UR is more than doubled by the deletion. The GM
parameter estimates and standard errors show little change
on deletion of case #5. The M standard error for UR seems
overly optimistic, even after deleting case #5, given the
change in the estimates induced by the deletion and the dif-
ferences among the estimates. The standard error associated
with GM is perhaps more realistic.

Table 3 provides diagnostics for selected rivers based on
the full data: diagonals of the OLS projection matrix (4;);
OLS studentized residuals (¢S ); standardized residuals for
LMS (sM™8), M (sM), and GM (s¢™); and the Mallows
weights (w;). The standardized residuals s; were scaled by
median { |residual | } /.6745. McKean, Sheather, and Hett-



446
Table 3. Diagnostics for Selected Observations
From the New York Rivers Data

iy ts siMe st s W

3 .365 726 0 .206 .302 .286

4 170 .588 -.712 -1.16 -2.08 .0662

5 957 -3.29 —44.6 -34.1 —41.2 .000585

6 .053 .839 -1.35 -1.10 -1.76 .0637

7 .063 2.89 0 —.041 -1.15 .0175
19 315 -212 —5.38 —3.52 -3.62 1.00

mansperger (1990) developed a method of studentizing
rather than standardizing robust residuals that likely will be
helpful in studying outliers.

Case #5 is an OLS leverage point in the full data, and it
exhibits a moderately large OLS studentized residual. Clearly
this point will have a large effect on the OLS fit (Cook 1977).
The OLS residuals not shown were all smaller than 1 in
magnitude, perhaps a clue that case #5 has inflated the scale
estimate. The extreme discordance of case #5 is obvious from
the more robust standardized residuals, and the MVE-based
Mallows weight also identifies it as extremely outlying in the
design space. The Mallows weights not shown were all equal
to 1. The corresponding MVE-based Mahalanobis distances
(Rousseeuw and van Zomeren 1990) provide a clear iden-
tification of several urban rivers (cases #3-7). The robust
residuals also point to case #19 (the Oswegatchie River) as
a possible response outlier. It is suggestive that case #19 is
the largest river basin and case #5 the smallest (Haith 1976,
table 2).

Table 4 presents the same diagnostics after exclusion of
case #5. Only case #19 remains as a response outlier. Case
#7 emerges as a moderate OLS leverage point. The Mallows
weights excluding case #5 are unchanged, because the re-
sampling algorithm (Rousseeuw and van Zomeren 1990)
selects the same subsample. Is there a pattern in the residuals?
Figure 1 shows plots of residuals versus UR for OLS, LMS,
M, and GM after excluding case #5. The plot for GM reveals
a pattern of negative residuals for the more urban rivers.
Coupled with the huge negative residual of the much more
urban Hackensack River, there is evidence of nonlinearity
for large values of UR. The pattern fails to emerge in the
other plots, for which the estimators do not have the
bounded-influence property. It is clear, however, that addi-
tional leverage points could influence the fit in the plots for
OLS, LMS, and M.

The nonlinearity revealed by the GM plot suggests that
an alternative mechanism might come into play in urban

Table 4. Diagnostics for Selected Observations
Excluding the Hackensack River (#5)

i ha tPLs siMs s¥ sfM W,

3 374 577 153 .251 .293 .286

4 279 -1.09 0 —.952 -2.20 .0662

6 178 —.650 -.783 —.976 —-1.96 .0637

7 .640 .865 2.56 812 —-1.07 .0175
19 .323 —-3.021 —-7.92 —4.68 —4.51 1.00
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areas. Perhaps urban areas have more efficient waste treat-
ment, which would mitigate the effects of urbanization on
water quality. One could attempt to introduce nonlinearity
into the model to account for such diminishing effects; how-
ever, because nearly all information about the nonlinearity
is provided by the four most urban rivers, the effect will be
difficult to model reliably.

The preceding analysis leads us to some tentative conclu-
sions, with caveats about the hazards of interpreting obser-
vational data. The significant contribution of agricultural
use to nitrogen content persists across estimators, so this
appears to be a reliable attribution. Forestland also persists
as a minor, marginally significant contributor. Urbanization
of rural rivers is associated with relatively large increases in
nitrogen content, but there is evidence that further urban-
ization of substantially urban rivers has less effect. Given the
size of the data set and the collinearity, attribution of nitrogen
to sources is very difficult; we would not be surprised if others
discovered analyses that they prefer to ours.

6. CONCLUSIONS

We have examined the behavior of one-step Mallows type
robust regression methods in the linear model using either
Scoring or Newton-Raphson. Two major general conclu-
sions have emerged:

1. Under reasonably general conditions, the regression
parameter estimates inherit the breakdown properties of the
preliminary estimates of the regression parameters and the
multivariate location and scale estimates of the design x’s.

