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Influential Observations, High Leverage
Points, and Outliers in Linear Regression

Samprit Chatterjee and Ali S. Hadi

Abstract. A bewilderingly large number of statistical quantities have been
proposed to study outliers and influence of individual observations in
regression analysis. In this article we describe the inter-relationships which
exist among the proposed measures. An examination of these relationships
leads us to conclude that only three of these measures along with some
graphical displays can provide an analyst a complete picture of outliers
(major discrepant points) and points which excessively influence the fitted
regression equation. Illustrative examples based on real data are presented.

Key words and phrases: Influence, leverage, outliers, regression diagnostics,

residuals.
1. NOTATION
We consider a multiple linear regression model:
1) Y=X8+¢

where Y is an N X 1 vector of values of the response
(dependent) variable, X is an N X p full-column rank
matrix of known predictors (carriers, factors, regres-
sors, explanatory variables) possibly including one
constant predictor, 3 is a p X 1 vector of unknown
coefficients (parameters) to be estimated, and ¢ is an
N X 1 vector of independent random variables each
with zero mean and unknown variance o2.

Following standard notation such as that in Velle-
man and Welsch (1981), we use y; and x; to denote the
ith row of Y and X, respectively, and X; to denote the
jth column of X. By the ith observation we mean
(x::;), that is, the ith row in the matrix (X:Y). We
also use the subscript notation “(i)” or “[j]” to indicate
the deletion of the ith observation or the jth variable,
respectively. Thus, for example X; is the matrix X
with the ith row deleted, X|;; is the matrix X with the
jth column deleted, and § is the estimated parameter
vector when the ith observation is deleted. We reserve
the symbols Y, e, and SSE to denote the vector of
fitted values, the vector of residuals, and the residual
sum of squares when Y is regressed on X, respectively,
and the symbols R; and W; to denote the vectors of
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residuals when Y and X; are regressed on Xj;;, respec-
tively. Finally, we use M, M”, M~7T to denote the
inverse, transpose, and inverse of the transpose of a
matrix M, respectively.

2. INTRODUCTION

In fitting the multiple linear regression model (1)
by the method of least squares, we have:

(2) B=(X"X)"X"Y,
(3) Var(f) = ¢*(X"X)7,
(4) Y = X8 = PY,
where

(5) P=X(X"X)"'XT,
(6) Var(Y) = ¢°P,

) e=Y-Y=(-P)Y,
(8) Var(e) = ¢%(I — P),
and

©) 52 = Neiep,

379

the residual mean square estimate of Var(e;) = o2

It is well known that these (and other) quantities
can be substantially influenced by one observation or
a few observations; that is, not all the observations
have an equal importance in least squares regression
and, hence, in the conclusions that result from an
analysis. It is, therefore, important for an analyst to
be able to identify such observations and assess their
effects on various aspects of the analysis. To this end,
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several methods have been proposed in the statistical
literature.

Before reviewing these methods, we first define
what is meant by influence. A definition, which seems
most appropriate, is given by Belsley, Kuh, and
Welsch (1980):

An influential observation is one which, either
individually or together with several other obser-
vations, has a demonstrably larger impact on the
calculated values of various estimates . . . than is
the case for most of the other observations.

This definition, although of a subjective nature, im-
plies that one should, at least, be able to order obser-
vations in a sensible way according to some measure
of their influence.

An observation, however, may not have the same
impact on all regression outputs. The question “Influ-
ence on what?” is, therefore, an important one. An
observation may have influence on 8, a linear combi-
nation of 3, the estimated variance of B, the fitted
values, and/or the goodness-of-fit statistics. The pri-
mary goal of the analysis should determine which
influence to consider. For example, if estimation of 3
is of primary concern, then measuring the influence
of observations on @ is appropriate; or if prediction is
the primary goal, then measuring influence on the
fitted values may be more appropriate than measuring
influence on 3

Influence measures are numerous. We review the
most common ones and show the inter-relationships
that exist among them. These measures can be clas-
sified into five groups:

1. Measures based on residuals,

2. Measures based on the prediction matrix,

3. Measures based on the volume of confidence
ellipsoids,

4. Measures based on influence functions, and

5. Measures based on partial influence.

3. ANALYSIS OF RESIDUALS

One of the early methods of detecting model failures
is examining the least squares residuals

a

(10) e =y — xf

where x; is the ith row of X, or preferably, examining
a scaled version of e;, that is,

€;

(11) ei(o) = a_i_J_—;?i

where p; is the ith diagonal element of P (cf. (5)). Two
special cases of (11) are:

€;

(12) t; = e(o) = &_1_—~/——5,-

where ¢ is as defined in (9), and

eA
13 t¥=e(6y) = —F—
(13) ) sl p.
where
s _ YU = Pu)Yiy
14) (N-p-1

_ (N — p)s* e?
(N-p-1 WN-p—-1)Q1-p)

is the residual mean square when the ith observation
is omitted. Identity (14) was given by Beckman
and Trussell (1974). We avoid using terminology
here, because it is both confusing and conflicting.
For example, (13) is called the “cross-validatory”
or “jackknife” residuals by Atkinson (1981a),
“RSTUDENT” by Belsley, Kuh, and Welsch (1980),
and “studentized” residuals by Velleman and Welsch
(1981).

Several authors, e.g., Velleman and Welsch (1981),
Atkinson (1981a), and Belsley, Kuh, and Welsch
(1980), prefer ¢t ¥ over t; for the following reasons:

1. t¥ is the t-statistic for testing the significance
of the coefficient of the ith unit vector w; in the
mean-shift outlier model Y = X8 + w6 + ¢ (see,
e.g., Belsley, Kuh, and Welsch (1980)) and under
Gaussian assumptions, it follows a t-distribution with
(N — p — 1) degrees of freedom (df) (Beckman and
Trussell (1974)) for which tables are available,
whereas, t?/(N — p) follows a beta distribution (Ellen-
berg, 1973).

2. A little algebra will verify that (see Atkinson,
1981a):

(15)  tr=tJ{(N—-p—-1)/(N—p—t},

from which we see that ¢t} is a monotonic transfor-
mation of t; and that t¥*> — o as t? — (N — p).
Therefore, t} reflects large deviations more dramati-
cally than does ¢;.

3. The estimate ¢ is robust to problems of gross
errors in the ith observation.

We now define what is meant by outliers in multiple
linear regression. An outlier in the response-factor
space is a point (x;:y;) with large ¢t; or ¢t }. Outliers are
usually detected by plotting ¢; or ¢t * versus other vari-
ables such as Y, each Xj, and in serial order (see, e.g.,
Chatterjee and Price (1977), Seber (1977), Daniel and
Wood (1980), and Draper and Smith (1981)).

An outlier need not be influential. As an example,
consider the data given by Mickey, Dunn, and Clark
(1967) and plotted in Figure 1. If a straight line
regression model is fitted to the data, we see clearly
that the observation marked by an “0” is an outlier.
The fitted line, however, will hardly change if this
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Fi1G. 1.  Plot of Mickey, Dunn, and Clark (1967) data. Y denotes a
child’s score in an aptitude test and X denotes the age of the child
(in months) at first word.

data point is deleted. This observation has little influ-
ence on . If an observation has little influence on the
results, there is little point in agonizing over how
deviant it appears. This example illustrates the exist-
ence of an outlier that does not matter (Andrews and
Pregibon, 1978).

