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Part I

Linear Regression
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1. Introduction; Matrix formulation of regression

model

� Regression models { general framework

observed random variable =

function of `covariates' + random error.

That is, the experimenter wishes to obtain in-

formation about a r.v. Y , whose behaviour will

presumably depend on the values of covariates

x = (x1; :::; xp)
0. He/she sets the values of

these (so, in particular, the covariates are non-

random), and observes the resulting values of Y ,

apart from random error (e.g. measurement er-

ror). The `function' f (�;x) referred to above

typically has a known form, but may depend on

unknown parameters �.



8

� Example 1: In pharmacology and elsewhere the

output (Y ) of a chemical reaction may depend on

the input x, random error " and non-negative pa-

rameters �1, �2 according to a `Michaelis-Menten'

model

Y =
�1x

�2 + x
+ ":

Note horizontal asymptote at �1, `halfway point'

is x = �2. One observes pairs (Yi; xi) ; i =

1; :::; n and from these can estimate the parame-

ters. Symbolically,

Yi = f (�;xi) + "i; i = 1; :::; n:

The function f (�;x) = �1x
�2+x

(� = (�1; �2)
0) is a

non-linear function of �; hence this is a non-linear

regression model. With

Y =

0B@ Y1
...
Yn

1CA ;� (�) =
0B@ f (�;x1)

...
f (�;xn)

1CA ; " =
0B@ "1

...
"n

1CA
we have

Y = � (�) + ": (1.1)
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� Typical assumptions on the errors:

{ Average error is zero: E ["i] = 0; thus

E ["] =

0B@ E ["1]
...

E ["n]

1CA = 0 and so E [Y] = � (�) :
{ Errors on di�erent trials are uncorrelated, but

all are equally varied: cov
h
"i; "j

i
= 0 if i 6=

j;= �2" if i = j; thus

cov ["] = E
h
("� E ["]) ("� E ["])0

i
= E

h
""0
i
=

0B@ cov ["1; "1] � � � cov ["1; "n]
... . . . ...

cov ["n; "1] � � � cov ["n; "n]

1CA
=

0B@ �2" � � � 0
... . . . ...
0 � � � �2"

1CA = �2"In
why?
= cov [Y] :
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� Example 2: Response (Y ) to a drug depends on
drug type (x1 = 0 for control, = 1 for new drug)

and amount administered (x2). Possible model

for response of ith patient is

Yi = �0 + �1x1;i + �2x2;i + �12x1;ix2;i + "i; with

E [Yi] =

(
�0 + �2x2;i; if control,

(�0 + �1) + (�2 + �12)x2;i; if new drug.

Thus the di�erence in the mean responses at dose

x2 is �1+ �12x2. A hypothesis of interest is then

H0 : �12 = 0; if true then the mean di�erence in

responses is the same at all dosages.

� Example 2 in matrix terms: Let Yn�1 be the
vector of responses from the n0 patients on the

control, followed by those from the n1 patients

on the new drug, then

Y =
�1n0
1n1

�
�0+

�0n0
1n1

�
�1+

�x2;0
x2;1

�
�2+

�0n0
x2;1

�
�12+";
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where x2;0 and x2;1 are the vectors of dosages

and 0, 1 refer to vectors of zeroes and ones re-

spectively. More succinctly,

Y =

 
1n0 0n0 x2;0 0n0
1n1 1n1 x2;1 x2;1

!
� + "

= X� + "; (1.2)

here � = (�0; �1; �2; �12)
0 and X is the n � 4

`design matrix'. Comparing (1.1) and (1.2),

E [Y] = � (�) = X�

is a linear function of �:

� Simple linear regression. E [Y ] = �0+ �1x, data

(xi; yi)
n
i=1; X has columns 1n = (1; :::; 1)0 and

(x1; :::; xn)
0.

� A minimal requirement for success in this course
is that you NEVER write X�1 when X is a design

matrix with, as is almost always the case, more

rows than columns.
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� Brief outline of this course:

{ Theory of linear models { canonical represen-

tation (this part is fairly theoretical); use this

to quickly develop theory of estimation and

hypothesis testing. Review some typical ex-

amples and applications.

{ Nonlinear regression { here the preceding the-

ory is applied, with appropriate modi�cations,

to treat nonlinear models. Relies on approx-

imating a nonlinear response by a linear one;

these approximations tend to be asymptotic in

nature in that they become increasingly accu-

rate as n ! 1. The theory developed for

linear models is also applied to give e�cient

computational techniques. (R package used

extensively throughout the course.)

{ Robust regression { here we will study further

modi�cations of those techniques developed

for linear models; the purpose is to obtain

procedures whose validity is maintained even
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when the assumptions underlying the model

are violated (outlying observations, highly in-

uential covariates, unsuspected correlations,

etc.)

# Various regression techniques for the 'cars' data

# Y = braking distance, X = speed

# Data already in R; called 'cars'

x = cars$speed

y = cars$dist

par(mfrow=c(2,2)) # Sets the plotting function

to give a 2 by 2 panel of plots

## Two Least Squares fits

plot(x, y, xlab="speed", ylab="dist",

title(sub="LS fit"))

# Fit a straight line

fit1 = lm(dist ~speed, data = cars)

yhat = predict.lm(fit1)
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lines(x,yhat)

# Fit a quadratic

fit2 = lm(dist ~speed + I(speed^2), data = cars)

#omit the I() - what happens?

yhat = predict.lm(fit2)

lines(x,yhat)

legend(x=2, y=125, legend = paste

("lin.",1:2," = ", round(as.numeric(fit1$coef),2)))

legend(x=2, y=100, legend = paste

("quad.",1:3," = ", round(as.numeric(fit2$coef),2)))

## Two L1 - fits

## Here the sums of the ABSOLUTE VALUES

of the residuals(not their SQUARES) is minimized

## A special package for this has to be loaded:

# First go, in the menu, to Packages -> Set CRAN

mirror (to Canada (BC))

# Then Packages -> Load Packages -> quantreg
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library(quantreg)

plot(x, y, xlab="speed", ylab="dist",

title(sub="L1 fit"))

# Fit a straight line

fit3 = rq(dist ~speed, data = cars)

yhat = predict(fit3)

lines(x,yhat)

# Fit a quadratic

fit4 = rq(dist ~speed + I(speed^2), data = cars)

yhat = predict(fit4)

lines(x,yhat)

legend(x=2, y=125, legend = paste

("lin.",1:2," = ", round(as.numeric(fit3$coef),2)))

legend(x=2, y=100, legend = paste

("quad.",1:3," = ", round(as.numeric(fit4$coef),2)))

## Here are two methods in which a model need not



16

## be specified:

## Smoothing spline fit (will be discussed later)

plot(x, y, xlab="speed", ylab="dist",

title(sub="spline fit"))

fit5 = smooth.spline(x,y)

yhat = predict(fit5, x=cars$speed)$y

lines(x, yhat)

## Loess fit (will be discussed later)

plot(x, y, xlab="speed", ylab="dist",

title(sub="loess fit"))

fit6 = loess(y~x)

yhat = predict(fit6)

lines(x, yhat)

[ natheight=7.1676in, natwidth=7.1676in,
height=6.4792in, width=6.4792in]
C:/sw50/temp/graphics/cars1

1:pdf
Various regression �ts to the `cars' data.
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� Some theory for linear models. Here we consider
more deeply the structure in (1.2), which implies

that E [Y] = X�. (You might �rst look at the

STAT 512 notes, available on the web.) Denote

by z1; � � �; zp 2 Rn the columns of X, then

E [Y] =
pX
i=1

zi�i

is a linear combination of the columns of X. The

set of all such linear combinations is a vector

space, called the column space (col(X)), whose

dimension is called the rank of X.

� Two vectors y; z 2 Rn are orthogonal if y0z =Pn
i=1 yizi = 0. We write y ? z. The Euclidean

norm (i.e., length) of z is kzk =
p
z0z. The Least

Squares Estimator (LSE) of � in a linear model is

the vector �̂ which minimizes ky �X�k. This

is sometimes more conveniently expressed as the

minimizer of

ky �X�k2 =
nX
i=1

�
yi � x0i�

�2
;
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where x01; :::;x
0
n are the rows of X. In this nota-

tion yi � x0i�̂ is the ith residual.

� Hat matrix: Consider a regression model y =

X� + " with Xn�p of full rank p. We will later

show that the LSEs are

�̂ =
�
X0X

��1
X0y;

so that the estimate of E [y] = X� is ŷ = X�̂ =
Hy, where

Hn�n = X
�
X0X

��1
X0

is the `hat' matrix { it `places the hat on y'.

{ Properties:

H = H0 (`symmetric')
HX = X

(I�H)X = 0

H2 = H (`idempotent')

(I�H)2 = (I�H)
H(I�H) = 0:

Also: rk(H) = p; rk(I�H) = n� p.
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2. LSEs; Gram-Schmidt Theorem and its

consequences

� If z is any n � 1 vector, and H is a hat matrix,

then

z = Hz+ (I�H)z = z1 + z2,

say, where z1 ? z2. The �rst is in col(X) =

col (H) (why?) and the second is in the space of

vectors orthogonal to every vector in col(X). We

write z2 2 col(X)? (`orthogonal complement to
col(X)'). You should verify that this is a vec-

tor space (i.e. is closed under addition and scalar

multiplication), and that col(X)? = col(I �H),
of dimension n� p.

� Least squares estimation in terms of hat matrix
decomposition of norm of residuals: Note that

u ? v) ku+ vk2 = kuk2 + kvk2; then

ky �X�k2 = kH (y �X�)k2 + k(I�H) (y �X�)k2

= kH (y �X�)k2 + k(I�H)yk2 :
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The second (non-negative) term above does not

depend on �. If we can choose � so that the �rst

term vanishes, we will have minimized ky �X�k2,
and found that the minimum value is k(I�H)yk2.
We have H (y �X�) = 0, Hy = X� ,

� =
�
X0X

��1
X0y: (2.1)

Reason: the `(' is obvious; in the other direc-
tion we have that Hy = X� ) X0Hy = X0X�,
i.e.

X0y = X0X�:

These are the `normal equations', and (2.1) fol-

lows and gives the LS estimator �̂. The �tted

values are

ŷ = X�̂ = Hy;

and are orthogonal to the residuals

e = y � ŷ = (I�H)y:

We say thatH and I�H project the data (y) onto

the estimation space and error space, respectively,

and that these spaces are orthogonal.
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� A square matrixQn�n is orthogonal if the columns
are mutually orthogonal, and have unit norm. Equiv-

alently

QQ0 = Q0Q = In:

If Q is orthogonal then kQyk = kyk for any n�1
vector y { `norms are preserved'. Similarly, angles

between vectors are also preserved (why?). Geo-

metrically, an orthogonal transformation is a `rigid

motion' { it corresponds to a rotation and/or an

interchange of two or more axes. It is possible

to �nd a basis for col(X) consisting of mutually

orthonormal vectors; this makes both the theory

and the computations much simpler.

� Gram-Schmidt Theorem: Every m-dimensional

vector space V , with basis fv1; :::vmg say, has an
orthonormal basis fq1; :::qmg. This basis can be
constructed in such a way that qj is a linear com-

bination of
n
v1; :::vj

o
only (and the coe�cient of

vj is positive).

Proof: Stat 512 notes.
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� QR-decomposition. If Vn�m has rank m, so

that its columns fv1; :::vmg are independent, hence
form a basis of col(V ), then we can apply Gram-

Schmidt so has to get a matrix Qn�m, whose
columns fq1; :::qmg are orthonormal. Since qj
was obtained as a linear combination of v1; :::vj,

we can write

Vn�mUm�m = Qn�m;

for U upper triangular with positive diagonal ele-

ments. Then U is nonsingular and V = QR for

R = U�1. (Note that R is also upper triangular

with positive diagonal elements.)

� We apply the decomposition arising from the Gram-
Schmidt Theorem to regression, assuming that

the design matrix Xn�p has rank p. Write X =

Q1R1, whereQ1: n�p has orthonormal columns,
and R1: p � p is upper triangular with posi-

tive diagonal elements. Apply Gram-Schmidt

once again, starting with the n � p independent
columns of I � H, to obtain Q2: n � (n � p)
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whose columns are orthonormal and are a basis

for col(X)?. ThenQ
def:
= (Q1

...Q2) has orthonor-

mal columns and is square, hence is an orthogonal

matrix. We have

QR = (Q1
...Q2)

 
R1
0

!
= X;

R0R = R01R1 = X
0X;�

X0X
��1

= R�11 R�1
0

1 ;

H = Q1Q
0
1;

I�H = Q2Q
0
2:

� In terms of QR-decomposition: we have that

�̂ = R�11 R�1
0

1 R
0
1Q
0
1y; i.e.

R1�̂ = Q
0
1y:

Thus compute

zn�1 = Q0y =

 
Q
0
1

Q
0
2

!
y

=

 
Q
0
1y

Q
0
2y

!
=

 
z1
z2

!
p� 1
(n� p)� 1 :
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Then backsolve the system of equations R1�̂ =

z1. Numerically stable { no matrix inversions. It

is done this way on R.

� The residual vector is e = Q2z2, with squared

norm kz2k2. The usual estimate of the variance

�2" of the random errors " is

S2 =
SS of residuals

n� p
=
kek2

n� p
=
kz2k2

n� p
;

the mean squared error. Commonly, the SS of

residuals is called SSE (SS of Errors) and

S2 = SSE=(n�p) is called MSE (Mean Squared
Error). We have

E [z] = Q0E [y] =

 
Q
0
1Q1R1�

Q
0
2Q1R1�

!
=

 
R1�
0

!
;

and then using the general result `cov[Ay] =

Acov [y]A0' (how?) we get

cov [z] = Q0COV [y]Q = Q0�2IQ = �2I;
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hence the elements zp+1; :::; zn of z2 have mean

zero and var[zi] = E
h
z2i

i
= �2. Thus S2 =

MSE is unbiased:

E
h
S2
i
= E

24Pn
p+1 z

2
i

n� p

35 = �2" :

� Maximum Likelihood. So far none of this has

required any assumptions about the probability

distribution of the random errors. In addition

to the assumptions that these be uncorrelated,

mean zero, equally varied, assume now that they

are normally distributed:

"1; :::; "n
i:i:d:� N(0; �2"):

Then Yi � N(x0i�; �2") and the Yi are independent
(rather than merely uncorrelated):

Y � N
�
X�; �2"In

�
:

The likelihood function (= p.d.f. of the data, eval-
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uated at the observed values) is

L
�
�; �2"

�
=

nY
i=1

�
2��2"

��1=2
e
�(

yi�x0i�)
2

2�2"

=
�
2��2"

��n=2
e
�ky�X�k

2

2�2" :

The maximum likelihood estimates are the maxi-
mizers of L, or equivalently of the log-likelihood

l
�
�; �2"

�
= logL

�
�; �2"

�
= �n

2
log �2"�

S (�)

2�2"
+const:;

where S (�) = ky �X�k2 and `const.' =�n2 log 2�.
The maximizing � is, clearly, the minimizer of
S (�); quite generally in normal modelsMLE = LSE.
Then solving

d

d�2"

8<:�n2 log �2" �
S
�
�̂
�

2�2"

9=; = 0
results in

�̂2MLE =
S
�
�̂
�

n
=
n� p
n

S2:

Again typically, the MLE of the variance is biased
but the bias is easily removable.
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3. Distributions; Con�dence regions; LR test

� The derivations of the distributions of related quan-
tities rely on several important properties of nor-

mally distributed r.v.s:

1. If Zr�1 � Nr (�;�) and Aq�r is a matrix of
constants then AZ is normally distributed:

AZ � Nq
�
A�;A�A0

�
:

2. If Z � N
�
0; �2"Ir

�
then kZk2 =�2" � �2r.

3. If Z � N
�
�; �2

�
and rS2 � �2�2r indepen-

dently of Z, then (Z � �) =S � tr.

4. If r1S
2
1 � �2�2r1, independently of r2S

2
2 �

�2�2r2, then S
2
1=S

2
2 � F

r1
r2 .
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� Suppose y � N
�
X�; �2"In

�
. Put � = X�. The

`�tted values' are �̂ = X�̂ (previously, and more

commonly, written ŷ.) From the QR-decomposition

we obtained (p. 24) 
z1
z2

!
def
=

 
Q
0
1y

Q
0
2y

!
� N

  
R1�
0

!
; �2"In

!
and

�̂ = Hy = Q1Q
0
1y = Q1z1;

�̂ = R�11 z1;

S2 =
kz2k2

n� p
:

Thus:

5. �̂ and �̂ are independent of S2;

6. S2=�2" � �2n�p= (n� p);

7. �̂ � N
�
�; �2"R

�1
1 R�1

0
1 = �2"

�
X0X

��1�;
8. �̂ � N

�
�; �2"H

�
.
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� From 7, �̂j � N

�
�j; �

2
"

h�
X0X

��1i
jj

�
. The

standard error (= est'd. s.d. of an estimate) is

s
�
�̂j
�
= S �

�h�
X0X

��1i
jj

�1=2
; then using 3,

�̂j � �j
s
�
�̂j
� � tn�p:

(Used for marginal hypothesis tests and con�-

dence intervals.)

� From 7 again, R1
�
�̂ � �

�
� N

�
0; �2"Ip

�
; then

by 2,�
�̂ � �

�0
X0X

�
�̂ � �

�
=
�
�̂ � �

�0
R
0
1R1

�
�̂ � �

�
� �2"�

2
p, ind. of S2 � �2"�

2
n�p= (n� p). It

follows that�
�̂ � �

�0
X0X

�
�̂ � �

�
pS2

� F pn�p:

Thus a 100 (1� �)% con�dence region for � is
the ellipsoid�
� j
�
�̂ � �

�0
X0X

�
�̂ � �

�
� pS2F pn�p (1� �)

�
:
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� The expected value of Y at level x0 is E [Y jx0] =
x
0
0�, with estimate

x00�̂ � N
�
x00�; �

2
"x
0
0

�
X0X

��1
x0

�
:

It follows that a 100 (1� �)% con�dence interval

is x00�̂ � S
q
x00
�
X0X

��1 x0 � tn�p �1� �
2

�
.

� Simultaneous con�dence intervals on all x00� are
given by

x00�̂ � S
r
x00
�
X0X

��1
x0 �

q
pF

p
n�p (1� �);

the interpretation is that, before sampling, the

probability is 1�� that these intervals will contain
x00� for every x0. (Exercise.)

� Hypothesis testing in linear models. In the most

general formulation of linear hypotheses, we have

a `full' model that speci�es that � (the mean

vector of Y) lies in a particular vector space �

(= col (X)). We wish to test the hypothesis



31

H that � lies in a subspace �0 of � (the `re-

stricted' model). The alternate hypothesis K is

that � =2 �0.

{ Example 1: Suppose that the p columns of X

are independent, and that the �rst q columns

form a basis for �0. Partition the vector of

regression parameters as

� =
��1
�2

� q

p� q
:

Then the null hypothesis is H : �2 = 0. (As

in Example 2, Lecture 1.) We can always

chooseX (via Gram-Schmidt) so as to arrange

matters in this way.
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{ Example 2: Testing Lack of Fit. Here we

test if our postulated regression model is ap-

propriate. The method requires that we have

replicates, viz. there are r < n distinct values

x1; :::;xr of x, with ni observations
n
Yij
oni
j=1

made at xi (
Pr
i=1 ni = n). The model speci-

�es no particular regression structure: E
h
Yij
i
=

�i, with no necessary relationship among the

�i. Thus

� =

0B@ �11n1
...

�r1nr

1CA = rX
i=1

0BBBBBB@
0n1
...
1ni
...
0nr

1CCCCCCA�i
and � is the vector space consisting of all such

� as the �i range over R. This space has

dimension r. The hypothesis H is that �i =

x0i� for some � 2 Rp and p < r; thus �0 is

a p-dimensional subspace of � (assuming that

x1; :::;xr are linearly independent; if so then

what is a basis?).
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� Maximum likelihood is the most widely applied

method of estimation; its analogue in testing is

the `likelihood ratio test'. The idea is to com-

pare the maximized likelihood under the union

H [K of the null and alternate hypotheses (the

full model) with that under H alone (the reduced

model); if the former is signi�cantly larger than

the latter we conclude that H is more restrictive

than is justi�ed by the data and `reject' it.

� For a linear regression model this requires the
computation of

� =
maxH[K L

�
�; �2"

�
maxH L

�
�; �2"

� :

In general (i.e. without assuming normality), if �

has dimension p and �0 has dimension q, then

under H,

2 log � = 2
�
max
H[K

l
�
�; �2"

�
�max

H
l
�
�; �2"

��
d! �2p�q as n!1:
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An asymptotically valid level � test then rejects

if 2 log � > �2p�q (1� �).

� For Normal models we can evaluate �more explic-
itly, and obtain exact distributional results. Re-

call

l
�
�; �2"

�
= �n

2
log �2" �

S (�)

2�2"
� n
2
log 2�; hence

max
�2"

l
�
�; �2"

�
= l

 
�;
S (�)

n

!

= �n
2
log

S (�)

n
� n
2
(1 + log 2�) :

Let �̂ be the minimizer of S (�) under H [ K
(the `unrestricted MLE') and let

^̂� be the mini-

mizer under H (the `restricted MLE'). We write

S
�
�̂
�
= SSEFull, S

�
^̂�
�
= SSERed and then

2 log � = 2
�
�n
2
log

SSEFull
n

+
n

2
log

SSERed
n

�
= n log

SSERed
SSEFull

:
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ThusH is rejected for large values of SSERed=SSEFull.