2. It makes little sense to confine attention to regression
parameter estimation and to completely ignore the associated
problem of inference. Even when regression parameter es-
timates have reasonable breakdown properties, their esti-
mated standard errors may change radically with the deletion
of a single observation.

L3

We have shown how to construct Mallows regression pa-
rameter estimates with the same breakdown properties as
their standard error estimates. The Mallows weights depend
on a user-chosen parameter « in (1.1). When using a re-
descending ¥ function, the Scoring method with a = 2 is
recommended for inference; o > 1 suffices for point esti-
mation.

In our analysis of the New York rivers data, we used LMS
as the preliminary regression parameter estimate and the
MVE scatter matrix estimate for the design. Both have high
breakdown points, but they are extremely inefficient esti-
mates and might have undesirable small sample perfor-
mance; see, for example, Cook and Hawkins (1990). In our
example this was not a problem. In other settings, however,
one might be more successful in lowering the breakdown
requirement from 50% to something less ambitious, such as
20%, to avoid the exact fit property (Rousseeuw and Yohai
1984). Moreover, although any rate of convergence better
than n~!/4 is sufficient for the one-step GM estimator to be
root-n consistent and asymptotically normal, this approxi-
mation is more accurate if the preliminary estimator has a
better rate of convergence. Hence improved performance
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Figure 1. Residuals Versus Percent Urban Usage for Least Squares (OLS), Least Median Squares (LMS), a Three-Step M Estimator, and a Three-

Step GM Estimator, Excluding the Hackensack River.

may occur using more efficient preliminary estimates such
as S estimates (Rousseeuw and Yohai 1984; Davies 1987).
Another way to improve the starting value is to iterate more
than once, as in our analysis of the New York rivers data;
we have observed empirically that three-step GM estimates
starting from LMS or MVE are somewhat more stable than
the one-step versions.

The behavior of one-step regression estimators with
asymmetric and heteroscedastic errors deserves further study.
If the regression errors are iid and symmetrically distributed,
then both Scoring and Newton-Raphson have the standard
large sample theory of fully iterated GM estimates. If the
errors are asymmetric, however, then only Scoring improves
on the rate of convergence of the preliminary estimate. On
the other hand, if the errors are symmetric and heterosce-
dastic, then only Newton-Raphson shows this improvement.
Fully iterated Mallows estimates work in either case, but
they may give up the high breakdown point (Maronna et al.
1979).

The complexities encountered in the analysis of the land
use data suggest that several important areas of research need

further development, including stability of inference, robust
model selection, and robust diagnostics.

APPENDIX: TECHNICAL PROOFS AND LEMMA

Proof of Theorem 2.1. First observe that | Hy'goll = |l goll/
| Amin(Hp)|. Because « = 1, we have

52|l goll?

n
= "wzllsup E "21" 2W12 = ”\l/zusup
=1

n
X2 AL+ Imall? + x, — my|l 2} wi

=1

= ll#/zllsup[n(l + lml?) + b é [, — m| ]

i=1 (xi - mx)tc;l(xi - mx)
<l lsup {1 + 17 ® + DA\max(Ci) } -

Because ¢ is bounded and C, has breakdown m/n, | gl has
breakdown at least m1/n. We now must show that no matter what
one does with the “bad” points, A, (Hy) > 0.
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Scoring. 'We have that

n p
)\min( 2 wiziz§) = >‘min( > Wizizf)

i=1 i=1

p
> (inf w,)kmin(z zizi) .

1<j=p i=1

(A1)

Because by convention the first p of the { z; } are linearly indepen-
dent, we need only consider the first factor on the right side in
(A.1). This term is 0 only if sup,;<,{(x; — m.)'Cx'(x; — m,)}
= o0, which cannot happen because C, has breakdown m/n and
the first p observations are “good.” It thus suffices to show that

n

2¥vWO(r/5)>0.

i=1

(A2)

By (2.3), there are at least n/2 observations with |r;|/6 < a; so
that if ¥ is nondecreasing, application of (2.2) suffices to prove
(A.2). Under Assumption B we find that the left side of (A.2) is
atleast n/2(d, — @,), and (A.2) then follows from (2.4).

Newton-Raphson. We must show that under arbitrary manip-
ulation of the “bad” points _
)\min[E \b(')(ri/&)WiZiZ§} > 0. (A.3)
i=1
When ¢ is nondecreasing, ¢ ")(v) = 0 and ¢ ()(r;/6) = d, > 0 for
at least n — m — n/2 “good” points. Thus (A.3) follows from
Assumption C.