On the other hand, influential observations need
not be outliers in the sense of having large residuals.
The observation marked by “I” in Figure 1 illustrates
this situation. Another (rare but good) example of this
situation is found in Draper and Smith (1981). Con-
sider fitting a straight line to a set of data consisting
of five observations, four at x = a and one at x = b. It
is easy to show that the residual at x = b is zero
whatever the value of the corresponding y. This ob-
servation, however, is extremely influential due to the
fact that one parameter estimate is completely deter-
mined by this observation, as can be seen in Figure 2,
where if the y value at x = b changed from the point
marked * to the point marked o, a completely
different line is obtained. This discussion points up
the fact that examination of residuals alone will not
‘detect aberrant or unusual observations such as the
one indicated by I in Figure 1 and the one at x = b in
Figure 2. Graphical methods based on residuals alone
will fail to detect these unusual points. Observations
with these characteristics (small residuals and highly
influential on the fit) often occur in real data (an
example is given in Section 10). To study this problem
we need the additional concept of “leverage,” which
we discuss in the next section.

4. THE PREDICTION MATRIX

The matrix P defined in (5) plays an important role,
as can be seen in (4)—(8), in determining Y, e, and

their covariance matrices. The ith diagonal element
of P,

(16) pi = x(X"X)x],

can be thought of as the amount of leverage of the
response value y; on the corresponding value y;. P is
sometimes called the Hat matrix because it maps Y
into Y, i.e., Y = PY. It is also a projection matrix
because it generates the perpendicular projection of Y
(an N-dimensional vector) into a p-dimensional sub-
space. We call it the prediction matrix, because apply-
ing it to Y produces the predicted values. Detailed
discussion of the properties and importance of P in
data analysis can be found in Hoaglin and Welsch
(1978) and Cook and Weisberg (1982).

Hoaglin and Welsch (1978) recommended exami-
nation of p; for high leverage design points and of ¢}
for outliers and suggested using 2p/N as a calibration
point for p,. For other calibration points, see Velleman
and Welsch (1981).

We define a high leverage point in the factor space
to be a point x; with large p;. Points which are isolated
in the factor space (i.e., far removed from the main
body of points in the X space) will have high leverage.
They can be thought of as outliers in the factor space.

As with outliers, high leverage points need not be
influential, and influential observations are not nec-
essarily high leverage points. Two such examples can
be found in Coleman (1977). If we augment the matrix
X by the vector Y, that is

(17) X*=(X'Y),

the corresponding prediction matrix P* of X* is
related to P by

(I-P)YY"I-P)
Y™I - P)Y

(18) P*=P+

/ X b

F1G. 2. The point at x = b is an extremely influential one, yet it has
a zero residual regardless of the corresponding value of y.
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This can be proved by decomposing P* into a sum of
two orthogonal projections (see, e.g., Cook and Weis-
berg, 1982). Because X* contains information about
X and Y, one might be tempted to use

X'X X'y|[«xF
(19) p:"=[x,'y,] l:YTX YTY] [:;/1]

as an influence measure. Using (18) we can write (19)
as

e‘Z
(20) pf=pi+—F

ele’
From (20), however, we see that p¥ will be large
whenever p; or e} is large. Hence, p}¥ cannot distin-
guish between two different situations: a high lever-
age point in the factor space and an outlier in the
response-factor space. It is useful, therefore, to distin-
guish between sources of influence. An observation
may influence (some or all) regression results because:
1) it is an outlying response value, 2) it is a high
leverage point in the factor space, or 3) it is a combi-
nation of both.

This classification is helpful in a search for a
remedial action. For example, an observation of
type (1) may indicate inadequacies of distributional
assumptions. An observation, of type (2), could be the
most important one in the data set since it may
provide the only information in a region where the
ability to take observations is limited (Cook and Weis-
berg, 1980). If this data point is correct, then the only
good remedial action, we believe, is to collect more
data.

5. VOLUME OF CONFIDENCE ELLIPSOIDS

A measure of the influence of the ith observation
on the estimated regression coefficients can be based
on the change in volume of confidence ellipsoids with
and without the ith observation. We review here four
such measures.

5.1 Andrews-Pregibon Statistic

Andrews and Pregibon (1978) suggested using the
ratio

_IXEXD|
(21) AP, = TXTX*]
to assess the relative change in | X*7X*| when the
ith observation is omitted. Small values of AP; call for
special attention. Note that | X*"X*| = e”e| X"X]|.
Also, AP, is related to p¥ defined in (19) and (20) by:

(22) AP, =1-p; — —;—l—p,.

Hence, what applies to p¥ also applies to AP;; that is,
AP, does not distinguish between a high leverage point

in the factor space and an outlier in the response-
factor space.

5.2 The Likelihood Distance

Let L(Q) and L(B) be the log likelihood evaluated
at 3 and @, respectively. A measure of the influence
of the ith observation on ﬁA can be based on the
distance between L(3) and L(B). Cook and Weisberg
(1982) define the likelihood distance as

LD; = 2[L(B) — L(Bw)]

N N-p-1
3 =N1
23 N °g[<N—1>t,*2+N—p—1]

tF(N-1) _

Q-p)(N-p-1)

The likelihood distance is related to the asymptotic
confidence region {3: 2[L(8) — L(8)] < x2,+1}, where
X2 p+1 is the upper « point of the x* distribution with
(p + 1) degrees of freedom. Consequently, LD; is
compared to x5+,. This measure of influence is based
on the probability model used, whereas other measures
of influence are strictly numerical.

+

5.3 Covariance Ratio

As suggested by Belsley, Kuh, and Welsch (1980),
the influence of the ith observation on Var(3) can be
measured by comparing the ratio of det{Var(8,)} to
det{Var(p)}; that is,
det{o (X X))}

det{s?(X"X)™Y

(24) = (6%y/3*)"/(1 = p)

2 P
<N P L ) / (1 = py).
p—1
A rough calibration point for (24) is | CVR; — 1| >
3p/N. (Belsley, Kuh, and Welsch (1980) call (24)
COVRATIO. We have abbreviated the mnemonic fur-
ther for simplicity.)

5.4 Cook-Weisberg Statistic

CVR; =

Cook and Weisberg (1980) propose the logarithm of
the ratio of the volume of the (1 — «)100% confidence
ellipsoids with and without the ith observation as a
measure of influence. This measure reduces to

CW, = 1 log(1 - p)

+2 log [V =p = DFipnp }
(25) ](N p - t )F(apN—p—l)

= —5 log (CVR))

p
+ 5 log{F(u',p,N—p)/Fhr;p,N—p—1)1
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where F,.... ., is the upper a-point of the F-distribution
with the appropriate degrees of freedom. Cook and
Weisberg (1980) say this about CW,:

“If this quantity is large and positive, then
deletion of the ith case [observation] will result
in a substantial decrease in volume . .. [and if it
is] large and negative, the case will result in a
substantial increase in volume . ..”

