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Abstract

In this project, we will propose a new robust design called the “clustered design”
consisting of clusters of design points near those of the classical optimal design.
We will look at the effectiveness of the clustered design when fitting a simple-
linear model, quadratic model, first-order multiple linear regression (MLR), and
in some extrapolation scenarios.

For interpolation, we will compare the proposed design with D-optimality,
where we take the determinant of the MSE of the ordinary least-squares (OLS)
estimate, as our optimality criterion. We compare the clustered design with
several other commonly used designs, namely the classical D-optimal design
(CDD), Huber’s robust design (HRD) (Huber 1975) and the uniform design. We
will consider cases where the contamination function is fairly simple (only one
higher order term missing in the fitted model) and also when the contamination
function is more complex.

Additionally, the clustered design will be tested in some extrapolation sce-
narios, since robustness is required. This could be important for analyses such
as Accelerated Life Testing (ALT) where extrapolation is utilized. Here we will
instead adapt Q-optimality for efficiency comparison at a couple select extrapo-
lation points. The clustered design will be compared to a few other designs that
are used for extrapolation, such as the Hoel-Levine design (Hoel and Levine
1964), Weins-Xu design (Wiens and Xu 2008), and additionally the uniform de-
sign. We will also compare the select designs using a variety of other measure-
ments, such as relative bias, coverage percentage (for empirical and asymptotic
confidence intervals and prediction intervals), and simulated standard error.
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Chapter 1

Introduction

1.1 Problem of Interest

When analyzing data, there are many methods of building models for estimation
and prediction. However, no model is ever perfect. Design of Experiments
(DoE) is a tool used to improve the efficiency of model-estimation before the
experiment has even been run by optimizing the location of the design points
within a given design space S.

There are several ways to optimize an estimator β̂ = (β1, β2, ..., βp)
T during

the DoE stage. The classical method of doing this is to find the design such
that a scalar function of the covariance of the estimator Cov(β̂) is minimized.
This works excellently if we are very confident in our knowledge of the true
model. For example, if we know that the relationship between two factors is
simple-linear, then it is well known that the most efficient DoE is to assign half
of the sample size to each of the two end points of the design interval. However,
what if the initial assumption of the true model wrong? For example, if the true
model in reality was a quadratic curve and we fit only a simple-linear model to
the data. We may have a low variance in the estimate of our model, but the bias
will be significantly high. Therefore, if we are uncertain what the true model is,
we will need to take that uncertainty into consideration during the DoE stage.
This is why designs are model-specific and require robustness.

Definition: Robust means insensitive to violation of assumptions. When con-
structing a DoE we generally need to assume that the data follows a specific
mean response function. A robust design is less affected by getting this as-
sumption wrong. This is a desirable characteristic for a DoE since no model is
perfect, therefore we will always assume the model to be something that doesn’t
completely represent the true model.

A useful value to consider in this scenario is the estimator’s mean-squared
error which takes into account both the variance and the bias of the estimator:
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MSE(β̂) = Cov(β̂) + Bias(β̂)Bias(β̂)T . Through this project β̂ will be cal-
culated using the OLS method. In the case where we have multiple parameters
of estimation, the MSE(β̂) will be a square matrix, so we can take any proper
scalar function of the matrix (for example, the determinant of MSE(β̂) or the
trace) to use it for comparing several designs. Taking into account the variance
and bias of the parameter estimates we can analyze the robustness of different
methods of constructing the design.

In this paper, the most robust design will be determined by minimizing the
determinant of the MSE matrix of β̂. A design that minimizes determinant is
called the D-optimal Robust Design. This paper will compare some popular
designs with the newly proposed clustered design using D-optimality.

1.2 Designs of Study and Notations

Notation of Fitted Models Let the true mean response be represented
by the function f(x) and the fitted one by f∗(x). Then the true model is
Y = f(x) + ε and the fitted model is Y ∗ = f∗(x) + ε. The notation used to
describe the model being fitted will also be defined by the same notation used by
Heo (1998, 2001). Therefore, the experimenter can fit the general linear model

E(Y |x) = f∗(x) = zT (x)β

to the data. If the suspected true model of the data is Yi = β0 + β1xi + εi, then
zT (x) = (1, x)T and β = (β0, β1). We will denote each model by its zT (x) for
simplicity. We will number the following models which are to be considered in
this simulation:

• Model 1: zT (x) = (1, x)T

• Model 2: zT (x) = (1, x, x2)T

• Model 3: zT (x) = (1, x1, x2)T

Notation of Contamination Space Since the model that we fit to the data
is almost never perfect, denote function g(x) as the contamination function
which is the departure from the assumed model. Therefore, the true mean
response function is f(x) = f∗(x) + g(x). Huber (1975) puts a limit on the size
of the contamination space called the L2 neighbourhood which is defined as the
set of all functions in a class G such that:

G = {g(x)|
∫
S

g2(x)dx ≤ η2,
∫
S

g(x) ∗ z(x)dx = 0}

where η2 is an overall L2 boundary for the amount of contamination.
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Design Notation A general DoE has the form:

ξ =

(
x1 x2 ... xm
w1 w2 ... wm

)
where xi’s are the design support points, wi’s are the weights we give to each
support point such that 0 < wi ≤ 1 and

∑m
i=1 wi = 1 and m is the number

of distinct support points. If the total sample size is n, then the number of
samples taken at xi is ni = win.

For simplicity, in this simulation we take design space S to be [−0.5, 0.5].

Classical D-Optimal Design (CDD) The CDD is found such that the
determinant of Cov(β) alone is minimized. For example, when the fitted model
is

Yi = β0 + β1xi + β2x
2
i + εi

then the CDD has m = 3 support points; and if the design space is [−0.5, 0.5]
then a CDD design for this model would be:

ξ
(3)
CDD =

(
−0.5 0 0.5

1
3

1
3

1
3

)
Huber’s Robust Design (HRD) Huber (1975) proposed a more robust
DoE in [5] where the HRD design has a density function d(x) and each design
point xj , j = 1, ...,m is calculated such that (in the case where design space is
[−0.5, 0.5]): ∫ xj

−0.5

d(x)dx =
j − 0.5

m
(1.1)

Note that m is the number of distinct design points and the discretized HRD
can be obtained for any specific m ≤ n.

Uniform Design The uniform design, denoted ξU is simply when the sample
size n is evenly distributed over the entire design space.

Clustered Design (Cl) The clustered design is the newly proposed robust
design, by Wiens (2019), which we wish to investigate. ξCl consists of clusters
distributed around the support points of a CDD. In the case of fitting a simple-
linear model, the clusters would fall on the intervals [−0.5,−0.5 + p

2 ] and [0.5−
p
2 , 0.5], resulting in these two intervals constituting 100p% of the design space.
For example, if we choose to have all n = 30 points be distinct and let p = 0.1,
covering 10% of the design space, then the design would be:

ξCl =

(
±.45 ±.4536 ... ±.4964 ±.5

1
30

1
30 ... 1

30
1
30

)
The set-up of the clustered design will depend on the model being fitted since
a CDD is model-dependant, so each case will be described in further detail in
its corresponding section.
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1.3 Efficiency

The method for comparing efficiency between designs that will be used in this
paper will be D-optimality. In general, the design that has the smallest deter-
minant of the MSE matrix is the better design. So we will select a design such
that the determinant of the MSE of β̂ is minimized. Namely, we find design ξ
subject to:

min
ξ
det(MSE(β̂))

The design that fits this criteria is called the “Robust D-optimal Design”. To
compare two designs ξ1 and ξ2 using D-optimality we compute relative efficiency:

Eff(ξ1, ξ2) =
det(MSE(β̂, ξ2))

det(MSE(β̂, ξ1)

The det(MSE(β̂)) is calculated using MSE(β̂) = Cov(β̂) +Bias(β̂)Bias(β̂)T

where Cov(β̂) = σ2(XTX)−1 is the covariance matrix, Bias(β̂) = E(β̂)− β is
the bias of β̂, and β̂ is the OLS estimator for β. As we know, β̂ = (XTX)−1XTy
where y = (y1, y2, ..., yn)T are the observed values of the response variable, and
X is the design matrix taking zT (xi) as its rows.
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Chapter 2

Determination of
Robustness Factors

We present two factors on the robustness of the newly proposed clustered design.
The first one is a value which maximizes the allowed contamination subject to
a given criteria, such as the L2 neighbourhood. We will denote k as this value,
which will be described further in Section 2.1. The second is to optimize the
robustness protection by determining the most optimal proportion of the design
space for the support points of the clustered design to cover. We will denote
p as the proportion of the design space that the clustered design covers. The
process of finding the optimal p will be described in Section 2.2.

2.1 Determination of k

Huber (1975) introduced a value denoted ν = σ2

nη2 ∈ (0,∞) which measures the
relative belief of model accuracy. Its value is required when implementing HRD.
See Heo (1998), Huber (1975, 1981), Wiens (1992) for more specific details on ν,
but in summary, as ν approaches 0 only the bias term is involved in determining
the most robust design, and the optimal design approaches the uniform design.
As ν approaches ∞ only the variance term affects the MSE resulting in the
CDD; where in the case of fitting zT (x) = (1, x)T we have n

2 design points
on each endpoint. So, if ν was very large, we would be confident in fitting the
simple linear model to the data; but if ν was very small, then we would abandon
the simple-linear model with confidence and resort to a higher order model to
fit the data. In this simulation, we will be using an example where ν ≈ 1, which
often presents the case where the experimenter has no previous knowledge about
the model accuracy.

We will present the design process by fitting Model 1 once a test for Model
2 is rejected. Other models will have a similar process. Therefore, we need to
determine the approximate, maximum true value of β2 such that we accept the
hypothesis H0 : β2 = 0. We want to test the efficiency of both models at this
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point since the outcome of the hypothesis test is most uncertain. We will denote
k = max(β2) such that H0 : β2 = 0 is accepted from here on (replacing β2 with
a different parameter for other models).

We will set all other parameter values to be β0 = β1 = 1 and test the
hypothesis for significance of β2. Recall that the hypothesis test is to reject
H0 : β2 = 0 with 95% certainty if

|β̂2| > 1.96

√
V arβ̂2

We will estimate k when ξU is adopted, by randomly generating data ac-
cording to this design of size n = 30 with each true value of β2 and performing
the hypothesis test N times, then lowering β2 until we accept H0 more than
95% (0.95N) of trials. Here, N = 100 hypothesis tests was used. We can repeat
this process for whichever values of σ2 that we wish. The process will also be
averaged over 10 estimations of each k so that the estimate will be more stable.
The results for these values of k for each σ2 selected are shown in Table 2.1.

Similarly, we can find k values for Model 2 (when we are unsure if a cubic
term is necessary in the fitted model) using the same process. Here β0, β1 and

β2 are all set equal to 1, and the hypothesis test is |β̂3| > 1.96

√
V arβ̂3. Fedorov

(1972) has ξ
(4)
CDD written for design space [−1, 1] which can be transformed for

[−0.5, 0.5] by dividing by 2, resulting in:

ξ
(4)
CDD =

(
−0.5 −0.2235 0.2235 0.5

1
4

1
4

1
4

1
4

)
In evaluation of Model 3: zT (x) = (1, x1, x2)T , where we are unsure of signifi-
cance in just the interaction term β12 we can obtain values of k using the MLR
uniform design. Increased n to 36 for these two models since 36 is divisible by
3 and 4 and simplifies distributing design points. Here β0, β1 and β2 are all set

equal to 1, and the hypothesis test is |β̂12| > 1.96

√
V arβ̂12. The values of k for

Model 2 and 3 are shown in Tables 2.2 and 2.3 respectively.

2.2 Determination of p

Clearly the choice of p = (% of design space represented by design points) such
that we achieve D-optimality is non-trivial. To find the best p we estimate the
determinant of the MSE matrix for each p ∈ (0, 1), increasing by increments of
0.01. In order to reduce the error in the estimates of optimal p, a simple non-
parametric curve (estimated using a kernel density estimator with bandwidth
0.15) was fitted, from which the estimated D-optimal p was taken. An example
of the graphs generated for Model 1, σ2 = 0.1 is shown in Fig. 2.2.

We know that when p approaches 0, the clustered design approaches the
classical design, and similarly, as p approaches 1, the clustered design resembles
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Figure 2.1: Graph of p ∈ (0, 1).

Figure 2.2: Graph of p versus det(MSE(β̂)) for Model 1, σ2 = 0.1. The black
line shows the estimated function of p.

the uniform design, therefore we will search for the optimal p within boundary
[0.05, 0.95] to avoid either of these two cases. The resulting values of p which
were D-optimal, where p ∈ [0.05, 0.95] are listed in Tables 2.1, 2.2 and 2.3.