Proof of Lemma 2.1.  For the first part of the lemma, it suffices
to replace Hy by 27 w;z;zi. As in (A.1), Apax (D7 w;zizt)
= Apax(Zfen-me1 WiZ;2}). Now letting ||z;| = oo forj=n—m+ 1,
we have w; ~ b*?(x[C;'x)™*? ~ b*?|x;|~%(gCx'g) ">
~ b*?||z;|| =+ gCx'g)*/?, where g; = x;/| x:||, because C, and
m; have breakdown m/n. But because g!C:'g, < Amax(C;')
= {Amin(Cyx)} 7', it then follows that in the limit, as Izl = oo,
(infn—m+lsjsnwj) = %{bkmin(cx)}alzllzj"_ar and hcnce that
)\mx(z?ﬂ WiZ,'Z:')Z %{bxmin(cx)}a/z )\max(z;l-n—mﬂ dldf"zl" 2—a).
This can be made to diverge to oo if @ < 2. If @ = 2, then
Amax( 2oy wizizd) < Z0y |zil*wi < 20, (1 + lmdl? + llx;
= m*)w; < n{l + [[m,]|2 + bAmax(Cx) }, the last step following
because a = 2.

Proof of Theorem 4.1. We derive a more general result that
holds even if the errors are asymmetric, as in Section 4.2. Let 5, be
the limiting value of the preliminary estimate of the intercept. Let
Bo = (n0, ¥')', u; = Vi — ziBo, and G(B, o) = 0 Z1-y Wu;/ o) Wiz
=0 2 (1 + 2i(Bo — Bo))/ o) W;z;.

Newton-Raphson.
theorem yield

Conditions Bl and B2 and the mean value

G(B, 30) = 60 2 W(ri/Go)wizi + 2 ¥ (ri/ Go)w;zizi(Bo — Bo)
i=1

i=1

a3 ¢<2>(ﬁ+—z"%@)wfzi<z;(ﬁo— B0))?

= Hyxr(Bnr — Bo) + 0(361 180 — Boll> T willz 3) >

i=1
(A.4)
where B, is on the line segment between 8, and f,. On the other

hand, applying the mean value theorem to g(s) = G(8, s) yields,
after some simplification,
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G (B 50)= 30 3 s/ o)Wz

i=1

—(6o—0) 2 \“”(“i/")(ui/ﬂ)wtzi
i=1

+3 (o= o)™ 2 0w /) (/7w

i=1
where & is between 6, and o. Equating (A.4) and (A.5),
HNR(BNR —Bo) =00 2 {Wwi/o) — ao}WiZi
—(60—0) 2 {'//“)(ui/ff)(ui/ﬂ) - bl}wizi
+ {aobo + by(0 — 60)} X wiz;
+0(55" 160 — Boll> T willzill®)
+0((60 — 0)%67' 2 willz:),
with a, = E[Y(u,/0)] and b, = E[Y V(u,/0)(u/0)].

The assumption on gy, Conditions A1, A2, B1(b), C1, and Che-
byshev’s inequality imply #™'2(6o — o) 2 {Y(w;/0) — ao}wiz;
=0,(n7") and n7%(5p — o) T {Y (/o) (;/0) = bi}wiz;
= Oy(n7"). Moreover, by Cl, n™'%65" 160 — Boll> T willzl?
= Oy(n"**) and n™"*(6o — 0)% 7' T wil|z| = 0,(n"/* 7).
Observing also that 7 < § implies 27 — § < 7, we have
n~'2Hyr (Bnr — Bo)

=n""2 T {W(u;/0) — ap}wiz; + B, + O,(n'>>), (A.6)
i=1
where the bias term is B, = n™'2{ao6o + by(d — 6o)} Ty w;z;.
Condition D2 implies B, = 0, which establishes (4.2 ) for Newton—
Raphson.
Scoring. Observe that

Hs(Bs — Bo) = Hxr(Bnr — Bo) + (Hs — Hnr)(Bo — Bo). (A7)
Hence if we show that the components of (Hs — Hyg) are of order
O,(n'"7), it will then fqllow that expansion (A.6) holds with Sng
and Hyg replaced by (s and Hg. Setting g(f) = ¢(V(¢) and ¢;
= n~'w;z;zy in Lemma A.1 shows that

1 n
w7t = 1710, + O =12 2 wilalP(1 + )
i=1

1 n 1/2
lE2d”). we
i=1

replacing ¢; by u; in the definition of Q,. On the other hand, set-
ting ¢; = n™' shows that n™' I {y (r;/6,) — E[YP(u;/0)]}
=0,(n""(1 +n7' Z ||z||) + n~/2), from which it follows that

n~'Hs=n"'Q,
o w1403 ||zi||)n-' = wlal?). (49)
i=1 i=1
Comparing (A.8) and (A.9) shows that n ™' (Hs — Hyg) = O,(n™"),
whence
n~'2Hg(Bs — Bo)

=n"'2% {Wui/o) — ag} wiz; + B, + 0,(n'>7). (A.10)
i=1

Lemma A.1. Suppose {u;} are independent, n"(6, — B,)
= Oy(1),and n’(6o — 0) = O,(1) with ¢ > 0. Let { ¢; } be a sequence
of finite constants. If a measurable function g satisfies the Lipschitz
condition
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lg(s) —g()| < Lis—t]/(1+ |¢t]),
for a finite constant L, then

. (ui + 21 (B — 30))
o

(alls, 1) (A.11)

n
2 clg

i=1

—E[g(ui/d)]]

- op(n-f S lal(1+ 2l + [2 c%]”z).