Apart from a constant (the ratio of F values), (25)
is equivalent to (24). Inspection of (25) indicates that
CW,; will be large and negative where t? is small and
p: is large, and large and positive where ¢7 is large and
p: is small. But, if both ¢} and p; are large (or small),
then CW, and CVR; tend to be small. These two
factors may offset each other and, therefore, reduce
the capability of CVR,; and CW; of detecting influ-
ential observations. We have observed from analysis
of many data sets, however, that CW, and CVR; suc-
cessfully pick out influential observations. This is
perhaps because points with large p; tend to pull
the fitted equation toward them and consequently
have small ¢7.

6. INFLUENCE FUNCTIONS

An alternative class of measures of the influence of
the ith observation is based on the idea of the influ-
ence function introduced by Hampel (1968, 1974),

IF:(x;; yi; 5 T)
(26) - _
i TLO = OF + ebey) T[F],
e—0 &

where T(.) is a (sufficiently regular) vector-valued
statistic based on a random sample from the cdf F and
dx,, = 1 at (x;, ;) and O otherwise. IF; measures the
influence on T of adding one observation (x;, y;) to a
very large sample. For a finite sample, several approx-
imations to (26) are possible; three of the most prom-
ising ones are the empirical influence curve, the
sample influence curve, and the sensitivity curve.

Let F be the empirical distribution function based
on the full sample and F';, be the empirical distribution
function when the ith observation is omitted. The
empirical influence curve (EIC) is found by substitut-
ing F, for F and B, for T(F) in (26) and obtaining

EIC; = (N — D(X5HXw) %! (v — x:iBw)

27 , , e;
= (N = DXTX) ! —2
( ) ) lx 1= p)
where
(28) B = XHX) ' XHYw

is the estimate of 3 when the ith observation is omit-
ted. The sample influence curve (SIC) is founfl
by omitting the limit in (26) and taking F = F,

T(F) = B, ¢ = —1/(N — 1), and obtaining

SIC; = (N — (X "X) "] (yi — x:iBn)
(29) Ty \-1,7 €
=(N-I)(X"X) '« .
(1-p)
The sensitivity curve (SC) is obtained by setting
F= Fm, T(F(,‘)) = ﬁ(,’), and e = l/N This yields

€;
1-— Di ’
Clearly SIC; and SC; are equivalent. Miller (1974)
showed that

(30) SC; = N(XTX) T

€;
1-pi

In comparing SIC; and SC; to (31), we see that SIC;
and SC; are easier to interpret; they are proportional
to the distance between § and B;,. However, EIC; is
more sensitive to p;.

Since IF; is a vector, it must be normalized so that
observations can be ordered in a meaningful way. The
class of norms which are location/scale invariant is
given by

(31) B—By=(XTX)"l

T
(32) D, o = T
for any appropriate choice of M and c. A large value
of D;(M; c¢) indicates that the ith observation has
strong influence on the estimated coefficients relative
to M and ¢. We examine D;(M; ¢) for four commonly
suggested choices of M and c.

6.1 Cook’s Distance

If we use the sample influence curve to approximate
the influence function and substitute M = X”X and
¢ = (N — 1)’p6? in (32), we obtain

Ci = Di(X"X; (N — 1)°ps?)
(33) _ t_l2 )Y
pl-—p

This measure is called Cook’s distance and was pro-
posed by Cook (1977a). Although C; should not be
used as a test of significance (see Obenchain, 1977),
Cook (1977a) suggested that each C; be compared with
the quantiles of the central F distribution with p and

(N — p) degrees of freedom.
C, can also be written as (see Bingham, 1977):

(Y — Y)"(Y = Yo

pé®
where Y, = XB is the vector of predicted values
when Y is regressed on X;). Thus, C; can be inter-
preted as the scaled Euclidean distance between the

two vectors of fitted values when the fitting is done
by including or excluding the ith observation.

C,'=
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6.2 Welsch-Kuh Distance

The impact of the ith observation on the ith pre-
dicted value can be measured by scaling the change in
prediction at x; when the ith observation is omitted,
that is,

15— vl 1x:(8 = Bw) |
34 = .
(34) s e

Welsch and Kuh (1977), Welsch and Peters (1978),
and Belsley, Kuh, and Welsch (1980) suggest using
6%, as an estimate of ¢” and called (34) DFFITS;. For
simplicity, we will refer to (34) by WK;. Thus

o) Wk, = OBl VT
i)V Pi

If (29) is used to approximate (26), then WK, =
vD;(X"X; (N — 1)6%)), and if (30) is used to approx-
imate (26), then WK; = vD;(X"X; N¢?)). Belsley,
Kuh, and Welsch (1980) suggested using 2v(p/N) as
a calibration point for WK;. Arguing that (34) is a
t-like statistic, Velleman and Welsch (1981) recom-
mended that “values greater than 1 or 2 seem reason-
able to nominate points for special attention.”

6.3. Welsch’s Distance

Using (27) to approximate (26) and setting M =
XXy and ¢ = (N — 1)6, (32) becomes
Wi = Di(X{Xaw; (N = 1)aty)
(36) D
=(N- Dt ————.
W= D )

Welsch (1982) suggested using W; as a diagnostic tool
and, for n > 15, using 3vp as a calibration point for
W.. Equations (35) and (36) indicate that

N-1
1- Di )
Hence, W; is more sensitive than WK, to p;,. However,

the fact that WK, is easier to interpret led some
authors to prefer WK; over W,.

(37) W: = WK,

6.4 Modified Cook’s Distance

A modified version of C; (cf. (33)) has also been
proposed. The measure suggested is

132
or=\/nxrx Pk 6

(38) —per) /Y= P
p 1-pi

= WKV{(N - p)/p}

which, aside from a constant factor, is the same as
WK,. C¥ was originally suggested by Welsch and Kuh

TABLE 1
Influence measures based on the influence function
for a small dataset

Row Y X €; Di C,‘ C:k Wi WK:

1 2.5 1 -0.01 058 000 -0.06 —0.14 -—0.04
2 3.5 3 0.09 0.24 0.01 0.17 030 0.12
3 4 4 0.14 0.18 0.01 021 036 0.14
4 4.5 5 0.19 0.18 0.03 028 049 0.20
5 6 8 034 058 1.04 224 548 1.58
6 4 6 —0.76 0.24 0.64 0 0 o

(1977) and subsequently by Atkinson (1981a), who
contended that this modification:

* gives more emphasis to extreme values,

+ makes C¥ more suitable for graphical displays
(a half normal plot was suggested), and

+ makes the plots of C¥ and |¢¥| identical for
the balanced case, where p; = p/N, for all i.

Atkinson (1982), added: “signed values of the C¥ can
be plotted in the same way as residuals, for example,
against explanatory variables in the model.” C¥ can
also be plotted in serial order.

The basic difference between C; and C¥*, W; and
WK is in the choice of the scale estimate. An advan-
tage of using 6% as an estimate of Var(e), is that
comparison of the distances from observation to ob-
servation is meaningful because they refer to a fixed
metric. For further discussion, see Cook and Weisberg
(1982). Using 62 as a scale estimate, however, is some-
times noninformative. To illustrate we give here a
numerical version of an example given by Dempster
and Gasko-Green (1981) and cited by Velleman and
Welsch (1981). Here all of the observations but one
lie on the line y = 2 + 0.5x (see Table 1). C; can
indicate that some observations on the line (e.g., point
5) are more influential than the one observation not
on the line (e.g., point 6), whereas C¥, W;, and WK;
are infinite for that point.