σ2 12σ
2

n k p
0.01 0.0040 0.0654 0.05
0.05 0.0200 0.1856 0.14
0.10 0.0400 0.3156 0.31
0.20 0.0800 0.5054 0.43
0.50 0.2000 0.8636 0.51

Table 2.1: Estimated values of k and p when fitting Model 1 with n =30
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σ2 12σ
2

n k p
0.01 0.0033 0.3624 0.05
0.05 0.0167 0.9644 0.05
0.10 0.0333 1.5002 0.05
0.20 0.0667 2.1926 0.05
0.50 0.1667 2.8166 0.05

Table 2.2: Estimated values of k and p when fitting Model 2 with n =36

σ2 12σ
2

n k p
0.01 0.0033 0.0264 0.05
0.05 0.0167 0.0948 0.05
0.10 0.0333 0.1716 0.05
0.20 0.0667 0.2660 0.05
0.50 0.1667 0.4648 0.05

Table 2.3: Estimated values of k and p when fitting Model 3 with n = 36.
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Chapter 3

Comparison

In this chapter, we will compare the efficiency of a few commonly used designs
such as the CDD, HRD (Huber 1975) and uniform design.

For each model being tested, the efficiency is compared as described in Sec-
tion 1.3. For sample size n, the observation vector y is generated using the true
model with k being the true value of the parameter of uncertainty. This was
done N = 50000 times and in each iteration an estimate of β̂ was obtained,
from which we can estimate the det(MSE(β̂)) using the equations defined in
Section 1.3.

3.1 Simple-Linear Regression: zT (x) = (1, x)T

Here we will be fitting Model 1, namely Y ∗ = f∗(x) + ε = β0 + β1x+ ε, to the
observed data, but the true model might be quadratic (i.e. g(x) = β2x

2). The
CDD will have the form below for this assumed simple-linear model:

ξ
(2)
CDD =

(
−0.5 0.5

1
2

1
2

)
A discretized HRD will be obtained from Eq. 1.1 with m = n = 30 points.
Huber (1975) constructed d(x) for situation where design space is [−0.5, 0.5] to
be d(x) = 5.12x2 + 0.573 when ν = 1. With this information, we can discretize
d(x) for assumed simple-linear model with m = n = 30, and denote it ξH .

The uniform design has all n = 30 design points evenly spaced over the
design space.

The clustered design here will consist of two clusters of design points nearby
the two end points, where the percentage of the design space covered is p as
found in Section 2.2 and listed in Table 2.1. For example, if p = 0.05 then the
design will be:

ξCL =

(
±.475 ±.477 ... ±.498 ±.5

1
30

1
30 ... 1

30
1
30

)
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Here k would be the max(β2) such that we accept hypothesis H0 : β2 = 0.
The results for each value of σ2 are shown in Table 3.1 using values of k and p
generated as in Section 2. The simulated bias and variance of each estimated
parameter is listed in Table 3.1a and the relative efficiency of the clustered
design compared to the others is shown in Table 3.1b.
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Table 3.1: Model 1 Design Comparison from kU

Bias(β̂0) Bias(β̂1) V ar(β̂0) V ar(β̂1) det(MSE(β̂))
σ2 = 0.01, k = 0.0654, p = 0.05, n = 30

ξ
(2)
CDD 0.01643 -0.00017 0.00033 0.00133 8.0e-07

ξ
(30)
H 0.00719 -0.00034 0.00033 0.00300 1.1e-06
ξCl 0.01560 -0.00011 0.00034 0.00141 8.1e-07
ξU 0.00589 -0.00024 0.00033 0.00374 1.4e-06

σ2 = 0.05, k = 0.1856, p = 0.14, n = 30

ξ
(2)
CDD 0.04683 6.0e-05 0.00168 0.00669 2.6e-05

ξ
(30)
H 0.02089 0.00017 0.00167 0.01500 3.1e-05
ξCl 0.04032 -0.00021 0.00167 0.00770 2.5e-05
ξU 0.01624 0.00047 0.00166 0.01879 3.6e-05

σ2 = 0.1, k = 0.3156, p = 0.31, n = 30

ξ
(2)
CDD 0.07875 -0.00016 0.00335 0.01335 0.00013

ξ
(30)
H 0.03513 -4.4e-05 0.00334 0.02953 0.00014
ξCl 0.05726 2.1e-05 0.00330 0.01847 0.00012
ξU 0.02822 0.00068 0.00336 0.03763 0.00015

σ2 = 0.2, k = 0.5054, p = 0.43, n = 30

ξ
(2)
CDD 0.12668 9.0e-04 0.00667 0.02667 0.00061

ξ
(30)
H 0.05658 0.00016 0.00668 0.05977 0.00059
ξCl 0.07994 0.00100 0.00665 0.04193 0.00055
ξU 0.04491 -0.00031 0.00673 0.07473 0.00065

σ2 = 0.5, k = 0.8636, p = 0.51, n = 30

ξ
(2)
CDD 0.21708 0.00065 0.01673 0.06690 0.00425

ξ
(30)
H 0.09728 -0.00143 0.01653 0.14770 0.00390
ξCl 0.12578 0.00019 0.01668 0.11580 0.00374
ξU 0.07747 0.00167 0.01670 0.18830 0.00424

(a) Table of Bias, Variance and D-optimality criteria.

σ2 k p Eff(ξCl,ξ
(2)
CDD) Eff(ξCl,ξ

(30)
H ) Eff(ξCl,ξU )

0.01 0.0654 0.05 0.9948 1.4200 1.7033
0.05 0.1856 0.14 1.0163 1.2384 1.4263
0.10 0.3156 0.31 1.0429 1.1173 1.2676
0.20 0.5054 0.43 1.1027 1.0714 1.1830
0.50 0.8636 0.51 1.1385 1.0430 1.1354

(b) Efficiency Comparison of det(MSE(β̂)) between designs.
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3.2 Quadratic Regression: zT (x) = (1, x, x2)T

Here we want to fit the quadratic model Y ∗ = β0 + β1x+ β2x
2 + ε to the data,

however we are uncertain whether there might be a significant cubic term (i.e.
g(x) = β3x

3). Sample size is set to n = 36 for simplicity to analyze Model 2
since 36 is divisible by 3 and 4. The classical design when fitting a quadratic
model is known to be:

ξ
(3)
CDD =

(
−0.5 0 0.5

1
3

1
3

1
3

)
HRD can be implemented using m = n = 30 points once again. The den-

sity function d(x) is found in Heo (1998) Table 4.2 for ν = 1 to be d(x) =
35.0934{(x2 − 0.14872)(x2 − 0.14892) + 0.0192}+ for the quadratic model.

Uniform design is n = 36 design points evenly spaced over the design space
[−0.5, 0.5].

Clustered design for this scenario will consist of three regions of size p/3
where two are located nearby the end points and the third is centered over 0.
Design points are evenly spaced in this region. For example, if p = 0.05 we get
the design:

ξCl =

(
±0.5 ±0.498 ... ±0.485 ±0.483 ±0.008 ±0.006 ... ±0.001

1
36

1
36 ... 1

36
1
36

1
36

1
36 ... 1

36

)
Here k would be the max(β3) such that we accept hypothesis H0 : β3 = 0.
The results for each value of σ2 are shown in Table 3.2 using values of k and p
generated as in Section 2. The simulated bias and variance of each estimated
parameter is listed in Table 3.2a and the relative efficiency of the clustered
design compared to the others is shown in Table 3.2b.
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Table 3.2: Model 2 Design Comparison from kU

B(β̂0) B(β̂1) B(β̂2) V (β̂0) V (β̂1) V (β̂2) det(MSE)
σ2 = 0.01, k = 0.3624, p = 0.05, n = 36

ξ
(3)
CDD 6.5e-05 0.09045 0.00052 0.00082 0.00166 0.01983 5.5e-08

ξ
(36)
H 0.00016 0.06314 -4.0e-04 0.00084 0.00239 0.04112 7.2e-08
ξCl -2.2e-05 0.08751 0.00034 0.00083 0.00173 0.02170 5.6e-08
ξU 9.9e-05 0.05737 -0.00163 0.00062 0.00316 0.04499 8.0e-08

σ2 = 0.05, k = 0.9644, p = 0.05, n = 36

ξ
(3)
CDD 0.00016 0.24099 -0.00117 0.00414 0.00833 0.09968 9.2e-06

ξ
(36)
H 0.00017 0.16903 -0.00131 0.00415 0.01201 0.20483 1.1e-05
ξCl -0.00028 0.23420 0.00210 0.00413 0.00863 0.10681 9.4e-06
ξU 0.00036 0.15255 -0.00182 0.00311 0.01596 0.22219 1.2e-05

σ2 = 0.1, k = 1.5002, p = 0.05, n = 36

ξ
(3)
CDD -0.00038 0.37511 0.00215 0.00838 0.01673 0.20118 8.7e-05

ξ
(36)
H -0.00013 0.26231 -0.00265 0.00833 0.02386 0.41010 1.0e-04
ξCl -0.00054 0.36222 0.00288 0.00826 0.01732 0.21070 8.8e-05
ξU 0.00014 0.23825 -0.00207 0.00633 0.03165 0.45269 0.00011

σ2 = 0.2, k = 2.1926, p = 0.05, n = 36

ξ
(3)
CDD -0.00055 0.54852 0.00433 0.01644 0.03340 0.39766 0.00074

ξ
(36)
H 0.00056 0.38373 -0.00712 0.01665 0.04752 0.81258 0.00088
ξCl 3.1e-05 0.53191 -0.00250 0.01662 0.03440 0.42513 0.00075
ξU 1.4e-05 0.34784 -0.00120 0.01277 0.06341 0.90342 0.00092

σ2 = 0.5, k = 2.8166, p = 0.05, n = 36

ξ
(3)
CDD -0.00073 0.70457 0.00381 0.04177 0.08386 1.00220 0.00805

ξ
(36)
H -0.00119 0.49480 0.00762 0.04135 0.12070 2.01859 0.01031
ξCl -0.00046 0.68269 0.00101 0.04165 0.08652 1.06751 0.00819
ξU -6.4e-05 0.44938 -0.00752 0.03105 0.15652 2.23722 0.01120

(a) Table of Bias, Variance and D-optimality criteria. B(β̂) represents bias of
the estimator, V(β̂) represents variance of the estimator, and det(MSE) represents
det(MSE(β̂)).

σ2 k p Eff(ξCl,ξ
(3)
CDD) Eff(ξCl,ξ

(36)
H ) Eff(ξCl,ξU )

0.01 0.3624 0.05 0.9828 1.2967 1.4421
0.05 0.9644 0.05 0.9797 1.2182 1.2913
0.10 1.5002 0.05 0.9926 1.1917 1.2487
0.20 2.1926 0.05 0.9859 1.1726 1.2174
0.50 2.8166 0.05 0.9829 1.2587 1.3670

(b) Efficiency Comparison of det(MSE(β̂)) between designs.
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3.3 Multiple-Linear Regression with two factors:
zT (x) = (1, x1, x2)

T

Here we want to fit the model Y ∗ = β0 + β1x1 + β2x2 + ε, however we are
uncertain whether there is a significant interaction term (i.e. g(x) = β12x1x2).
The CDD for a bivariate, square design space has equal weight on each of the
four corners of the design space. So for design space [−0.5, 0.5]× [−0.5, 0.5], we
have:

ξ
(2x2)
CDD =

(
(0.5, 0.5) (0.5,−0.5) (−0.5, 0.5) (−0.5,−0.5)

1
4

1
4

1
4

1
4

)
HRD is generated similarly as in Eq. 1.1 except instead we will solve for xj1
and xj2 such that ∫ xj2

−0.5

∫ xj1

−0.5

d(x1, x2)dx1x2 =
j − 0.5

m

Heo (1998) found the density function for ν = 1.2758 (the closest result to
ν = 1) to be d(x1, x2) = 181.02{(x21−0.23332+0.044)+(x22−0.23332+0.044)}+.
Since there are infinitely many solutions to this equation, we will also restrict
to a symmetric design, so each design point must fall on the line x1 = x2 or
x1 = −x2. With this we can construct the Huber’s design with m = n = 36 for
a bivariate study.

The uniform design consists of n = 36 design points evenly spaced across
the entire design space [−0.5, 0.5] × [−0.5, 0.5]. A figure of the design space is
shown in Fig. 3.1a.

The clustered design for this scenario will consist of grids of design points
evenly spaced at each of the four corners of the design space. An example of
what the design looks like for p = 0.05 is shown in Fig. 3.1b. A square-shaped
design was selected primarily for simplicity, but changing the shape of the layout
for design points in each corner should not have too significant of an effect on
the efficiency of the design.