Equivalently, reject for large

F =

(
SSERed
SSEFull

� 1
)
n� p
p� q

=

SSERed�SSEFull
p�q

SSEFull
n�p

=

increase in the minimized SS resulting from H
change in d.f.

absolute minimum SS
d.f. in full model

:

� Here the `minimized SS' is the sum of squares

of the residuals, in the model (full or restricted)

being considered. In Assignment 1 Q3 you are

showing, in the general context of hypothesis test-

ing considered above, that the F is distributed as

F � F p�qn�p when the errors are normally distributed
and H is true.
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4. LR test in Normal models; acetylene data

� To compute F typically requires us to run two

regressions, one without H and the other assum-

ing H; the relevant sums of squares are then

read o� of the printout. When H is true, F �
F
p�q
n�p and so the p-value is P

�
F
p�q
n�p > Fobs

�
(as-

signed). Note also that typically the numerator

d.f. (p� q) is the reduction in the number of re-
gression parameters when H is assumed.

� Testing LOF. Under H [K, the SS is

SS =
rX
i=1

niX
j=1

�
yij � �i

�2
and is minimized by �̂i = what?; hence

SSEFull = min
H[K

SS =
rX
i=1

(ni � 1)S2i ;

where S2i = ... . One often writes SSEFull =

SSPE (SS due to `pure error'); it is on
Pr
i=1 (ni � 1) =
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n�r d.f. UnderH, the minimum SS is SSERed =
SSE from the regression output with design ma-

trix with rows x0i repeated ni times; it is on n� p
d.f. Then

F =

SSE�SSPE
r�p
SSPE
n�r

:

One often writes SSE � SSPE as SSLOF and

then F = MSLOF=MSPE. One refers to the

F
r�p
n�r distribution for the p-value. Note that

SSPE can be obtained from the output of an

ANOVA (where it will appear as the SS of the

residuals in a call such as

aov(y~as.factor(x))).

� Why is the F an F? And what if the hypothesis

is false? In Assignment 1 Q3 you are showing,

in the general context of hypothesis testing with

Normal errors, that

F � kz2k
2 =(p� q)

kz3k2 =(n� p)
;
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where z2 and z3 are Normal and independent,

z3 � N
�
0; �2In�p

�
(so kz3k2 =(n�p) � �2�2n�p)

but z2 � N
�
�; �2Ip�q

�
. When H is true, � = 0

and so kz2k2 =(p� q) � �2�2p�q and F � F
p�q
n�p.

But when the hypothesis is false, the distribu-

tion depends on � through �2 = k�k2 =�2 and
kz2k2 � �2

Pp�q
k=1Z

2
k, where the Zk are indepen-

dent and Normal, but not with zero means: k�k2

is the SS of their means. In this case we say that

kz2k2 =(p � q) � �2�2p�q
�
�2
�
, the non-central

�2p�q with `non-centrality parameter' �
2, and F

is � F
p�q
n�p

�
�2
�
, the non-central F . In the as-

signment you are �nding a way to work out �2

explicitly as the squared distance between the true

mean � and the closest vector in �0. So �
2 in-

creases as the null hypothesis becomes `less true'.

From these representations it is an easy matter to

show that the `power'

P
�
F
p�q
n�p

�
�2
�
> critical value

�
is an increasing function of �2 - an intuitively

pleasing property.
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� Another hypothesis testing example:

> #R example; acetylene data

> # Data from Montgomery & Peck Example 8.1

> # Response variable (conv) is % conversion

of n-heptane to acetylene

> # Explanatory variables temp(reactor temp),

mole (chemical ratio),cont (contact time)

> # Enter the data:

> conv =c(49,50.2,50.5,...)

> temp = c(rep(1300,6),rep(1200,6),...)

> mole = c(7.5,9,11,13.5,...)

> cont = c(120,120,115,...)/10000

>

> # Put the data into a "frame"; look at all

pairs of plots

> acet = data.frame(conv, temp, mole, cont)

> pairs(acet) # Note that the predictors cont

and temp are highly correlated

[ natheight=7.1676in, natwidth=7.1676in,
height=4.8888in, width=4.8888in]

C:/sw50/temp/graphics/acet1f ig12:pdf
All pairs of variables from \acet" dataframe.
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> # Fit a full second order model

> x = cbind(temp, mole, cont, temp*mole, temp*cont,

mole*cont, temp^2, mole^2, cont^2)

> dimnames(x) = list(NULL, c("T", "M", "C",

"T*M", "T*C", "M*C", "T2", "M2", "C2"))

> fit1 = lsfit(x, conv); ls.print(fit1)

Residual Standard Error=0.9014

R-Square=0.9977

F-statistic (df=9, 6)=289.7

p-value=0

Estimate Std.Err t-value Pr(>|t|)

Intercept -3.617e+03 3.136e+03 -1.153 0.2926

T 5.324e+00 4.880e+00 1.091 0.3171

M 1.924e+01 4.303e+00 4.473 0.0042

C 1.377e+04 1.045e+04 1.318 0.2357

T*M -1.410e-02 3.200e-03 -4.404 0.0045

T*C -1.058e+01 8.241e+00 -1.284 0.2467

M*C -2.103e+01 9.241e+00 -2.276 0.0631

T2 -1.900e-03 1.900e-03 -1.016 0.3487

M2 -3.030e-02 1.170e-02 -2.597 0.0408

C2 -1.158e+04 7.699e+03 -1.504 0.1832
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> d = ls.diag(fit1); print(d)

$std.dev # This is 'S'

[1] 0.9014

$hat # Diagonal elements of hat matrix

[1] 0.5295 0.3060 0.4007 ...

$std.res # Residuals divided by their

std. deviations

[1] -0.9920 0.5753 0.7084 ...

$stud.res # Later

[1] -0.9904 0.5403 0.6755 ...

$cooks # Later

[1] 0.11076 0.01459 ...

$dfits # Later

[1] -1.0508 0.3587 0.5523 ...

$correlation
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Not shown; correlation matrix of

regression coefficients

$std.err

Not shown; Std errors of coefficients

$cov.scaled

Not shown; covariance matrix of regression

coefficients (= S^2*$cov.unscaled)

$cov.unscaled

Not shown; (X'X)^1

Test to see if all terms in `C' can be dropped:

> n = nrow(x)

> p = ncol(x)+1

> SSE.full = d$std.dev^2*(n-p)

>

> # Reduced model, without columns 3,5,6,9 of X

> fit2 = lsfit(x[ ,-c(3,5,6,9)], conv)

> d2 = ls.diag(fit2)
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> p2 = p-4

> SSE.red = d2$std.dev^2*(n-p2)

>

> F = ((SSE.red-SSE.full)/(p-p2))/(SSE.full/(n-p))

> p.to.drop.C = 1-pf(F, p-p2, n-p)

> cat("p-value of test is", p.to.drop.C, "\n")

p-value of test is 0.2138615

But we should have looked �rst at the validity of these

�ts.

> fits = cbind(1,x)%*%fit1$coef

> plot(fits,d$std.res, ylab="std.res")

[ natheight=17.6279cm, natwidth=17.6718cm, height=8.4241cm,

width=8.4438cm] C:/sw50/temp/graphics/acet1f ig23:pdf

Hardly a `normal' looking display. The high correlation

between `C' and `T' should have been a warning!
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> xtx = crossprod(cbind(1,x))

> det(xtx)

[1] 1.214396e+14

> solve(xtx)

Error in solve.default(xtx) : system is

computationally singular:

reciprocal condition number = 1.02379e-22

> diag(d$cov.unscaled)

Intercept T M C T*M

1.210e+07 2.930e+01 2.278e+01 1.343e+08 1.269e-05

T*C M*C T2 M2 C2

8.358e+01 1.051e+02 4.424e-06 1.680e-04 7.294e+07

� A regression model su�ers from `multicollinearity'

if some of the regressors (or linear combinations

of them) are highly correlated. This results in

X0X being di�cult to invert (numerical instabil-

ity), and in highly varied regression coe�cients

(so that they might change radically if a di�erent

sample at the same x-values is taken).
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� One indication of multicollinearity is if
��X0X�� is

very small. (This was certainly not the case

with the acetylene data.) Another indicator is

large values of the `condition numbers', which are

�j = �1=�j when �1 � � � � � �p are the ordered

eigenvalues of X0X. Values of � > 100 (1000)

indicate moderate (severe) numerical instability.

For the acetylene data some � > 1020.

> v = eigen(xtx)$values; v

[1] 3.543840e+13 6.843691e+08 1.133772e+05

[4] 1.156081e+04 1.371599e+03 1.794139e+00

[7] 1.046738e-02 4.513771e-04 3.203306e-05

[10] 2.608609e-07

> max(v)/min(v)

[1] 1.358517e+20
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5. Ridge regression; Weighted and Generalized

Least Squares

� A �rst remedial measure is to standardize the vari-
ables: replace each column of X by that column

minus its mean, divided by ((
p
n� 1� std.dev.

of the column). The transformed X will now

satisfy X0X = R, where rij is the correlation

between the ith and jth columns of the original

X. Transform Y in the same way and carry out

the regression using these transformed variables.

(The column of 1's has become a column of 0's,

so eliminate the intercept, which is estimated by

�y and subtracted from each yi.)

{ The resulting regression coe�cients are called

the `standardized coe�cients'.

{ Often this transformation is applied only to

the linear terms, not the second or higher order

terms. (Why is this sensible?)
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{ This transformation alone sometimes reduces

the multicollinearity.

� Multicollinearity often results from the minimum

eigenvalue chmin
�
X0X

�
being near zero. But the

eigenvalues of X0X + kIp are those of X0X plus

k; this indicates a way around the problem. The

`ridge' estimator starts in standardized form (so

no intercept) and then replaces �̂ =
�
X0X

��1X0y
by

�̂R (k) =
�
X0X+ kIp

��1
X0y:

The number k � 0 is called a `biasing constant'
because it results in biased (but less highly varied)

estimates.

{ �̂R (k) can also be de�ned as the solution

to the problem of minimizing ky �X�k2 +
k k�k2, in which large regression coe�cients
are penalized (assigned).
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{ It can be shown (Assignment 1) that the as-

sociated mean squared error, de�ned as

MSE (k) = E

��̂R (k)� �2��
= tr

�
E

��
�̂R (k)� �

� �
�̂R (k)� �

�0���
;

is given by

MSE (k) = tr
h
cov

�
�̂R (k)

�i
+
bias h�̂R (k)i2

= �2"tr

��
X0X+ kIp

��2
X0X

�
+k2�0

�
X0X+ kIp

��2
�:

As k increases, the variance component de-

creases and the bias component increases; there

is a range of values of k for whichMSE(k) <

MSE(0).

{ A common (but controversial) way to choose

an appropriate value of k is to examine the

`ridge trace' plots, which are plots of the com-

ponents of �̂R (k) vs. k. These typically vary

wildly for k near zero; one takes as k the value

at which they begin to stabilize.
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� See the `acetylene2' script from the course web-

site. The correlation transformation alone does

not help matters much. But a ridge regression {

see traces in plots (a), (b), (c) below { indicates

that k � :03 is a suitable biasing constant. The

R output and the traces suggest eliminating all

terms involving `C'.

> # Do a regression with this value of k, using

'pseudovalues':

> # Here the original data will be used

> k = .03

> xnew = cbind(1,x)

> px = ncol(xnew)

> fit = lsfit(rbind(xnew, sqrt(k)*diag(px)),

c(conv, rep(0, px)), int=F)

> ls.print(fit)

Residual Standard Error=0.9428

R-Square=0.9994

F-statistic (df=10, 16)=2583.722

p-value=0
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Estimate Std.Err t-value Pr(>|t|)

0.2264 5.4406 0.0416 0.9673

T -0.1725 0.0260 -6.6359 0.0000

M 9.8492 2.0965 4.6978 0.0002

C 0.0892 5.4430 0.0164 0.9871

T*M -0.0072 0.0016 -4.4386 0.0004

T*C -0.0051 0.0482 -0.1054 0.9174

M*C -0.3254 4.2212 -0.0771 0.9395

T2 0.0002 0.0000 8.3868 0.0000

M2 -0.0243 0.0089 -2.7370 0.0146

C2 0.0253 5.4434 0.0047 0.9963

� For the ridge regressions the standardized variable
were used; (d) - (f) use the original variables.

Eliminating `C' and using k = 0 results in plots

(e) and (f).

[ natheight=7.1676in, natwidth=7.1676in,

height=7.1952in, width=7.1952in]

C:/sw50/temp/graphics/acet2
4:pdf
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� Weighted and Generalized Least Squares. We

might have evidence (obtained from residual plots,

for instance) that the random errors " are not un-

correlated, or not equally varied, and that instead

cov["] = �2� 6= �2"I. Suppose however that we

can �nd a matrix, written ��1=2, such that

��1=2���1=2
0
= I:

Then the model Y = X�+" can be transformed

as

��1=2Y = ��1=2X� +��1=2"

with cov
h
��1=2"

i
= �2I. Typically ��1=2 must

be estimated; then the elements of �̂�1=2Y be-

come the new dependent variables and the rows

of �̂�1=2X become the new independent vari-

ables. This is called `Generalized Least Squares',

or `Weighted Least Squares' if � is diagonal.
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� Example: AR(1) data. Suppose the index `i'

represents time, and that the observations follow

an AR(1) model common in economics:

Yi = x0i� + �i;

�i = ��i�1 + "i; with j�j < 1: (5.1)

The "i in (5.1) are i.i.d. It is shown (in STAT

479: Time Series for instance) that then

var [Yi] = var [�i] =
�2"

1� �2
;

corr
h
Yi; Yj

i
= corr

h
�i; �j

i
= �ji�jj:

An appropriate transformation is obvious from (5.1):

�̂�1=2y =

0BBB@
Y1

Y2 � �̂Y1
...

Yn � �̂Yn�1

1CCCA def
=

0BBB@
V1
V2
...
Vn

1CCCA = v;

�̂�1=2X =

0BBBB@
x
0
1

x
0
2 � �̂x

0
1...

x
0
n � �̂x

0
n�1

1CCCCA def
=

0BBBB@
u
0
1
u
0
2...

u
0
n

1CCCCA = U:
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(One might delete V1 and u
0
1.) Note that �

is the correlation between successive observations

Yi; Yi�1. The `Cochrane-Orcutt' procedure is:

1. Fit an OLS model to the original data; obtain

the residuals feig :

2. Estimate � by the sample correlation of the

pairs f(ei; ei�1)gni=2 (or the slope of a re-
gression, through the origin, of feigni=2 on
fei�1gni=2).

3. Compute v and U, estimate the parameters

by �̂ =
�
U0U

��1U0v; obtain new residuals

feig :

4. Repeat 2 and 3 if necessary; iterate until resid-

ual plots (against the index, or against the

lag-1 values), or the `Durbin-Watson test', in-

dicate that the dependence has successfully

been removed.
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� When � = diag
�
�21; :::; �

2
n

�
, we have ��1=2 =

diag
�
��11 ; :::; ��1n

�
and ��1 is called W. The

`weights' wi are the inverses of the (estimated)

variances and the resulting regression of
np

wiyi
on
i=1

on
np

wix
0
i

on
i=1

results in the WLS estimate

�̂WLS =
�
X0WX

��1
X0Wy:

� Similarly, the GLS estimate can be written

�̂GLS =
�
X0��1X

��1
X0��1y:

� Delta method: Let �X be the average of i.i.d.

observations Xi with mean � and variance �2.

Consider a function f
�
�X
�
. Expand around �:

f
�
�X
�
= f (�) + f 0 (�)

�
�X � �

�
+rem. of order

�
�X � �

�2
:
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Since E
��
�X � �

�2�
= �2=n, we can ignore this

remainder for large n and conclude that

E
h
f
�
�X
�i
� f (�) ;

var
h
f
�
�X
�i
� E

�n
f 0 (�)

�
�X � �

�o2�
=

h
f 0 (�)

i2 �2
n
:

{ One need not be working with ordinary av-

erages { any estimate whose variance is of

order 1=n will do. For instance if a residual

plot of e against Ŷ indicates that �2" = �2Y
varies with �Y , an appropriate variance sta-

bilizing transformation regresses f (Y ) on the

X's, where f satis�es f 0 (�)� (�) = const:

Example: if the spread in the plot indicates

that � (�) / � (indicated by s (e) / Ŷ ) then

solve f 0 (�)� = const: to get f (Y ) = log Y

(if Y > 0). So regress log Y on the X's and

check the residuals again.
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6. Logistic regression through WLS or Maximum

likelihood

� Logistic regression with repeat observations. Here
the dependent variable Yi is binary, representing

the occurrence of some event (a `cure', for in-

stance):

Yi =

(
1; if the event occurs on the ith trial,
0; otherwise.

Put �i = P (Yi = 1). We want to investigate

the manner in which �i varies with covariates xi
at which Yi is observed. But Yi � bin (1; �i) is

not normal, and the Yi are not equally varied. A

common approach is to make a logistic transfor-

mation. The logistic d.f. is L (t) = 1=
�
1 + e�t

�
;

it maps (�1;1) into (0; 1) and

L�1 (�i) = log
�i

1� �i
:

We would like to model L�1 (�i) in terms of the
covariates by taking as the data L�1 (Yi). This

won't work (why not?) but we can do it if we have



57

repeat observations
n
Yij
oni
j=1

at xi, i = 1; :::; I.

First estimate �i by �̂i =
P
j Yij=ni; then regress

the `logits'

vi = log
�̂i

1� �̂i
on the regressors in the model vi = x0i� + "i.

Since vi can be anything in (�1;1) it might
possibly look Normal, but are the "i equally var-

ied?

{ Apply the delta method with �X replaced by

�̂i, which is the average of ni i.i.d. observa-

tions, each of which has mean �i and variance

�i (1� �i). The function f (�̂i) = vi has

f 0 (�̂i) = (�i (1� �i))�1 and so

var [vi] �
1

ni�i (1� �i)
:

The regression of vi on xi should then be done

by WLS, with weights wi = ni�̂i (1� �̂i).
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� Data setting: A market research company wishes
to investigate the e�ectiveness of discount coupons.

Coupons of varying values (5c/, 7c/,...,25c/) are

given { to 500 people each { and the numbers of

coupons redeemed after one month are recorded.

How does the redemption rate depend on the

coupon value?

# x = value of discount

# N = numbers of coupons redeemed

x = seq(from = 5, to = 25, by = 2)

N = c(100, 122, 147, 176, 211, 244,

277, 310, 343, 372, 391)

p = N/500

logits = log(p/(1-p))

par(mfrow=c(1,2))

plot(x,logits)

fit = lm(logits ~x, weights = 500*p*(1-p))

lines(x, predict(fit))
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plot(predict(fit), ls.diag(fit)$stud.res,

xlab = "fits", ylab = "stud. res.")

[ natheight=7.1676in, natwidth=7.1676in,

height=5.7614in, width=5.7614in]

C:/sw50/temp/graphics/logistic
5:pdf

Data, �tted regression line, and studentized residuals

in logistic regression example.

� Logistic regression without replicates { use maxi-
mum likelihood. Our model is that one observes

independent r.v.s Y1; :::; Yn with Yi � bin(1; �i)

and log �i
1��i = x

0
i�, implying

�i =
ex
0
i�

1 + ex
0
i�
; 1� �i =

1

1 + ex
0
i�
:
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With data (y1; :::; yn) the log-likelihood is

l (�) = log

8<:
nY
i=1

�
yi
i (1� �i)

1�yi

9=;
=

nX
i=1

yi log �i + (1� yi) log (1� �i)

=
nX
i=1

yi log
�i

1� �i
+

nX
i=1

log (1� �i)

=
nX
i=1

yix
0
i� �

nX
i=1

log
�
1 + ex

0
i�
�
:

The likelihood equations are _l (�) (=
�
@l
@�

�0
) = 0:

@l

@�
=

nX
i=1

yix
0
i �

nX
i=1

ex
0
i�

1 + ex
0
i�
x0i

=
nX
i=1

(yi � �i)x0i = (y � � (�))0X:

The are generally solved by Newton-Raphson. We

are to �nd a starting value �(0) and iterate to con-

vergence:

�(k+1) = �(k) �
h
�l
�
�(k)

�i�1 _l ��(k)� :
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A calculation gives

�l
�
�(k)

�
= �X0W(k)X;

whereW(k) = diag
�
� � �; �i

�
�(k)

� �
1� �i

�
�(k)

��
; � � �

�
.
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This results in

�(k+1) = �(k) +
�
X0W(k)X

��1
X0
�
y � �

�
�(k)

��
=

�
X0W(k)X

��1
X0W(k)z(k)

where

z(k) = W�1(k)
�
y � �

�
�(k)

��
+X�(k)

=

0BBBBB@
...

yi��i
�
�(k)

�
�i

�
�(k)

��
1��i

�
�(k)

�� + x0i�(k)
...

1CCCCCA :
Thus the algorithm is to repeatedly do WLS regres-

sions of z(k) on X, until convergence:

(i) Calculate �(0):

(ii) For k = 0; 1; :::calculate (in R notation)

�(k) = exp
�
X�(k)

�
=
�
1 + exp

�
X�(k)

��
;

w(k) = �(k) �
�
1� �(k)

�
;

z(k) =
h�
y � �(k)

�
=w(k)

i
+X�(k);

�(k+1) = lsfit(X; z(k); weights = w(k); int = F)$coef:
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7. Inuence measures

� E�ect of outliers and highly inuential values

[ natheight=18.2056cm, natwidth=18.2056cm,

height=11.1764cm, width=12.1825cm]

C:/sw50/temp/graphics/inuencef ig16:pdf
Simulated data: Y = x+ " with, on the left, one

additional observation which is both highly inuential

(extreme x� value) and has an outlying y� value.
Plot on right is after removal of this point.