7. PARTIAL INFLUENCE

The influence measures discussed thus far assume
that all regression coefficients are of equal interest.
An influence measure which involves all regression
coefficients can be noninformative and misleading
(see comments by Pregibon in the discussion following
Atkinson, 1982). An observation can be an outlier
and/or influential only in one dimension or a few
dimensions. (For example, observation 17 in the ex-
ample given in Section 10 is influential only on X,
and X3, but not on X;, X,, or X5.) Further, an obser-
vation with a moderate influence on all regression
coefficients may be judged more influential than one
with a large influence on one coefficient and negligible
influence on all others.
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Information about a single regression coefficient is,
therefore, of interest. In this section, we present mea-
sures for assessing the influence that an observation
has on a single regression coefficient and examine
several diagnostic plots which have been suggested for
studying this effect.

7.1 Influence of an Observation on a Single
Coefficient

A statistic for the impact of the ith observation on
a subset of 8 can be found in Cook and Weisberg
(1980). A special case is:

t}(pi — Piy)
1-pi
which measures the influence of the ith observation

on the jth coefficient. Using a version of (20), it is
straightforward to show that

(39) Dij =

t? w?
D;; = -t Ty
40 T 1-p WIW,
where w;; is the ith element of
(41) W; = - P;)X;,

the vector of residuals when X; is regressed on Xj;).
Belsley, Kuh, and Welsch (1980) suggested using

D* = B, — Bi(0)
42) " VWVar(B)
t¥c

- Vi@ - p)CTC)
where C; is the jth column of
(43) C=X(X"X)",

the Moore-Penrose inverse of X, and t} is as defined
in (13). Belsley, Kuh, and Welsch (1980) call (42)
DFBETAS;,;. Here, we use D} for simplicity. In the
Appendix, we show that

t¥ w;j
Vil — p)W W
which, apart from the difference in scale estimate, is
the same as vD;; (cf. (40)). Belsley, Kuh, and Welsch

(1980) suggest nominating points with values of
| D¥ | exceeding 2/ VN for special attention.

(44) D} =

7.2 Partial Leverage
Analogous to (20), we write
(45) pi = paj) + 65,

where 67 = w?/W ['W;, represents the contribution of
the jth variable to the leverage of the ith observation,
or, in other words, the change in the ith diagonal
element of the prediction matrix when X is added to
(or omitted from) the regression model. The vector

= (6%, --+, &))" is the normalized vector of
squared residuals obtained from the regression of X;
on all other columns of X.

Because 67 is the leverage of the ith observation in
the added variable plot for X; (the regression of R; on
W), data points with large &} can exert an undue
influence on the selection (omission) of the jth vari-
able in most automatic variable selection methods
(Velleman and Welsch, 1981).

If all observations have equal partial leverage (i.e.,
%), then 6} equals 1/N. Therefore, analogous to the
choice of the calibration point for p; (see Hoaglin and
Welsch, 1978), a reasonable rule of thumb is that 6%
be regarded as large if it exceeds 2/N. Also, signed
values of §;; may be plotted versus Xj, or alternatively,
6;; may be plotted in serial order.

7.3 Added Variable Plots

Suppose we wish to fit the model
(46) Y=X;B+ X +e
where 8 is now of dimension (p — 1) X 1. By
multiplying (46) by (I — Pj;) and noting that
(I - P[j])Xm = 0, we obtain

(I = Py)Y = (I = Pp)X;0; + (I = Pyj)e

or
47) R, = Wjﬁj + &%,
where R; and W}, as implicitly defined in (47), are the
residuals vectors when Y and X; are regressed on X{j;,
respectively. Taking the expectation of (47), we obtain
E(R)) = W,0;, which suggests a plot of
(48) R; versus W;
This plot was introduced by Mosteller and Tukey
(1977) and has several attractive features. It should
appear as a straight line through the origin with slope
6;. In fact, the residuals from the multiple regression
model (46) and the residuals from the simple regres-
sion model (47) are identical. The scatter of the points

will visually indicate which of the data points are most
influential in determining the magnitude of 0 Belsley,

.Kuh, and Welsch (1980) have called this plot a partial

regression leverage plot, but we prefer the name added
variable plot suggested by Cook and Weisberg (1982).
For properties and details, see, e.g., Belsley, Kuh, and
Welsch (1980) and Cook and Weisberg (1982).
7.4 Partial Residuals Plots
Using the well known identity (see Bingham, 1977)
XII-PypY WY
XTI - PpX; W 'w;
and a version of (18), we can write R; as
U - PpX; X/ - Pm)}Y
XiI - PyX

(51) =e+ (I - PpX;b,.

(49) ) =

(50) R,»={I—P+



386 S. CHATTERJEE AND A. S. HADI

The added variable plot in (48) can, then, be written
as

(52) e + (I - P[j]))(jéj versus (I - P[j])Xj.

A special case of (52) is obtained by replacing P|; by
0, yielding the plot of

(53) e+ X;0; versus X,

This plot, which was introduced by Ezekiel (1924) and
rediscovered by Larsen and McCleary (1972), has been
discussed by many others (e.g., Wood (1973), Daniel
and Wood (1980), Henderson and Velleman (1981),
and Atkinson (1982) and his discussants). Larsen and
McCleary (1972) called (53) a partial residual plot and
Daniel and Wood (1980) called it a component plus
residual plot. Since the horizontal scale on the partial
residual plots is X, the plot often (but not always)
indicates nonlinearity, thereby suggesting the need for
transformation if necessary. It is not easy, however,
to determine which of the data points have a major
role in determining ;. The partial residuals plots seem
to be better for the analysis of transformation, while
added variable plots help more in high leverage and
influential data. Of course, the two plots are identical
when the columns of X are orthogonal. The main
contribution of these plots is that they tell us about
the influence that an observation will exercise on the
fit if a particular variable which is currently not in the
equation is brought into the equation.

7.5 Augmented Partial-Residual Plots

As has been mentioned above, the partial residual
plots can fail to indicate the need for transformation.
Mallows (1985) has proposed a modification of the
partial residual plot by augmenting the linear com-
ponent with a nonlinear component. This modifica-
tion appears to be more sensitive to nonlinearity.
Mallows calls this an augmented partial residual plot.
One can calculate the augmented partial residual plot
by first fitting the model

Y = XU],B + Xjﬂj + ZjTj + ¢

where Z; = f (X)) is some nonlinear function of X;, and
then plotting

e = X0, + f(X)T, versus X,.

Mallows recommends taking the nonlinear component
as quadratic. Some early results of the augmented
partial residual plot have been encouraging but more
work needs to be done before we can conclude that
this plot is superior to the partial residual plot for
detecting nonlinearity in the regressors.

8. JOINT INFLUENCE OF MULTIPLE
OBSERVATIONS

The methods that we have described can be used to
detect individual observations which are influential.

X

FiG. 3. An illustration of joint influence. Points 1 and 2 are jointly
(but not individually) influential, whereas points 3 and 4 are individ-
ually (but not jointly) influential.