Proof. Condition (A.11) implies

g( u; + Zf(Aﬁo - ﬁo)) — e /i) < L lzf(ﬁoh_ Bo)|
0o 0o

||z, 1180 — ﬁo"
)

and |g(u;/60) — g(u;/o)| < Llulls" — o7 /(1 + Jula™"

< L6g'|o — 6o|. Hence

n U; +Z: )

> Icil‘g(———éf"——@) — g(u;i/ o)
i=1

L(uﬁo—ﬁou; lo - vol) > el + lzl).

i=1

Condition (A.11) also implies that g is continuous and bounded
between g(0) = L. Hence the sum A, = 27, ¢;{g(w; /o) — E[g(u,/
¢)]} has mean O and variance bounded by {|g(0)| + L}? 2
c?. Chebyshev’s inequality implies A, = O,({Z ¢2}'/?).

Proof of Theorem 4.2.  To prove the result for nonexchangeable
My, use Lemma A.1 with g = Y2 and ¢; = n™'w? zzzy(k, | € {1,
..., n}). For exchangeable M, set ¢; = n~' to show n™! 2
V2(n/50) = EY*(e1/0) + Op(n~7(1 + 17" 2 | z:])).

Proof of Lemma 4.1. The expansion for Scoring follows from
(A.10), because 27, w;x, = 0 and Hy is block diagonal.

For Newton-Raphson, first recall that n™! (Hyg — Q,) = O,(n™")
by (A.8), and g(;, = 0 due to the centering in (4.6). It follows that
h(l)hrll = 0p(n_’) and

n_'sz.l = n"sz + OI,(n'Z’ = n_'sz + 0,,(n"). (A12)
Next rearrange (A.6) to obtain
H22~1("Af —-v)= h(l)hl_l](bn +S)+ S+ Op(nl_ZT), (A.13)

where b, = {ag6o + b1(d — 50)} Z w; = {a6o + Op(n™7)} Z W,
Sy =0 i {Wwi/o) — a}w, = O,({Z w}}'"?),and S, = o
2 {Wu /o) — ap}wix,. In (A.13) the term hghi!'S,
= 0,(n''*"") = 0,(n'"?"), which can be absorbed into the remainder.
Further we have A1} b, = ai'ap6o + O,(n™7), so it remains to detail
the large sample behavior of of(;). An application of the mean
value theorem yields

ol = 6o 2 v D(ri/ o) wix,

=60 2 ¥ wi/Go)wixi + 2 @ (i) 50)wixizt (Bo — Bo)

+0(55"' 180 = Boll* ¥ Pllsup Z willzil) . (A14)
Further expansion of the first term in (A.14) yields
G0 2 ¥ O(ui/ Go)w; x;
=G0 2 ¥V (wi/o)w,x; — —o)Zw‘z’(u,/o)(u./a)w X,

+0(("° O an 2 il )

where & is between o and 6,. Because of the centering, Chebyshev’s
inequality and the conditions on ¢ and x imply that 2
YO /5)Iwx, = Op(n'?) and Z ¢y P(u;/o)(wi/o)wix;
= 0,(n'"?). Hence 6o = ¢ Nw;/6o)wix; = o2 {yNw,/0)

449

—a}wix; + O,(n"*7) 4+ 0,(n'"*). To handle the second term
in (A.14), note that 2 ¢ @ (u;/ Go)w;x;izt = ap 2 w; x;zt + Op(n~"
T w)+ O,({Z w?}'?) = ai'alaq); On] + Oy(n'"7). Thus we
have

ooh(y =@ > {‘Pm(ui/tf) —a,}wix;
+ a7 @0 (% — v) + 0,(n'77).  (A.15)
Combining (A.12), (A.13), and (A.15) completes the proof.

Proof of Lemma 4.2. The proof of Theorem 4.1 for Newton—
Raphson extends immediately to the present case. To handle Scor-
ing, use (A.7) and observe that, by Lemma A.1,

n'(Hyr — Hs)

S5 ] oo oar
i=1 =1

As an example where this matrix fails to vanish asymptotically, let
the empirical covariance between E[y (V(e;/a)] and w;z2, converge
to unity as n = co0.

Proof of Theorem 4.3. This follows from Lemma 4.2 and an
application of Lemma A.1 to M,.

[Received January 1990. Revised February 1991.]
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