One observes a sample in which p-dimensional random vectors {xjk}Z;l arise from population j €
{1, ..., J}. We wish to fit a multivariate logistic model, for which the conditional probability of membership
in class j is given by
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Then p (j|x) = eHJ‘TZp (J|x) for 7 < J and the log-likelihood is
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1. The gradient of [ is the d x 1 vector
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is the vector of totals.
2. The Hessian is the d x d matrix
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Thus the Newton-Raphson iterates are
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Note that the Hessian can be estimated from the sample proportions. If w = (ny/n,- - -,

W (x,1|0m) can be estimated by the constant matrix
W = diag (w) — ww?,
and then (1) becomes
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(This turns out to be very slow; on the other hand the Hessian is often nearly singular.)
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