(a) Bivariate Uniform Design (b) Clustered Design with p = 0.05.

Here k would be the max(β12) such that we accept hypothesis H0 : β12 = 0.
The results for each value of σ2 are shown in Table 3.3 using values of k and p
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generated as in Section 2. The simulated bias and variance of each estimated
parameter when using k as the true value of β12, and p to generate the clustered
design is listed in Table 3.3a and the relative efficiency of the clustered design
compared to the others is shown in Table 3.3b.
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Table 3.3: Model 3 Design Comparison from kU

B(β̂0) B(β̂1) B(β̂2) V (β̂0) V (β̂1) V (β̂2) det(MSE)
σ2 = 0.01, k = 0.0264, p = 0.05, n = 36

ξ
(2x2)
CDD -0.00014 7.5e-05 0.00032 0.00028 0.00112 0.00111 3.4e-10

ξ
(36)
H 9.6e-05 0.00013 9.2e-05 0.00028 0.00139 0.00141 5.4e-10
ξCl 1.6e-05 0.00017 0.00035 0.00028 0.00140 0.00139 5.4e-10
ξU 3.3e-05 -1.8e-06 -8.4e-05 0.00028 0.00236 0.00239 1.6e-09

σ2 = 0.05, k = 0.0948, p = 0.05, n = 36

ξ
(2x2)
CDD 1.0e-04 -4.3e-05 -6.0e-04 0.00139 0.00558 0.00553 4.3e-08

ξ
(36)
H 1.6e-06 0.00058 0.00048 0.00139 0.00697 0.00706 6.8e-08
ξCl 3.5e-06 0.00041 -8.6e-05 0.00139 0.00696 0.00699 6.7e-08
ξU 8.9e-05 -7.8e-05 0.00021 0.00139 0.01200 0.01204 2.0e-07

σ2 = 0.1, k = 0.1716, p = 0.05, n = 36

ξ
(2x2)
CDD 0.00042 0.00048 0.00059 0.00277 0.01119 0.01113 3.4e-07

ξ
(36)
H -0.00043 -0.00012 0.00072 0.00279 0.01410 0.01405 5.4e-07
ξCl -2.4e-05 0.00055 5.0e-04 0.00282 0.01379 0.01392 5.4e-07
ξU 0.00024 -0.00066 -0.00024 0.00276 0.02393 0.02380 1.6e-06

σ2 = 0.2, k = 0.266, p = 0.05, n = 36

ξ
(2x2)
CDD -0.00031 0.00019 -0.00057 0.00555 0.02234 0.02230 2.7e-06

ξ
(36)
H 0.00029 -0.00023 0.00052 0.00555 0.02786 0.02802 4.3e-06
ξCl -6.5e-05 0.00104 0.00023 0.00556 0.02794 0.02769 4.3e-06
ξU 0.00036 -0.00014 -0.00120 0.00555 0.04744 0.04757 1.3e-05

σ2 = 0.5, k = 0.4648, p = 0.05, n = 36

ξ
(2x2)
CDD -0.00057 0.00055 0.00034 0.01376 0.05588 0.05538 4.3e-05

ξ
(36)
H 0.00011 0.00039 -0.00119 0.01393 0.06935 0.06990 6.8e-05
ξCl -7.3e-05 0.00062 -0.00023 0.01388 0.07028 0.06966 6.7e-05
ξU -0.00038 -0.00089 0.00077 0.01391 0.11908 0.11915 2.0e-04

(a) Table of Bias, Variance and D-optimality criteria. B(β̂) represents bias of
the estimator, V(β̂) represents variance of the estimator, and det(MSE) represents
det(MSE(β̂)).

σ2 k p Eff(ξCl,ξ
(2x2)
CDD) Eff(ξCl,ξ

(36)
H ) Eff(ξCl,ξU )

0.01 0.0264 0.05 0.6356 1.0032 2.9181
0.05 0.0948 0.05 0.6356 1.0034 2.9184
0.10 0.1716 0.05 0.6356 1.0034 2.9184
0.20 0.2660 0.05 0.6356 1.0033 2.9185
0.50 0.4648 0.05 0.6356 1.0033 2.9185

(b) Efficiency Comparison of det(MSE(β̂)) between designs.
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3.4 Discussion

Model 1: Simple-Linear Model As we can see from the results, the clus-
tered design is highly comparable with the CDD and far outperforms HRD and
uniform for D-optimality. The det(MSE) for clustered design is very similar to
that of CDD for most σ2 tested. The clustered design has lower bias for β0
across all σ2 but generally no improvement for the bias of the slope β1. We also
see that the variance of the estimators changes very little between clustered and
CDD. HRD appears to mainly reduce bias in β0 even more so than the clustered
design but at the cost of a bigger increase in variance.

If the parameter of primary concern is β0 then the clustered design may be
beneficial to implement due to the reasonable decrease in bias and just a small
increase in variance. If the primary parameter of concern is the slope β1 then
the design of choice is left to the researcher, since there is no clear design that
consistently has the lowest bias of β1.

Model 2: Quadratic Model Once again, for the quadratic model we see
a similar effect. CDD and clustered both far outperform HRD and uniform
in terms of D-optimality. The clustered design is nearly identical in det(MSE)
and variance of the estimators to CDD. Overall, the clustered design seems to
improve the bias of β0 and β1, compared with the CDD, but does not help with
β2. HRD reduces bias greatly in β1 compared with the CDD but not for β0
and β2. But HRD requires a much greater sacrifice in increased variance, and
therefore efficiency.

If the parameter of interest is β0 and/or β1 then the clustered design may
again be beneficial to implement, since it reduces the bias of those two parame-
ters compared with the CDD while only increasing variance by a small amount.
If the parameter of interest is only β1 then HRD may be ideal to the researcher.
But if the parameter of interest is β2 then there is no clear best design to choose.

Model 3: MLR Model In the bivariate MLR Model, the clustered design
doesn’t perform as well as the univariate cases. The CDD has a much better
efficiency than clustered, while clustered design performs more similarly to HRD.
Both the clustered design and HRD have varying effects on the bias of any of the
three parameters compared with the CDD. In the MLR setting, it would seem
that the best option is still the CDD where design points are evenly distributed
over the four corners.
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Chapter 4

More Complex
Contamination Functions

In this chapter, we will further consider the case with some more complicated
contamination functions with, for example, several terms missing in the fitted
model. This can often happen when the experimenter is fitting a lower order
polynomial when the true model has a much higher order. For Model 1, we
could have a contamination function that looks something like g(x) = β2x

2 +
β3x

3 +β4x
4. In this case how does the clustered design perform compared with

other designs?
Here k can’t be found in the same way as before since we have three pa-

rameters, which would each have to have their own hypothesis test. Instead
we will find k based on the L2 contamination space. Let the fitted model
be Y ∗ = f∗(x) + ε = β∗

0 + β∗
1x + ε, but the true model is Y = f(x) + ε =

β0 + β1x+ k(β2x
2 + β3x

3 + β4x
4) + ε. We can specify β2, β3 and β4 and then

find the maximum value of k such that∫
S

[f(x)− f∗(x)]2dx ≤ η2 (4.1)

where η2 = σ2

nν and the integral is over the entire design space. But since we

are concerned with when ν = 1, the boundary becomes η2 = σ2

n , which can be
easily calculated for each value of σ2 that we test. The β∗’s will be found such
that we minimize the left side of Eq. 4.1 over all β∗’s.

The simulation and comparison of designs is run in the exact same process
as in the previous section, but with the new k and p values.

4.1 Simple-Linear Regression: zT (x) = (1, x)T

As in the example above, we will find a sufficient k for comparing the designs
by minimizing Eq. 4.1. Parameters β2, β3 and β4 are set equal to 1. Taking
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the derivative with respect to each β∗, integrating and setting both equations
equal to zero, and then solving the system of equations we obtain:

β∗
0 = 1 + k

23

240
β∗
1 = 1 + k

3

20

Then we can decrease k until we find the max(k) such that Eq. 4.1 is satisfied.
The resulting values of k are shown in Table 4.1. Values of p are calculated in
the same way as the last section but with the new k values. A comparison of
simulated biases and variances of estimated parameters for each of the four dif-
ferent designs is shown in Table 4.4a. Table 4.4b compares the relative efficiency
of each design with the clustered design according to D-optimality.

σ2 12σ
2

n k p
0.01 0.004 0.0167 0.05
0.05 0.020 0.0374 0.05
0.10 0.040 0.0528 0.05
0.20 0.080 0.0747 0.05
0.50 0.200 0.1182 0.05

Table 4.1: Estimated values of k and p when fitting Model 1 with n =30

4.2 Quadratic Regression: zT (x) = (1, x, x2)T

In this scenario, the experimenter fits a quadratic model to the data, however
the true model is much more complicated than just quadratic. Here k is found
with fitted model Y ∗ = β∗

0 + β∗
1x+ β∗

2x
2 + ε and true model is Y = β0 + β1x+

β2x
2 + k(x3 + x4 + x5) + ε. So we will find k subject to Eq. 4.1 where β∗’s

are again found such that the value of the integral is minimized. Parameters
β3, β4 and β5 are set equal to 1. Taking the derivative with respect to each β∗,
integrating and solving the system of equations yields:

β∗
0 = 1− k 3

560
β∗
1 = 1 + k

99

560
β∗
2 = 1 + k

3

14

Then we can decrease k until we find the max(k) such that the L2 boundary
condition is satisfied. The resulting values of k are shown in Table 4.2. Values
of p are again calculated in the same way as the last section but with the new k
values. A comparison of simulated biases and variances of estimated parameters
for each of the designs is shown in Table 4.5a. Table 4.5b compares the relative
efficiency of each design with the clustered design according to D-optimality.
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σ2 12σ
2

n k p
0.01 0.0033 0.6763 0.71
0.05 0.0167 1.5124 0.71
0.10 0.0333 2.1388 0.71
0.20 0.0667 3.0247 0.71
0.50 0.1667 4.7826 0.72

Table 4.2: Estimated values of k and p when fitting Model 2 with n =36

4.3 Multiple-Linear Regression with two factors:
zT (x) = (1, x1, x2)

T

In this situation, the experimenter fits a first-order MLR model to the data,
however the true model is much more complicated and involves all second-order
terms. Here k is found with fitted model Y ∗ = β∗

0 + β∗
1x1 + β∗

2x2 + ε and true
model is Y = β0 + β1x1 + β2x2 + k(x1x2 + x21 + x22) + ε. We will find k subject
to Eq. 4.1 again except the integral becomes a double integral:∫ ∫

S

[f∗(x)− f∗(x)]2dx1dx2 ≤ η2

where β∗’s are found such that the value of the integral is minimized. Parameters
β3, β4 and β5 are set equal to 1. Taking the derivative with respect to each β∗,
integrating, and solving the system of equations yields:

β∗
0 = 1 + k

1

6
β∗
1 = β∗

2 = 1

Then we can decrease k until we find the max(k) such that the L2 boundary
condition is satisfied. The resulting values of k are shown in Table 4.3. Values
of p are calculated in the same way as last section but with new k values. A
comparison of simulated biases and variances of estimated parameters for each
of the designs is shown in Table 4.6a. Table 4.6b compares the relative efficiency
of each design with the clustered design according to D-optimality.

σ2 12σ
2

n k p
0.01 0.0033 0.1240 0.05
0.05 0.0167 0.2773 0.05
0.10 0.0333 0.3922 0.05
0.20 0.0667 0.5547 0.05
0.50 0.1667 0.8770 0.05

Table 4.3: Estimated values of k and p when fitting Model 3 with n =36
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Table 4.4: Model 1 Design Comparison where contamination function is more
complex.