There are situations however when an observation is
not influential singly but taken in a group with other
observations may be highly influential. An illustration
is given in Figure 3. Points 1 and 2 singly are not
influential, but jointly they have a large effect on the
fit. This situation is sometimes called the “masking”
effect, because the influence of one obsrvation is
masked by the presence of another neighboring obser-
vation. On the other hand, points 3 and 4 behave
differently. Individually they are influential, but
jointly (i.e., when both omitted) they are not. The
methods for detecting the influence of a single obser-
vation can be generalized for detecting subsets of
observations which are jointly influential. Not much
progress has been made in that direction, perhaps due
to the computational burden associated with the mul-
tiple observations procedures. The number of subsets
involved here is very large. Also, in addition to the
residuals and the ith diagonal elements of the predic-
tion matrix, the multiple observation procedures gen-
erally require the computation of the off diagonal
elements of the prediction matrix.

A procedure, which is independent of any particular
measure of influence, employing cluster analysis to
detect subsets of influential observations has been
proposed by Gray and Ling (1984). A modification to
the Gray and Ling procedures has been suggested by
Hadi (1985). More efficient computational procedures
for detecting subsets of influential observations are
still needed however.

9. SUMMARY OF VARIOUS INFLUENCE
MEASURES

A summary of the influence measures that we have
discussed together with their calibration points is
shown in Table 2. As we noted before, each influence
measure is designed to detect a specific phenomenon
in the data. They are all closely related, as they are
functions of the basic building blocks in model con-
struction (e.g., the residuals e, the residual mean
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TABLE 2
Summary of influence measures

Measures based on Formula Calibration point Equation
Residuals ti=e/aV1l — p; = N(0, 1) (12)
N-p-1
x =, P~ =t(N-p—-1) (15)
tr=1t6\/ N_p_ 1 P
Prediction matrix pi= x(XTX) T 2p/N (16)
' ¥ =1 — = p 2/,T,
Vo.lum‘e of confidence pf=1— AP; = p; + e¥/e’e 9%(p +1)/N (20)
ellipsoids
_ N N-p-1 )
LD;—Nlog{(N_1> t,*+N—p—1} Xp (23)
t} (N —1) _
1-p)N-p-—-1)
N —p -t
CVRi = |——— 1 -p) |CVR;—1| > 3p/N (24)
N-p-1
CW,; = const. — Y% log(CVR;) (25)
Influence function C:=pit}/p(1 — p) F(p, N—-p) (33)
WK, = ] \ /i-fi—p 2V(p/N) (35)
W, = WK, 3vp (37
C+ = WK~V{(N - p)/p} 2V{(N - p)/N} (38)
tw?
Partial influence D; = m (40)
oy P L — 2/VN (44)
YOVIWTIW(1 - p))
5y = i 2/N (45)
CTWIW;

square ¢, the ith element of the prediction matrix p;).
In any particular application, the analyst does not
have to look at all of these measures since there is a
great deal of redundancy in them. Their relative merits
and importance have not been established. From our
experience with several data sets, examining WK,
CW,, and D;; or, alternatively, C¥, CVR;, and D} seem
sufficient for detecting influential observations. The
three quantities in each set measure different aspects
of influence and give a comprehensive picture.

10. EXAMPLE

10.1 Data Description and Global Analysis

As an illustrative example, we use the result of a
laboratory experiment performed by Moore (1975).

This example has also been used by Weisberg (1981)
to illustrate the contribution of the individual obser-
vations to the Mallows C, statistic. The data were
collected on a single sample, kept in suspension in
water for 220 days. The data as presented by Weisberg
(1981) are reproduced in Table 3. The measured vari-
ables are: Y, = log(oxygen demand in dairy wastes),
mg/min; X; = biological oxygen demand, mg/liter;
X, = total Kjeldahl nitrogen, mg/liter; X; = total
solids, mg/liter; X, = total volative solids (a compo-
nent of X,), mg/liter; and X5 = chemical oxygen
demand, mg/liter.

A linear model

Y=00+06X:+ 6:Xo + 3:X;
+ 08Xy + B:Xs + ¢
is fitted to the data and the results of the fit are shown

(54)
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TABLE 3 in Table 4. Entries in column 5 of Table 4 are the
Moore’s data (1975) multiple correlation coefficients squared when X; is
Row X, X, X, X, X, v regres'sed on X|,. Entries in colqmn 6 are the{ corre-
) 5 232 60 89 8905 - sponding sum of squares of residuals. Examination
. 1.556 : . :
9 920 268 8804 865 7388 0.8976 of t};e }regrfassmn results leads us:to the following
3 835 271 8108 85.2 5348  0.7482 conclusions: .
4 1000 237 ~ 6370 838 8056 0.7160 1. The plot of t; versus y; (not shown) does not
5 1150 192 6441 821 6960 0.3130 indicate systematic failure of model (54). Observation
6 990 202 5154 79.2 5690 03617 number 1, however, has the largest residual, ¢, = 2.64.
T 8401845896 8L2 6932 0.1139 2. The fit is significant with (p < 0.01) as indicated
8 650 200 5336 80.6 5400 0.1139 9
9 640 180 5041 784 3177 —02218 by the F value = 11.99 and R* = 0.81,
10 583 165 5012  79.3 4461  —0.1549 3. None of the t values is significant. This is, per-
11 570 151 4825 787 3901 0.0000 haps, due to the high correlation among the explana-
12570 171 4391 780 5002 0.0000 tory variables which can be seen from column 5 of
13 510 243 4320 723 4665  —0.0969 Table 4 where R? is large for all j # 2. This may
14 555 147 3709 74.9 4642 —0.2218 .
15 460 286 3969 744 4840  —0.3979 suggest that a linear model based on a subset of the
16 275 198 3558 72.5 4479 —0.1549
17 510 196 4361 57.7 4200 —0.2218
18 165 210 3301 71.8 3410 —0.3979 TABLE 6
19 244 327 2964 72.5 3360 —0.5229 Moore’s data with observations arranged within each measure in
20 79 334 2777 719 2599  —0.0458 decreasing order of influence and clusters indicated in parentheses
Measures Influence Influential Reference
TABLE 4 based on measures observations equation
Moore’s data: regression summary Residuals : (1 20) (12)
Variable 6, SE(B) ¢ R WIW, FZWIW, tr (1, 20) (15)
Const. —2.1561 Prediction matrix D, 17 (16)
X, —0.0000 0.0005 -0.017 0.86 2.551E5 2.072E-5 Volume of p 17 20)
X, 0.0013 0.0013 1.041 0.23 4.293E4 7.434E-2 confidence LD, (17, 1), 20 (23)
Xs 0.0001 0.0001 1.662 0.78 1.159E7 1.893E-1 ellipsoids CVR, 1,17, (20, 15, 7) (24)
X, 0.0079 0.0140  0.564 0.59 3.497E2 2.182E-2 ' 17 (o0 15
CwW, 1, 17, (20, 15, 7) (25)
X5 0.0001 0.0001 1.921 0.77 1.260E7 2.529E-1
Influence C, 17, (1, 20) (33)
SSE = 0.9595 . ey function WK,  (17,1,20) (35)
SST = 5.0679 R0, G o0 W 17,1,20) @7
Durbin-Watson = 2.13 ’ B C¥ (17, 1, 20) (38)
TABLE 5
Influence measures for Moore’s data
Row t, t¥ D p¥ LD, CVR, CW, WK, W, C¥ C,
1 2.64* 3.58* 0.34 0.67 14.60* 0.04* 1.57* 2.556* 13.68* 3.90*  0.59*
2 -0.79 —0.78 0.50 0.52 0.89 2.39 —0.50 —0.78 —4.81 -1.19 0.10
3 0.47 0.46 0.49 0.49 0.30 2.75 —0.57 0.44 2.70 0.68 0.03
4 —0.21 —0.20 0.25 0.25 0.04 2.04 —0.42 -0.12 —-0.59 —0.18 0.00
, 5 —1.04 —1.04 0.28 0.34 0.64 1.34 —0.21 —0.66 -3.39 —1.00 0.07
6 0.82 0.81 0.37 0.40 0.57 1.84 —0.37 0.62 3.43 0.95 0.07
7 —1.42 —1.47 0.15 0.27 0.69 0.73 0.10 —0.63 —-2.97 —0.96 0.06
8 —-0.28 -0.27  0.09 0.09 0.03 1.65 —-0.31 —-0.08 —-0.38 —0.13 0.00
9 —0.05 —0.05 0.36 0.36 0.03 2.45 —0.51 —0.04 —0.20 —0.05 0.00
10 —0.46 —0.44 0.16 0.17 0.07 1.69 —0.33 —0.19 —0.91 —0.29 0.01
11 0.74 0.73 0.22 0.26 0.23 1.58 -0.29 0.39 1.95 0.60 0.03
12 0.21 0.20 0.14 0.14 0.03 1.77 —0.35 0.08 0.37 0.12 0.00
13 —0.16 —-0.15 0.09 0.10 0.03 1.70 —0.33 —0.05 —0.23 —0.08 0.00
14 0.10 0.09 0.20 0.20 0.03 1.94 -0.39 0.05 0.23 0.07 0.00
15 —1.66 —1.78 0.17 0.33 1.25 0.51 0.27 —0.81 —3.87 —1.24 0.09
16 0.36 0.35 0.26 0.27 0.08 2.00 —-0.41 0.21 1.06 0.32 0.01
17 0.97 0.97 0.92* 0.92* 15.55*% 12.561* -—1.33* 3.26* 49.72* 498* 1.78*
18 0.05"° 0.05 0.23 0.23 0.03 2.03 —0.42 0.03 0.13 0.04 0.00
19 -106 -1.07 036 042 097 148 —026 —081 —443 -1.24 0.11
20 1.89 2.11*  0.41 0.56 5.07* 0.45 0.33 1.74* 9.86* 2.66* 0.41*