[ natheight=18.2056cm, natwidth=18.2056cm,

height=11.4444cm, width=12.4505cm]

C:/sw50/temp/graphics/inuencef ig27:pdf
Residuals from �ts to full data set. The \bad" point

does not show up as an unusually large residual in

the LS �t, but the \good" points show an alarming

trend. In higher dimensions especially one cannot

count on the residuals to reveal problems with

outliers or high leverages.



64

� We can compute measures of inuence which help
to identify `bad' points; we can also use more

robust estimation methods which are less highly

inuenced by such points. Right now we'll look

at measures of inuence.

� Hat matrix diagnostics. The residuals are

e = y � ŷ = (I�H)y

hence

cov [e] = �2" (I�H) ; cov [ŷ] = �2"H;

var [ei] = �2" (1� hii) ; var [ŷi] = �2"hii:

Thus 0 � hii � 1 (with
P
hii = tr (H) = p). A

value of hii near 1 results (with high probability)

in a very small value of ei; thus ŷi is forced to

be nearly equal to yi. For this reason the hii are

called leverages. On R they are printed out as the

`hat' component of ls.diag, a `rule of thumb' is

that a value hii > 2�h = 2p=n is a cause for

alarm.
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� Deleted and studentized residuals. The ith deleted
residual is

di = yi � ŷi(i);

where ŷi(i) is the predicted value of Yi, computed

from the sample with (xi; yi) removed (so that

the prediction is not inuenced by the ith case.

The studentized residual is

d�i =
di

s (di)
= � � � = ei

S(i)
p
1� hii

;

where S(i) is computed from the reduced sample

and `� � �' refers to some algebra to be outlined
later. In a similar manner,

(n� p� 1)S2(i)
def
=

X
j 6=i

�
yj � ŷj(i)

�2
= (n� p)S2 �

e2i
1� hii

:

Thus d�i can be computed without doing all n re-
duced regressions. Note that d�i � tn�p�1, and
so

���d�i ��� is typically compared to

tn�p�1 (:95), larger values indicating an outlying
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y-value. In residual plots one generally plots the

studentized residuals (rather than the standard-

ized residuals ri =
ei

S
p
1�hii

, which are not tn�p
{ why not?).

� Deleted �ts. The ith deleted �tted value is

dfiti =
ŷi � ŷi(i)
S(i)
p
hii

= � � � = d�i

 
hii

1� hii

!1=2
:

From the �nal expression we see that this is large

if d�i is large (an outlying y-value) or if hii is large
(an inuential x-value). Its absolute value is typ-

ically compared to min
�
1; 2

q
p
n

�
.

� Cook's statistic.

Di =

�
�̂ � �̂(i)

�0
X0X

�
�̂ � �̂(i)

�
pS2

= ��� = r2i
hii

p (1� hii)
:

This is compared to F
p
n�p (:5), a larger value in-

dicating that when the ith case is deleted, the

vector of regression coe�cients moves out of a

50% con�dence ellipsoid computed from �̂.
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� These and many other such measures are dis-
cussed in `Inuential Observations, High Lever-

age Points, and Outliers in Linear Regression' by

Chatterjee & Hadi; available on course website.

� See the `acetylene' output from Lecture 4 { all of

these are components of ls.diag.

`Some algebra' to be outlined now:

� Useful identity:�
I� ab0

��1
= I+

ab0

1� b0a
:

Proof: I� ab0 � RHS = ::: = I.
Motivation: ...

� Similarly,
���I� ab0��� = ��I� b0a�� = 1� b0a.

� More generally, (I�AB)�1 = I+A (I�BA)�1B
and jI�ABj = jI�BAj.
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� Suppose we delete one row { the �rst, say { from
the X-matrix. How does this a�ect

�
X0X

��1?
Write

X =
� x01
X(1)

�
;

X0X = X
0
(1)X(1) + x1x

0
1;

so that h
X
0
(1)X(1)

i�1
=

h
X0X� x1x01

i�1
=

�
X0X

�
I�

�
X0X

��1
x1x
0
1

���1
=

8<:I+
�
X0X

��1 x1x01
1� x01 (X0X)

�1 x1

9=;�X0X��1
=

�
X0X

��1
+

�
X0X

��1 x1x01 �X0X��1
1� h11

:

Clearly X
0
(1)y(1) = X0y � x1y1, so that the re-

gression coe�cients computed from the reduced
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sample are

�̂(1) =
h
X
0
(1)X(1)

i�1
X
0
(1)y(1)

= :::

= �̂ �
�
X0X

��1 x1e1
1� h11

;

and in general

�̂(i) = �̂ �
�
X0X

��1 xiei
1� hii

:

� Apply to Cook's statistic:

Di =

�
�̂ � �̂(i)

�0
X0X

�
�̂ � �̂(i)

�
pS2

=

�
xiei
1�hii

�0 �
X0X

��1X0X �
X0X

��1 � xiei
1�hii

�
pS2

=
e2i

(1� hii)2 pS2
hii

=

 
ei

S
p
1� hii

!2
hii

p (1� hii)
:
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� Studentized residuals:

ŷi(i) = x
0
i�̂(i) = ::: = ŷi �

hiiei
1� hii

;

so

di = yi � ŷi(i) =
ei

1� hii
;

with standard deviation

� (di) =
� (ei)

1� hii
=

�"p
1� hii

;

thus (using S(i) to estimate �")

d�i =
di

s (di)
=

ei
S(i)
p
1� hii

:

� Deleted �ts: From the preceding,

dfiti =
ŷi � ŷi(i)
S(i)
p
hii

=

hiiei
1�hii

S(i)
p
hii

= ::: = d�i

 
hii

1� hii

!1=2
:

� That (n� p� 1)S2(i) = (n� p)S
2� e2i

1�hii is left
as an exercise (Assignment 1).
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Part II

Nonlinear Regression
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8. Nonlinear models; Gauss-Newton algorithm

� Good reading material for these lectures on non-
linear regression:

1. Bates & Watts Chapters 2, 3.1 - 3.6, 6.1 (in

the �rst edition).

2. Seber & Wild Chapter 5.1 - 5.4.

� Recall from Lecture 1: In pharmacology and else-

where the output (Y ) of a chemical reaction may

depend on the input x, random error " and para-

meters �1, �2 according to a `Michaelis-Menten'

model

Y =
�1x

�2 + x
+ ":

Note horizontal asymptote at �1, `halfway point'

is x = �2. Symbolically,

Yi = f (�;xi) + "i; i = 1; :::; n:
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The function f (�;x) = �1x
�2+x

is a non-linear func-

tion of �. Formally, this means that

_f
0
(�;xi) =

 
@f (�;xi)

@�1
;
@f (�;xi)

@�2

!
depends on �. Hence this is a non-linear regres-

sion model. With

Y =

0B@ Y1
...
Yn

1CA ;� (�) =
0B@ f (�;x1)

...
f (�;xn)

1CA ; " =
0B@ "1

...
"n

1CA
we have

Y = � (�) + ":

� Example (`Rumford1' in Bates & Watts): The ex-
pected temperature of an object, allowed to cool

from an initial temperature of 130� to an ambi-
ent temperature of 60� is, after time t, given by
E [Y ] = 60 + 70e��t.
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� The MM model is `transformably linear': Ignore

the errors, and write

1

f
= �0 + �1u for

�0 =
1

�1
; �1 =

�2
�1
; u =

1

x
:

So one can regress 1=y on u to get initial esti-

mates. But of course

1

y
6= �0 + �1u+ error.

� The MM model is also `conditionally linear' in �1,

given �2: if we are given �2 we can put

z =
x

�2 + x

and the model becomes Y = �1z + " { SLR

through the origin. Raises the possibility of a mix-

ture of estimation techniques ...

� Gauss-Newton method. We aim to minimize

S (�) = ky � � (�)k2 :
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Notation:

_� (�) =

0BB@
_f
0
(�;x1)
...

_f
0
(�;xn)

1CCA (so [ _� (�)]ij =
@f (�;xi)

@�j
).

Let �(0) be an initial estimate. Recall Taylor's

Theorem, by which each component �i (�) = f (�;xi)

of � (�) can be expanded as

�i (�) = f
�
�(0);xi

�
+ _f

0 �
�(0);xi

� �
� � �(0)

�
+
1

2

�
� � �(0)

�0�f �~�;xi� �� � �(0)� ;
for some ~� between � and �(0). We apply this

and ignore the Hessian, obtaining the linear ap-

proximation

� (�) � �
�
�(0)

�
+ _�

�
�(0)

� �
� � �(0)

�
= �(0) +V(0)�, say.

Then

Y � �(0) +V(0)� + "; (8.1)

leading to

�̂ = �̂ � �(0) =
�
V
0
(0)V(0)

��1
V
0
(0)

�
y � �(0)

�
:
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This �̂ becomes the next iterate:

�(1) = �(0) +
�
V
0
(0)V(0)

��1
V
0
(0)

�
y � �(0)

�
;

and in general

�(k+1) = �(k) +
�
V
0
(k)V(k)

��1
V
0
(k)

�
y � �(k)

�
:

Note then that the residuals y��(k) from the kth
stage are being regressed on the columns of V(k);

the resulting regression coe�cients are added to

�(k) to get �(k+1).

{ Now check that S
�
�(k+1)

�
< S

�
�(k)

�
; if not

replace �(k+1) by �(k)+�
�
�(k+1) � �(k)

�
for

� = 1=2; 1=4; ::: until there is a decrease in

S (�).

{ This is what is done in R (with of course

the QR-decompostion of V(k)) in the function

nls(...).
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� When to stop? After discussing several other

possibilities { relative change
�(k+1) � �(k) = �(k)

in the coe�cients, or relative change in S, Bates

& Watts suggest (and this is used in R) the or-

thogonality of the residual vector y�� (�) to the
(tangent to the) expectation surface � (�), when

evaluated at �̂. Motivation: at a critical point �̂

of S (�), one has�
y � �

�
�̂
��0

_�
�
�̂
�
= 00: (8.2)

To assess this, consider the linear approximation

as at (8.1): z = V� + ", with z = y � �
�
�̂
�

and V = V
�
�̂
�
= _�

�
�̂
�
. The LR test of the

hypothesis that � = 0 is based on

F =

 
SSERed � SSEFull

p

!
=

 
SSEFull
n� p

!
:

The numerator of the F is

z0z�z0
�
I�V

�
V0V

��1
V0
�
z = z0

�
V
�
V0V

��1
V0
�
z;

which at a critical point will = 0 since

z0V =
�
y � �

�
�̂
��0

_�
�
�̂
�
.
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� The stopping rule is thus: Compute �(k), V(k)

and z = y��
�
�(k)

�
. Fit the model z = V(k)�+

". Use the output to run the F-test of H: � = 0.
If
p
Fobs < :001, stop. If not, put �(k+1) =

�(k) + �̂ and repeat.

� `Linear approximation' inferences are made by ex-
panding y � � (�) as

" = y � � (�) � y � �
�
�̂
�
� _�

�
�̂
� �
� � �̂

�
;

i.e. y � �
�
�̂
�
� "� V̂

�
�̂ � �

�
;

where V̂ = V
�
�̂
�
. Then (8.2) has the `solution'

�̂ = � +
�
V̂0V̂

��1
V̂0"

and the approximation is

�̂
d� N

�
�; �2"

�
V0V

��1�
;

with V = V (�) estimated by V̂. From this,
single parameter inferences can be made exactly
as in Lecture 3, withX replaced by V̂. Ellipsoidal
con�dence regions on � can also be obtained as
there.
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� Linear approximation inferences on f (�;x0) =

E [Y jx0]: First expand

f (�;x0) � f
�
�̂;x0

�
+ _f 0

�
�̂;x0

� �
� � �̂

�
= f

�
�̂;x0

�
+ v

0
0

�
� � �̂

�
:

Then

f
�
�̂;x0

� d� N
�
f (�;x0) ; �

2
"v
0
0

�
V̂0V̂

��1
v0

�
;

leading to a con�dence interval

f
�
�̂;x0

�
� tn�p

�
1� �

2

�
S

r
v
0
0

�
V̂0V̂

��1
v0

where S2 =
y � � ��̂�2 = (n� p). For simulta-

neous con�dence intervals on all f (�;x0), replace

tn�p by
q
pF

p
n�p.

� These linear approximation inferences can be very
misleading; likelihood based inferences are gener-

ally recommended instead.
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� R output for �t of a Michaelis-Menten model to
the `puromycin' data. Response Y is the `veloc-

ity' of a reaction starting with a concentration x

of `treated' radioactive material.

> # Fit Michaelis-Menten data from Bates & Watts

... put the data (conc and vel) into

a dataframe 'Micmen'...

> lin.params = lsfit(x=1/Micmen$conc,

y=1/Micmen$vel)$coef

> theta1.start = 1/lin.params[1];

theta2.start = lin.params[2]/lin.params[1]

> starting.values = list(theta1.start,theta2.start)

Starting values are

theta1.start = 195.8027

theta2.start = 0.04840653

> fit1 = nls(vel~theta1*conc/(theta2+conc),Micmen,

start = starting.values, trace=T)
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Tracing nls(vel ~theta1 * conc/(theta2 + conc),

Micmen, start = starting.values, .... on entry

1920.643 : 195.80270885 0.04840653

1207.887 : 210.888516 0.061361

1195.604 : 212.49074892 0.06380847

1195.450 : 212.66411803 0.06409054

1195.449 : 212.68183920 0.06411831

1195.449 : 212.683560 0.064121

> print(fit1)

Nonlinear regression model

model: vel ~theta1 * conc/(theta2 + conc)

data: Micmen

theta1 theta2

212.683560 0.064121

residual sum-of-squares: 1195.449
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> print(summary(fit1))

Formula: vel ~theta1 * conc/(theta2 + conc)

Parameters:

Estimate Std. Error t value Pr(>|t|)

theta1 2.127e+02 6.947e+00 30.615 3.24e-11 ***

theta2 6.412e-02 8.281e-03 7.743 1.57e-05 ***

---

Residual standard error: 10.93 on

10 degrees of freedom

> # Define the response function AND its gradient:

> velocity = function(conc,theta1,theta2) {

velocity = theta1*conc/(theta2+conc)

dvel.theta1 = conc/(theta2+conc)

dvel.theta2 = -theta1*conc/((theta2+conc)^2)

attr(velocity, "gradient") =

cbind(dvel.theta1, dvel.theta2)

velocity}

> fit2 = nls(vel~velocity(conc,theta1,theta2),

Micmen,start=starting.values, trace=T)
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> print(fit2)

Nonlinear regression model

model: vel ~velocity(conc, theta1, theta2)

data: Micmen

theta1 theta2

212.683560 0.064121

residual sum-of-squares: 1195.449

print(summary(fit2))

Formula: vel ~velocity(conc, theta1, theta2)

Parameters:

Estimate Std. Error t value Pr(>|t|)

theta1 2.127e+02 6.947e+00 30.615 3.24e-11 ***

theta2 6.412e-02 8.281e-03 7.743 1.57e-05 ***

---

Residual standard error: 10.93 on

10 degrees of freedom
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> #Get the derivative matrix, as a function and

> # evaluated at the final estimates:

>

> V = function(theta1,theta2) {

attr(velocity(conc,theta1,theta2),"gradient")

}

> coefs = coef(fit2)

> resids = residuals(fit2)

> V.hat = V(coefs[1], coefs[2])

> print(V.hat)

dvel.theta1 dvel.theta2

[1,] 0.2377528 -601.1116

... ...

[12,] 0.9449190 -172.6356

A linear regression of residuals(fit2) on the

columns of the derivative matrix V.hat gives the

following output:

> fin.lin.fit = lsfit(x=V.hat,y=resids,intercept=F)

> ls.print(fin.lin.fit)
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Residual Standard Error=10.9337

R-Square=0

F-statistic (df=2, 10)=0

....

> #Prepare plot of estimated vel vs.\ conc on a

grid of values, with data points on the same

axes; include simultaneous confidence bands.

> conc.grid = seq(from=0,to=1.2,by=.02)

> vel.plot = velocity(conc.grid,coefs[1],coefs[2])

> vecnorm = function(vec) sqrt(crossprod(vec))

>

# Get half width of confidence band:

half.width = function(x, alpha) {

quant = qf(1-alpha, 2, 10)

sigmahat = vecnorm(resids)/sqrt(10)

R1 = qr.R(fin.lin.fit$qr)

v0 = attr(velocity(x,coefs[1],coefs[2]),"gradient")

norm = vecnorm(solve(t(R1),t(v0)))

half.width = sigmahat*norm*sqrt(2*quant)

half.width

}
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>

> alpha = .05

> half = NULL; for (x in conc.grid)

half = c(half, half.width(x, alpha))

> upper.limits = vel.plot + half

> lower.limits = vel.plot - half

>

> par(oma=c(8,0,0,0))

> plot(x=conc.grid, y=vel.plot, type = "l",

ylim = c(0,250), xlab = "concentration",

ylab = "velocity")

> points(conc,vel,pch="*")

> lines(conc.grid, upper.limits, lty=2)

> lines(conc.grid, lower.limits, lty=2)

> mtext("...", side=1, outer=T)

[ natheight=18.2056cm, natwidth=18.2056cm, height=11.0139cm,

width=14.6339cm] C:/sw50/temp/graphics/puromycin
8:pdf
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9. Likelihood regions

� The likelihood function is

L
�
�; �2"

�
=
�
2��2"

��n=2
e
�S(�)
2�2" ;

and a `likelihood region' on � is a setn
� j L

�
�; �̂2"

�
� c � L

�
�̂; �̂2"

�o
for a constant c chosen for a speci�ed coverage

probability. Since

L
�
�; �̂2"

�
L
�
�̂; �̂2"

� = e
�(

S(�)�S(�̂))
2�̂2" ;

we can equivalently take the region to be8<:�
������
S (�)� S

�
�̂
�

p

,
S
�
�̂
�

n� p
� c0

9=; ;
and then c0 = F

p
n�p (1� �) gives a coverage

probability of approximately �. (Here we use

the usual linear approximation.) In other words,
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the region consists of all points � which are not re-

jected by the likelihood ratio test, and can be written(
� j S (�) � S

�
�̂
� 
1 +

p

n� p
F
p
n�p (1� �)

!)
:

(You should show that this reduces to the usual con-

�dence ellipsoid if the model is linear.)

� The only approximation, in the likelihood region,
is of the coverage probability. The shape of the

region is exact, and is not forced to be an interval

or ellipsoid, as in the linear approximation meth-

ods. Here is an example in which the likelihood

region contains points which cannot possibly be

in con�dence intervals or ellipsoids. Consider the

model

f (�; x) = �1
�
1� e��2x

�
for the biochemical oxygen demand (BOD) data

set in B&W. The response variable is a measure

of oxygen requirements of samples of stream wa-

ter containing various organic and inorganic sub-

stances, measured after x days. Note that as
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�2 ! 1, f ! �1 and so �̂1 ! �y. It is thus

plausible that (�y;1)0 will be in the likelihood re-
gion and the region will be `in�nite' { this cannot

happen with intervals and ellipsoids.

{ The point �0 = (�y = 14:83;1)0 will be in the
likelihood region as long as

S (�0) � S
�
�̂
� 
1 +

p

n� p
F
p
n�p (1� �)

!
:

(9.1)

From the output accompanying the �t (see

below) we get

S (�0) =
X
(yi � �y)2 = 107:21;

S
�
�̂
�
= 25:99;

and (9.1) occurs whenever 1� � � :94.

[ natheight=18.2056cm, natwidth=18.2056cm, height=12.6284cm,

width=14.6361cm] C:/sw50/temp/graphics/bod1f ig19:pdf

days = c(1,2,3,4,5,7)
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oxy = c(8.3,10.3,19,16,15.6,19.8)

... fitting the model is as in the

previous example, and results in

the LSEs theta1, theta2 ...

# Plot S(theta) and its contours:

grid1 = seq(0,60,length=50)

grid2 = seq(0,6,length=50)

S.theta = function(theta.one,theta.two) {

sum((oxy-theta.one*(1-exp(-theta.two*days)))^2)

} # S.theta is the sum of squares function

S.mat = matrix(0,length(grid1),length(grid2))

for (i in 1:length(grid1)) {

for (j in 1:length(grid2))

S.mat[i,j] = S.theta(grid1[i],grid2[j])

}

p = length(coefs); n = length(oxy)

S.max = function(conf.level) {

S.theta(theta1,theta2)*(1+(p/(n-p))

*qf(conf.level,p,n-p)) }
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contour(grid1,grid2,S.mat,levels=c(S.max(.95)),

xlab="theta1",ylab="theta2")

points(theta1,theta2,pch="+")

contour(grid1,grid2,S.mat,levels=c(S.max(.80)),

add=T, lty=4)

� Inferences on subsets of parameters. Suppose

�0 =
�
�1; �2; �

0
3

�
and we want a likelihood region

for (�1; �2). How should �3 be handled?