Bias(β̂0) Bias(β̂1) V ar(β̂0) V ar(β̂1) det(MSE(β̂))
σ2 = 0.01, k = 0.0167, p = 0.05, n = 30

ξ
(2)
CDD 0.00521 0.00434 0.00033 0.00134 4.9e-07

ξ
(3)
H 0.00186 0.00310 0.00033 0.00316 1.1e-06

ξ
(30)
H 0.00218 0.00284 0.00033 0.00300 1e-06
ξCl 0.00500 0.00394 0.00034 0.00141 5.1e-07
ξU 0.00166 0.00269 0.00033 0.00372 1.3e-06

σ2 = 0.05, k = 0.0374, p = 0.05, n = 30

ξ
(2)
CDD 0.01168 0.01032 0.00166 0.00673 1.2e-05

ξ
(3)
H 0.00473 0.00702 0.00167 0.01594 2.7e-05

ξ
(30)
H 0.00480 0.00665 0.00168 0.01496 2.5e-05
ξCl 0.01089 0.00844 0.00168 0.00704 1.3e-05
ξU 0.00393 0.00608 0.00167 0.01879 3.2e-05

σ2 = 0.1, k = 0.0528, p = 0.05, n = 30

ξ
(2)
CDD 0.01641 0.01346 0.00333 0.01333 4.9e-05

ξ
(3)
H 0.00618 0.00813 0.00337 0.03182 0.00011

ξ
(30)
H 0.00649 0.00764 0.00330 0.03002 1.0e-04
ξCl 0.01558 0.01307 0.00331 0.01406 5.1e-05
ξU 0.00583 0.00854 0.00333 0.03750 0.00013

σ2 = 0.2, k = 0.0747, p = 0.05, n = 30

ξ
(2)
CDD 0.02339 0.01883 0.00671 0.02671 0.00019

ξ
(3)
H 0.00947 0.01083 0.00668 0.06313 0.00043

ξ
(30)
H 0.00971 0.01315 0.00668 0.05961 4.0e-04
ξCl 0.02247 0.01764 0.00670 0.02775 2.0e-04
ξU 0.00784 0.01036 0.00671 0.07511 5.0e-04

σ2 = 0.5, k = 0.1182, p = 0.05, n = 30

ξ
(2)
CDD 0.03670 0.02991 0.01666 0.06623 0.00122

ξ
(3)
H 0.01383 0.01678 0.01676 0.15984 0.00269

ξ
(30)
H 0.01523 0.01841 0.01657 0.15029 0.00253
ξCl 0.03500 0.02980 0.01662 0.07030 0.00127
ξU 0.01271 0.01619 0.01645 0.18693 0.00315

(a) Table of Bias, Variance and D-optimality criteria.

σ2 k p Eff(ξCl,ξ
(2)
CDD) Eff(ξCl,ξ

(3)
H ) Eff(ξCl,ξ

30
H ) Eff(ξCl,ξU )

0.01 0.0167 0.05 0.9589 2.1214 1.9909 2.4819
0.05 0.0374 0.05 0.9653 2.1374 1.9997 2.4955
0.10 0.0528 0.05 0.9591 2.1241 1.9887 2.4893
0.20 0.0747 0.05 0.9583 2.1242 1.9901 2.4815
0.50 0.1182 0.05 0.9580 2.1212 1.9897 2.4841

(b) Efficiency Comparison of det(MSE(β̂)) between designs.

24



Table 4.5: Model 2 Design Comparison where contamination function is more
complex.

B(β̂0) B(β̂1) B(β̂2) V (β̂0) V (β̂1) V (β̂2) det(MSE)
σ2 = 0.01, k = 0.6763, p = 0.71, n = 36

ξ
(3)
CDD -2.7e-05 0.21134 0.16913 8.3e-06 1.7e-05 2.0e-04 3.0e-07

ξ
(4)
H -0.00437 0.13669 0.15351 8.4e-06 2.4e-05 0.00043 2.9e-07

ξ
(36)
H -0.00470 0.14139 0.15863 8.3e-06 2.4e-05 4.0e-04 2.9e-07
ξCl -0.00357 0.13659 0.14958 7.0e-06 2.7e-05 0.00041 2.7e-07
ξU -0.00401 0.12728 0.15260 6.3e-06 3.2e-05 0.00045 2.7e-07

σ2 = 0.05, k = 1.5124, p = 0.71, n = 36

ξ
(3)
CDD -6.7e-07 0.47264 0.37815 0.00021 0.00042 0.00499 3.7e-05

ξ
(4)
H -0.00975 0.30551 0.34329 0.00021 0.00061 0.01087 3.6e-05

ξ
(36)
H -0.01044 0.31617 0.35442 0.00021 6.0e-04 0.01009 3.6e-05
ξCl -0.00803 0.30521 0.33490 0.00018 0.00067 0.01021 3.4e-05
ξU -0.00896 0.28494 0.34184 0.00015 0.00079 0.01115 3.4e-05

σ2 = 0.1, k = 2.1388, p = 0.71, n = 36

ξ
(3)
CDD 0.00027 0.66829 0.53408 0.00084 0.00167 0.02017 3.0e-04

ξ
(4)
H -0.01398 0.43231 0.48624 0.00083 0.00244 0.04304 0.00029

ξ
(36)
H -0.01484 0.44735 0.50200 0.00083 0.00238 0.04096 0.00029
ξCl -0.01140 0.43157 0.47484 0.00071 0.00271 0.04054 0.00027
ξU -0.01270 0.40258 0.48389 0.00063 0.00319 0.04505 0.00027

σ2 = 0.2, k = 3.0247, p = 0.71, n = 36

ξ
(3)
CDD 0.00011 0.94494 0.75477 0.00333 0.00663 0.07979 0.00238

ξ
(4)
H -0.01927 0.61086 0.68472 0.00334 0.00989 0.17274 0.00231

ξ
(36)
H -0.02105 0.63191 0.70959 0.00333 0.00946 0.16218 0.00231
ξCl -0.01640 0.61055 0.67345 0.00279 0.01104 0.16008 0.00217
ξU -0.01804 0.56987 0.68334 0.00249 0.01265 0.17887 0.00220

σ2 = 0.5, k = 4.7826, p = 0.72, n = 36

ξ
(3)
CDD -0.00131 1.49510 1.20149 0.02081 0.04157 0.50251 0.03717

ξ
(4)
H -0.03051 0.96709 1.08649 0.02093 0.06101 1.07634 0.03612

ξ
(36)
H -0.03305 0.99839 1.11717 0.02080 0.05991 1.01712 0.03596
ξCl -0.02517 0.96361 1.05849 0.01746 0.06881 1.01119 0.03403
ξU -0.02887 0.90045 1.08564 0.01562 0.07807 1.11397 0.03432

(a) Table of Bias, Variance and D-optimality criteria.

σ2 k p Eff(ξCl,ξ
(3)
CDD) Eff(ξCl,ξ

(4)
H ) Eff(ξCl,ξ

(36)
H ) Eff(ξCl,ξU )

0.01 0.6763 0.71 1.0942 1.0625 1.0627 1.0095
0.05 1.5124 0.71 1.0956 1.0629 1.0639 1.0126
0.10 2.1388 0.71 1.0951 1.0634 1.0646 1.0110
0.20 3.0247 0.71 1.0934 1.0611 1.0616 1.0111
0.50 4.7826 0.72 1.0924 1.0616 1.0567 1.0085

(b) Efficiency Comparison of det(MSE(β̂)) between designs.
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Table 4.6: Model 3 Design Comparison where contamination function is more
complex.

B(β̂0) B(β̂1) B(β̂2) V (β̂0) V (β̂1) V (β̂2) det(MSE)
σ2 = 0.01, k = 0.124, p = 0.05, n = 36

ξ
(2x2)
CDD 0.06201 1.7e-06 1.2e-05 2.8e-06 1.1e-05 1.1e-05 5.1e-09

ξ
(4)
H 0.04864 2.5e-05 -1.1e-05 2.8e-06 1.4e-05 1.4e-05 5.3e-09

ξ
(36)
H 0.04934 1.0e-05 -3.0e-05 2.8e-06 1.4e-05 1.4e-05 5.3e-09
ξCl 0.04942 1.1e-05 1.6e-05 2.8e-06 1.4e-05 1.4e-05 5.3e-09
ξU 0.02894 -1.5e-05 -7.3e-06 2.8e-06 2.4e-05 2.4e-05 6.3e-09

σ2 = 0.05, k = 0.2773, p = 0.05, n = 36

ξ
(2x2)
CDD 0.13859 -1.0e-04 -6.3e-06 6.9e-05 0.00028 0.00028 6.4e-07

ξ
(4)
H 0.10874 -0.00021 -7.8e-05 7.0e-05 0.00035 0.00035 6.6e-07

ξ
(36)
H 0.11032 -2.8e-05 -2.7e-06 6.9e-05 0.00035 0.00035 6.6e-07
ξCl 0.11063 -1.1e-05 -9.2e-05 6.9e-05 0.00035 0.00035 6.6e-07
ξU 0.06471 -8.3e-05 -0.00028 6.9e-05 6.0e-04 0.00059 7.9e-07

σ2 = 0.1, k = 0.3922, p = 0.05, n = 36

ξ
(2x2)
CDD 0.19601 3.4e-05 -0.00017 0.00028 0.00113 0.00111 5.1e-06

ξ
(4)
H 0.15374 6.0e-05 -9.8e-05 0.00028 0.00142 0.00142 5.3e-06

ξ
(36)
H 0.15615 -0.00016 -0.00011 0.00028 0.00140 0.00140 5.3e-06
ξCl 0.15640 3.9e-05 8.3e-05 0.00028 0.00139 0.00141 5.3e-06
ξU 0.09149 -0.00019 -5.0e-04 0.00028 0.00238 0.00237 6.3e-06

σ2 = 0.2, k = 0.5547, p = 0.05, n = 36

ξ
(2x2)
CDD 0.27718 0.00049 -0.00012 0.00111 0.00450 0.00444 4.1e-05

ξ
(4)
H 0.21747 0.00013 0.00038 0.00112 0.00568 0.00568 4.2e-05

ξ
(36)
H 0.22068 6.9e-05 -0.00016 0.00111 0.00554 0.00556 4.2e-05
ξCl 0.22082 -9.2e-05 -0.00018 0.00111 0.00556 0.00560 4.2e-05
ξU 0.12944 0.00023 0.00026 0.00111 0.00955 0.00956 5.1e-05

σ2 = 0.5, k = 0.877, p = 0.05, n = 36

ξ
(2x2)
CDD 0.43835 0.00043 -0.00021 0.00700 0.02757 0.02796 0.00064

ξ
(4)
H 0.34377 -0.00146 -0.00094 0.00697 0.03532 0.03552 0.00066

ξ
(36)
H 0.34895 -4.0e-04 -0.00052 0.00697 0.03500 0.03503 0.00066
ξCl 0.34989 -0.00106 0.00064 0.00694 0.03508 0.03478 0.00066
ξU 0.20491 -0.00147 -0.00067 0.00695 0.05978 0.05925 0.00079

(a) Table of Bias, Variance and D-optimality criteria.

σ2 k p Eff(ξCl,ξ
(2x2)
CDD) Eff(ξCl,ξ

(4)
H ) Eff(ξCl,ξ

(36)
H ) Eff(ξCl,ξU )

0.01 0.1240 0.05 0.9634 1.0042 1.0002 1.1966
0.05 0.2773 0.05 0.9606 1.0018 0.9983 1.1941
0.10 0.3922 0.05 0.9613 1.0020 1.0005 1.1946
0.20 0.5547 0.05 0.9640 1.0054 1.0022 1.1988
0.50 0.8770 0.05 0.9607 1.0011 0.9985 1.1963

(b) Efficiency Comparison of det(MSE(β̂)) between designs.
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4.4 Discussion

Linear Model In this situation with the complex contamination function, we
see that the bias in estimates of β0 and β1 does decrease somewhat, while the
variance of β1 increases slightly as we might expect. HRD and uniform design
have much lower bias in the estimates, but at the cost of a greater increase
in variance. The CDD remains the most D-optimal outperforming the other
designs in efficiency with the clustered design close behind.

Therefore, the clustered design may be useful to implement, since it helps
reduce bias in both β0 and β1, while only costing a small amount of variance in
β1. Overall, the clustered design performs better when there are more complex
contamination functions that when we just have g(x) = x2. So if a researcher
is looking to fit a simple-linear model to some data, but is unsure about many
other higher order terms, the clustered design does well.

Quadratic Model In the case of quadratic model with more complex con-
tamination function, the clustered design appears to be slightly more D-optimal
than all the other designs, though by a small margin. The clustered design does
us no help in estimation of β0, however we see a reduction in bias of β1 and
a slight reduction in bias of β2. However the variance of both these estimates
approximately doubles when using the clustered design compared to the CDD.
The clustered design improves the reduction in bias of β0 and β2 even more than
all of the other designs, but the uniform design still reduces bias of β1 the most.
The clustered design appears to be beneficial to implement in this scenario as
well, particularly if estimation of β0 is unimportant to the researcher.