INFLUENTIAL OBSERVATIONS

explanatory variables may do as well. Weisberg (1981)
concluded that for the purpose of variable selection,
no reason is apparent for rejecting the assumption of
unbiasedness of model (54) for the region covered by
the observed data.

4. Even though all observations were taken on the
same sample over time the model has survived the
Durbin-Watson test with (p < 0.01).

389

10.2 Influence Analysis

We now examine the several influence measures
which we have described earlier. These are shown in
Table 5. For economy of space, the plot for only three
of these measures in serial order is given in Figures
4-6. A summary of these plots is given in Table 6
where observations that appear to be most influential

0.00 0.20 0.40 0.60 0.80 1.00
1 * 1
2 * 2
3 * 3
4 % 4
S * S
6 * 6
7 * 7
8 * 8
9 * 9
10 * 10
11 * 1
12 © 12
13 * 13
14 * 14
15 * iS5
16 * 16
1?7 * 17
18 * 18
19 * 19
20 . * 20

0.00 0.20 0.40 0.60 0.80 1.00

Pi
F1G. 4. Moore’s data: plot of p; in serial order.

-1.33 =0.75 =0.17 0.41 0.99 1.57
1 * 1
2 * 2
3 * 3
4 * 4
5 * 5
6 * 6
? * ?
8 * 8
9 * 9
10 * 10
11 * 11
12 * 12
13 * 13
14 * 14
15 * 15
16 * 16
17| = 1?7
18 * 18
19 * 19
20| * 20

-1.33 =0.75 =0.17 0.41 0.99 1.57

CW;

F1G. 5. Moore’s data: plot of CW; in serial order.
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=0.81 0.00 0.82 1.63 2.45 3.26
1 * 1
2] = 2
3 * 3
4 * ‘4
S * S
6 * 6
? * ?
8 * 8
9 * 9
10 * 10
11 * 1
12 * 12
13 * 13
14 * 14
15| =* 15
16 * 16
17 * |17
18 * 18
19| = 19
20 * 20
=0.81 0.00 0.82 1.63 2.45 3.26
WK;
F1G. 6. Moore’s data: plot of WK, in serial order.
TABLE 7 TABLE 8

The D,, in (40) from Moore’s data

Moore’s data showing the D} in (44)

No. X, X, X3 X4 X5 No. X, X, X X4 X5
1 0.010 0.052 0.128 0.008 1.277* 1 -0.134 0.310 —0.486 0.125 1.535*
2 0.134 0.001 0.354 0.004 0.018 2 0.360 —0.030 —0.586 0.064 —0.133
3 0.000 0.012 0.090 0.000 0.049 3 —0.005 0.105 0.291 0.013 —0.215
4 0.000 0.001 0.002 0.000 0.005 4  —0.004 —0.025 0.040 —0.012 —0.066
5 0.251* 0.016 0.059 0.002 0.037 5 —0.502* —0.129 0.244 0.047 0.194
6 0.325* 0.044 0.136 0.000 0.094 6 0.563* 0.206 —-0.364 0.015 —0.304
7 0.043 0.075 0.001 0.003 0.148 7 0.215 0.285 0.026 —0.057 —0.400
8 0.001 0.001 0.000 0.002 0.000 8 0.031 0.035 —-0.005 —0.040 —0.014
9 0.000 0.000 0.000 0.000 0.001 9 —0.017 0.003 —0.002 —0.007 0.031

10 0.002 0.017 0.001 0.006 0.002 10 0.047 0.126 —0.033 —0.073 0.038
11 0.000 0.058 0.003 0.018 0.028 11 -0.018 —0.237 0.053 0.133 —0.164
12 0.001 0.003 0.000 0.001 0.000 12 —0.023 —0.049 -0.018 0.030 0.021
13 0.000 0.000 0.000 0.001 0.000 13 —0.006 —0.017 0.003 0.025 —0.003
14 0.000 0.001 0.000 0.000 0.000 14  —0.001 —0.028 —0.018 0.007 0.007
15 0.008 0.250 0.098 0.000 0.017 15 —0.093 —0.538 0.336 0.007 —0.141
16 0.026 0.012 0.000 0.000 0.019 16 —0.156 —0.106 0.021 0.001 0.133
17 0.077 0.042 1.541* 9.753* 0.003 17 0.278 —-0.205 1.239*  —-3.117* 0.057
18 0.000 0.000 0.000 . 0.000 0.000 18 —0.018 —0.011 0.005 0.002 0.009
19 0.036 0.377 0.112 0.011 0.018 19  -0.191 -0.617 0.336 -0.107 0.135
" 20 0.000 1.003* 0.100 0.083 0.070 20 0.000 1.118*  —0.352 0.322 —0.295

are arranged within each measure in descending order
of influence. The analyses based on the influence
measures lead to the following conclusions:

1. As had been expected (see (38)), the plots for
WK, and C¥ are identical.

2. The measures based on the influence functions
(WK;, W;, C¥, and C;) pinpoint observations number
17, 1, and 20 as different from the others. Because W;
puts more emphasis on p;, the influence of observa-

tions 1 and 20 is not clear in the plot of W;; this is
due to the relatively small values of p; and py. The
influence of these two observations is clearer in the
plot of WK, (and C¥) compared to that of C;.