� Easy to compute, hard to justify: The conditional
likelihood region evaluates �3 at the LSE �̂3 (i.e.

all but the �rst two elements of �̂):

LRcond =

8<: (�1; �2)
���S ��1; �2; �̂3� � S ��̂�

�
�
1 + 2

n�pF
2
n�p (1� �)

� 9=; :
Note that all

�
p
2

�
pairs can be compared in this

way with just one regression, since only �̂ needs to

be computed. This region is `conditional' on the

event �3 = �̂3. But the behaviour near �̂3 may
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not be representative of the behaviour elsewhere,

in particular near
^̂�3 =

^̂�3 (�1; �2), the minimizer

of S for �xed (�1; �2).
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� Harder to compute but more meaningful is the
pro�le likelihood region:

LRprof =

8><>: (�1; �2) j S
�
�1; �2;

^̂�3

�
� S

�
�̂
�

�
�
1 + 2

n�pF
2
n�p (1� �)

�
9>=>; ;

(9.2)

this requires a separate regression to determine if

any given pair
�
�i; �j

�
is in the region or not. It

is equivalent to placing in the likelihood region all

points not rejected by the F-test, with

Fobs
why?
=

S

�
�1; �2;

^̂
�3

�
� S

�
�̂
�

2

,
S
�
�̂
�

n� p
:

� Software is available to do pro�le regions for single
parameters. The test procedure which led to

(9.2) gives, in this case (with �0 =
�
�1; �

0
2

�
)

LRprof =
�
�1 j jtobsj � tn�p

�
1� �

2

��
; where

jtobsj =
q
Fobs =

vuuutS
�
�1;
^̂
�2

�
� S

�
�̂
�

S2
:
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B&W de�ne

� (�1) = sign
�
�1 � �̂1

�
�
q
Fobs:

For the same reasons that likelihood regions be-

come con�dence ellipsoids in linear models, � (�1)

becomes the (linear) function
�
�1 � �̂1

�
=se

�
�̂1
�
.

A plot of � (�1) against �1 thus indicates the de-

gree of nonlinearity in the model.

� `Pro�ling' code:

pr.bod <- profile(fit.bod)

plot(pr.bod, conf = c(95, 90, 80, 50)/100)

plot(pr.bod, conf = c(95, 90, 80, 50)/100,

absVal = FALSE)

mtext("Confidence intervals based on the

profile sum of squares",side = 3, outer = TRUE)

mtext("BOD data - confidence levels of 50%,

80%, 90% and 95%",side = 1, outer = TRUE)
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� The R code above results in the following pro�le
plots for �1 (left; �̂1 = 19:14) and �2 (right; �̂2 =

:53). Top plots have jtobsj = j� (�)j on vertical
axis; bottom plots have � (�).

[ natheight=18.2056cm, natwidth=18.2056cm, height=12.8151cm,

width=12.8151cm] C:/sw50/temp/graphics/bod1f ig210:pdf
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10. Lubricant data set; Starting values

� Lubricant data set from B&W: Y = ln(viscosity)

of a lubricant, x1 = temp (�C), x2 = pressure,

w2 = x2=1000 (so that x1 and w2 are of the same

order). Proposed model is Y = f (�;x1; w2) + "

with

f (�;x1; w2) =
�1

�2 + x1
+ �3w2 + �4w

2
2 + �5w

3
2

+
�
�6 + �7w

2
2

�
w2e
� x1
�8+�9w

2
2 :

� Note that the model is conditionally linear, given
(�2; �8; �9). We can write it as

Y (x1; w2) = z
0 (�;x1; w2)� + "

where

� = (�1; �3; �4; �5; �6; �7) ; � = (�2; �8; �9) ;

z0 (�;x1; w2) =0@ 1

�2 + x1
; w2; w

2
2; w

3
2; w2e

� x1
�8+�9w

2
2 ; w32e

� x1
�8+�9w

2
2

1A :
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[ natheight=18.2056cm, natwidth=18.2056cm,

height=11.1764cm, width=12.1825cm]

C:/sw50/temp/graphics/luricant
11:pdf

Lubricant data and �tted regression curves.

� The `Golub-Pereyra' algorithm requires starting

values �(0) only, and will alternate between mini-

mizing
P�

yi � z
0
i

�
�(k)

�
�
�2
by OLS to get �(k+1),

and minimizing
P�

yi � z
0
i (�)�(k+1)

�2
by Gauss-

Newton to get �(k+1). In R, the call is to

nls(viscosity~cbind(...), start =

starting.values,algorithm = "plinear", ...),

where the �rst `...' represents the columns of Z.

This statement is preceded by starting.values

= list(theta2 = 192, theta8 = 31.73, theta9

= 0).

� Here is the output, which gives SSE = :08744;

B&W report SSE = :08996.
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> print(summary(fit))

Formula: viscosity ~cbind(1/(theta2 + temp),

pressure, pressure^2, pressure^3,... )

Parameters:

Estimate Std. Error t value

theta2 2.066e+02 5.302e+00 38.968

theta8 5.743e+01 2.377e+00 24.163

theta9 -4.760e-01 7.203e-02 -6.608

.lin1 1.055e+03 2.470e+01 42.710

.lin2 1.460e+00 3.822e-02 38.200

.lin3 -2.595e-01 1.436e-02 -18.078

.lin4 2.255e-02 1.765e-03 12.781

.lin5 4.018e-01 3.363e-02 11.947

.lin6 3.527e-02 1.391e-03 25.356

---

Residual standard error:

0.04458 on 44 degrees of freedom

> coefs = coef(fit)

> theta = c(coefs[4], coefs[1], coefs[5], coefs[6],



99

coefs[7], coefs[8], coefs[9], coefs[2], coefs[3])

> names(theta) = paste("theta",1:9)

> print(theta)

theta 1 theta 2 theta 3 ...

1054.86259672 206.61107053 1.45997825 ...

� Using starting values too far away from those used
here results in premature termination, with the

message that the gradient is singular. How were

these values obtained?

1. It often helps to see what happens to the response

as variables approach limiting values. Several

cases in this data use the minimum value w2 =

:001. As w2 ! 0, f (�;x1; w2) ! �1
�2+x1

, which

is transformably linear. So regress 1=y on x1,

using only data for which w2 = :001. Obtain

�1(0) = 984:0403; �2(0) = 192:1757.

fit1 = lsfit(x1[w2==.001], 1/y[w2==.001])$coef
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t1 = 1/fit1[2]

t2 = t1*fit1[1]

cat("t1 =", t1, "t2 =", t2, "\n")

t1 = 984.0403 t2 = 192.1757

2. For small w2 we can possibly ignore terms of order

2 and higher in w2:

f (�;x1; w2) �
�1

�2 + x1
+ w2

 
�3 + �6e

�x1�8
!
:

(10.1)

We write this as

y �
�1(0)

�2(0) + x1
� w2�

and regress u = y �
�1(0)

�2(0)+x1
on w2, using only

values for which w2 < 2. We do this for each

temperature group, i.e. each value of x1.

(y.1, w2.1, x1.1 refer to the first temp.\ group)

u.1 = y.1 - t1/(t2+x1.1)

beta.1 =
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lsfit(w2.1[w2.1<2], u.1[w2.1<2], int=F)$coef

... three more of these ...

cat(...)

betas are 1.573094 1.484346 1.390471 1.362453

We obtain

x1: 0 25 37:8 98:9

�̂: 1:573094 1:484346 1:390471 1:362453
:

Now x1 ! 0 ) � ! �3 + �6 and x1 ! 1 ) � !
�3. So we take

�3(0) = 1:35;

�6(0) = 1:57� �3(0) = :22:

Then, since

x1 = �8 log

 
�6

� � �3

!
we regress the 4 values of x1 on the 4 values of

log
�

�6(0)
���3(0)

�
to get �8(0) = 31:72969.

t3 = 1.35
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t6 = .22

v = log(t6/(c(beta.1,beta.2,beta.3,beta.4) - t3))

t8 = lsfit(v, unique(x1), int = F)$coef

cat("t8 = ", t8, "\n")

t8 = 31.72969

3. B&W re�ne these initial values further by doing a

full (Golub-Pereyra) nonlinear regression in model

(10.1), using w2 < 2 and the starting values �2(0)
and �8(0) already obtained, to get re�ned values

�2(0) = 202, �8(0) = 35:9. They then set �9 = 0

and use all of the data (but model (10.1) still?)

and Golub-Pereyra again, so that only �2(0) and

�8(0) need to be speci�ed, to get �2(0) = 209,

�8(0) = 47:6. Finally, they use these starting

values together with �9(0) = 0 to estimate the full

model. However, our starting values (including

�9(0) = 0) are evidently close enough.
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11. Hypothesis testing

� First consider testing the entire parameter vector:
H: � = �0. There are two common options.

The �rst is derived from the linear approximation

con�dence ellipsoid on �, and prescribes that we

reject those values not contained in the ellipsoid.

This is also called `Wald's test'. The p-value is

P
�
F
p
n�p > F1

�
, where

F1 =

�
�̂ � �0

�0 �
V̂0V̂

� �
�̂ � �0

�
pS2

and under H, F1
d� F pn�p. Here V̂ = V

�
�̂
�
.

{ One drawback here is that the approximation

of the distribution as F
p
n�p might be quite

poor if the nonlinearity is severe.

{ More striking is that F1 is not invariant un-

der reparameterizations. For instance in the

model f (�0; �1;x) = e�0+�1x a test of H: �0 =

0; �1 = 1 should result in the same conclusion
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if we reparameterize as f (�0; �1;x) = �0e
�1x

(�0 = e�0) and test H: �0 = 1; �1 = 1. The

two values of F1 will however be di�erent.

{ In general, suppose we start with a model

Y = � (�)+", and propose to test H: � = �0
using a test statistic F (�0). Suppose we

reparameterize by introducing a 1 � 1, dif-
ferentiable map g : � ! � = g (�). De-

�ne ~� (�) = �
�
g�1 (�)

�
so that the model

is Y = ~� (�) + " and we test H: � = �0
where �0 = g (�0). The test is invariant if

F (�0) = F (�0).

� The test based on likelihood regions, rather than
con�dence ellipsoids, is typically less a�ected by

curvature and is invariant. It uses

F2 =
S (�0)� S

�
�̂
�

p

,
S
�
�̂
�

n� p
:
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Again, under H, F2
d� F

p
n�p. This approximate

distribution will be derived later. For the invari-

ance note that

F2 (�0) =
~S (�0)� ~S

�
�̂
�

p

, ~S
�
�̂
�

n� p
:

where

~S (�) = ky � ~� (�)k2

=
y � � �g�1 (�)�2 = S

�
g�1 (�)

�
:

Thus

~S (�0) = S
�
g�1 (�0)

�
= S (�0)

and

~S
�
�̂
�
= min

�
~S (�) = min

�
S
�
g�1 (�)

�
= min

�
S (�) = S

�
�̂
�
;

since
n
g�1 (�) j � 2 Rp

o
= f� j � 2 Rpg. Fur-

thermore �̂ = g
�
�̂
�
.
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� More common is to test single parameters, or sub-
sets of the parameter vector. Suppose

� =
��1
�2

� p1
p2 = p� p1

and we test H: �2 = �2;0. The linear approxima-

tion F-test is based on the approximate normality

of the LSE:

�̂ � � d� N
�
0; �2"

�
V0V

��1�
:

Partition the covariance matrix as�
V0V

��1
=

 �
V0V

�11 �
V0V

�12�
V0V

�21 �
V0V

�22
!
:

Then under H,

�̂2 � �2;0
d� N

�
0; �2"

�
V0V

�22�
and so

F1 =

�
�̂2 � �2;0

�0 ��
V̂0V̂

�22��1 �
�̂2 � �2;0

�
p2S2

d� F p2n�p:

To compute, the QR-decomposition is useful. (This
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is a by-product of lsfit(...).) If

V̂ = Q1R1 and R1 =

 
R11 R12
0 R22

!

then
��
V̂0V̂

�22��1
= � � � = R022R22 and so

F1 =

R22 ��̂2 � �2;0�2
p2S2

:

{ This test statistic su�ers from the same prob-

lems as when the entire parameter vector is

being tested. Simulations indicate that the

e�ect of curvature is even more severe when

p2 is small relative to p.

� The likelihood ratio test rejects for large values of

F2 =
S

�
^̂
�1; �2;0

�
� S

�
�̂
�

p2

,
S
�
�̂
�

n� p
:

This is invariant under reparameterizations. To

obtain the approximate distribution, write �1;0 for
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the true value of �1 and

S
�
�1; �2;0

�
= ky � �1 (�1)k2 for �1 (�1) = �

 
�1
�2;0

!

=
y � �1 ��1;0�� ��1 (�1)� �1 ��1;0��2

�
"�V1;0 ��1 � �1;0�2 ;

where

V1;0 =
@�1
@�1

j�1;0;�2;0

is the �rst p1 columns of V0 = V
�
�1;0; �2;0

�
.

To this order of approximation, S
�
�1; �2;0

�
is

minimized by

^̂�1 = �1;0 +
�
V
0
1;0V1;0

��1
V
0
1;0"

with minimum value

S

�
^̂
�1; �2;0

�
= "0

�
I�H1;0

�
" for

H1;0 = V1;0
�
V
0
1;0V1;0

��1
V
0
1;0:

Using the same approximations,

S
�
�̂
�
= "0 (I�H0) " for H0 = V0

�
V
0
0V0

��1
V
0
0:
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Thus

F2 �
"0
�
H0 �H1;0

�
"

p2

,
"0 (I�H0) "

n� p
:

Now apply Gram-Schmidt to get the distribution.

First let the columns of Q1 : n � p1 be an or-
thonormal basis for col

�
V1;0

�
, so that H1;0 =

Q1Q
0
1. Extend this to an orthonormal basis for

col (V0) consisting of the columns of (Q1
...Q2), so

that H0�H1;0 = Q2Q
0
2 where Q2 is n�p2. Fi-

nally extend to an orthogonal matrix (Q1
...Q2

...Q3),

so that I�H0 = Q3Q
0
3 where Q3 is n� (n� p).

Then

F2 �

Q02"2
p2

,Q03"2
n� p

� F p2n�p

since �Q02"
Q
0
3"

�
� N

��0
0

�
; �2"In�p1

�
;

implying that
Q02"2 � �2"�

2
p2
, independently ofQ03"2 � �2"�2n�p.
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� In the notation

"̂ = y � �

0@�̂1
�̂2

1A � (I�H0) ";
^̂" = y � �

0B@ ^̂�1
�2;0

1CA � �I�H1;0� "
we have

F2 =

^̂"2 � k"̂k2
p2

.
S2 :

Two other proposals in the literature are

F3 =

 ^̂H^̂"2
p2

.
S2 ;

where
^̂H =

^̂V
�
^̂V
0 ^̂V
��1

^̂V
0
and

^̂V =V
�
^̂�1; �2;0

�
,

and

F4 =

 ^̂H^̂"2
p2

,�I� ^̂H� ^̂"2
n� p

:
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Both are
d� F

p2
n�p; F4 has the computational advan-

tage of not requiring �̂. Simulations indicate that F2
is typically more powerful than F3 , which in turn is

typically more powerful than F4.

� Motivation for F3 is that the numerator is as-
ymptotically equivalent to that of F2: As n !
1,

�
^̂
�1; �2;0

�
converges to

�
�1;0; �2;0

�
, hence

^̂H to H0 and
 ^̂H^̂"2 to H0 �I�H1;0� "2 =�H0 �H1;0� "2 (since H0v = v for any v 2

col (V0) and the columns ofH1;0 are in col
�
V1;0

�
�

col (V0)).

� The motivation for F4 now follows { its denomi-
nator is�I� ^̂H� ^̂"2

n� p
�

(I�H0) �I�H1;0� "2
n� p

= S2;

since (I�H0)H1;0 = 0.
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Part III

Smoothing; Alternatives

to Least Squares
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12. Splines and other bases

� Good reading material for these lectures:

1. Venables & Ripley; chapter on `Nonlinear and

Smooth Regression' or on `Modern regression',

depending on the edition.

2. Hastie, Tibshirani & Friedman, ch. 5, 6, 9.

� Observe yi = f (xi) + "i but no knowledge of

f (�); determine f̂ (x) from the data alone { no

model.

� Output from these methods is typically graphical

and used for prediction and interpolation. The

distribution theory needed for inferences is as yet

largely undeveloped.
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� The `motorcycle' data gives measurements on head
acceleration vs. milliseconds after impact in a sim-

ulated motorcycle accident; it is used to test crash

helmets.

[ natheight=18.2056cm, natwidth=18.2056cm, height=12.1825cm,

width=12.1825cm] C:/sw50/temp/graphics/mcycle1f ig112:pdf

� One might try to �t a linear combination of cer-
tain `basis' functions, such as orthogonal polyno-

mials (see help(poly)):

[ natheight=18.2056cm, natwidth=18.2056cm, height=10.926cm,

width=12.2681cm] C:/sw50/temp/graphics/mcycle1f ig213:pdf

� Polynomials can be very unstable to �t, and be-
have erratically away from the region where there

are data.
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� Fourier series:

ŷ(t) = �̂0+
KX
k=1

�
�̂2k�1 sin (k!t) + �̂2k cos (k!t)

�
;

! chosen so that the period 2�=! is the range of

the data. Good for approximating very smooth

functions with no strong local features and the

same degree of curvature everywhere.

[ natheight=18.2056cm, natwidth=18.2056cm, height=11.1764cm,

width=12.1825cm] C:/sw50/temp/graphics/mcycle1f ig314:pdf

� Splines. Suppose we wish to approximate a func-
tion f (x) over an interval [x1; xN ], and require

that the approximating function s(x) satisfy:

1. For given `nodes' x1 < x2 < � � � < xN�1 <
xN , s(x) is a cubic polynomial on each interval

[xi; xi+1];

2. s(xi) = f(xi) at each node;
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3. The second (hence the �rst) derivative s00(x)
exists and is continuous throughout [x1; xN ];

4. s00(x1) = s00(xN) = 0.

There is exactly one such function satisfying these

properties. (Outline of proof: A cubic function is de-

termined by 4 parameters on each interval; one shows

that the available parameters are uniquely determined

by the system of linear equations implied by (2) - (4).

See http://mathworld.wolfram.com/CubicSpline.html

for instance.)

The solution (taken to be linear outside of [x1; xN ])

is called the `natural cubic spline'. If g (x) is any

other twice continuously di�erentiable function (we

write g 2 C2 [x1; xN ]) interpolating f(x) at the nodes
(i.e. satisfying g(xi) = f(xi) at each node) thenZ xN

x1

h
g00(x)

i2
dx �

Z xN
x1

h
s00(x)

i2
dx;

with equality i� g(x) � s(x) on [x1; xN ] (assigned).
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Suppose now that we have data y = y(x) and are to

solve the `penalized regression' problem

min
g2C2[x1;xN ]

8<:
NX
i=1

(yi � g (xi))2 + �
Z xN
x1

h
g00(x)

i2
dx

9=; ;
(12.1)

for a smoothing parameter � > 0. (� = 0 )?;
� = 1 )?.) By the preceding, the solution is a

cubic spline; this is because, for any candidate g(x),

the smoothing spline interpolating g (x) at the nodes

has the same SS and a smaller penalty. So we can

restrict the search to splines. Having learned this we

drop requirement 2. The nodes might be taken to be

N (� # of unique x-values) equally spaced values of

x in the data, or perhaps all unique values of x. One

can then represent the spline as a linear combination

of basis elements

s (x) =
NX
j=1

�jbj (x) = b
0(x)�

in a variety of ways. One is

b1 (x) = 1; b2 (x) = x;

bj+2(x) = dj(x)� dN�1(x); j = 1; :::; N � 2;
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where

dj(x) =

�
x� xj

�3
+
� (x� xN)3+

xN � xj
:

You should check the continuity of bj, b
0
j and b

00
j ; that

of bj and b
0
j is inherited from the dj. More sophis-

ticated is a `B-spline' basis. Once a basis and knot

sequence are chosen, (12.1) becomes a parametric

problem:

min
�

n
ky � L�k2 + ��0G�

o
where L has rows b0(xi) and, where �b is the vector
of second derivatives, G =

R xN
x1

�b(x)�b0(x)dx � 0.

Similar to ridge regression (but here LN�N is square),

�̂ =
h
L0L+ �G

i�1
L0y and ŷ=L�̂ = S�y;

where the `smoother' matrix S� plays the same role

as the hat matrix. The equivalent degrees of freedom

(or equivalent number of parameters) are thus

df� = tr [S�] :



119

fit = smooth.spline(times, accel)

plot(mcycle)

lines(fit, col=1, lty=1)

lines(smooth.spline(times, accel, df=2), col=2)

lines(smooth.spline(times, accel, df=5), col=4)

lines(smooth.spline(times, accel, df=60), col=6)

legend("bottomright", legend = c("df=12.21 (GCV)",

"df=2", "df=5", "df=60"), col=c(1,2,4,6))

[ natheight=17.6279cm, natwidth=20.3276cm, height=11.5279cm,

width=13.2852cm] C:/sw50/temp/graphics/mcycle1f ig415:pdf

> fit

smooth.spline(x = times, y = accel)

Smoothing Parameter spar= 0.6598558

lambda= 0.00011075 (14 iterations)

Equivalent Degrees of Freedom (Df): 12.20876

Penalized Criterion: 38650.54

GCV: 565.4513
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� The smoothness is controlled by �; it and df�
can be determined from each other. The R func-

tion will determine an optimal �0 by `generalized

cross-validation':

�0 = argmin
�

k(I� S�)yk2

n� df�
:

This is the default; an option is ordinary cross-

validation:

�0 = argmin
�

nX
i=1

 
ei(�)

1� [S�]ii

!2
:

This is derived from a more general principle { in

order to determine the best terms to include in a

model we might take a proposed model, leave out

one observation, �t the model and see how well

it predicts the omitted observation (an overpara-

meterized model will not do this well):

PRESS =
nX
i=1

�
yi � ŷi(i)

�2
as at p. 74, Lecture 7. Choose the model which

minimizes this `Prediction Error Sum of Squares'.
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13. Kernel Smoothing; Local Regression

� When there is no parametric model relating the
�tted values at one point to those at other points,

it is reasonable to let the �t at x be determined by

those points
�
xj; yj

�
with xj close to x. A �rst

attempt might be `running means', in which ŷi is

the average of the yj with ji� jj � k (assuming

that � � � xj � xj+1 � ��). Alternatively, `running

medians'. (Then plot(...,type="l") for linear

interpolation between the (xi; ŷi).)

runningmean = function(k) {

runm = rep(0, n)

for(i in (k+1):(n-k))

runm[i] = mean(accel[(i-k):(i+k)])

runm = runm[(k+1):(n-k)]

}

[ natheight=18.2056cm, natwidth=18.2056cm,

height=13.428cm, width=14.6361cm]

C:/sw50/temp/graphics/mcycle2f ig116:pdf
Running means (top) and medians (bottom).
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The `super smoother' function supsmu(...) on R will

replace running means with running linear regressions

{ at each point (xi; yi), ŷi is obtained by doing a

linear regression using only k nearby points as data.