Bivariate Model In the scenario of fitting Model 3, all designs are fairly
similar in efficiency, with the CDD being most efficient, followed closely by
HRD and clustered design. Comparing the bias for the CDD and the clustered
design, we can see that the clustered design greatly reduces bias in estimation
of β0, but the effect for β1 and β2 seems to vary. Variance of β0 appears to stay
the same across each design. Variance of β1 and β2 are similar for clustered
design and HRD but the CDD consistently has the lower variance as we might
expect. If the parameter of interest is β0 then the clustered design appears to be
very beneficial to implement since the bias is reduced with negligible increase in
variance. If both β1 and β2 are the parameters of interest, then likely remaining
with the CDD is the best option.
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Chapter 5

Application in
Extrapolation

Extrapolation has many practical uses in research and data analysis. One in-
stance where extrapolation is used is in Accelerated Life Testing (ALT). Typi-
cally, if an engineer is testing a product, they will conduct an experiment where
the product is being operated under normal conditions. However, it can some-
times take a long time to get data for characteristics like the product’s life-
expectancy, so the engineer may wish to implement ALT instead. Here the
product will be tested under extreme conditions (such as temperature, voltage,
vibration, etc...) that are much higher than normal, and then extrapolate the
life-data back to normal conditions. This can save the engineer a lot of time
and money in the product-testing process. So, if the clustered design improves
extrapolation, ALT is a subject that would benefit greatly.

Figure 5.1: Visual concept of Accelerated Life Testing.

Since, we have no idea what the true model for the data will look like out-
side of the sample space, a robust design that is less sensitive to errors in the
assumed model will be necessary. In this chapter we will test the robustness of
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the clustered design in some extrapolation scenarios. We have the same con-
tamination limitations here as in the L2 neighbourhood, except we must add
another boundary condition which puts a limit on the amount of bias between
the endpoint 0.5 and the extrapolation point. This condition is written as:∫ x0

0.5

[f(x)− f∗(x)]2 ≤ η2 (5.1)

5.1 Efficiency

Since we are focusing on accuracy of prediction on an extrapolation point
rather than accuracy of parameter estimation, our MSE will have to be calcu-
lated differently. In this scenario, we can actually use the asymptotic formulas
for bias, variance and MSE of ŷ(x0). The formulas we use to compare are:
V ar(ŷ(x0)) = σ2z(x0)(XTX)−1zT (x0), where z(x0) = (1, x0) for Model 1 and
z(x0) = (1, x0, x

2
0) for Model 2; Bias(ŷ(x0)) = z(x0)(XTX)−1XTE(y)−f(x0),

and MSE(ŷ(x0)) = V ar(ŷ(x0)) + [Bias(ŷ(x0))]2. Since we are no longer deal-
ing with a matrix, we are using Q-optimality as our criterion for extrapolation
instead of D-optimality.

5.2 Designs used for comparison

Once again, for extrapolation we will be comparing a few different designs, in-
cluding the Hoel-Levine design (Hoel and Levine 1964), Wiens-Xu design (Wiens
and Xu 2008), the clustered design, and the uniform design. We will compare the
efficiency of each design using two extrapolation points x0 = 0.75 and x0 = 2.5.
Each design will be described in more detail in the following paragraphs.

CDD The CDD in the extrapolation case is taken from Hoel and Levine (1964)
who found the optimal design minimizing extrapolation variance alone, denoted
ξHL. The HL design when fitting Model 1 after transformation is:

ξHL =

(
−0.5 0.5
2x0−1
4x0

2x0+1
4x0

)
The HL design for Model 2 after being transformed is:

ξHL =

(
−0.5 0 0.5

x0(2x0−1)
8x2

0−1
(2x0+1)(2x0−1)

8x2
0−1

x0(2x0+1)
8x2

0−1

)

Optimal Robust Design Weins and Xu (2008) constructed the D-optimal
design by minimizing the determinant of the MSE of the prediction at extrap-
olation point, denoted ξWX . The density function of ξWX after transformation
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and normalization for Model 1 found by Weins and Xu (2008) for ν = 1 (for ν
as described in Section 2.1) is:

d(x) =
[1264.4148x2 + 199.2849x− 26.7067]+

(22.46x+ 1)2 + 0.0032(22.46x+ 1)4
, and

d(x) =
[55064.7918x2 + 2144.8033x− 594.7690]+

(160.76x+ 1)2 + 0.000122(160.76x+ 1)4

for x0 = 0.75 and x0 = 2.5 respectively.
The density function of ξWX after transformation and normalization when

fitting Model 2 is:

d(x) =
[(1− 0.142x− 8.68x2)(2.5387− 3.5418x− 33.8493x2)− 0.8173]+

(1− 0.142x− 8.68x2)2 + 0.627(1− 0.142x− 8.68x2)4
, and

d(x) =
[(1− 0.0158x− 8.44x2)(3.3922− 1.0237x− 40.2248x2)− 0.9675]+

(1− 0.0158x− 8.44x2)2 + 0.949(1− 0.0158x− 8.44x2)4

for x0 = 0.75 and x0 = 2.5 respectively.

Uniform Design The uniform design is as previously used, consisting of n
design support points distributed evenly over the design space.

Clustered Design The clustered design for Model 1 will consist of design
points spread out over m areas of size p/m located at each design support point
of the corresponding HL design. The number of points distributed over each
area however will be nwi where the wi’s are the same weights calculated for HL
design. After testing a few different ways of setting up the clustered design, this
method was consistently the most optimal. See Section 5.6 for more details.

5.3 Model 1: zT (x) = (1, x)T

Determination of k’s and p Consider the case of fitting Model 1 to the data
(i.e. Y ∗ = β∗

0 + β∗
1x + ε), however the true model is actually Y = β0 + β1x +

k2β2x
2 + k3β3x

3 + ε. We will let all true β values be set equal to 1 and we solve
for β∗

0 , β∗
1 , k2 and k3 using the following four equations:

∂

∂β∗
i

∫ 0.5

−0.5

[f(x)− f∗(x)]2dx = 0, i = 0, 1,

∫ 0.5

−0.5

[f(x)− f∗(x)]2dx = η2, and∫ x0

0.5

[f(x)− f∗(x)]2dx = η2.
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The resulting values of k2 and k3 (and β∗’s for interest) are shown in Table
5.1 for x0 = 0.75 and in Table 5.2 for x0 = 2.5. The optimal p values with
minimum value taken to be p = 0.05 are calculated in the same way as in
previous sections, except using the values k2 and k3 in the true function found
in the previous step.

σ2 σ2

n β∗
0 β∗

1 k2 k3 p
0.01 0.0003 1.0198 0.9645 0.2375 -0.2367 0.05
0.05 0.0017 1.0443 0.9206 0.5310 -0.5293 0.05
0.10 0.0033 1.0626 0.8877 0.7510 -0.7485 0.05
0.20 0.0067 1.0885 0.8412 1.0621 -1.0586 0.05
0.50 0.0167 1.1399 0.7489 1.6793 -1.6738 0.05

Table 5.1: Values of k2, k3 and p when fitting Model 1 for extrapolation at
x0 = 0.75, with n = 30.

σ2 σ2

n β∗
0 β∗

1 k2 k3 p
0.01 0.0003 1.0021 0.9982 0.0250 -0.0120 0.05
0.05 0.0017 1.0040 0.9963 0.0480 -0.0250 0.05
0.10 0.0033 1.0066 0.9943 0.0790 -0.0380 0.05
0.20 0.0067 1.0093 0.9924 0.1110 -0.0510 0.05
0.50 0.0167 1.0140 0.9874 0.1680 -0.0840 0.05

Table 5.2: Values of k2, k3 and p when fitting Model 1 for extrapolation at
x0 = 2.5, with n = 30.

Comparison of Designs To compare designs we can compute the asymp-
totic extrapolation bias, extrapolation variance and extrapolation MSE for each
design using the formulas listed in Section 5.1. Table 5.3 shows a comparison
of the four designs when x0 = 0.75 and Table 5.5 shows the comparison when
x0 = 2.5.

To further compare the designs for extrapolation we will compute a couple
other measures. The first is relative bias (RB), which is computed using

RB = (ŷ(x0)− f(x0))/f(x0)× 100%

Secondly, we can compute the prediction interval (PI) of the jth run given
by the formula

PI(j) = ŷ(x0)(j) ± tα2 (n− q)σ̂(j)
√
zT (x0)(XTX)−1z(x0) + 1

, where σ̂2
(j) =

∑n
i=1(yi− ŷ(j))2/(n−q) and q is the number of fitted parameters.

We take α = 0.05 here. The PI coverage percentage is then the number of
prediction intervals out of all N = 50, 000 trials that contain the true value
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f(x0) and divide by N (ie. the percentage of prediction intervals which contain
the true value f(x0)). We will also compute the average length of all N 95%
prediction intervals.

Table 5.4 shows the above values of interest for Model 1, when x0 = 0.75.
Table 5.6 shows the values of interest for each of the four designs for Model 1
when x0 = 2.5.

Bias(ŷ(x0)) V ar(ŷ(x0)) MSE(ŷ(x0)) Eff(ξCl,ξ)
σ2 = 0.01, k2 = 0.2327, k3 = −0.3014, p = 0.05

ξCl -0.01950 0.00079 0.00117
ξHL -0.01874 0.00075 0.00110 0.94178
ξWX -0.03648 0.00157 0.00290 2.47912
ξU -0.04100 0.00244 0.00412 3.52278

σ2 = 0.05, k2 = 0.531, k3 = −0.5293, p = 0.05
ξCl -0.04357 0.00395 0.00584
ξHL -0.04188 0.00375 0.00550 0.94178
ξWX -0.08153 0.00784 0.01449 2.47908
ξU -0.09165 0.01219 0.02059 3.52300

σ2 = 0.1, k2 = 0.751, k3 = −0.7485, p = 0.05
ξCl -0.06165 0.00789 0.01169
ξHL -0.05926 0.00750 0.01101 0.94178
ξWX -0.11534 0.01568 0.02899 2.47910
ξU -0.12964 0.02438 0.04119 3.52281

σ2 = 0.2, k2 = 1.0621, k3 = −1.0586, p = 0.05
ξCl -0.08718 0.01578 0.02338
ξHL -0.08380 0.01500 0.02202 0.94178
ξWX -0.16311 0.03136 0.05797 2.47912
ξU -0.18334 0.04876 0.08238 3.52289

σ2 = 0.5, k2 = 1.6793, k3 = −1.6738, p = 0.05
ξCl -0.13783 0.03946 0.05846
ξHL -0.13248 0.03750 0.05505 0.94178
ξWX -0.25789 0.07841 0.14492 2.47912
ξU -0.28987 0.12191 0.20593 3.52291

Table 5.3: Table of Bias, Variance and D-optimality criteria for Model 1 extrap-
olation with x0 = 0.75, and n = 30.
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RB (%) PI CP PI Avg. Length
σ2 = 0.01

ξCl -1.0514 100 2.3128
ξHL -2.0442 100 3.0801
ξWX -1.0926 100 2.3249
ξU -2.2985 100 3.6743

σ2 = 0.05
ξCl -2.2960 100 2.1432
ξHL -4.4605 100 2.9091
ξWX -2.3887 100 2.1636
ξU -5.0181 100 3.5079

σ2 = 0.1
ξCl -3.2027 100 2.0421
ξHL -6.2124 100 2.8036
ξWX -3.3347 100 2.0689
ξU -6.9657 100 3.4048

σ2 = 0.2
ξCl -4.4090 100 1.9994
ξHL -8.6117 100 2.7294
ξWX -4.5889 100 2.0317
ξU -9.6643 100 3.3263

σ2 = 0.5
ξCl -6.6700 100 2.6004
ξHL -12.9484 99.988 3.2002
ξWX -6.9327 100 2.6308
ξU -14.5431 99.926 3.7529

Table 5.4: Table comparing relative bias, prediction interval coverage percentage
and prediction interval average length between designs for Model 1 extrapolation
with x0 = 0.75, and n = 30.
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Bias(ŷ(x0)) V ar(ŷ(x0)) MSE(ŷ(x0)) Eff(ξCl,ξ)
σ2 = 0.01, k2 = 0.2437, k3 = −0.0973, p = 0.05

ξCl 0.03006 0.00876 0.00967
ξHL 0.03000 0.00833 0.00923 0.95508
ξWX 0.02921 0.01949 0.02034 2.10376
ξU 0.02867 0.02372 0.02454 2.53865

σ2 = 0.05, k2 = 0.048, k3 = −0.025, p = 0.05
ξCl 0.08717 0.04382 0.05142
ξHL 0.08700 0.04167 0.04924 0.95753
ξWX 0.08598 0.09743 0.10482 2.03851
ξU 0.08489 0.11860 0.12581 2.44674

σ2 = 0.1, k2 = 0.079, k3 = −0.038, p = 0.05
ξCl 0.09618 0.08764 0.09689
ξHL 0.09600 0.08333 0.09255 0.95517
ξWX 0.09352 0.19485 0.20360 2.10127
ξU 0.09183 0.23720 0.24564 2.53514