3. While measures based on the influence function
appear to be in agreement, those based on the volume
of confidence ellipsoids do not. Observation number
17 is declared to be the most influential one by p} and
LD;, while CVR,; and CW, declare observation 1 to be
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the most influential one. On the other hand, CW; and
CVR,; pinpoint five points (in three clusters) as differ-
ent from all others. By declaring too many observa-
tions to be influential, one might think that CW,; and
CVR, are conservative measures. On the contrary,
each of these observations is influential on at least
one dimension (variable). This can be seen upon in-
spection of D;; or D¥; see (40) and (42), respectively.

We first examine the effects of deleting the ith
observation on the jth coefficient as measured by D;;,
the results are shown in Table 7. We see immediately
that no observation is uniformly most influential on
all coefficients. For example, the most influential ob-
servation on 61 1s observatlon number 6, on 62 18
observation number 20, on 6’3 and 64 is observation
number 17 (which was declared to be the most influ-
ential by all measures except t;, t¥, and CW;), and on
B35 is observation number 1.

The effects of deleting the ith observation on the
jth coefficient as measured by D} are shown in Table
8. Inspection of D} leads to the same conclusions as
those obtained by examining D;;. Therefore, a measure
which involves all coefficients may be noninformative.
We document this point further by looking at, for

TABLE 9
Moore’s data showing influential observations according to p; and C;
when variable X; is omitted
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example, p; and C; when the jth variable is deleted.
From Table 9, we see that observation number 17 is
most influential only when X} is included in the model.
This indicates that observation number 17 has a large
influence basically in one dimension.

We have seen that observations number 1, 7, 15, 17,
and 20 are influential either individually or in groups.
The impact of deleting these observations on the ¢
values and on the best subset based on the minimum
RMS criterion (see Seber, 1977) is shown in Table 10.
Examination of Table 10 indicates that:

1. Variables X; and X; are included in the best
subset in all cases except when observation number
17 is omitted; this causes X3 to be replaced by X,.
Therefore, X; and X, are the most influential vari-
ables,

2. The model with minimum RMS is X3 and X;
with observation number 1, 7, and 20 deleted. Note
the change in R?, F values, and the minimum RMS.
(Notice that in comparing the F values, one should
keep in mind that the degrees of freedom are different
in each case.)

11. CONCLUSION

We have discussed and reviewed the various mea-
sures which have been presented for studying outliers,
high leverage points, and influential observations in
the context of linear regression. The existence of the
interrelationship between these measures enables us

) Influential to reduce the vast number of measures to a few well
\;a‘l”‘:b(lie observations chosen ones. The measures suggested concentrate on
elete D C different aspects of the problem. Some of the quanti-
None 17 17 ties proposed concentrate on the lack of fit, others on
X, 17 17 leverage in the space of explanatory variables, and
X, 17 17 still others on the interaction between the two. We
X, 17 17 showed that three measures are sufficient to display
X4 2,3 1, 20 the major characteristics of a data set with reference
Xs 17 7 to its leverage, influence, and lack of fit.
TABLE 10
Moore’s data showing effects of omitting selected observations on various regression outputs
Best subset®
Observation to ¢ ¢ ¢ ¢ -
deleted ' * ’ ) ’ R? X 100 F RMS x 1000 . ariable
included
None —0.02 1.04 1.66 0.56 1.92 81 22 61 2,3,5
1 0.11 1.10 2.72 0.64 0.99 83 24 33 2,3,5
7 —0.23 0.79 1.70 0.64 2.32 83 25 57 2,3,5
15 0.07 1.59 1.42 0.60 2.20 83 25 53 2,3,5
17 —-0.28 1.22 0.26 1.10 1.86 82 22 60 2,4,5
20 —0.02 0.04 2.18 0.30 2.41 86 48 45 3,5
1, 20 0.12 —0.06 3.67 0.37 1.63 89 63 20 3,5
7, 20 —0.32 —0.41 2.43 0.38 3.15 89 62 36 3,5
1,7, 20 -0.17 —0.49 4.01 0.46 2.38 92 79 17 3,5
7,15, 20 —0.25 0.17 2.11 0.46 -3.33 90 65 33 3,5

“¢t; is the t statistic for testing the significance of the jth variable.

® Based on the minimum RMS criterion.
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APPENDIX: PROOF OF (44)

For a proof of (44), we use the triangular decompo-
sition of positive definite (pd) matrices, i.e., if S is a
pd matrix, then there exists a unique unit lower tri-
angle matrix L and a untque diagonal matrix D with
positive diagonal elemerts, such that:

LSL"=D

or equivalently
(55) S =L"'DL"

or equivalently

S™'=L"D'L.

See, e.g., Stewart (1973) or Maindonald (1984), for
proof. Substituting the triangular decomposition (55)
of

XX, XX

into a partitioned form of (31), where L and D are
partitioned conformably into
[ A 0]

(XTX) = [X?;]XU] X&XJ]

A0
(56) L= [)\T 1:, and D = _OT s

we obtain

é_ @(i) __¢& AT A[a o [x o T
0j 0,‘(,‘) 1—p; 0 1({0 6J AT 1 X;j

— €; W;j 5_1 A+ )\TA_l Ax ?le]
1-p; wi; 67" ’
It follows that
A A e Wy e Wi

0. —_— 0 i = —_ =

J J @) l_pla l_pleTm

because the jth diagonal element of D is the residual
sum of squares obtained when X is regressed on the
preceding variables. After scaling, the result follows.
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Comment

R. Dennis Cook

Chatterjee and Hadi present a disturbing account
of the disorientation that can result from attempting
to sort through the variety of methods that are avail-
able for studying influence, leverage, and outliers in
linear regression. Their admonition that the goals of
an analysis must be used to guide our choice of meth-
odology is entirely appropriate. The question “Influ-
ence on what?” is indeed important, particularly when
it is asked of a specific method. I find that answers to
this question can form a useful guidebook to influence
methodology and can thereby remove much of the
perceived confusion. With this key question in mind,
Chatterjee and Hadi describe several useful distinc-
tions between the various methods, but some confu-
sion evidently remains, as exemplified by the all-but-
one-point-on-a-line problem. For further clarity, it is
necessary to take a closer look at the appropriate uses
of various influence diagnostics. Beginning with a
general introduction, the following discussion is
intended to emphasize critical distinctions between
selected methods and to further illustrate the impor-
tance of Chatterjee and Hadi’s question. Unless indi-
cated otherwise, notation is the same as that used by
Chatterjee and Hadi.

1. INTRODUCTION

Statistical models are extremely useful devices for .

extracting and understanding the essential features of
~a set of data. Models, however, are nearly always
approximate descriptions of more complicated proc-
esses and therefore are nearly always wrong. Because
of this inexactness, considerations of model adequacy
are extremely important. The recent paper by Freed-
man and Navidi (1986) in combination with the dis-
cussants’ remarks provides a forceful lesson on mod-
eling. Depending on the situation, a universally
compelling demonstration of the adequacy of a model
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may not be possible. But what we can always do is
strive for the reassurance that what we have done is
sensible in light of the available information, that the
data do not contradict the model or vice versa, and
that reasonable alternative formulations will not lead
to drastically different conclusions. How much reas-
surance we may need depends on the particular prob-
lem. In well studied situations where we have consid-
erable prior information and experience, a little reas-
surance may be sufficient, while in fresh problems we
may require much more. But some reassurance is
always necessary.