(+ sophisticated modi�cations { see the R help �le.)

[ natheight=18.2056cm, natwidth=18.2056cm,

height=10.926cm, width=11.9035cm]

C:/sw50/temp/graphics/mcycle2f ig1a17:pdf
Super smooth �t (supsmu(times, accel, bass=?))

to motorcycle data; bass = 0 is default. The

arguments `span' (= k=n) can be chosen by

cross-validation (the default) or speci�ed.

� More exible is `kernel smoothing', in which the
�tted value at x is a weighted average of those

values of y observed at points xj near x:

ŷ(x) =
nX
i=1

w (x� xi) yi;
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where w(x�xi) is typically a symmetric function,
decreasing in jx� xij and satisfying

nX
i=1

w (x� xi) = 1:

The `Nadaraya-Watson' kernel uses

w(x� xi) =
K� (x� xi)Pn
j=1K�

�
x� xj

�;
whereK(t) is a unimodal probability density, sym-

metric about 0, and K�(t) =
1
�K

�
t
�

�
. (So

�! 0) ŷ(x)!?; �!1) ŷ(x)!?)
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� Common choices of kernel functions:

1. Epanechnikov kernel: K(t) = 3
4

�
1� t2

�
I(jtj �

1).

2. Tri-cube function: K(t) /
�
1� jtj3

�3
I(jtj �

1).

3. Uniform (`box' in R): K(t) = :5I(jtj � 1).

4. Gaussian: K(t) = � (t).

In R one can choose a `bandwidth' (= 4� upper quar-
tile of K� = 4�� upper quartile of K1):

:75 =
Z bandwidth/4
�1

K�(x)dx:

plot(mcycle)

lines(ksmooth(times, accel, kernel = "box",

bandwidth = ??), lty=4)

... other bandwidths ...

... ditto, with kernel = "normal"
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[ natheight=18.2056cm, natwidth=18.2056cm,

height=16.769cm, width=18.2759cm]

C:/sw50/temp/graphics/mcycle2f ig218:pdf
Kernel smooths to motorcycle data; `box' kernel.

Bandwidth = .5 is the default.

[ natheight=18.2056cm, natwidth=18.2056cm,

height=17.2699cm, width=18.2759cm]

C:/sw50/temp/graphics/mcycle2f ig319:pdf
Kernel smooths to motorcycle data; `normal' kernel.

Bandwidth = .5 is the default.

� Kernel smooths can be badly biased near the edges
of the region containing the x's (since there are

too few xi's on one side of x). Without special

conditions on the `design' (the choice of the xi)

or on the kernel, they can be badly biased else-

where. In recent years attention seems to have

shifted away from kernel smoothing and towards

`local regression' methods.



126

� Example of `local regression'. Suppose we have
data (xi; yi = f (xi) + "i). For an arbitrary x0,
consider estimating f (x0) by a constant �̂ (x0)
de�ned by

�̂ (x0) = argmin
�

nX
i=1

K� (x0 � xi) (yi � �)
2 (13.1)

=
nX
i=1

8<:K� (x0 � xi)
, nX
j=1

K�
�
x0 � xj

�9=; yi:
Thus Nadaraya-Watson kernel smoothing arises
from (13.1), which we can generalize to local re-
gression as follows. A `local (linear) regression'
has

f̂ (x0) = �̂0 (x0) + �̂1 (x0)x0 for

�̂ (x0) = argmin
�

nX
i=1

K� (x0 � xi) (yi � �0 � �1xi)
2 ;

a `locally quadratic' �t includes �2x
2
i
, etc.

� For general multiple regression with regressors x
one solves

�̂ (x0) = argmin
�

nX
i=1

K� (x0;xi)
�
yi �

�
1;x

0
i

�
�
�2
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and sets f̂ (x0) =
�
1;x

0
0

�
�̂ (x0); K� (x0;xi) is

typically `radially symmetric', i.e. a function of

kx0 � xik such as
1
��

�kx0�xik
�

�
.

� Extensions to nonlinear regression are obvious.
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� An advantage of local regression estimators over
kernel smoothing is in bias reduction. Consider

local polynomial regression of degree r:

z0(x) = (1; x; � � �; xr) ;
f̂ (x0) = z0(x0)�̂ (x0) ;

�̂ (x0) = argmin
�

nX
i=1

K� (x0; xi)
�
yi � z0(xi)�̂

�2
:

Let W (x0) be the diagonal matrix having the

K� (x0; xi) on its diagonal, and let Z be the de-

sign matrix with rows z0(xi). Then from the

theory of WLS estimation we get

�̂ (x0) =
�
Z0W (x0)Z

��1
Z0W (x0)y;

f̂ (x0) = z0 (x0) �̂ (x0) = b
0 (x0)y, for

b0 (x0) = z0 (x0)
�
Z0W (x0)Z

��1
Z0W (x0) :
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� We have

E
h
f̂ (x0)

i
= b0 (x0)E [y] =

nX
i=1

bi (x0) f (xi)

=
nX
i=1

bi (x0)

24 f (x0) + f 0 (x0) (xi � x0)+
� � �+ f (r) (x0)

(xi�x0)
r

r! +Ri

35 ;(13.2)

where the remainders Ri involve derivatives of f

of higher order than r; the experimenter assumes

that the curvature of f is such that these can

safely be ignored. Claim:

nX
i=1

bi (x0) (xi � x0)
k = I(k = 0);

so (13.2) becomes

E
h
f̂ (x0)

i
= f (x0) +

nX
i=1

bi (x0)Ri

and the bias involves only (one hopes) negligible

curvature.
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� Veri�cation of claim: From

b0 (x0)Z = z
0 (x0)

we get

nX
i=1

bi (x0)x
j
i
= xj

0
; j = 0; :::; r:

Thus for k = 0; :::; r,

nX
i=1

bi (x0) (xi � x0)
k

=
nX
i=1

bi (x0)
kX
j=0

�k
j

�
xj
i
(�x0)

k�j

=
kX
j=0

�k
j

�
(�x0)

k�j
nX
i=1

bi (x0)x
j
i

=
kX
j=0

�k
j

�
(�x0)

k�j xj
0

= (x0 � x0)
k

= I(k = 0):
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� The variance (var
h
f̂ (x0)

i
= �2" kb (x0)k

2) increases

as more terms are added; there is a trade-o� be-

tween bias and variance.

� We have ŷ = S�y, where S� has rows b
0 (xi);

as for splines � can be chosen by cross-validation

(but isn't on R).

� A (possibly) robust version of local polynomial

regression (for r = 0; 1; 2) is incorporated in R,

as the function loess(...). Important options

are

1. span { related to �; the default of .75 often

gives too much smoothness.

2. family { `gaussian' for smoothly weighted (but

not with a gaussian kernel, despite the name

- see the help �le) least squares �tting, `sym-

metric' for �tting using a `redescending M-

estimation' procedure in place of least squares

(more on this later).
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[ natheight=18.2056cm, natwidth=18.2056cm,

height=15.5521cm, width=16.4571cm]

C:/sw50/temp/graphics/mcycle2f ig420:pdf
Loess �ts. (a) Locally linear; \gaussian" family. (b)

Locally quadratic; \gaussian" family. (c) Locally

linear; \symmetric" family. (d) Locally quadratic;

\symmetric" family.
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14. Generalized additive modelling; Projection

pursuit

� In many regression situations in which Y is to be

modelled in terms of input variables x1; :::; xp, it

may well be the case that the e�ects are additive

BUT some of them are nonlinear in nature:

E [Y jx1; :::; xp] = �+ f1 (x1) + � � �+ fp (xp)

for possibly nonlinear functions fj. Here we look

at a method to obtain nonparametric estimates of

these functions. The objective is similar to that

in spline �tting, in that we aim to minimize the

penalized sum of squares

nX
i=1

n
yi �

�
�+ f1 (xi1) + � � �+ fp

�
xip
��o2

+
pX
j=1

�j

Z h
f 00j (t)

i2
dt;

for chosen �1; :::; �p � 0.
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� The parameter � is not identi�able (why not?). It
becomes so if we impose the requirementPn
i=1 fj

�
xij
�
= 0 for each j; then �̂ = �y. From

our previous work on splines it should not be sur-

prising that the solution to the problem is now to

�t a separate cubic spline to each fj, with knots

(i.e., nodes) at the unique values of the xij. The

algorithm is as follows.

1. Initialize: �̂ = �y, f̂j � 0 for each j.

2. For j = 1; :::; p:

(a) Fit a smoothing spline to fj in the model

yi � �̂�
X
k 6=j

f̂k (xik) = fj
�
xij
�
+ "i:

(b) Replace f̂j
�
xij
�
by f̂j

�
xij
�
�1n

Pn
i=1 f̂j

�
xij
�
.

3. Iterate to convergence.
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This is carried out by the gam(...) function on R. It

requires that one �rst load the package `gam'. This

example uses the `rock' data { permeability Y is to be

modelled from three other variables: area, perimeter

and shape (help(rock) for details). Since the range

of Y is huge it is advised to use log(perm).

# First do a linear fit:

rock.lm = lm(log(perm) ~area + peri + shape)

# gam fit:

rock.gam1 = gam(log(perm) ~s(area) + s(peri)

+ s(shape))

# Omitting the s() will result in linear

terms being fitted.

par(mfrow=c(2,2))

plot(rock.gam1, se=T)

# The option 'se=T') results in +/- 2*std.err.

# confidence bands being plotted

[ natheight=17.6279cm, natwidth=17.6718cm,

height=16.7229cm, width=16.3275cm]

C:/sw50/temp/graphics/rockf ig121:pdf
Spline �ts to each variable.
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# Compare the two fits:

anova(rock.lm, rock.gam)

Analysis of Variance Table

Model 1: log(perm) ~area + peri + shape

Model 2: log(perm) ~s(area) + s(peri) + s(shape)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 44.0000 31.949

2 34.9997 26.059 9.0003 5.890 0.8789 0.5528

Here F = SS1�SS2
�df =�̂2" is an approximate test statistic

to test for H: Model 1 vs. K: Model 2 . It seems that

�̂2" = max (MS1;MS2) is used. Thus

F =
SS1 � SS2

�df

,
SS2
df2

=
5:89

9:003

�
26:059

34:997
= :8789;

this is not signi�cant. From the plots only shape

seems nonlinear. Re-�t:

rock.gam2 = gam(log(perm) ~area + peri + s(shape))

anova(rock.gam2, rock.gam1)
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Analysis of Deviance Table

Model 1: log(perm) ~area + peri + s(shape)

Model 2: log(perm) ~s(area) + s(peri) + s(shape)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 41.0000 28.9992

2 34.9997 26.0589 6.0003 2.9403 0.6836

For two �ts from the same family the default test

statistic (test = "F" is an option in anova(...)) is

�2 =
SS1 � SS2

�̂2"
=

2:9403

max (MS1;MS2)
= 3:949;

with P
�
�26:0003 > 3:949

�
= :6836:

anova(rock.lm, rock.gam2, rock.gam1)

## tests model 1 against model 2 against model 3

Model 1: log(perm) ~area + peri + shape

Model 2: log(perm) ~area + peri + s(shape)

Model 3: log(perm) ~s(area) + s(peri) + s(shape)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 44.0000 31.949

2 41.0000 28.999 3.0000 2.950 1.3205 0.2833

3 34.9997 26.059 6.0003 2.940 0.6582 0.6835
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� Projection pursuit: This can be viewed as an

attempt to answer the following question. Sup-

pose that the vector x of independent variables is

(possibly) of high dimension p. Are there `inter-

esting' linear combinations �0x and possibly non-
linear transformations f (�) such that we might
pro�tably model the data as

y =
MX
m=1

fm
�
�
0
mx

�
+ "

for some small value of M?

� We assume that all k�k = 1 so that the terms

are possibly of comparable scales. Even then

there is a problem if the x's are not measured in

the same units. We typically scale the xj so that

at least their magnitudes are comparable.

� Now � ��0x = ��
�
�0�

��1�0x looks like the pre-
dictions following a regression of data x on the

single regressor �. In our previous terminology
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it `lies in col (�) (= �)', and the length (norm)

of the vector of predictions is
���0x��. We call

�0x the `projection' in the direction �; hence the
name projection pursuit.

� The model is very general; as well as picking out
individual x's (e.g. � = (1; 0; � � �; 0)0) we can
model interactions and many other terms. For

instance

x1x2 =
1

2

 
x1 + x2p

2

!2
� 1
2

 
x1 � x2p

2

!2
= f1

�
�
0
1x
�
+ f2

�
�
0
2x
�
for

�
0
1 =

 
1p
2
;
1p
2

!
; �

0
2 =

 
1p
2
;
�1p
2

!
;

f1(t) =
t2

2
; f2(t) = �

t2

2
:

� Algorithm. The aim is to minimize

nX
i=1

0@yi � MX
m=1

fm
�
�
0
mxi

�1A2 :



140

First supposeM = 1, so that
Pn
i=1

�
yi � f1

�
�
0
1xi

��2
is to be minimized. If �

0
1 is given, then f1 (�) can

be gotten as in gam �tting. On the other hand
if f1 is given, and we have a trial value �(0) of
�, then it can be updated by Gauss-Newton +
WLS: take a linear approximation

f1
�
�0x

�
� f1

�
�
0
(0)x

�
+ _f1

�
�0(0)x

� �
���(0)

�0
x;

then
nX
i=1

�
yi � f1

�
�0xi

��2 �
nX
i=1

8>>>>><>>>>>:

�
_f1

�
�0(0)xi

��2
�0@yi�f1��0(0)xi�

_f1

�
�0
(0)
xi

� �
�
���(0)

�0
xi

1A2
9>>>>>=>>>>>;

is minimized by WLS, leading to the updated

�(1) = �(0) +
�
X0WX

��1
X0Wz;

with

zi =
yi � f1

�
�
0
(0)xi

�
_f1

�
�
0
(0)xi

� ; and wi =
h
_f1
�
�
0
(0)xi

�i2
:
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For M > 1 this is applied as in gam �tting, using

the residuals from all M � 1 other �ts, at each
stage. The value M can be chosen by stopping

when the addition of another term does not im-

prove the �t appreciably.

� Simulated example: The data are simulated as

Y = x1x2+", where x1 and x2 are uniformly dis-

tributed over [�1; 1] and the errors areN(0; (:2)2).

set.seed(14) # To duplicate example

x1 = runif(400,-1,1)

x2 = runif(400,-1,1)

eps = rnorm(400,0,.2) # Y=X1*X2+error

y = x1*x2+eps

x = cbind(x1,x2)

out = ppr(x,y, nterms = 1, max.terms = 4)
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Goodness of fit:

1 terms 2 terms 3 terms 4 terms

29.64065 18.64340 17.61438 17.47704

Suggests using two terms only; try 3 out of curiosity:

out = ppr(x,y, nterms = 3, max.terms = 4)

summary(out)

Goodness of fit:

3 terms 4 terms

17.61438 17.47704

Projection direction vectors:

term 1 term 2 term 3

x1 -0.7358552 0.7235624 0.8193227

x2 -0.6771389 -0.6902590 -0.5733327

Coefficients of ridge terms:

term 1 term 2 term 3

0.19907585 0.19127321 0.05809677
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Interpretation (+ hindsight!):

Y � �Y +

24 �1f1
�
�x1+x2p

2

�
+ �2f2

�
x1�x2p

2

�
+�3f3 (:8x1 � :6x2)

35(14.1)

with �1 = :20; �2 = :19; �3 = :06

and
X
i

fj
�
�0xi

�
= 0:

From the plots below (obtained by `plot(out)') and
`plot(x1*x2, out$fitted+mean(y))' we obtain

f1(t) � 3t2 � 1; f2(t) � 1� 3t2; f3(t) �??:
Using only the �rst two predictors in (14.1) gives

Y � �Y � �1f1

 
�x1 + x2p

2

!
+ �2f2

 
x1 � x2p

2

!

= �1

"
3x21 + 6x1x2 + 3x

2
2 � 2

2

#

��2
"
3x21 � 6x1x2 + 3x22 � 2

2

#
� 6��x1x2:

[ natheight=18.2056cm, natwidth=18.2056cm, height=11.6794cm,
width=12.1825cm] C:/sw50/temp/graphics/ppregsim22:pdf
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� Back to the `rock' data.

shape1 = 100*shape

area1 = area/400

peri1 = peri/100

c(mean(shape1), mean(area1), mean(peri1))

[1] 21.81104 17.96932 26.82212

rock.ppr = ppr2(log(perm) ~area1 + peri1 + shape1,

nterms = 2, max.terms = 4)

Goodness of fit:

2 terms 3 terms 4 terms

9.620610 4.914191 4.294387

Projection direction vectors:

term 1 term 2

area1 0.83001827 0.89216618

peri1 -0.55639534 -0.34630254

shape1 0.03865091 0.29002423

Coefficients of ridge terms:

term 1 term 2
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1.5752785 0.5296323

# Suggests area1 and peri1 alone

determine log(perm)

[ natheight=18.2056cm, natwidth=18.2056cm, height=17.2742cm,

width=18.2759cm] C:/sw50/temp/graphics/rockf ig323:pdf
To my eye, and suggested by the `term1' and `term2'

plots above, we do as well with a second order linear

model in `area' and `peri' (`rock.lm2' in these plots):
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Residuals:

Min 1Q Median 3Q Max

-1.50091 -0.38646 -0.00466 0.48448 1.42574

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.617947 0.541608 10.373 3.72e-13

area1 0.521732 0.125076 4.171 0.000149

peri1 -0.360705 0.077052 -4.681 2.97e-05

I(area1^2) -0.023384 0.005697 -4.105 0.000182

I(peri1^2) -0.004253 0.001716 -2.479 0.017278

area1:peri1 0.021962 0.004552 4.825 1.87e-05

---

Residual standard error: 0.6953 on

42 degrees of freedom

Multiple R-squared: 0.8401,

Adjusted R-squared: 0.821

F-statistic: 44.12 on 5 and 42 DF,

p-value: 1.183e-15
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15. Lasso; n << p; Quantile Regression

� Ridge regression can be viewed as `shrinkage' {
large values of

�̂2 are penalized, so some �̂j
`shrink towards zero'. A solution still exists if n <

p, but the biases get too large.

� In data mining for instance, one often encounters
situations of very high dimensionality { p much

larger than n (n << p). In such a situation one

wants to eliminate variables entirely (not just as-

sign them a small coe�cient). A currently popu-

lar method is the `lasso' { solve

�̂ = argmin ky �X�k2 s.t.
X����j��� � t;

for some s. Equivalently, for some �,

�̂ = argmin ky �X�k2 + �
X����j��� :

� Recall that ridge regression uses the penaltyP �2j .
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� For the lasso, as t becomes large enough (larger
than t0 =

P����̂LSj ���) one recovers least squares.
[ natheight=23.03cm, natwidth=29.8038cm,
height=10.3637cm, width=13.7531cm]
C:/sw50/temp/graphics/lasso1

24:jpg
Contours of ky �X�k2 and constraint regions; lasso
vs. ridge. For small t the lasso solutions tend to set

many �̂j = 0, as desired.

� Computing: See R code on course website; uses
the `glmnet' package.

� In the example the data are simulated in such a
way that only the �rst coe�cient should be mean-
ingful.

library("glmnet")

set.seed(1)

n=100

p=5

X = matrix(rnorm(n*p), ncol = p)

y = X[,1] + rnorm(n) # = X*e1 + eps
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[ natheight=16.4108cm, natwidth=16.4858cm,

height=8.4658cm, width=8.9073cm]

C:/sw50/temp/graphics/lasso1
25:pdf

When p < n, horizontal axis is s = t=t0, where t0 =P����̂LSj ���. So s = 1 recovers the LS estimates.

out = glmnet(X, y, int = F)

> # Look at the output:

Df %Dev Lambda

[1,] 0 0.00000 0.795800

[2,] 1 0.06908 0.725100

[3,] 1 0.12640 0.660700

....

[39,] 4 0.41550 0.023200

[40,] 4 0.41570 0.021140

[41,] 4 0.41590 0.019260

.....

[62,] 5 0.41700 0.002730

[63,] 5 0.41700 0.002488
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out$beta # the coefs at each of the 63 stages

V1 . 0.07795298 0.1489808 0.2136988

V2 . . . .

V3 . . . .

V4 . . . .

V5 . . . .

.....

V1 0.88001531 0.88034246 0.88064055

V2 -0.01423639 -0.01450489 -0.01474953

V3 -0.02382875 -0.02407353 -0.02429657

V4 -0.09499016 -0.09522749 -0.09544373

V5 -0.05387525 -0.05409895 -0.05430277

fit = lsfit(X,y, int = F)

fit$coef

X1 X2 X3

0.88369785 -0.01725878 -0.02658416

X4 X5

-0.09766166 -0.05639331
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Now take p = 150:

[ natheight=17.6279cm, natwidth=17.6718cm,

height=13.6718cm, width=14.2078cm]

C:/sw50/temp/graphics/lasso2
26:pdf

Now, in the upper plot, the horizontal axis isPp0
j=1

����̂j���, where p0 is the number of coe�cients
�tted; and

P150
j=1

����̂j��� = 9:22. In the lower plot all
150 �nal estimates are plotted; 60 of them are 0.
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Quantile regression

� The solution q (x) = �0�x to P
�
Yjx � q (x)

�
= �

is the � -regression quantile:

q (x) = G�1Yjx
(�) :

With additive errors, this is � = G"(0). If � =

:5 one obtains the median (conditional on x); if
" = Y � �0:5x is symmetrically distributed then
q (x) = E [Y jx].