σ2 = 0.2, k2 = 0.111, k3 = −0.051, p = 0.05
ξCl 0.09918 0.17528 0.18512
ξHL 0.09900 0.16667 0.17647 0.95326
ξWX 0.09491 0.38970 0.39871 2.15378
ξU 0.09260 0.47441 0.48298 2.60901

σ2 = 0.5, k2 = 0.168, k3 = −0.084, p = 0.05
ξCl 0.25248 0.43821 0.50196
ξHL 0.25200 0.41667 0.48017 0.95660
ξWX 0.24754 0.97426 1.03553 2.06300
ξU 0.24384 1.18602 1.24548 2.48125

Table 5.5: Table of Bias, Variance and D-optimality criteria for Model 1 extrap-
olation with x0 = 2.5, and n = 30.
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RB (%) PI CP PI Avg. Length
σ2 = 0.01

ξCl 0.8654 100 14.0225
ξHL 0.8452 100 18.0903
ξWX 0.8677 100 14.1888
ξU 0.8269 100 19.5686

σ2 = 0.05
ξCl 2.5523 100 13.9791
ξHL 2.5055 100 18.0520
ξWX 2.5565 100 14.1472
ξU 2.5054 100 19.5349

σ2 = 0.1
ξCl 2.8298 100 13.9427
ξHL 2.7555 100 18.0303
ξWX 2.8138 100 14.1087
ξU 2.7120 100 19.5043

σ2 = 0.2
ξCl 2.9098 100 13.9291
ξHL 2.7910 100 18.0324
ξWX 2.9114 100 14.0990
ξU 2.7231 100 19.5059

σ2 = 0.5
ξCl 7.6999 100 14.0469
ξHL 7.5816 99.914 18.2464
ξWX 7.8302 100 14.2424
ξU 7.4229 99.858 19.7293

Table 5.6: Table comparing relative bias, prediction interval coverage percentage
and prediction interval average length between designs for Model 1 extrapolation
with x0 = 2.5, and n = 30.
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5.4 Model 2: zT (x) = (1, x, x2)T

Determination of k’s and p Consider the case of fitting Model 2 to the data
(i.e. Y ∗ = β∗

0 + β∗
1x+ β∗

2x
2 + ε), however the true model is actually Y = β0 +

β1x+ β2x
2 + k3β3x

3 + k4β4x
4 + ε. We will let all true β values be set equal to

1, and we will solve for β∗
0 , β∗

1 , β∗
2 , k3 and k4 using the following five equations:

∂

∂β∗
i

∫ 0.5

−0.5

[f(x)− f∗(x)]2dx = 0, i = 0, 1, 2,

∫ 0.5

−0.5

[f(x)− f∗(x)]2dx = η2, and∫ x0

0.5

[f(x)− f∗(x)]2dx = η2.

The resulting values of k3 and k4 (and β∗’s for interest) are shown in Table 5.7
for x0 = 0.75 and in Table 5.8 for x0 = 2.5. The optimal p values with minimum
value taken to be p = 0.05 are calculated in the same way as in previous sections,
except using the values k3 and k4 in the true function found in the previous step.

σ2 σ2

n β∗
0 β∗

1 β∗
2 k3 k4 p

0.01 0.0004 0.9901 0.8674 1.3972 -0.8842 1.8538 0.05
0.05 0.0018 0.9778 0.7034 1.8883 -1.9771 4.1452 0.05
0.10 0.0036 0.9686 0.5806 2.2562 -2.7961 5.8622 0.05
0.20 0.0071 0.9556 0.4069 2.7765 -3.9543 8.2904 0.05
0.50 0.0179 0.9298 0.0622 3.8089 -6.2522 13.1083 0.05

Table 5.7: Values of k3, k4 and p when fitting Model 2 for extrapolation at
x0 = 0.75, with n = 28.

σ2 σ2

n β∗
0 β∗

1 β∗
2 k3 k4 p

0.01 0.0002 1.0000 1.0005 0.9996 0.0030 -0.0020 0.05
0.05 0.0010 1.0000 1.0033 0.9981 0.0220 -0.0090 0.05
0.10 0.0020 1.0001 1.0053 0.9964 0.0350 -0.0170 0.05
0.20 0.0041 1.0001 1.0080 0.9951 0.0530 -0.0230 0.05
0.50 0.0102 1.0002 1.0122 0.9916 0.0810 -0.0390 0.05

Table 5.8: Values of k3, k4 and p when fitting Model 2 for extrapolation at
x0 = 2.5, with n = 49.

Comparison of Designs To compare designs we can compute the asymp-
totic extrapolation bias, extrapolation variance and extrapolation MSE for each

36



design using the formulas described in Section 5.1. Table 5.9 shows a compar-
ison of the four designs when x0 = 0.75 and Table 5.11 shows the comparison
when x0 = 2.5.

Table 5.4 shows relative bias, prediction interval coverage percentages, and
prediction interval average length for Model 2, when x0 = 0.75. Table 5.6 shows
the values of interest for each of the four designs for Model 2 when x0 = 2.5.

Bias(ŷ(x0)) V ar(ŷ(x0)) MSE(ŷ(x0)) Eff(ξCl,ξ)
σ2 = 0.01, k3 = −0.8842, k4 = 1.8538, p = 0.05

ξCl -0.12150 0.00476 0.01953
ξHL -0.11863 0.00437 0.01845 0.94483
ξWX -0.11103 0.00843 0.02076 1.06312
ξU -0.09255 0.01512 0.02368 1.21291

σ2 = 0.05, k3 = −1.9771, k4 = 4.1452, p = 0.05
ξCl -0.27169 0.02381 0.09763
ξHL -0.26527 0.02187 0.09224 0.94483
ξWX -0.24827 0.04215 0.10379 1.06312
ξU -0.20696 0.07558 0.11841 1.21291

σ2 = 0.1, k3 = −2.7961, k4 = 5.8622, p = 0.05
ξCl -0.38421 0.04763 0.19524
ξHL -0.37513 0.04375 0.18447 0.94483
ξWX -0.35109 0.08430 0.20757 1.06312
ξU -0.29266 0.15116 0.23682 1.21292

σ2 = 0.2, k3 = −3.9543, k4 = 8.2904, p = 0.05
ξCl -0.54335 0.09525 0.39048
ξHL -0.53051 0.08750 0.36894 0.94483
ξWX -0.49651 0.16861 0.41513 1.06312
ξU -0.41388 0.30233 0.47363 1.21293

σ2 = 0.5, k3 = −6.2522, k4 = 13.1083, p = 0.05
ξCl -0.85914 0.23813 0.97626
ξHL -0.83883 0.21875 0.92239 0.94483
ξWX -0.78508 0.42152 1.03788 1.06312
ξU -0.65444 0.75582 1.18411 1.21291

Table 5.9: Table of Bias, Variance and D-optimality criteria for Model 2 extrap-
olation with x0 = 0.75, and n = 28.
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RB (%) PI CP PI Avg. Length
σ2 = 0.01

ξCl -4.6965 100 5.6163
ξHL -4.3964 100 6.9312
ξWX -4.8076 100 5.7197
ξU -3.6642 100 9.3063

σ2 = 0.05
ξCl -9.5079 100 5.9972
ξHL -8.9026 100 7.4581
ξWX -9.7391 100 6.1035
ξU -7.4206 100 10.0737

σ2 = 0.1
ξCl -12.5635 100 6.3191
ξHL -11.7400 100 7.8908
ξWX -12.8330 100 6.4315
ξU -9.8175 100 10.6764

σ2 = 0.2
ξCl -16.2541 100 6.8371
ξHL -15.1682 100 8.5664
ξWX -16.6343 100 6.9459
ξU -12.7427 100 11.5798

σ2 = 0.5
ξCl -21.9277 99.854 8.1970
ξHL -20.4841 99.554 10.2305
ξWX -22.4743 99.758 8.3004
ξU -17.1186 99.462 13.7501

Table 5.10: Table comparing relative bias, prediction interval coverage per-
centage and prediction interval average length between designs for Model 2
extrapolation with x0 = 0.75, and n = 28.
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Bias(ŷ(x0)) V ar(ŷ(x0)) MSE(ŷ(x0)) Eff(ξCl,ξ)
σ2 = 0.01, k3 = 0.003, k4 = −0.002, p = 0.05

ξCl 0.03004 0.52429 0.52519
ξHL 0.03000 0.49000 0.49090 0.93470
ξWX 0.02979 0.80359 0.80447 1.53177
ξU 0.02965 1.30248 1.30336 2.48167

σ2 = 0.05, k3 = 0.022, k4 = −0.009, p = 0.05
ξCl 0.00750 2.62145 2.62151
ξHL 0.00750 2.45000 2.45006 0.93460
ξWX 0.00505 4.01793 4.01796 1.53269
ξU 0.00392 6.51238 6.51240 2.48422

σ2 = 0.1, k3 = 0.035, k4 = −0.017, p = 0.05
ξCl 0.11264 5.24290 5.25559
ξHL 0.11250 4.90000 4.91266 0.93475
ξWX 0.10903 8.03587 8.04776 1.53128
ξU 0.10727 13.02477 13.03627 2.48046

σ2 = 0.2, k3 = 0.053, k4 = −0.023, p = 0.05
ξCl 0.06757 10.48581 10.49037
ξHL 0.06750 9.80000 9.80456 0.93462
ξWX 0.06180 16.07174 16.07556 1.53241
ξU 0.05909 26.04954 26.05303 2.48352

σ2 = 0.5, k3 = 0.081, k4 = −0.039, p = 0.05
ξCl 0.24780 26.21451 26.27592
ξHL 0.24750 24.50000 24.56126 0.93474
ξWX 0.23941 40.17934 40.23666 1.53131
ξU 0.23533 65.12384 65.17922 2.48057

Table 5.11: Table of Bias, Variance and D-optimality criteria for Model 2 ex-
trapolation with x0 = 2.5, and n = 49.
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RB (%) PI CP PI Avg. Length
σ2 = 0.01

ξCl 0.3065 100 252.0512
ξHL 0.3084 100 322.2777
ξWX 0.3042 100 260.6871
ξU 0.2956 100 412.5136

σ2 = 0.05
ξCl 0.0963 100 252.1437
ξHL 0.0540 100 322.2382
ξWX 0.0836 100 260.7532
ξU 0.0325 100 412.4250

σ2 = 0.1
ξCl 1.1987 100 252.0665
ξHL 1.1570 100 322.1388
ξWX 1.1968 100 260.7029
ξU 1.1311 100 412.2851

σ2 = 0.2
ξCl 0.7833 100 252.3321
ξHL 0.6667 100 322.2228
ξWX 0.7872 100 261.0005
ξU 0.5752 99.998 412.0900

σ2 = 0.5
ξCl 2.5375 99.944 252.7642
ξHL 2.3304 99.996 325.5544
ξWX 2.7048 99.964 262.0025
ξU 2.9959 100 430.5651

Table 5.12: Table comparing relative bias, prediction interval coverage per-
centage and prediction interval average length between designs for Model 2
extrapolation with x0 = 2.5, and n = 49.
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5.5 Discussion

Linear Model Unfortunately, in extrapolation scenarios for Model 1 for x0 =
0.75 and 2.5 we see that the clustered design has higher bias and variance than
those for the HL design. HL design is consistently the best design to use. Both of
these designs outperform the WX and uniform design as well. We see the same
results when using the simulated bias, variance and MSE instead of asymptotic.

The clustered design outperforms the others in relative bias, however this is
only when x0 = 0.75 (closer to the sample space). As x0 gets further away from
the sample space, the clustered design no longer is the best and the Hoel-Levine
design remains optimal. Overall, for extrapolation when fitting the simple-linear
model, the Hoel-Levine design stays the most optimal.

Quadratic Model For Model 2, we see many of the same results. Bias is not
improved by using the clustered design, and the HL design remains Q-optimal
and has lowest bias and variance. Again, we see the same results when using
the simulated bias, variance and MSE instead of asymptotic. HL design and
uniform have better relative bias and coverage percentage for both extrapolation
points.

Once again, the Hoel-Levine design is still the most optimal for fitting the
quadratic model in an extrapolation scenario.
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5.6 Set-up of clustered design for extrapolation

The clustered design can be set up in many different ways for extrapolation.
Every method will have m areas located at each design support point of the cor-
responding HL design with clusters of distinct design points distributed across
them.

• Method 1 be where the areas at each HL design point have size p/m, and
the number of distinct design points clustered over each area is nwi, where
wi’s are the weights calculated for the HL design.

• Method 2 use areas of size pwi and the number of distinct design points
clustered over each area is n/m.

