One observes a sample in which p-dimensional random vectors $\left\{\mathbf{x}_{j k}\right\}_{k=1}^{n_{j}}$ arise from population $j \in$ $\{1, \ldots, J\}$. We wish to fit a multivariate logistic model, for which the conditional probability of membership in class j is given by

$$
\begin{aligned}
& p(j \mid \mathbf{x})=\frac{e^{\alpha_{j}+\boldsymbol{\beta}_{j}^{T} \mathbf{x}}}{1+\sum_{j=1}^{J-1} e^{\alpha_{j}+\boldsymbol{\beta}_{j}^{T} \mathbf{x}}}, j=1, \ldots, J-1 \\
& p(J \mid \mathbf{x})=\frac{1}{1+\sum_{j=1}^{J-1} e^{\alpha_{j}+\boldsymbol{\beta}_{j}^{T} \mathbf{x}}}=1-p(1 \mid \mathbf{x})-\cdots-p(J-1 \mid \mathbf{x})
\end{aligned}
$$

Define $d=(p+1)(J-1)$ and

$$
\begin{aligned}
\mathbf{z}_{\left.j k\right|_{(p+1) \times 1}} & =\binom{1}{\mathbf{x}_{j k}}, \boldsymbol{\theta}_{\left.j\right|_{(p+1) \times 1}}=\binom{\alpha_{j}}{\boldsymbol{\beta}_{j}}, \\
\mathbf{Z}_{\left.j k\right|_{(p+1) \times(p+1)}} & =\mathbf{z}_{j k} \mathbf{z}_{j k}^{T}, \boldsymbol{\theta}_{\left.\right|_{d \times 1}}=\left(\begin{array}{c}
\boldsymbol{\theta}_{1} \\
\vdots \\
\boldsymbol{\theta}_{J-1}
\end{array}\right)
\end{aligned}
$$

Then $p(j \mid \mathbf{x})=e^{\boldsymbol{\theta}_{j}^{T} \mathbf{z}} p(J \mid \mathbf{x})$ for $j<J$ and the log-likelihood is

$$
l(\boldsymbol{\theta})=\sum_{j=1}^{J} \sum_{k=1}^{n_{j}} \log p\left(j \mid \mathbf{x}_{j k}\right)=\sum_{j=1}^{J-1} \sum_{k=1}^{n_{j}} \boldsymbol{\theta}_{j}^{T} \mathbf{z}_{j k}+\sum_{j=1}^{J} \sum_{k=1}^{n_{j}} \log p\left(J \mid \mathbf{x}_{j k}\right) .
$$

1. The gradient of l is the $d \times 1$ vector

$$
i(\boldsymbol{\theta})=\mathbf{t}-\sum_{j=1}^{J} \sum_{k=1}^{n_{j}}\left(\mathbf{p}\left(\mathbf{x}_{j k} \mid \boldsymbol{\theta}\right) \otimes \mathbf{z}_{j k}\right)
$$

where

$$
\mathbf{p}(\mathbf{x} \mid \boldsymbol{\theta})=\left(\begin{array}{c}
p(1 \mid \mathbf{x}) \\
\vdots \\
p(J-1 \mid \mathbf{x})
\end{array}\right):(J-1) \times 1
$$

and where

$$
\mathbf{t}=\left(\begin{array}{c}
\sum_{k=1}^{n_{j}} \mathbf{z}_{1 k} \\
\vdots \\
\sum_{k=1}^{n_{j}} \mathbf{z}_{J-1, k}
\end{array}\right): d \times 1
$$

is the vector of totals.
2. The Hessian is the $d \times d$ matrix

$$
\ddot{l}(\boldsymbol{\theta})=-\sum_{j=1}^{J} \sum_{k=1}^{n_{j}}\left(\mathbf{W}\left(\mathbf{x}_{j k} \mid \boldsymbol{\theta}\right) \otimes \mathbf{Z}_{j k}\right)
$$

where

$$
\mathbf{W}\left(\mathbf{x}_{j k} \mid \boldsymbol{\theta}\right)=\left(\begin{array}{ccc}
p\left(1 \mid \mathbf{x}_{j k}\right) & & 0 \\
& \ddots & \\
0 & & p\left(J-1 \mid \mathbf{x}_{j k}\right)
\end{array}\right)-\mathbf{p}\left(\mathbf{x}_{j k} \mid \boldsymbol{\theta}\right) \mathbf{p}^{T}\left(\mathbf{x}_{j k} \mid \boldsymbol{\theta}\right) .
$$

Thus the Newton-Raphson iterates are

$$
\begin{equation*}
\boldsymbol{\theta}_{m+1}=\boldsymbol{\theta}_{m}+\left(\sum_{j=1}^{J} \sum_{k=1}^{n_{j}}\left(\mathbf{W}\left(\mathbf{x}_{j k} \mid \boldsymbol{\theta}_{m}\right) \otimes \mathbf{Z}_{j k}\right)\right)^{-1}\left(\mathbf{t}-\sum_{j=1}^{J} \sum_{k=1}^{n_{j}}\left(\mathbf{p}\left(\mathbf{x}_{j k} \mid \boldsymbol{\theta}_{m}\right) \otimes \mathbf{z}_{j k}\right)\right) \tag{1}
\end{equation*}
$$

Note that the Hessian can be estimated from the sample proportions. If $\mathbf{w}=\left(n_{1} / n, \cdots, n_{J-1} / n\right)^{T}$ then $\mathbf{W}\left(\mathbf{x}_{j k} \mid \boldsymbol{\theta}_{m}\right)$ can be estimated by the constant matrix

$$
\hat{\mathbf{W}}=\operatorname{diag}(\mathbf{w})-\mathbf{w} \mathbf{w}^{T}
$$

and then (1) becomes

$$
\boldsymbol{\theta}_{m+1}=\boldsymbol{\theta}_{m}+\left(\hat{\mathbf{W}}^{-1} \otimes\left(\mathbf{Z}^{T} \mathbf{Z}\right)^{-1}\right)\left(\mathbf{t}-\sum_{j=1}^{J} \sum_{k=1}^{n_{j}}\left(\mathbf{p}\left(\mathbf{x}_{j k} \mid \boldsymbol{\theta}_{m}\right) \otimes \mathbf{z}_{j k}\right)\right)
$$

(This turns out to be very slow; on the other hand the Hessian is often nearly singular.)