� Determined by

�̂� = argmin
t

nX
i=1

��
�
Yi � x0it

�
;

where �� (�) is the `check' function

�� (r) = r (� � I (r < 0)) :

Equivalently

nX
i=1

 �
�
Yi � x0i�

�
xi = 0;

with  � (r) = � � I (r < 0).
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{ What are these if the only parameter is an

intercept and � = :5?

[ natheight=9.6019cm, natwidth=9.6019cm,

height=7.273cm, width=7.273cm]

C:/sw50/temp/graphics/check
27:pdf

Check function; � = :95.

� Use `quantreg' on R. Documentation by R. Koenker
on course website.

� Example: Engel (1857) data on the relationship
between food expenditure and household income.

y = engel$foodexp

x = engel$income

fit1 <- rq(y ~x, tau = 0.5)

fit1

summary(fit1, se = "nid") # Uses the

Normal approximation below
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Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 81.48225 19.25066 4.23270 0.00003

x 0.56018 0.02828 19.81032 0.00000

# Several values of tau can be handled:

plot(x, y, cex = 0.25, type = "n", xlab =

"Household Income", ylab = "Food Expenditure")

points(x, y, cex = 0.5, col = "black")

abline(rq(y ~x, tau = 0.05), col = "blue")

abline(rq(y ~x, tau = 0.95), col = "red")

[ natheight=16.6311cm, natwidth=16.7178cm,

height=9.3512cm, width=9.4004cm]

C:/sw50/temp/graphics/quantreg
28:pdf

Quantile regression output; Engel data.

Interpretation?

� Inferences. There is a Normal approximation: as
n!1,

�̂� � �� � AN
�
0; w2

�
X0X

��1�
;

where w2 = � (1� �) =g2" (0).
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Part IV

Robust Regression

Methods
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16. The need for robustness; M-estimation

� Good reading material for these lectures on robust
regression:

1. Maronna, Martin & Yohai; Chapters 4, 5.

2. Rousseeuw & Leroy; Chapters 2, 3, 6.

� Robustness deals with the behaviour of statisti-
cal methods under violations of the assumptions,

and with the derivation of methods which work

`almost' as well when these assumptions are vio-

lated as when they hold.

� Under what assumptions is Least Squares an op-
timal estimation method? This is answered by

the Gauss-Markov Theorem: Consider the linear

model Y = X� + ", with uncorrelated, equally

varied errors " and with Xn�p having full column
rank. Suppose that we seek to estimate a linear
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combination � = a0� and require a linear, unbi-
ased estimate: �̂ = c0Y, E [�̂] = �. Then the

minimum variance estimate in this class, i.e. the

`Best Linear Unbiased Estimate' (BLUE), is

�̂BLUE = a
0�̂OLS

( = a0
�
X0X

��1
X0Y; so c = X

�
X0X

��1
a):

Proof: We are to show that �̂BLUE is unbiased

(this is immediate) and that no unbiased estimate

c0Y has a smaller variance. That c0Y be unbi-

ased entails (how?)

X0c = a; (16.1)

and so we must show that, for any c satisfying

(1), we have

var [�̂BLUE] � var
h
c0Y

i
; i.e.

a0
�
X0X

��1
a � c0c: (16.2)

But in the presence of (16.1), (16.2) becomes

c0Hc � c0c, i.e. k(I�H) ck2 � 0. �



158

� Note that the Gauss-Markov Theorem makes no

assumptions about the distribution of the errors.

They can be non-normal, and OLS is still opti-

mal if (i) these errors are uncorrelated and ho-

moscedastic, and (ii) we insist on a linear esti-

mate. To improve on OLS we should drop the

requirement of unbiasedness (recall ridge estima-

tion) and/or look among non-linear estimates.

� Large sample inferences impose a further require-
ment. We typically carry out inferences about

a0� by using the normal approximation

a0�̂OLS
d� N

�
a0�; �2"a

0 �X0X��1 a� ;
valid asymptotically even for non-normal errors

under a condition that states, roughly, that no

observations can have too large an inuence on

the �t. More precisely, in order that all LSEs

a0�̂OLS be asymptotically normal, it is necessary
and su�cient that `Huber's condition' hold:

max
i
hii ! 0 as n!1:
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Recall that we tend to be wary of observations

with hii > 2�h = 2p=n.

� Observations which dominate the LS �t due to
unusual x-values are `leverage' points (and the

hii are sometimes called leverage values). Ob-

servations with unusually large (in absolute value)

y-values are `outliers'. These can arise from mea-

surement error, instrument failure, incompetent

sampling, ... . It should be fairly clear that no

linear estimate can be very good in the presence

of outlying Y -values { think about the (linear)

sample average vs. the (non-linear) sample me-

dian.

� One way in which outlying Y -values are some-
times modelled is by assuming that the errors fol-

low a `gross errors' model:

" � (1� �) �
�
"

�

�
+ �G (") ;
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where � (") is theN(0; 1) d.f. (so �
�
"
�

�
isN

�
0; �2

�
)

and G (") is an arbitrary d.f. The interpretation

is that, with probability 1 � �, an observation

is drawn from the (ideal) N
�
0; �2

�
population.

With small probability � it is drawn from a pop-

ulation about which we have no knowledge.

� E�ect of outliers and highly inuential values

[ natheight=18.2056cm, natwidth=18.2056cm,

height=7.3521cm, width=12.1825cm]

C:/sw50/temp/graphics/inuencef ig129:pdf
Simulated data: Y = x+ " with, on the left,

one additional observation which is both highly

inuential (extreme x� value) and has an
outlying y� value. Plot on right is after

removal of this point.
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� Since LS = ML for Normal errors, in looking for

robust alternatives we might start with ML esti-

mation for other distributions. An M-estimate

is a generalization of a Maximum Likelihood es-

timate.

� If Yi = x
0
i� + "i, with

"i � F
�
"

�

�
, density

1

�
f

�
"

�

�
;

then Yi has density
1
�f

�
yi�x0i�
�

�
and the log-

likelihood is

l (�; �) = �n log � +
X
i

log f

 
yi � x0i�

�

!
:

The MLE is then the minimizer of

1

n

X
i

�

 
yi � x0i�

�

!
+ log �;

where �(r) = � log f(r); this leads to the likeli-
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hood equations

1

n

X
i

 

 
yi � x0i�

�

!
xi = 0;

1

n

X
i

 

 
yi � x0i�

�

! 
yi � x0i�

�

!
� 1 = 0;(16.3)

with `score function'  = �0 = �f 0=f . For Nor-

mal errors, �(r) = r2=2 and  (r) = r. (Note

that any constant multiple of  can be used here

instead.)

{ What about Laplace errors f (r) = :5e�jrj?

{ For given � or  , what is f? (Conditions on

�: �(r)!1 su�ciently quickly as jrj ! 1.)
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� An M-estimate of regression is a solution to

1

n

X
i

�

0@ri
�
�̂
�

�̂

1A = min; or of

1

n

X
i

 

0@ri
�
�̂
�

�̂

1Axi = 0;

where ri
�
�̂
�
= yi�x0i�̂ is the residual, and �̂ is an

estimate of scale, perhaps determined by (16.3).
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17. Huber's  c; Computing M-estimates

� The LS estimate ( (r) = r) allows large resid-

uals to have a large inuence on the �t, and is

non-robust for this reason. The L1 estimate

( (r) = sgn (r)) gives all residuals the same in-

uence; for this reason it is highly robust but not

very e�cient if the errors are Normal. A com-

promise is `Huber's  c':

 c (r) =

(
r; jrj � c;

c � sgn(r); jrj � c:

{ If this is an MLE, then what is f? Solving

 c = �f 0=f results in

f (r) =

(
A� (r) ; jrj � c;

A� (c) e�c(jrj�c); jrj � c;
with A 2 (0; 1) determined from

R
f (r) dr =

1:

1

A
= 2� (c)� 1 + 2�(c)

c

?
> 1:
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� This is a member of a gross errors neighbourhood
of the Normal:

f (r) = (1� �)� (r) + �g (r)

for

A = 1� �;

g (r) =

(
1��
�

h
� (c) e�c(jrj�c) � � (r)

i
; jrj � c;

0; jrj � c:
To establish this requires showing that, for any

� 2 (0; 1) there exists A 2 (0; 1) and c > 0

satisfying these equations, and that g (r) is a valid

density.

{ In practice, one typically takes c 2 (1; 2).

� Computing. Suppose �rst that scale � is known,
and so we wish only to compute �̂ by solving

1

n

X
i

�

0@ri
�
�̂
�

�

1A = min; or

1

n

X
i

 

0@ri
�
�̂
�

�

1Axi = 0: (17.1)
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Suppose as well that  is monotone, i.e.  0 � 0.
If  is strictly increasing then we are guaranteed

a unique solution, since the function being mini-

mized is convex:

@2

@�@�

1

n

X
i

�

 
ri (�)

�

!
=

1

n�2

X
i

 0
 
ri (�)

�

!
xix
0
i

is positive de�nite:

c0
24X
i

 0
 
ri (�)

�

!
xix
0
i

35 c
=

X
i

 0
 
ri (�)

�

!�
c0xi

�2
> 0:

For Huber's  we have only `� 0', and indeed �
can be chosen so badly that all jri (�)j > c� and

so all  0 (ri (�) =�) are = 0. But the objective

function is still convex in a neighbourhood of a

solution �̂ for which most of the residuals satisfy���ri ��̂���� � c�.
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� We will always assume that  is an odd function
(and so  (0) = 0 if  is continuous), and  (r) �
0 for positive r. Introduce `weights' w (x) =

 (x) =x (=  0 (0) at x = 0); thus w(x) is even

and everywhere non-negative. Then with wi =

w
�
ri
�
�̂
�
=�
�
, (17.1) can be written

1

n

X
i

wi
�
yi � x0i�̂

�
xi = 0;

with `solution'

�̂ =
�
X0WX

��1
X0Wy:

This is only a `solution' because the weights de-

pend on �̂. But we can iterate:

1. Start with �(0); compute residuals yi�x0i�(0)
and weights wi;(0) = w

�
ri
�
�(0)

�
=�
�
.

2. Do a WLS regression of y on X with weights

wi;(0) to obtain �(1).

3. Iterate to convergence. (Why is the con-

verged value a solution?)
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This is called `Iteratively Reweighted Least Squares'

(IRLS).

� When scale is to be estimated as well, we replace
� by �̂ in these expressions, and update it along

with �: after �(k) and ri
�
�(k)

�
have been ob-

tained, update �̂ to �(k+1). One proposal is to

solve

1

n� p
X
i

 2
 
yi � x0i�

�

!
= E�

h
 2 (")

i def
= �

(in analogy with LS) through:

�2(k+1) =
1

� (n� p)
X
i

w2i(k)r
2
i

�
�(k)

�
:

For Huber's  c,

� = 1� 2c�(c) + 2
�
c2 � 1

�
� (�c) :
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� A commonly used alternative is the median ab-

solute deviation (MAD):

�(k+1) =
med

n���ri ��(k)����o
:6745

:

The denominator (= ��1(:75)) is such that, at
the Normal distribution, the estimate is consistent

(tends in probability to � as n!1). Outline:

med fsampleg pr! med fpopulationg = F�1(:5);

where

F (t) = P� (jZj � t) = 2�(t)� 1:

Thus for N(0,1) errors, F�1(:5) = ��1(:75) and

med

�����ri�
����� pr! med fjZjg = ��1(:75):
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� R-code (on course website):

# Set 'c':

c = 1

# Define Huber's psi function:

psi = function(r) pmax(-c, pmin(r,c))

# Weights:

w = function(r) pmin(1, c/abs(r))

# Delta:

delta = 1-2*c*dnorm(c)+2*(c^2-1)*pnorm(-c)

# Arrange to store the output:

out = matrix(ncol = p+2)

dimnames(out) = ...

# Start with an L1-estimate

library(quantreg)

init.fit = rq(y ~x)

theta = init.fit$coef
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r = init.fit$resid

sigma = mad(r, center = 0) #Initial scale

std.res = r/sigma

weights = w(std.res)

norm = sqrt(sum((t(X)%*%psi(std.res))^2))

#Euclidean norm of t(X)%*%psi(std.res); = 0?

out[1,] = round(c(theta, sigma, norm),5)

while (norm > .001) {

fit = lsfit(x, y, wt = weights)

theta = fit$coef

r = fit$resid

sigma = sqrt(sum((weights*r)^2)/(delta*(n-p)))

std.res = r/sigma

norm = sqrt(sum((t(X)%*%psi(std.res))^2))

out = rbind(out, round(c(theta, sigma, norm),5))

weights = w(std.res)

}
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Here is (some of) the output with the `stackloss' data:

> print(out[,-c(1:2)])

water.temp acid.conc sigma norm

[1,] 0.57391 -0.06087 1.75334 118.21923

[2,] 0.71207 -0.10581 1.92218 14.68070

[3,] 0.75289 -0.10812 2.10807 16.76062

...

[48,] 0.87375 -0.12075 2.78565 0.00101

[49,] 0.87375 -0.12075 2.78565 0.00081

> # Compare with Least Squares:

> print(lsfit(x,y)$coef[3:4])

Water.Temp Acid.Conc.

1.2952861 -0.1521225

> print(round(weights,2))

[1] 0.82 1.00 0.63 0.41 1.00 1.00 1.00 1.00 1.00

[10]1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[19] 1.00 1.00 0.31

[ natheight=18.2693cm, natwidth=18.2693cm, height=16.255cm,

width=17.7421cm] C:/sw50/temp/graphics/robuststackloss30:pdf
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18. Asymptotics; Inferences; Pseudovalues

Making inferences after M-estimation requires an ap-

proximate distribution of �̂. Here is an outline of the

derivation. Assume scale is known, so that �̂ is a

solution to G
�
�̂
�
= 0, where

G (�) =
1

n

X
i

 

 
yi � x0i�

�

!
xi:

We expand around the true � { call this �0. It is

de�ned by

E [G (�0)] = 0;

this is guaranteed for an ordinary M-estimate with an

odd  -function and symmetrically distributed errors

"i = yi � x0i�0, since then

E

�
 

�
"

�

��
= 0:

The expansion is

0 = G
�
�̂
�
= G (�0) + _G (�0)

�
�̂ � �0

�
+Rn
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for a remainder Rn; then

p
n
�
�̂ � �0

�
=

h
� _G (�0)

i�1p
nG (�0)

+
h
� _G (�0)

i�1p
nRn:

It can be shown that
p
nRn

pr! 0, so that the asymp-

totic distribution is the same as that ofh
� _G (�0)

i�1p
nG (�0)

=

24 1
n�

X
i

 0
 
yi � x0i�0

�

!
xix
0
i

35�1

� 1p
n

X
i

 

 
yi � x0i�0

�

!
xi

=

24 1
n�

X
i

 0
�
"i
�

�
xix
0
i

35�1 � 1p
n

X
i

 

�
"i
�

�
xi:

Recall the WLLN and the CLT (see Appendix). By

these, the �rst term is asymptotically equal to the

inverse of

1

�
E

�
 0
�
"

�

�� 241
n

X
i

xix
0
i

35 ;
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and the second is asymptotically normally distributed,

with mean zero (why?) and asymptotic covariance

E
h
 2

�
"
�

�i h
1
n

P
i xix

0
i

i
. It follows that

p
n
�
�̂ � �0

� d� N

0B@0; �2 E
h
 2

�
"
�

�i
�
E
h
 0
�
"
�

�i�2
241
n

X
i

xix
0
i

35�1
1CA :

When scale is estimated as well, we replace � by �̂ in

order to apply the approximation, which we can also

write as

�̂
d� N

�
�0; V ( ; F )

�
X0X

��1�
where " � F and

V ( ; F ) = �2
EF

h
 2

�
"
�

�i
�
EF

h
 0
�
"
�

�i�2:
(18.1)

We estimate V ( ; F ) by

v = �̂2

1
n�p

P
i 
2

0@ri��̂�
�̂

1A
241
n

P
i 
0

0@ri��̂�
�̂

1A352
:
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� You should check that these approximations are
exact if LS is used and the errors are Normal.

� Inferences can be made in much the same way
as when least squares estimates are used, after

making appropriate modi�cations for the revised

covariance structure of �̂. For instance, tests and

con�dence intervals on a0� use the approximation

a0�̂
d� N

�
a0�; V ( ; F ) a0

�
X0X

��1
a
�
;

with

a0
�
�̂ � �

�
s 

q
a0
�
X0X

��1 a
d� tn�p

for s 
def
=
p
v .

� Note that the only change here (and in F-tests,
etc.) is that the LS-based S is replaced by s .
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� In LS regression, the t-ratios and p-values appear
on the printout, which is very convenient. Is

there a way to have the printout reect these val-

ues after a robust regression? An easy way to

accomplish this is to do a �nal least squares re-

gression with the yi replaced by `pseudovalues'

~yi = x0i�̂ +
�̂

a
 

0@ri
�
�̂
�

�̂

1A ; where
a =

1

n

X
i

 0
0@ri

�
�̂
�

�̂

1A :
The output will produce the LS-estimates

�̂LS =
�
X0X

��1
X0~y

= �̂ +
�
X0X

��1 �̂
a

X
xi 

0@ri
�
�̂
�

�̂

1A
= �̂:

The inferences reported on the printout will be

based on an estimated covariance matrix S2
�
X0X

��1,
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with

S2 =

P
i

�
~yi � x0i�̂

�2
n� p

=

�
�̂
a

�2P
i 
2

0@ri��̂�
�̂

1A
n� p

= v :

(See the Street, Carroll & Ruppert paper on the

course website, for more on computing ordinary

M-estimates.)
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# Compute pseudovalues

psiprime = function(r) (abs(r)<=c)

a = mean(psiprime(std.res))

y.tilde = X%*%theta + (sigma/a)*psi(std.res)

pseudofit = lsfit(x,y.tilde)

ls.print(pseudofit)

Residual Standard Error=2.472

R-Square=0.9468

F-statistic (df=3, 17)=100.9487

p-value=0

Estimate Std.Err t-value Pr(>|t|)

Intercept -40.6590 9.0668 -4.4844 0.0003

Air.Flow 0.8302 0.1028 8.0772 0.0000

Water.Temp 0.8738 0.2805 3.1150 0.0063

Acid.Conc. -0.1207 0.1191 -1.0137 0.3250

� To now we have implicitly treated the regressors
xi as �xed, i.e. non-random. In practice they are

often observed values of random variables. Two
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possibilities arise. For simplicity take a straight

line model

Y = �0 + �1x+ ": (18.2)

1. Random regressors { here x is assumed to be

the observed value of a r.v. X, whose distri-

bution is independent of that of ", and does

not depend on �0, �1 or �
2
" . Then if the

conditional distribution of Y , given X = x, is

normal (and homoscedastic, etc.), the usual

Least Squares analysis is valid (conditionally):

E
h
�̂jX

i
= �;

cov
h
�̂jX

i
= �2"

�
X0X

��1
:

We will take an analogous approach { in the

model Yi = x
0
i�+"i we assume that xi and "i

are independently (but perhaps not Normally)

distributed. In the same way that outlying

Y values receive reduced weights in a robust

regression, we might want to bound the inu-

ence of the xi (recall that we ag as highly

inuential those xi with hii > 2�h).
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2. Measurement errors, or `errors in variables'

models { here it is assumed that there is a

`true' value x of X, and that, rather than

(18.2), one observes

Y = �0 + �1X + "; with

X = x+ �

for a random error � (typically assumed inde-

pendent of "). Then bias is introduced; this

and other aspects are discussed in Draper &

Smith (x3.4).
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19. Breakdown and Inuence

� The case of random regressors raises new robust-

ness issues, since now there may be highly inu-

ential values of the xi. Example: the `mineral'

data set in Maronna, Martin & Yohai gives val-

ues of zinc vs. copper in 53 rock samples from

Western Australia. One observation (#15) is a

clear outlier. Both the LS line and a robust �t

using Huber's  1:5 are strongly inuenced by this

point. Also shown is the LS �t after removing

this point.

[ natheight=18.2056cm, natwidth=18.2056cm, height=16.7646cm,

width=18.2759cm] C:/sw50/temp/graphics/mineral1
31:pdf
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� Two methods have been developed to assess the
robustness of a regression �t. The �rst is the

`breakdown point' (BP). Roughly speaking, this

is the largest fraction of data values which can

be corrupted (made arbitrarily bad) with the es-

timates remaining bounded. Formally, for a data

set Z = fxi; yigni=1, let Zm denote any data set

with at least n�m elements in common with Z

(so at most m can be corrupted). De�ne

m� = max
n
m j �̂ (Zm) is bounded for all Zm

o
:

Then "� = m�=n is called the `�nite-sample break-
down point', and limn!1 "� is the breakdown
point.
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� Example: In a location model yi = � + "i the

sample average �y has BP = 0. (Proof: Let

y1 !1, then �y !1; thus "� � 1=n! 0.)

� Example: In the same model the sample median ~y
has BP = :5. (Proof: Suppose n = 2m is even

and order the observations y(1) � � � � � y(n).

Then ~y is between y(m) and y(m+1). Clearly, the

worst that can happen is that the largest observa-

tions are sent to �1 (or the smallest ... ). In the

�rst case the median does not drop below y(1) if

this is done to groups of sizem�1, but can be un-
bounded if groups of sizem are altered in this way.

In the second ... Thus "� = (m� 1)=n! :5.)
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� In the regression model Yi = x0i�+"i with random
xi, an M-estimate of regression with monotone  

has BP = 0.