• Method 3 will have areas of size pwi and the number of points on each
cluster will be nwi.

Tables 5.13 and 5.14 show a comparison of the SMSE between the different
methods of setting up the clustered design for Model 1 at the two extrapolation
points. N = 5000 was used for this method-comparison.

σ2 Method 1 Method 2 Method 3
0.01 0.000013 0.000028 0.000024
0.05 0.000221 0.000355 0.000285
0.10 0.000824 0.001296 0.000974
0.20 0.003292 0.004669 0.003535
0.50 0.019721 0.029840 0.020400

Table 5.13: Comparison of SMSE’s for different methods of constructing clus-
tered design for extrapolation for Model 1 when x0 = 0.75

σ2 Method 1 Method 2 Method 3
0.01 0.000092 0.000120 0.000121
0.05 0.002265 0.002402 0.002392
0.10 0.008626 0.009595 0.009317
0.20 0.034303 0.034954 0.036127
0.50 0.222105 0.230657 0.222230

Table 5.14: Comparison of SMSE’s for different methods of constructing clus-
tered design for extrapolation for Model 2, x0 = 2.5

We can see that overall Method 1 of constructing the clustered design worked
slightly better than the other methods. Therefore, this is the way that clustered
design was constructed in this study.
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Chapter 6

Conclusions

Recommendations

For a static design process (only one design) the clustered design may be used
as a replacement for the uniform design if some previous knowledge of the true
model is known. Often we saw the clustered design having a much higher effi-
ciency than uniform. But, if the experimenter has no prior information about
the true model, then uniform design should still be used as normal. In high
dimensional data however, the clustered design is not recommended to be im-
plemented.

For a multi-stage design process, we may use the clustered design in the first
stage of the design, again if some prior knowledge of the true model is known.
Otherwise, uniform should continue to be used in the first stage. In the second
stage, if we conduct a hypothesis test for a model and the test is accepted, the
optimal design to use is the classical D-optimal design. If the hypothesis test
fails, then the clustered design may be used as a replacement for Huber’s robust
design or Weins-Xu’s design as a new robust design, since we saw that clustered
design also outperformed Huber’s and WX designs in terms of efficiency.

The clustered design would require more work to be implemented effectively
in extrapolation scenarios as well. While it did have some merit in measure-
ments such as relative bias and prediction interval average length, the efficiency
was still not as good as Hoel-Levine’s design. In extrapolation scenarios, we
recommend continuing to use the HL design when the hypothesis is accepted
for the fitted model.

Future Studies

Some areas of future study for the clustered design:

1. Using the clustered design in bivariate or higher dimensional data.

2. Using the clustered design in extrapolation scenarios.
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Appendices

Appendix I: Notations

• ALT: Accelerated Life Testing

• CDD: Classical D-optimal Design

• d(x) = density function used to calculate design points for HRD.

• Eff(ξ1, ξ2) = Relative efficiency of design 1 compared to design 2

• f(x) = true mean response function

• f∗(x) = fitted mean response function

• g(x) = contamination function

• HRD: Huber’s implemented Robust Design

• k = the estimated maximum true value of β2 such that H0 : β2 = 0 is
accepted

• m = number of support points for a design

• MSE(β̂) = mean squared error of OLS estimator β̂

• n = sample size for simulations

• N = number of trials/iterations for simulations

• OLS: Ordinary Least-Squares

• p = percentage of design space covered by Clustered Design

• PI: prediction interval

• S = Design Space

• X = design matrix

• x0 = an extrapolation point
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• y = response vector

• Y = true model

• Y ∗ = fitted model

• z(x) = the fitted model to the data represented as a vector

• β̂ = the estimated parameters in the regression model

• ν = σ2

nη2 ∈ (0,∞) = the relative belief of model accuracy

• η2 = bound for contamination in model, found in this report using ν = 1
from the equation for ν

• ξ
(2)
CDD = classical D-optimal design assuming true model is linear

• ξ
(3)
CDD = classical D-optimal design assuming true model is quadratic

• ξ
(4)
CDD = classical D-optimal design assuming true model is cubic

• ξ
(m)
H = implemented Huber’s design with m distinct design points.

• ξU = uniform design

• ξCl = clustered design
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Appendix II: R Code

The following section lists the R codes used in the simulation. Some codes have
been left out due to high similarity in order to reduce the report length. For
instance, for regression there was a different R file for each model, but only
Model1.R will be listed. All codes including the ones exempted here can be
found on Github at this link: https://github.com/.

Summary (README)

• Model1.R is the source script which runs entire regression simulation for
Model 1. Model2.R and Model3.R (found on github) are similar but for
Model 2 and 3 respectively. Model4.R, Model5.R and Model6.R (also
found on github) run the simulation where the contamination function is
more complex for Models 1, 2 and 3 respectively.

• kaccept.R finds the k value for each Model in Chapter 3.

• kL2.R finds the k values for each Model for Chapter 4: Complex Contam-
ination functions.

• Optp.R finds the D-optimal p value for the clustered design.

• Computexj.R finds the Huber’s implemented design points.

• resultstable.R compiles the results for each design into a table.

• MSEdesign.R runs the actual simulation for a given design for the param-
eter estimation simulation.

• RunEP.R is the source script which is executed to run the simulation for
both models and both x0’s.

• Extrapolation.R runs the entire simulation for whichever model and x0 is
selected.

• EPfunctions.R contains all the functions used for the extrapolation sim-
ulation. The functions that it contains are highly similar in concept to
the functions used for regression analysis. All functions for extrapolation
were contained in one .R file instead.

• 2.5kvalsmodel1.R and 2.5kvalsmodel2.R are the functions used to deter-
mine the k values used when extrapolating at x0 = 2.5 for both models,
since solving the equations exactly resulted in imaginary numbers, so the
next best option was found analytically with these two functions.

• CIrun.R runs the entire simulation for all the extra measurements such as
relative bias, confidence intervals, sim SE, etc... for both models and both
x0’s.
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• CIcomparison.R runs the simulation for a given model and x0 and compiles
the results into a table.

• CIfunction.R contains all functions used in the extra measurement simu-
lations, which are again highly similar to the functions used for regression
and for extrapolation.

Regression Codes

Model1.R

#Model 1: Simple-Linear Model

cat(’\f’)

rm(list=ls())

#Retrieve functions

setwd(’C:/Users/dburm/Desktop/School/MATH 4F90/’)

source(’MSEdesign.R’)

source(’Computexj.R’)

source(’kaccept.R’)

source(’Optp.R’)

source(’resultstable.R’)

source(’kL2.R’)

library(xtable)

#####Determine k and p

n <- 30

N <- 50000

model <- 1

#Create vector of sigma’s to be tested

sigma2vector <- c(0.01,0.05,0.1,0.2,0.5)

results <- matrix(0,nrow = length(sigma2vector),ncol = 6)

colnames(results) <- c("Sigma^2","12Sigma^2/n","k-C","p-C","k-U","p-U")

results[,1] <- sigma2vector

results[,2] <- 12*results[,1]/n

X <- cbind(rep(1,n),c(rep(-0.5,n/3),rep(0,n/3),rep(0.5,n/3)))

results[,3] <- kaccept(X,sigma2vector,n,N = 100,maxBplus = 2,step = 0.02,model = model)

results[,4] <- Optp(n,N=5000,sigma2vector,kvector = results[,3],model = model,ktype="kC")

X <- cbind(rep(1,n),seq(-0.5,0.5,by=1/(n-1)))

results[,5] <- kaccept(X,sigma2vector,n,N = 100,maxBplus = 3,step = 0.02,model = model)

results[,6] <- Optp(n,N=5000,sigma2vector,kvector = results[,5],model = model,ktype="kU")

###Design results tables

#k-C
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#Classical D-Opt Design

X <- cbind(rep(1,n),c(rep(-0.5,n/2),rep(0.5,n/2)))

resultsCDD.1 <- resultstable(X,n,N,sigma2vector,kvector=results[,3],Cldesign = F,

pvector = F,model = model)

#Huber’s Implemented Design

X <- cbind(rep(1,n),c(rep(-0.396,n/3),rep(0,n/3),rep(0.396,n/3)))

resultsH3.1 <- resultstable(X,n,N,sigma2vector,kvector=results[,3],Cldesign = F,

pvector = F,model = model)

#Uniform Design

X <- cbind(rep(1,n),seq(-0.5,0.5,by=1/(n-1)))

resultsU.1 <- resultstable(X,n,N,sigma2vector,kvector=results[,3],Cldesign = F,

pvector = F,model = model)

#Clustered Design for model 1

resultsCl.1 <- resultstable(X=F,n,N,sigma2vector,kvector=results[,3],Cldesign = T,

pvector = results[,4],model = model)

#Tables of interest

BiasVarTable.1 <- matrix(NA,nrow = length(sigma2vector)*5,ncol = 5)

colnames(BiasVarTable.1) <- c("BiasB0","BiasB1","VarB0","VarB1","det(MSE)")

for (i in 1:length(sigma2vector)){

BiasVarTable.1[5*(i-1)+1, 1:4] <- c(results[i,c(1,3,4)],N)

BiasVarTable.1[5*(i-1)+2, 1:5] <- c(resultsCDD.1[i,c(3,4,5,6,8)])

BiasVarTable.1[5*(i-1)+3, 1:5] <- c(resultsH3.1[i,c(3,4,5,6,8)])

BiasVarTable.1[5*(i-1)+4, 1:5] <- c(resultsCl.1[i,c(3,4,5,6,8)])

BiasVarTable.1[5*i, 1:5] <- c(resultsU.1[i,c(3,4,5,6,8)])

}

EffTable.1 <- matrix(NA,nrow = length(sigma2vector),ncol = 6)

colnames(EffTable.1) <- c("sigma^2","k-C","p-C","CDD/CL","H3/CL","U/CL")

EffTable.1[,1] <- sigma2vector

EffTable.1[,2] <- results[,3]

EffTable.1[,3] <- results[,4]

EffTable.1[,4] <- resultsCDD.1[,8]/resultsCl.1[,8]

EffTable.1[,5] <- resultsH3.1[,8]/resultsCl.1[,8]

EffTable.1[,6] <- resultsU.1[,8]/resultsCl.1[,8]

#kU

#Classical D-Opt Design

X <- cbind(rep(1,n),c(rep(-0.5,n/2),rep(0.5,n/2)))

resultsCDD.2 <- resultstable(X,n,N,sigma2vector,kvector=results[,5],Cldesign = F,

pvector = F,model = model)

#Huber’s Implemented Design

X <- cbind(rep(1,n),Computexj(m = 30,model = 1))

resultsH30.2 <- resultstable(X,n,N,sigma2vector,kvector = results[,5],Cldesign = F,
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pvector = F,model = model)

#Uniform Design

X <- cbind(rep(1,n),seq(-0.5,0.5,by=1/(n-1)))

resultsU.2 <- resultstable(X,n,N,sigma2vector,kvector=results[,5],Cldesign = F,

pvector = F,model = model)

#Clustered Design for model 1

resultsCl.2 <- resultstable(X=F,n,N,sigma2vector,kvector=results[,5],Cldesign = T,

pvector = results[,6],model = model)

#Tables of interest

BiasVarTable.2 <- matrix(NA,nrow = length(sigma2vector)*5,ncol = 5)

colnames(BiasVarTable.2) <- c("BiasB0","BiasB1","VarB0","VarB1","det(MSE)")

for (i in 1:length(sigma2vector)){

BiasVarTable.2[5*(i-1)+1, 1:4] <- c(results[i,c(1,5,6)],N)

BiasVarTable.2[5*(i-1)+2, 1:5] <- c(resultsCDD.2[i,c(3,4,5,6,8)])

BiasVarTable.2[5*(i-1)+3, 1:5] <- c(resultsH30.2[i,c(3,4,5,6,8)])

BiasVarTable.2[5*(i-1)+4, 1:5] <- c(resultsCl.2[i,c(3,4,5,6,8)])

BiasVarTable.2[5*i, 1:5] <- c(resultsU.2[i,c(3,4,5,6,8)])

}

EffTable.2 <- matrix(NA,nrow = length(sigma2vector),ncol = 6)

colnames(EffTable.2) <- c("sigma^2","k-U","p-U","CDD/CL","H30/CL","U/CL")

EffTable.2[,1] <- sigma2vector

EffTable.2[,2] <- results[,5]

EffTable.2[,3] <- results[,6]

EffTable.2[,4] <- resultsCDD.2[,8]/resultsCl.2[,8]

EffTable.2[,5] <- resultsH30.2[,8]/resultsCl.2[,8]

EffTable.2[,6] <- resultsU.2[,8]/resultsCl.2[,8]

