
One observes a sample in which p-dimensional random vectors fxjkgnjk=1 arise from population j 2
f1; :::; Jg. We wish to �t a multivariate logistic model, for which the conditional probability of membership
in class j is given by
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is the vector of totals.

2. The Hessian is the d� d matrix
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Thus the Newton-Raphson iterates are

�m+1 = �m +

0@ JX
j=1

njX
k=1

(W (xjkj�m)
 Zjk)

1A�10@t� JX
j=1

njX
k=1

(p (xjkj�m)
 zjk)

1A : (1)

1



Note that the Hessian can be estimated from the sample proportions. If w = (n1=n; � � �; nJ�1=n)T then
W (xjkj�m) can be estimated by the constant matrix
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and then (1) becomes
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(This turns out to be very slow; on the other hand the Hessian is often nearly singular.)

2