Proof: For simplicity, suppose � = 1 is known.

We show that it is possible to alter (x1; y1) in

such a way that
�̂!1. Note that

 
�
y1 � x

0
1�̂
�
x1 +

nX
i=2

 
�
yi � x0i�̂

�
xi = 0:

(19.1)

Let y1 and kx1k both ! 1 in such a way that

y1= kx1k ! 1. Leave fyi;xigni=2 �xed. Then

y1�x
0
1�̂ � y1�kx1k

�̂ = kx1k
 
y1
kx1k

�
�̂! :

If
�̂ 9 1 then y1 � x

0
1�̂ ! 1, and so

 
�
y1 � x

0
1�̂
�
!  (1) > 0. Thus the norm of

the �rst term in (19.1) !1 and hence some ofn
 
�
yi � x0i�̂

�on
i=2

must be unbounded. This is

impossible if  is bounded, and if  is unbounded

it can only happen if
�̂!1.
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� In view of this last result, it is important to �nd
robust estimates of regression with positive BPs

(when contaminated regressors are a possibility).

In fact BP = :5 is attainable. We will look

at two possibilities { (i) expand the class of M-

estimates to allow for the e�ect of inuential x's

to be bounded, or (ii) drop the requirement of a

monotone  . The �rst of these leads to `Bounded

Inuence' or `Generalized' M-estimation, the sec-

ond to `MM-estimation'. These will each be dis-

cussed in the next few lectures.

� The second method developed to assess the ro-
bustness of a technique involves measuring the

(asymptotic) inuence of a data point on a sta-

tistic. Again there is a �nite sample version and

a limiting version. The �rst is the `sensitivity

curve' { let T (z1; :::; zn) be a statistic computed

from data fz1; :::; zng and consider

SC (z) = T (z1; :::; zn; z)� T (z1; :::; zn) :
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This measures the e�ect of adding one arbitrary

observation to the �nite sample.

Example: Let T (y1; :::; yn) = �y. Then SC (y) =
y��y
n+1, with

n � SC (y) pr! y � �:

The inuence of y on �y is proportional to y � �,
i.e. outliers have more inuence!

� To get a limiting version of SC one might multiply
by n and take a limit, as above. To de�ne it more

formally, we �rst need the `empirical distribution

function' (e.d.f.) F̂n of a sample fz1; :::; zng; this
is the d.f. with

P
F̂n
(z = zi) =

1

n
; i = 1; :::; n:

All of the common statistics can be de�ned as

`functionals' h(F̂n) of the e.d.f. For instance

�y =
X

yiPF̂n
(y = yi) = E

F̂n
[Y ] :
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� Corresponding to a statistic h(F̂n), suppose that
F is the population d.f. Assume that F 2 F, a
convex class of d.f.s. Consider

_h(F0;F1) = lim
t!0

h ((1� t)F0 + tF1)� h (F0)
t

=
d

dt
h (Ft)jt=0 ; where we de�ne

Ft = (1� t)F0 + tF1:

When F1 = �z (point mass at z) this represents

the limiting, normalized inuence of a new obser-

vation, with value z, on the statistic h (F0). We

call

_h(F0; �z) = IF (z) (or IF (z;h; F0))

the Inuence Function. It can be used as a mea-

sure of the robustness of a procedure against out-

liers (ideally we would like it to be bounded). We

will see in the next class that it can also be used

to give a quick asymptotic normality proof:

p
n
�
h(F̂n)� h (F0)

� d� N
�
0; varF0 [IF (Z;h; F0)]

�
:

.
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Example: If h(F ) = EF [Y ], then

h
�
F̂n
�
= �y;

h (Ft) = h ((1� t)F0 + tF1)

= (1� t)h(F0) + th(F1);

_h(F0;F1) = (h(F1)� h(F0)) ;

and so

IF (y) = _h(F0; �y) = y � EF0[Y ]:

The IF is unbounded; this is evidence of the lack of

robustness of the sample average. A single arbitrarily

large outlier can push �y beyond all bounds.

Note that IF (y) = limn � SC (y); also that

EF0[IF (Y )] = 0

in this example. This turns out to be true very gener-

ally; hence

varF0 [IF (Z;h; F0)] = EF0

h
IF 2(Z;h; F0)

i
:
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20. Generalized M-estimation; High breakdown

estimates

� IF of an M-estimate. Let �̂ be an M-estimate
de�ned by

1

n

X
 

0@yi � x0i�̂
�̂

1Axi = 0:
More generally, for a sample fzi = (xi; yi)gni=1 we
can write

	
�
zi; �̂

�
=  

0@yi � x0i�̂
�

1Axi
(assume for simplicity that � is known) and de�ne

�̂ as a solution to

1

n

X
	(zi; �) = 0:

This de�nes �̂ implicitly as a functional h
�
F̂n
�
of

the e.d.f. of fzigni=1:

E
F̂n

h
	
�
Z;h

�
F̂n
��i

= 0:
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If F0 is the distribution function of the zi then

the parameter � being estimated is de�ned by

EF0 [	 (Z;h (F0))] = 0: (20.1)

To calculate the IF, replace F̂n by Ft:

EFt [	 (Z;h (Ft))] = 0:

Di�erentiate (and use (20.1)):

0 =
d

dt
EFt [	 (Z;h (Ft))]jt=0

= EF1 [	 (Z;h (F0))] + EF0

h
_	(Z;h (F0))

i
_h(F0;F1):

Thus

_h(F0;F1) =
�
EF0

�
� @

@�
	(Z; �)

���1
EF1 [	 (Z; �)]

with

IF (z) = _h(F0; �z) =
�
EF0

�
� @

@�
	(Z; �)

���1
	(z; �) :

Note that EF0[IF (Z)] = 0.
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� Asymptotic normality. By Taylor's Theorem,

expanding h (Ft) around t = 0 gives

h (Ft) = h (F0) + _h(F0;F1)t+ :::, whence

h (F1) = h (F0) + _h(F0;F1) + Remainder.

Typically (but this has to be checked)

_h(F0;F1) = EF1 [
(Z)]

for some vector 
(z). With F1 = �z we obtain

IF (z) = 
(z). Then with F1 = F0 we obtain

EF0[IF (Z)] = 0:

Thus

h (F1) = h (F0) + EF1 [IF (Z)] + Remainder

and then, with F1 = F̂n, we have (a \Mean Value

Theorem")

p
n
�
h
�
F̂n
�
� h (F0)

�
=

1
p
n

nX
i=1

IF (Zi)+
p
nRn;

where the IF (Zi) are i.i.d. r.vectors with mean

0 and variance

� (F0) = EF0

h
IF (Z) � IF 0 (Z)

i
:
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By the CLT, as long as
p
nRn

pr! 0 (and typically

it does) we have

p
n
�
h
�
F̂n
�
� h (F0)

�
L! N (0;� (F0)) :

� Applied to an M-estimate, this gives
p
n
�
�̂ � �

�
L! N

�
0;M�1QM�1

�
with

M = EF0

�
� @

@�
	(Z; �)

�
;

Q = EF0

h
	(Z; �)	0 (Z; �)

i
:

For an ordinary M-estimate,

	 (z; �) =  

0@y � x0�
�

1Axi;
and with EF0

�
xx0

�
estimated by

E
F̂n

h
xx0

i
=
1

n
X0X;
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this agrees with the result obtained earlier:

M =
1

�
E

�
 0
�
"

�

��
� 1
n
X0X;

Q = E

�
 2

�
"

�

��
� 1
n
X0X;

�̂
d� N

�
�; V ( ; F0)

�
X0X

��1�
:

� A proposal to modify the de�nition of an M-estimate,
so as to bound the inuence of outlying x-values,

resulted in `Generalized M-estimation'. A GM-

estimate is a solution to

1

n

X
�

0@xi; yi � x0i�̂
�̂

1Axi = 0;
where

�

 
xi;

ri (�)

�

!
= w (xi) 

 
ri (�)

�

!
:

(There are other variations of this in the litera-

ture). The weights w (xi) are to be chosen for

robustness against outlying x-values. As with
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(ordinary) M-estimates, scale is estimated by solv-
ing an auxiliary equation. A GM-estimate can be
computed just as an M-estimate was, by IRLS.
Alternatively, use Newton-Raphson: de�ne

G
�
�̂
�
=
1

n

X
�

0@xi; yi � x0i�̂
�̂

1Axi
and solveG

�
�̂
�
= 0 through the iteration scheme

�(k+1) = �(k) �
h
_G
�
�(k)

�i�1
G
�
�(k)

�
with

_G
�
�(k)

�
=
�1
n�̂

X
�0
 
xi;

yi � x0i�(k)
�̂

!
xix
0
i

(where �0 (x; r) = (d=dr) � (x; r) = w (x) 0 (r)).

� As before the estimate is asymptotically normal:
p
n
�
�̂GM � �

�
L! N

�
0;M�1QM�1

�
;

(20.2)

the calculations now use

	 (z; �) = w (x) 

 
y � x0�
�

!
x:
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Thus

M = E

�
� @

@�
	(Z; �)

�
=

1

�
E

�
 0
�
"

�

��
E
h
w (x)xx0

i
;

Q = E
h
	(Z; �)	0 (Z; �)

i
= E

�
 2

�
"

�

��
E
h
w2 (x)xx0

i
:

These are estimated by replacing the expectations

by averages over the sample. With V ( ; F ) as

at (18.1) andW the diagonal matrix of weights,

the result is that �̂GM
d� N (�;� (F )), with

� (F ) = V ( ; F )�
�
X0WX

��1 �
X0W2X

� �
X0WX

��1
:

� High breakdown estimators. In can be shown

that the BP of a GM-estimate is only about 1=p.

An early attempt at �nding a regression estimate

with very high BP led to the `Least Median of

Squares' estimate. This is de�ned by

med

��
yi � x0i�̂

�2�
= min :
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Formally, if the absolute values of the residuals
are ordered: jrj(1) � � � � � jrj(n), then

med
n
jrj2(i)

o
= min :

The LMS estimate is in general very di�cult to
compute (more on this later), does not have a lim-
iting Normal distribution, and in fact converges to
a non-Normal distribution at the rate n�1=3, i.e.
more slowly than the usual n�1=2. But BP =
1=2.

� A more recent proposal is `Least Trimmed Squares'.
The LTS regression method minimizes the sum of
the h smallest squared residuals, where h must
be at least half the number of observations and
is typically taken to be slightly greater than n=2.
Formally,

hX
i=1

jrj2(i) = min :

Again di�cult to compute, but it converges at the
standard rate of n�1=2 and has a BP of :5. A
drawback is that it is very ine�cient if the errors
are in fact Normal.
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21. One-step GM-estimation

� A drawback of GM-estimation is that the BP,

while positive, is only about 1=p. A way out

of the problem is to compute a `one-step' GM-

estimate:

1. Take a high breakdown initial estimate of �,

such as the LTS estimate, and a corresponding

scale estimate �̂ =
r
1
h

Ph
i=1 jrj

2
(i). (This is

multiplied by a correction factor { see

ltsReg(robustbase) or the Pison, Van Aelst &

Willems paper on the course website for de-

tails.)

2. Compute as well highly robust weights w (xi)

(discussed later).

3. Perform just one iteration of Newton-Raphson

(not IRLS { this results in the wrong asymp-

totic properties when only one iteration is per-

formed). Update �̂ to �̂ =MAD.
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� It can be shown { see the Simpson, Ruppert &
Carroll paper on the course website for details {

that �̂ computed in this way inherits the high BP

of the initial estimate, while gaining the high ef-

�ciency of the M-estimate. In particular (20.2)

continues to hold.

� One need not stop at one step; one can use �(1)
in place of �̂LTS and do one more iteration, ob-

taining a two-step GM estimate �(2), etc. In fact

SR&C recommend a three-step. BUT the num-

ber of iterations k must be decided on in advance,

otherwise k becomes the value of a r.v. K and the

asymptotic properties change.

� How can the robust weights w (x) be computed?
These should decrease as x moves away from the

rest of the sample. An obvious possibility is

w (xi) = 1 � hii, but these are very non-robust
{ outlying xi can determine the measure (the
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`masking' e�ect). This is most clear in straight

line regression, where

hii =
1

n
+

(xi � �x)2P�
xj � �x

�2:

� To get more robust weights, we �rst look for ro-
bust estimates t andV of the location and scatter

of the xi. The Minimum Covariance Determinant

(MCD) method �nds the h (> n=2) observations

x(i) whose classical covariance matrix

V =
1

h

X
i

�
x(i) � t

� �
x(i) � t

�0
(here t = �x, the average of these h points) has

the lowest possible determinant. Then a reweight-

ing step is carried out to improve the e�ciency {

see covMcd(robustbase) or the Pison, Van Aelst

& Willems paper for details. This results in ro-

bust estimates �̂ (a re-weighted average of these

h points) and �̂ (a reweighted covariance matrix).
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Finally, weights are computed:

w (xi) = min

0@1; �2p�1 (:95)

(xi � �̂)0 �̂�1 (xi � �̂)

1A1=2 :

� The original proposal of SR&C was to use Min-
imum Volume Ellipsoid (MVE) weights. This

method looks for the ellipsoidn
x j (x� t)0V�1 (x� t) � 1

o
of smallest volume, subject to the requirement

that it contain at least half of the data points.

This su�ers from the same problems as the LMS

estimate, however.

� An R function to compute K-step GM-estimates
is on the course website. It is applied here to

the `mineral' data set. See plots below. The

weights w (xi) are:
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> print(round(GMfit$wx,2))

[1] 1.00 1.00 0.43 0.68 0.51 1.00 1.00 1.00 1.00

[10] 1.00 1.00 1.00 1.00 1.00 0.16 0.44 0.43 0.66

[19] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[28] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[37] 1.00 1.00 0.61 1.00 1.00 1.00 1.00 1.00 1.00

[46] 1.00 1.00 1.00 1.00 0.71 1.00 1.00 1.00

[ natheight=18.2693cm, natwidth=18.2693cm, height=11.3324cm,

width=12.3362cm] C:/sw50/temp/graphics/mineral2
32:pdf

� The remaining lines, very close to the LS line (af-
ter removing point 15) are the GM line using a

(redescending) `bisquare'  -function

 bi (r; c) = r

 
1�

�
r

c

�2!2
I (jrj � c)

with c = 4:5, and the MM line, to be considered

next.
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# Load the robustbase package first:

library(robustbase)

myGM = function(x, y, c, intercept, wts, K) {

... housekeeping stuff ...

# Define the robust weights

w = function(x) {

qwe = covMcd(x)

if(ncol(x)>1) mah = qwe$mah else

mah = (x-rep(qwe$center,length(x)))^2

/as.numeric(qwe$cov)

if(wts=="w1") weights = sqrt(pmin(1,

qchisq(.95, ncol(x))/mah)) else

if(wts=="w2") weights = pmax(0, (1-(mah/

qchisq(.95, ncol(x)))^3)^3)

#Alternate weights, cutting influence

of outlying xs to zero

weights}

# eta and etaprime

eta = function(wx,r) wx*psi(r)
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etaprime = function(wx,r) wx*psiprime(r)

# Start with the LTS estimate

init.fit = ltsReg(x,y, int = intercept)

theta = init.fit$coef

r = init.fit$resid

sigma = init.fit$scale #Initial scale estimate

std.res = r/sigma

wx = w(x)

out[1,] = round(c(theta, sigma),5)

for (k in 1:K) {

G = t(X)%*%eta(wx,std.res)/n

Gdot = (-1/(n*sigma))*t(X)%*%

(as.vector(etaprime(wx,std.res))*X)

Gdot.qr = qr(Gdot)

theta = theta-qr.solve(Gdot.qr,G)

r = y-X%*%theta

sigma = mad(r, center=0)

std.res = r/sigma

out = rbind(out, round(c(theta, sigma),5))

}

list(out=out, theta=theta, wx=wx,

std.res = std.res, coef = theta, sigma = sigma)}
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22. MM-estimation

� MM estimation (so named because it uses two

M-estimates) is the high breakdown regression

method currently in vogue. Like GM-estimation

it starts with a high breakdown initial estimate.

But rather than LTS or LMS another method {

`S estimation' { is used and is discussed below.

� The method depends on two bounded `�-functions'
�0 and �1. Such functions must be nondecreasing

in jrj, with � (0) = 0, � (1) = 1 and � strictly in-
creasing in jrj where � (r) < 1. (So how must  

look?). Recommended is the bisquare �-function

�bi (r; c) = min

8<:1; 1�
 
1�

�
r

c

�2!39=; ;
with derivative

�0bi (r; c) =
6

c2
 bi (r; c) :
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� The S-estimate �̂S, and scale estimate �̂S, are
de�ned as follows. For any �̂, with residuals

ri
�
�̂
�
, de�ne a scale estimate �̂ = �̂

�
�̂
�
by

1

n

X
�0

0@ri
�
�̂
�

�̂

1A = :5: (22.1)

(Non-robust example: �0 (r) = r2=2 gives �̂2 =P
r2i =n.) The S-estimate of regression is the

solution to

�̂
�
�̂S
�
= min �̂

�
�̂
�

(22.2)

and then

�̂S = �̂
�
�̂S
�
:

This is the major computational challenge and is

discussed below.

� Theoretical details are in the paper by Victor Yohai,
on the course website.
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� Regression is then estimated by solving

L
�
�̂
� def
=

1

n

X
�1

0@ri
�
�̂
�

�̂S

1A = min;
(22.3)

starting with �̂S. It is required that

(a) �1 � �0 and (b) L
�
�̂
�
� L

�
�̂S
�
;

(22.4)

these ensure the high BP (! :5). The rough

idea is that (22.4) implies

1

n

X
�1

0@ri
�
�̂
�

�̂S

1A (22:4b)
� 1

n

X
�1

0@ri
�
�̂S
�

�̂S

1A
(22:4a)
� 1

n

X
�0

0@ri
�
�̂S
�

�̂S

1A (22:1)
= :5;

thus not too many of the terms ri
�
�̂
�
=�̂S can get

large and the estimates must remain bounded.
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� Asymptotically, any critical point arising from (22.3)
will work. One proceeds, as before, by IRLS:

write (22.3) as

0 = �̂S �
1

n

X
 1

0@ri
�
�̂
�

�̂S

1Axi
=

1

n

X
w1

0@ri
�
�̂
�

�̂S

1A ri ��̂�xi
with weights

w1(r) =
 1 (r)

r
;

repeatedly update �(j) to

�(j+1) =
�
X0W(j)X

��1
X0W(j)y:

The limit of this process is �̂MM . It can be

shown that L
�
�̂
�
decreases at each step, so that

22.4b is guaranteed.
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� The recommended �-functions are

�0 (r) = �bi (r; c0) and �1 (r) = �bi (r; c1) ;

where:

1. c0 = 1:56 so that, asymptotically for Normal

errors, �̂ will correspond to the standard devi-

ation: if "=�" � N(0; 1) then

E

�
�bi

�
"

�"
; c0 = 1:56

��
= :5;

2. c1 must be � c0 to satisfy 22.4(a), and is cho-
sen for a prescribed e�ciency at the Normal,

e.g. for 95% e�ciency relative to the LSE

(with variance �2"
�
X0X

��1) the MM estimate

(with variance V ( bi (�; c1) ;�)
�
X0X

��1) should
satisfy

:95 =
�2"

V ( bi (�; c1) ;�)
=

n
E
h
 0bi

�
"
�"
; c1

�io2
E
h
 2bi

�
"
�"
; c1

�i :

This gives c1 = 4:68; larger values give greater

e�ciency but allow large residuals to have a

greater inuence on the �t.
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� Computation of �̂S and �̂S: all approaches rely
on `subsampling' schemes; these are also used in

the computation of LMS, MCD, etc. Consider a

subsample

f(xi; yi) j i 2 Jg ;

where J is any one of the
�
n
p

�
sets of p indices cho-

sen from f1; 2; � � �; ng. Assume that the corre-

sponding design matrixXJ , with rows
n
x0i j i 2 J

o
has full rank (if not, drop this subsample and take

another). ThenXJ , which is square, is invertible:�
X
0
JXJ

��1
X
0
J = X

�1
J :

(This might be the only time that you will see

\X�1" used correctly in this course!) The cor-

responding regression coe�cients are

�̂J = X
�1
J yJ

and this estimated model �ts these p datapoints

exactly:

ŷJ = XJ �̂J = yJ :
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� Starting with any �̂J , we can �nd iterates
�
�̂
(k)
J ; �̂

(k)
J

�
for which:

(i) (22.1) is satis�ed, and

(ii) �̂
(k)
J decreases at each step.

Thus limk!1

�
�̂
(k)
J ; �̂

(k)
J

�
{ call it

�
�̂J;C; �̂J;C

�
and note that �̂J;C = �̂

�
�̂J;C

�
{ is at least a

local minimum of the function �̂
�
�̂
�
.

� The �nal `solution'
�
�̂S; �̂S

�
is (ideally) approxi-

mated by the best of the
�
�̂J;C; �̂J;C

�
. In prac-

tice we can't consider all
�
n
p

�
subsamples. In-

stead, a large number N of them are randomly

chosen, and the best of the
�
�̂J;C; �̂J;C

�
, arising

with these, is taken as the solution. See the pa-

per by Salibian-Barrera & Yohai for more details

and computational improvements.
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� The algorithm to determine �̂J;C is as follows.

Put �̂
(0)
J = �̂J . For k = 0; 1; � � � to convergence:

1. Solve (22.1): 1n
Pn
i=1 �0

0B@ri
�
�̂
(k)
J

�
�̂

1CA = :5, ob-

taining �̂
(k)
J (which will be � �̂

(k�1)
J ). This

can be done by introducing weights w0(r) =

�0 (r) =r
2 and iterating:

�̂2  2

n

X
w0

0BB@ri
�
�̂
(k)
J

�
�̂

1CCA ri ��̂(k)J �2

to convergence, starting with �̂
(k�1)
J . (What

is �̂
(0)
J ? Does it matter?)