Many methods are available for gaining necessary
reassurance. For example, we may empirically validate
a model through continued observation of the process
under study or use robust methods to mitigate the
impact of questionable aspects of the model. In addi-
tion, diagnostic methods should be used to look for
contradictory or other relevant information in the
observed data. The absence of such information will
not prove that the model is accurate, but it can provide
the reassurance that the model is not contradicted by
available information or unduly influenced by isolated
characteristics of the data. )

Chatterjee and Hadi describe their experiences with
a particular class of diagnostic methods that are in-
tended to aid in assessing the role that individual
observations play in determining a fitted model. A
fitted model can be viewed as a smoothed represen-
tation that captures global and essential features of
the data, but this view is not always appropriate. Key
features of a fitted model can be dominated by a single
observation and conclusions in such situations tend
to depend critically on the model. It seems generally
recognized that a concern for influential observations
should be part of any analysis, and in recent years
there has been a proliferation of methods for their
detection.

2. t; AND t}

Chatterjee and Hadi discuss several reasons for
preferring t ¥ over t;, but their discussion seems to lack
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context, this paper does not provide the reader with
the necessary ideas. Although many papers have been
published in this area since 1982, only two papers
published since then are cited. Discussion of many of
the fundamental issues, including a comprehensive
review of the literature to 1982, can be found in Cook
and Weisberg (1982, especially Section 5.2); see also
Weisberg (1983) and Cook (1986).

Rejoinder
Samprit Chatterjee and Ali S. Hadi

Many points have been raised, but alas, space does
not permit us to respond to each one of them individ-
ually. For expedience, the comments which we feel
have arisen due to a misreading of what we wrote will
not be discussed, letting the readers make up their
own minds. Our paper will have served its purpose if
it stimulates discussion and leads to further develop-
ment in methodology. We are grateful to Professor
DeGroot for getting together such a distinguished
group to act as discussants for our paper.

Several of the authors (Brant, Hoaglin and Kemp-
thorne, and Welsch), have pointed out very correctly
that little was said in our paper about detecting groups
or clusters of influential points. Not much is known;
and we came to know about the work of Brant and
Kempthorne only recently. We are not convinced,
however, as to how real the problem is. Most of the
influential points may be detected by a one point at a
time deletion scheme. We see our skepticism on this
point is also shared by Welsch.

Weisberg has noted that we have not provided an
overriding general principle for deriving various influ-
ence measures. Space considerations prevented such
an effort. Basically we tend to favor the influence
function approach introduced by Hampel. In our
forthcoming book, Sensitivity Analysis in Linear
, Regression, we outline such an approach. We show
that almost all proposed influence measures can be
derived from various approximations of the influence
function. The likelihood approach, as pointed out by
Cook and Weisberg, is another unifying principle. We
are not convinced, however, about its robustness. We
prefer measures which are based on metric distances
rather than those based on probability densities, and
therefore we have stayed away from influence mea-
sures based on information theory.

Several authors have raised questions about the
callibration points which we have provided in Table
2. There is nothing sacred about them. They are meant
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to be yardsticks, equivalent to “+ 2 standard error
rules.” Our attitude to them is identical with those
articulated by Velleman and Hoaglin and Kempth-
orne, although it might not have been stated as ex-
plicitly. Points which stand out from the group on
their diagnostic measures should certainly be flagged
and examined. It is the standing apart which should
trigger off the alarm rather than the exceeding of a
critical value. Stem and leaf plots are very effective
graphical devices for this purpose. We would like to
endorse the diagnostic strategy advocated by Hoaglin
and Kempthorne. In fact it is this approach which has
led us to flag points 1 and 17 on the basis of CVR;
rather than all the points which mechanically lie
outside the critical interval. Points in Table 5 are
starred only when they stand out (outliers on the
diagnostic measure) rather than merely exceed their
calibration values. We thank the discussants for high-
lighting this point.

Several of the discussants brought up the important
question of observations influencing variable selection
in model determination. Most influence measures do
not distinguish whether an observation is influential
on all dimensions or only on one or few dimensions.
An observation, for example, might appear to be the
most influential one according to a given measure, but
when a particular variable is omitted the influence
disappears. Retaining a variable may hinge on one or
a few observations. In our present paper, we did not
discuss this complex question, but have a paper lan-
guishing somewhere in the refereeing process, which
addresses this question. The role of observations in
variable selection (irrespective of the criteria used) is
an area which needs clarification.

Atkinson in his related comments makes a point
not made by the other discussants. If we have read his
comments correctly, it appears that he opts for a
robust estimation procedure. This is certainly a valid
approach. A model fitting approach in which no point
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has an excessive influence certainly gets rid of the
problem of influential points. We feel, however, that
such a mechanical approach misses the creative aspect
of data analysis. It sweeps a lot of problems under the
rug. The diagnostic approach will reveal features
which would be missed in a mechanical robust fitting.
An example in point is the Moore data, which has
now been described in detail by Weisberg. All the
diagnostic measures point up observation 17; this is
now acknowledged to have a transcription error. We
regard this identification as a confirmation, if that
was needed, of the value of the diagnostic measures.

The diagnostic measures that we have presented are
useful and should play an important part in data
analysis. But as Velleman points out their use will
become widespread only if commonly available statis-
tical software implements them. Let us hope that this
is forthcoming, and we hope people like Velleman and
Welsch will take the lead in it. Before expert systems
and smart software take over we must agree on what
the most effective approach is, or else we will be
implementing mechanically rigid procedures like the
step-wise methods for variable selection.

The last question which we take up is the question
of notation and terminology. On this point we have
apparently stepped on several toes. Hoaglin and
Kempthorne’s plea, “A consensus on notation for the
basic quantities in regression diagnostics would be
most welcome,” should be heeded. We thought that

we were attempting a step in that direction. Let us
explain: Consider the two matrices

P=X(X"X)"'X" and R=(I-P)

which occur extensively in linear regression analysis.
We called them the prediction (projection) matrix and
the residual matrix because applying them on Y pro-
duces the predicted values and the residuals, respec-
tively. Prediction and projection are more widely un-
derstood operations (although less colorfulj than cap-
ping or “hatting.” The Hat (Hoaglin?) matrix leaves
almost all first-time listeners mystified! Belsley, Kuh,
and Welsch’s book, Regression Diagnostics, was a very
valuable contribution to the statistical literature, but
it unleashed on an unsuspecting statistical community
a computer-speak (a la Orwell) the likes of which we
have never seen. We aesthetically rebel against
DFFIT, DFBETA, etc., and have attempted to replace
them by the last name of the authors according to a
venerable statistical tradition. We hope that this ap-
proach proves attractive to the statistical community.
Only time will tell!

We conclude by thanking all the discussants for
their valuable comments. They were stimulating, in-
teresting, and we hope will lead to more work in this
area. We take heart from a comment by Wittgenstein
in his T'ractatus, “We can make nothing clear, but
only some things clearer.”





