STAT 512 - Sample Midterm Exam

Instructions: Answer all six equally weighted questions.

Time: 80 minutes.

- 1. (a) Suppose that V is a vector space in \mathbb{R}^n and that W is a subset of V. What properties must W possess in order that it be a *subspace* of V?
 - (b) Define the orthogonal complement of V, and show that it is also a vector space.
- 2. Let **A** be a real, symmetric, positive semi-definite matrix.
 - (a) Show that there is a matrix \mathbf{B} such $\mathbf{A} = \mathbf{B}'\mathbf{B}$.
 - (b) Show that for any vector \mathbf{v} , $\mathbf{v}'\mathbf{A}\mathbf{v} = 0$ iff $\mathbf{A}\mathbf{v} = \mathbf{0}$.
- 3. Consider vectors of the form $\mathbf{y} \mathbf{X}\boldsymbol{\beta}$, where \mathbf{y} is $n \times 1$, \mathbf{X} is $n \times p$ with rank p, and $\boldsymbol{\beta}$ is $p \times 1$. Such vectors occur in the theory of linear regression.
 - (a) Show that this vector can be expressed as the sum of two vectors: $\mathbf{y} \mathbf{X}\boldsymbol{\beta} = \mathbf{u} + \mathbf{v}$, in such a way that \mathbf{u} and \mathbf{v} are orthogonal to each other and \mathbf{v} lies in the column space of \mathbf{X} .
 - (b) Use (a) to show that the vector $\boldsymbol{\beta}$ which minimizes the norm of $\mathbf{y} \mathbf{X}\boldsymbol{\beta}$ is the solution $\hat{\boldsymbol{\beta}}$ to the equation $\mathbf{v} = \mathbf{0}$. Solve this equation.
- 4. (a) Define what it means for a function $f: D \to \mathbb{R}$ to be (i) continuous on D, (ii) uniformly continuous on D.
 - (b) Show that if a function f is defined and differentiable on \mathbb{R} and has a bounded derivative there, then the function is uniformly continuous on \mathbb{R} .
- 5. (a) Define what it means for a function f(x) to approach a (finite) limit L as x approaches a number a.
 - (b) Suppose that $f(x) \to L_1$ as $x \to 1$, and also $f(x) \to L_2$ as $x \to 1$. Both L_1 and L_2 are finite. Show that L_1 and L_2 must be equal.
- 6. Suppose that U is a random variable uniformly distributed over the interval $(0, \pi)$. Define a new random variable by $X = \cos U$.
 - (a) What is the distribution function of X?
 - (b) What is the density function of X?