2. Do one step of WLS to get

�̂
(k+1)
J =

�
X0W(k)X

��1
X0W(k)y;

with weights w0

�
ri

�
�̂
(k)
J

�
=�̂
(k)
J

�
.
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� Inferences (conditional on x) can be made in the
same manner as described earlier; again a �nal
least squares regression on pseudovalues gives an
asymptotically correct printout. This however
does not account for the possible lack of robust-
ness in estimating E

�
xx0

�
by X0X=n.

� On R: mmfit = lmrob(y~x) (after loading the ro-
bustbase library). The output will include a ro-
bust estimate (mmfit$cov) of

cov
h
�̂jX

i
= V ( ; F )

�
X0X

��1
;

with X0X=n replaced by the more robust

1P
wi

X
wixix

0
i (22.5)

where wi = w1

0@ri��̂MM

�
�̂S

1A. The idea here is

that (22.5) converges to

1

E [w1 ("=�")]
E
h
w1 ("=�")xx

0i how?= E
h
xx0

i
:

Then the usual normal-theory inferences can be
made, and are asymptotically correct.
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� Example: An MM-�t to the stackloss data, fol-

lowed by the t-test of the hypothesis that Acid.Conc.

can be dropped, gives a point estimate of �̂4 =

�:113 and a p-value of :125. Compare with the
output of Lecture 18 - the ordinary M-estimate

gave �̂4 = �:12 and a p-value of :325.

mmfit = lmrob(y~x)

theta = mmfit$coef

V = mmfit$cov

t.acid = theta[4]/sqrt(V[4,4])

p.acid = 2*(1-pt(abs(t.acid),n-p))

� Note: Despite its apparent complexity, an MM-

estimate is just an ordinary M-estimate correspond-

ing to a redescending  . The complexity comes

in only through the initial estimates
�
�̂S; �̂S

�
;

then their high BP is inherited by virtue of (22.4).
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Part V

Design
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23. Classical regression designs

� We suppose that the experimenter is able to choose
the points xi at which to observe Y . A change of

notation is convenient { write the usual regression

model now as

Yi = z
0 (xi) � + "i;

where the xi are the values of the independent

variables (chosen by the experimenter) and the

z (xi) are the regressors. For example in straight

line regression: Yi = �0 + �0xi + "i, the experi-

menter chooses the xi; the regressors are z
0 (xi) =

(1; xi).

� If the model can be trusted to be correct, then
the LSEs are unbiased and variance minimization

is the goal. If Z has rows
�
z0 (xi)

	n
i=1 then

cov
h
�̂
i
= �2"

�
Z0Z

��1
;

and are to choose fxigni=1 to minimize some scalar-
valued function of

�
Z0Z

��1.
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� Examples:

{ det
h�
Z0Z

��1i. A con�dence ellipsoid on � is
E
�
c2
�
=
�
� j
�
�̂ � �

�0
Z0Z

�
�̂ � �

�
� c2

�
;

with c2 = S2pF
p
n�p (1� �). The volume

is
R
E(c2) d�; with the QR-decomposition Z =

QR and t = R
�
�̂ � �

�
=c this becomes

vol =
Z
ktk�1

�����
 
@�

@t

!�����
+

dt

=
Z
ktk�1

���cR�1��� dt
= cp

���R�1��� Z
ktk�1

dt

= cp
���Z0Z����1=2 � vol (unit sphere in Rp) ;

so minimizing det
h�
Z0Z

��1i { equivalently, max-
imizing det

�
Z0Z

�
{ results in a con�dence el-

lipsoid of minimum volume. This is called the

`D-optimality' design problem.
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{ tr
h�
Z0Z

��1i { minimizing this is the `A-optimality'
design problem. The variances of the �̂j are
proportional to the diagonal elements of

�
Z0Z

��1,
so an A-optimal design results in the smallest
value of the average of these variances.

{ chmax
h�
Z0Z

��1i { minimizing this maximum
eigenvalue is the `E-optimality' problem. The
motivation is that

max
kck�k

var
h
c0�̂

i
= max
kck�k

�
�2" � c0

�
Z0Z

��1
c
�

= �2"k
2 max
kck�1

c0
�
Z0Z

��1
c

= �2"k
2chmax

��
Z0Z

��1�
;

so that this maximum variance is minimized
by the E-optimal design.

� Straight line regression, �1 � x � 1, n even.�
Z0Z

��1
=

1

Sxx

 
m2 ��x
��x 1

!
, with

Sxx =
X
(xi � �x)2 and m2 =

P
x2i
n

=
Sxx

n
+ �x2:
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Then:

1. det
h�
Z0Z

��1i = (nSxx)
�1 is minimized by

maximizing Sxx, leading to ... with Sxx = n.

2. tr
h�
Z0Z

��1i = 1+m2
Sxx

= 1
n +

1+�x2

Sxx
� 1

n +
1
Sxx

is minimized by maximizing Sxx ... .

3. E-optimality leads to the same design.

� Robustness issues? Testing Lack of Fit?

� Deriving optimal designs for other models can be
much more di�cult; this is an active and exciting

�eld of research.
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� Response surface methodology. Here a com-

mon goal is to determine where, on a surface of

interest, the response is a maximum. For in-

stance suppose Y = f(x1; x2) + " and we want

to determine where f(�; �) (whose precise form is

unknown) is a maximum. First assume the vari-

ables have been coded, so that �1 � x1; x2 � 1.
Fit a linear model

ŷ = �̂0 + �̂1x1 + �̂2x2

and plot the lines ŷ = k for increasing k; this gives

the path of steepest ascent. (Here one might use

a design with points at the corners of the square {

this is D-optimal { and a few scattered through-

out the square for robustness.) Next move along

the path of steepest ascent, starting at (0; 0), tak-

ing observations along the way until y starts to

decrease; this gives the approximate location, say�
x�1; x

�
2

�
, of the maximum (although more explo-

ration might be needed; this should be indicated

by the linear models being �tted along the way).
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Finally, take observations in a neighbourhood of�
x�1; x

�
2

�
and �t a quadratic model

ŷ = �̂0+ �̂1x1+ �̂2x2+ �̂11x
2
1+ �̂22x

2
2+ �̂12x1x2;

do the calculus to obtain the stationary point.

� How should this �nal design, to estimate the quadratic
model, be constructed? First recode the vari-

ables so that, again, �1 � x1; x2 � 1. We might
�rst require that the predictions from the �t all

have the same variance, for points x = (x1; x2)
0

equidistant from the centre of the design region.

In other words, with z (x) =
�
1; x1; x2; x

2
1; x

2
2; x1x2

�0
,

we have that

z0 (x)
�
Z0Z

��1
z (x)

depends on x only through kxk. Such a design

is called rotatable. One way to construct a ro-

tatable design for this problem is to start with a

central composite design, with one point at each

of the corners, one or more at (0; 0), and one at

each of (��; 0) and (0;��). Then determine �
(=
p
2) for rotatability.
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� Designs for nonlinear regression. The model

is Y = � (�) + ", in which � (�) has elements

f (�;xi) and derivative V (�) = @�=@�. The

estimate is approximately normal:

�̂
d� N

�
�; �2"

�
V0V

��1�
;

and so we might aim to minimize det
h�
V0V

��1i
(which depends on the unknown �). We do so

by maximizing det
�
V0V

�
. There are several pos-

sibilities:

1. Maximin approach: choose the design points

fxig so as to maximize min�
��V0V��. This

might be overly pessimistic.

2. Bayesian approach: maximizeZ ���V0 (�)V (�)��� p (�) d�
for some prior density p (�).
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3. Another suggestion (Box and Lucas) is to �rst

take n = p, so that V (�) is square, and

choose p points fxig so as to maximize
��V0V�� =

jVj2. Typically, the D-optimal design consists
of replicating these p points. But this method

relies on the accuracy of our initial guess for

�.

4. A sequential approach, if possible, is prefer-

able. Starting with, say, the Box-Lucas design

with n = p, one adds points xi sequentially so

as to increase
��V0V�� at each step.

Suppose we already have an n-point design,

resulting in Vn (�), and wish to add one more

point xn+1, resulting in

Vn+1 (�) =
�Vn (�)
_f
0
n+1

�
;
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where _f
0
n+1 = @f (�;xn+1) =@�. Then���V0n+1Vn+1���

=
���V0nVn + _fn+1_f 0n+1���

=
���V0nVn��� ����I+ �

V
0
nVn

��1 _fn+1_f 0n+1����
=

���V0nVn��� �1 + _f 0n+1 �V0nVn��1 _fn+1� ;
thus

xn+1 = argmax _f
0
n+1

�
V
0
nVn

��1 _fn+1
= argmax

R�10 _fn+12 ;
in terms of the QR-decomposition ofVn. The

objective is evaluated at the current estimate

�̂.

This is all quite straightforward numerically,

and sometimes analytically as well.
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� Example: The Michaelis-Menten model has f (�; �;x)
= �x= (� + x) and

_f 0 =

 
x

� + x
;� �x

(� + x)2

!
:

A starting design with n = 2 and 0 � x1 < x2 �
xmax is obtained by maximizing

jVj = �x1x2 (x2 � x1)
(� + x1)

2 (� + x2)
2 > 0:

It is easier to write zi = 1=xi and maximize

v (z1; z2) = log (jVj =�)
= log (z1 � z2)� 2 log (1 + �z1)� 2 log (1 + �z2)

over zmin � z2 < z1 � 1. Since
@v

@z2
=
�1 + �z2 � 2�z1
(z1 � z2) (1 + �z2)

< 0

for z2 < z1 we should choose z2 as small as pos-

sible: z2 = zmin. Then v (z1; zmin) is found to

be maximized by z1 = 2zmin + ��1. Thus the

starting design is

x1 =
�

1 + 2�
xmax

� �; x2 = xmax;
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evaluated at an initial guess � (the `halfway' point).

The design should not depend on the condition-

ally linear parameter �.

{ After n observations have been made, and �̂,

�̂ and

R�1
0
=

 
r1 0
r2 r3

!

computed, the (n+ 1)th observation is ob-

tained by maximizingR�10 _fn+12
=

 
r1

x

�̂ + x

!2
+

0B@r2 x

�̂ + x
� r3

�̂x�
�̂ + x

�2
1CA
2

= z2
h
r21 + fr2 � r3 (1� z)g2

i����z=x=(�̂+x)=�̂=�̂

for 0 � z � xmax=
�
�̂ + xmax

�
� 1. Then

xn+1 = �̂z= (1� z).
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24. Robust regression designs I

� As with LSEs, designs which are optimal for a
particular model tend to be good only when that

model is exactly correct. Box and Draper (1959;

on course website) study designs for polynomial

�ts, when the true response is a polynomial of

higher degree than the one �tted. They com-

pare designs ranging from the classically optimal

(minimizing the variance; they have only as many

support points as parameters being estimated),

to the uniform (i.e., equally spaced design points;

to minimize the bias). They conclude \... the

optimal design in typical situations in which both

variance and bias occur is very nearly the same as

would be obtained if variance were ignored com-

pletely and the experiment designed so as to min-

imize bias alone."
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� Example: Suppose that one estimates a straight
line for x 2 [�1; 1], obtaining the LS estimate
�̂0 + �̂1x. Now suppose that the true response

is quadratic: E [Y jx] = �0+ �1x+ �2x
2. De�ne

the prediction bias at x by

bias (x) = E
h
�̂0 + �̂1x

i
�
n
�0 + �1x+ �2x

2
o
:

Then (assigned) for a symmetric design, and with

m2 = n�1
P
x2i , the integrated squared bias is

B =
Z 1
�1
bias2 (x) dx = 2�22

(�
m2 �

1

3

�2
+
4

45

)
:

This is maximized by the D-optimal design (m2 =

1) and minimized if m2 = 1=3 (= the second mo-

ment of the uniform distribution on [�1; 1]). One
bias-minimizing design has equally spaced design

points

xi = �d+
2d (i� 1)
n� 1

; with d =

s
n� 1
n+ 1

:

[ natheight=17.7795cm, natwidth=17.7795cm, height=14.2934cm,

width=14.2934cm] C:/sw50/temp/graphics/slr
33:pdf
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� Much has since been done on robustness of de-
sign; here is an outline of the development (see

my Handbook of Design chapter Robustness of

Design on the course web site).

� Suppose that one has a p-vector z = f (x) of re-
gressors, each element of which is a function of

q variables x = (x1; :::; xq)
0, with x to be cho-

sen, by the experimenter, from a �nite design

space S = fx1; :::;xNg. Then the �tted model
is E [Y (x)] = f 0 (x) �. The experimenter is con-
cerned that, instead,

E [Y (x)] = f 0 (x) � +  (x) ;

(24.1)

for some function  . There is an immediate prob-

lem concerning the interpretation of � (why?),

this is avoided by �rst de�ning the target para-

meter by

� = argmin
�

NX
i=1

�
E [Y (xi)]� f 0 (xi) �

�2
;
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and then de�ning

 (x) = E [Y (x)]� f 0 (x) �;

this leads to the orthogonality requirement

NX
i=1

f (xi) (xi) = 0: (24.2)

� We measure the quality of a design through the
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Average MSE of f 0 (x) �̂ as an estimate of E [Y (x)]:

amse =
1

N

NX
i=1

E

��
f 0 (xi) �̂ � E [Y (xi)]

�2�

=
1

N

NX
i=1

E

24 n
f 0 (xi)

�
�̂ � �

�o
�
�
E [Y (xi)]� f 0 (xi) �

	 !2
35

=
1

N

NX
i=1

f 0 (xi)E
��
�̂ � �

� �
�̂ � �

�0�
f (xi)

+
1

N

NX
i=1

 2 (xi)

= tr

8>>>>>><>>>>>>:
1

N

NX
i=1

f (xi) f
0 (xi)| {z }

= A

� E
��
�̂ � �

� �
�̂ � �

�0�
| {z }

= mse
h
�̂
i

9>>>>>>=>>>>>>;
+

1

N

NX
i=1

 2 (xi)

= tr
n
A�mse

h
�̂
io
+
1

N

NX
i=1

 2 (xi) : (24.3)
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Note that

mse
h
�̂
i
= E

��
�̂ � E

�
�̂
�� �

�̂ � E
�
�̂
��0�

+
�
E
�
�̂
�
� �

� �
E
�
�̂
�
� �

�0
= cov

h
�̂
i
+
�
bias

h
�̂
i� �

bias
h
�̂
i�0
:

The covariance matrix of the lse depends only on

the error variance and the regressors (not on the

correctness of the model); if ni of the n obser-

vations are to be made at xi and �i = ni=n it

is

cov
h
�̂
i
= �2"

0@ NX
i=1

nif
0 (xi) f (xi)

1A�1 = �2"
n
M�1� ;

where

M� =
NX
i=1

�if (xi) f
0 (xi) :



233

If the ni observations made at xi are
n
Yij
o
then

�̂ =

0@1
n

NX
i=1

nif (xi) f
0 (xi)

1A�1 1
n

NX
i=1

niX
j=1

f (xi)Yij;

E
h
�̂
i
= M�1� �

1

n

X
i;j

f (xi)
�
f 0 (xi) �+ (xi)

�

= M�1� �
NX
i=1

�if (xi)
�
f 0 (xi) �+ (xi)

�

= � +M�1�

NX
i=1

�if (xi) (xi) :

Thus, with b ;� =
PN
i=1 �if (xi) (xi), we have

bias
h
�̂
i
= M�1� b ;�, hence

mse
h
�̂
i
=

�2"
n
M�1� +M�1� b ;�b

0
 ;�M

�1
� .

Upon substituting into (24.3), we can write amse

as

�2"
n
trAM�1� +b0 ;�M

�1
� AM�1� b ;�+

1

N

NX
i=1

 2 (xi) ;

we shall now call this L ( ; �).
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� We seek a minimax design, which minimizes the
maximum value of amse as  ranges over all func-

tions satisfying (24.2) and (why?)
PN
i=1 

2 (xi) �
�2=n for a constant � . Since amse increases if we

can multiply  by a constant > 1, we assume that

NX
i=1

 2 (xi) = �2=n: (24.4)

Then the problem is to �nd a vector � = (�1; � � �; �N),
minimizing the maximum value of

L ( ; �) =
�2"
n
trAM�1� +b0 ;�M

�1
� AM�1� b ;�+

�2

Nn
;

subject to (24.2) and (24.4).

� Maximization over  . De�ne F to be the N � p
matrix with rows f 0 (xi),  the vector with ele-

ments  (xi), and D� the diagonal matrix with
diagonal elements �i. Then

M� = F
0D�F; b ;� = F

0D� ;A = N�1F0F:

Apply the QR decomposition: F = (Q1
...Q2)

 
R
0

!
=

Q1R, withQ = (Q1
...Q2) orthogonal. Then (24.2)
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becomes Q01 = 0, so that  is orthogonal to
col (Q1), hence is of the form  = (�=

p
n)Q2c.

Then using (24.4), 1 = kQ2ck2 = kck2. After a
calculation,

b0 ;�M
�1
� AM�1� b ;� +

�2

Nn
=
�2

n
c0Pc;where

P = N�1
0@ Q02D�Q1

�
Q01D�Q1

��2
Q01D�Q2

+IN�p

1A :
This is maximized subject to kck = 1 by choosing
c to be the eigenvector of P corresponding to the
maximum eigenvalue, and then c0Pc = chmaxP,
so that

max
 

L ( ; �) =
�2"
n
trAM�1� +

�2

n
chmaxP:

With � = �2=
�
�2" + �2

�
, this is max L ( ; �) =

�2"+�
2

n times

L� (�) = (1� �) trAM�1� + �chmaxP:

The experimenter chooses � 2 [0; 1] according
to how much emphasis he/she wishes to place
on bias reduction versus variance reduction, and
need not know �2" or �

2.
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� Returning to the original terms:

L� (�) = (1� �) trAM�1� + �chmaxK�H
�1
� ;

where

A = N�1F0F;

M� = F0D�F;

K� = F0D2�F;

H� = M�A
�1M�:

� The problem now is to �nd a vector

� =
�
�1 =

n1
n ; � � �; �N = nN

n

�
to minimize L� (�).

This problem is completely determined by the vec-

tors f (x), but depends very much on their struc-

ture. Each particular problem (SLR, quadratic

regression, multiple linear regression with or with-

out interactions, a linear approximation to a Michaelis-

Menten response, etc.) has its own unique solu-

tion.
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25. Robust regression designs II

� Minimization of L� (�) overN -vectors � =
�
n1
n ; � � �;

nN
n

�
.

`Genetic algorithms' are currently popular search

methods through which one systematically im-

proves the current designs so as to reduce the

value of the loss. The idea is to mimic the evolu-

tion of biological populations.

� We start with a randomly chosen `population'
�1; :::; �40 of 40 designs. Compute the loss L�;k =
L� (�k) of each; this is the �rst `generation'.

� Assign a `�tness level' to each, with small loss
corresponding to large �tness; normalize to get a

probability distribution: �rst rank the L�;k from

smallest to largest, then

�tnessk =
1r

rank
�
L�;k

�;  k = �tnesskP
k �tnessk

:

The designs with the smallest loss are assigned

the highest probabilities  k.
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� Form the next generation:

{ The best (�ttest) two in the current genera-

tion always survive to the next. A consequence

is that the minimum loss in a generation can

only decrease.

{ Otherwise, choose pairs of designs (`parents')

from the current generation - P
�
choose kth

�
=

 k - and combine them to form a `child'. Con-

tinue until a new generation of size 40 has

been generated.

� Repeat, forming new generations and evaluating

their �tnesses until the best design has not changed

for 5000 consecutive generations.

� Parents combine by `crossover' with probability
Pcrossover(= 9); with probability 1 � Pcrossover
the child is identical to the �ttest parent.
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� Crossover: Represent a design � by the vector

n�; e.g. n = 4; N = 5; then parents combine as

follows:

max (parents) = max

8>>>>>><>>>>>>:

0BBBBBB@
0
2
1
1
0

1CCCCCCA ;
0BBBBBB@
0
0
0
3
1

1CCCCCCA

9>>>>>>=>>>>>>;
=

0BBBBBB@
0
2
1
3
1

1CCCCCCA
sum = 7;

randomly reduce
!

0BBBBBB@
0
2
1
2
1

1CCCCCCA!
0BBBBBB@
0
2
0
2
1

1CCCCCCA!
0BBBBBB@
0
1
0
2
1

1CCCCCCA = child

� Mutation: In each child, randomly choose two el-
ements, with probability Pmutation (= :05) swap

them. Repeat N times with each child.

� The crossover and mutation mechanisms are gen-
erally quite arbitrary. The `tuning constants' have

here been chosen quite arbitrarily, and don't seem

to a�ect the performance much.
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[ natheight=7.7343cm, natwidth=16.5076cm,

height=10.0715cm, width=14.1155cm]

C:/sw50/temp/graphics/cubic
34:pdf

Designs for cubic regression; design space is

N = 201 equally spaced points spanning [�1; 1].
The D-optimal design places 1=4 of the observations

at each of �1;�:447.
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[ natheight=11.0007cm, natwidth=11.0007cm,

height=11.1303cm, width=11.1303cm]

C:/sw50/temp/graphics/michmen
35:pdf

Designs for (linear approximation of) the

Michaelis-Menten model f (x; �) = �1x= (�2 + x),

0 � x � 10 (N = 100); assumed values �1 = :2,

�2 = :4. D-optimal (Box-Lucas) design places half of

the design points at each of :37 and 10.