#Save results as RDS

model1results <- list(BiasVarTablekC = BiasVarTable.1,BiasVarTablekU = BiasVarTable.2,

EffTablekC = EffTable.1,EffTablekU = EffTable.2,

results = results,

resultsCDDkC = resultsCDD.1,resultsCDDkU = resultsCDD.2,

resultsClkC = resultsCl.1,resultsClkU = resultsCl.2,

resultsH3kC = resultsH3.1,resultsH30kU = resultsH30.2,

resultsUkC = resultsU.1,resultsUkU = resultsU.2)

saveRDS(model1results,file = paste("model",model,"results.rds",sep=""))

kaccept.R

#Finds the max value of k for which Ho: B2 = 0 is accepted for all sigmas inputted

#Inputs

#model = 1: Linear

#model = 2: quadratic
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#model = 3: MLR

#model = 1 or 2:

#X: nx2 matrix of vectors (1,x)

#model = 3:

#X: nx3 matrix of vectors (1,x1,x2)

#n: sample size

#N: Number of hypothesis tests

#sigma2vector: vector of sigma^2’s (variance) to find k for

#model 1: maxBplus is max true value of B2 to test

#model 2: maxBplus is max true value of B3 to test

#model 3: maxBplus is max true value of B12 to test

#step: amount to decrease from maxBplus by until k is found

#Output

#kresults: value of k for each sigma in sigmavector

kaccept <- function(X,sigma2vector,n,N,maxBplus,step,model){

B0 <- 1

B1 <- 1

B2 <- 1

if (model == 1){

X <- cbind(X,X[,2]^2)

}else if (model == 2){

X <- cbind(X,X[,2]^2,X[,2]^3)

}else if (model == 3){

X <- cbind(X,X[,2]*X[,3])

}

#Create results vector

kresults <- vector(mode="double",length = length(sigma2vector))

for (joe in 1:100){

print(joe)

#Count variable for inputting results

sigmacount <- 0

#Start looping through sigma^2 values

for (sigma2 in sigma2vector){

sigmacount <- sigmacount + 1

#Loop through k values starting large and working way down until H0 is accepted

for (k in seq(maxBplus,0,by=-step)){

#k is the true value of B2

Bplus <- k

#Responses for each N trial

accept <- vector(mode="double",length=N)
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#Loop through N hypothesis tests of this comb. of X,k and sigma

for (j in 1:N){

#Create y (response) vector

y <- vector(mode="double",length = n)

#Generate simulated data and values needed for hypothesis test based on model chosen

if (model == 1){

for (i in 1:n){

y[i] <- B0 + B1*X[i,2] + Bplus*X[i,3] + rnorm(1, mean = 0, sd = sqrt(sigma2))

}

Bhat <- solve(t(X)%*%X)%*%t(X)%*%y

CovB <- sigma2*solve(t(X)%*%X)

VarBplushat <- CovB[3,3]

Bplushat <- Bhat[3]

}else if (model == 2|model == 3){

for (i in 1:n){

y[i] <- B0 + B1*X[i,2] + B2*X[i,3] + Bplus*X[i,4] +

rnorm(1, mean = 0, sd = sqrt(sigma2))

}

Bhat <- solve(t(X)%*%X)%*%t(X)%*%y

CovB <- sigma2*solve(t(X)%*%X)

VarBplushat <- CovB[4,4]

Bplushat <- Bhat[4]

}

#If Ho is rejected, indicate with a 1

if (abs(Bplushat) <= 1.96*sqrt(VarBplushat)){

accept[j] <- 1

}

}

#Check if Ho was rejected less than 95% of times

#If so, we have found the max k value and exit loop

if (sum(accept) > 0.95*N){

kresults[sigmacount] <- kresults[sigmacount] + k

break

}

}

}

}

kresults <- kresults/100

return(kresults)

}

Optp.R

#Find optimal p values of clustered design for models:

#Inputs:
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#model = 1: Linear

#model = 2: quadratic

#model = 3: MLR ***n MUST be 36 for model = 3

#n: sample size

#N: Number of iterations (for estimating Bhat) to be submitted into MSEdesign function

#sigma2vector: vector of sigma^2’s (variance) to find p for

#kvector: vector of k’s found using kaccept.R function

#ktype: string for the saved-graph file name

Optp <- function(n,N,sigma2vector,kvector,model,ktype){

prange <- seq(0.05,0.95,by=0.01)

opt <- vector(mode="double",length = length(sigma2vector))

#Matrix for storing estimated MSE for each p for each sigma^2

pMSE <- matrix(0,nrow = length(prange), ncol = length(sigma2vector))

colnames(pMSE) <- c("0.01","0.05","0.1","0.2","0.5")

for (joe in 1:10){

print(joe)

for (j in 1:length(prange)){

p <- prange[j]

print(p)

#Set up clustered design matrix

if (model == 1|model == 4){

X <- cbind(rep(1,n),c(seq(-0.5,-0.5 + p/2,by=(p/2)/(n/2-1)),

seq(0.5 - p/2,0.5,by=(p/2)/(n/2-1))))

}else if (model == 2|model == 5){

X <- cbind(rep(1,n),c(seq(-0.5,-0.5+p/3,by = p/3/(n/3-1)),

seq(0-p/6,0+p/6,by = p/3/(n/3-1)),

seq(0.5-p/3,0.5,by = p/3/(n/3-1))))

}else if (model == 3|model == 6){

X <- cbind(rep(1,n),

c(rep(0.5,6),rep(0.5-0.25*sqrt(p),6),rep(0.5-0.5*sqrt(p),6),

rep(-0.5+0.5*sqrt(p),6),rep(-0.5+0.25*sqrt(p),6),rep(-0.5,6)),

rep(c(0.5,0.5-0.25*sqrt(p),0.5-0.5*sqrt(p),-0.5+0.5*sqrt(p),

-0.5+0.25*sqrt(p),-0.5),6)

)

}

#Estimate det(MSE) for each sigma^2 for this p

for (i in 1:length(sigma2vector)){

pMSE[j,i] <- pMSE[j,i] + MSEdesign(X,n,N,sigma2vector[i],kvector[i],model = model)[[1]]

}

}

}

pMSE <- pMSE/10

#Plots

for(i in 1:length(sigma2vector)){
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plot(prange,pMSE[,i],xlab = "p",ylab = "det(MSE(betahat))", pch = 19,col = "gray45",

main = paste("Model ",model,". sigma^2 =",sigma2vector[i],", k =",kvector[i]))

fhat <- ksmooth(prange,pMSE[,i],kernel = "normal", bandwidth = 0.15,

range.x = range(prange),n.points = 100, x.points = prange)

lines(fhat)

dev.copy(png,paste("model",model,"s",sigma2vector[i],ktype,".png",sep=""))

dev.off()

opt[i] <- fhat$x[which.min(fhat$y)]

}

return(opt)

}

Computexj.R

#Find xj for Huber’s implemented design

#Inputs:

#model = 1: Linear

#model = 2: quadratic

#model = 3: MLR

#m: number of distinct design points

#Output:

#design points

Computexj <- function(m,model){

if (model == 4){

model <- 1

}else if (model == 5){

model <- 2

}else if (model == 6){

model <- 3

}

#####LINEAR AND QUADRATIC INTEGRATION

if (model == 1|model == 2){

if (model == 1){

f <- function(x){

5.12*x^2 + 0.573

}

}else if (model == 2){

f <- function(x){

35.0934*((x^2-0.1487^2)*(x^2-0.1489^2)+0.0192)

}
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}

h <- 0.0001

xj <- vector(mode="double",length = m)

for(j in 1:m){

i <- -0.5

x <- 0

while(x < (j - 0.5)/m){

x <- integrate(f,-0.5,i)$value

i <- i + h

}

xj[j] <- i

}

#####MLR DOUBLE INTEGRATION

}else if (model == 3){

h <- 0.0001

xj <- matrix(NA,nrow = m,ncol = 2)

for(j in 1:(m/4)){

i <- -0.5

x <- 0

while(x < (j - 0.5)/m){

x <- integrate(function(y) {

sapply(y,function(y){

integrate(function(x){

sapply(x,function(x){181.02*pmax((x^2-0.2333^2+0.044)+(y^2-0.2333^2+0.044),0)} )

},-0.5,y)$value

})

},-0.5,i)$value

i <- i + h

}

xj[m - j + 1,] <- c(i,i)

}

#Solve for remaining design points using symmetry

if (m == 4){

xj[1,] <- c(-i,-i)

xj[2,] <- c(-i,i)

xj[3,] <- c(i,-i)

}else if (m > 4){

xj[1:(m/4),] <- apply(-xj[(3*m/4+1):m,],2,rev)

xj[(m/4+1):(2*m/4),] <- cbind(xj[1:(m/4),1],rev(xj[(3*m/4+1):m,2]))

xj[(2*m/4+1):(3*m/4),] <- cbind(xj[(3*m/4+1):m,1],rev(xj[1:(m/4),2]))

}

}

return(xj)

}

55



resultstable.R

#Makes results table for designs

#Inputs:

#Cldesign: boolean stating whether its for the cluster design (T) or not (F)

#If Cldesign is false pvector can be anything

#If Cldesign is true then X can be anything

#Other variables are the same as other functions

resultstable <- function(X,n,N,sigma2vector,kvector,Cldesign,pvector,model){

#####For linear model since table has less columns than model 2 or 3

if (model == 1|model == 4){

results <- matrix(NA,nrow = length(sigma2vector),ncol = 8)

colnames(results) <- c("Sigma^2","k","BiasBo","BiasB1","VarB0","VarB1",

"det(Cov)","det(MSE)")

results[,1] <- sigma2vector

results[,2] <- kvector

for (i in 1:length(sigma2vector)){

if (Cldesign == T){

p <- pvector[i]

X <- cbind(rep(1,n),c(seq(-0.5,-0.5 + p/2,by=(p/2)/(n/2-1)),

seq(0.5 - p/2,0.5,by=(p/2)/(n/2-1))))

}

design <- MSEdesign(X,n,N,sigma2 = sigma2vector[i],k = kvector[i],model = model)

results[i,3] <- design[[3]][[1]] #BiasB0

results[i,4] <- design[[3]][[2]] #BiasB1

results[i,5] <- design[[4]][[1]] #VarB0

results[i,6] <- design[[4]][[2]] #VarB1

results[i,7] <- design[[2]] #det(cov)

results[i,8] <- design[[1]] #det(MSE)

}

if (Cldesign == T){

results <- cbind(results,pvector)

colnames(results)[9] <- "p"

}

##### For quadratic and MLR models

}else if (model == 2|model == 3|model == 5|model == 6){

results <- matrix(0,nrow = length(sigma2vector),ncol = 10)

colnames(results) <- c("Sigma^2","k","BiasB0","BiasB1","BiasB2","VarB0","VarB1","VarB2",

"det(Cov)","det(MSE)")

results[,1] <- sigma2vector

results[,2] <- kvector

for (i in 1:length(sigma2vector)){

if (Cldesign == T){

p <- pvector[i]

if (model == 2|model == 5){

X <- cbind(rep(1,n),c(seq(-0.5,-0.5+p/3,by = p/3/(n/3-1)),

seq(0-p/6,0+p/6,by = p/3/(n/3-1)),

seq(0.5-p/3,0.5,by = p/3/(n/3-1))))
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}else if (model == 3|model == 6){

X <- cbind(rep(1,n),

c(rep(0.5,6),rep(0.5-0.25*sqrt(p),6),rep(0.5-0.5*sqrt(p),6),

rep(-0.5+0.5*sqrt(p),6),rep(-0.5+0.25*sqrt(p),6),rep(-0.5,6)),

rep(c(0.5,0.5-0.25*sqrt(p),0.5-0.5*sqrt(p),-0.5+0.5*sqrt(p),

-0.5+0.25*sqrt(p),-0.5),6) )

}

}

design <- MSEdesign(X,n,N,sigma2 = sigma2vector[i],k = kvector[i],model = model)

results[i,3] <- design[[3]][[1]] #BiasB0

results[i,4] <- design[[3]][[2]] #BiasB1

results[i,5] <- design[[3]][[3]] #BiasB2

results[i,6] <- design[[4]][[1]] #VarB0

results[i,7] <- design[[4]][[2]] #VarB1

results[i,8] <- design[[4]][[3]] #VarB2

results[i,9] <- design[[2]] #det(cov)

results[i,10] <- design[[1]] #det(MSE)

}

if (Cldesign == T){

results <- cbind(results,pvector)

colnames(results)[11] <- "p"

}

}

return(results)

}

MSEdesign.R

#Inputs

#model = 1: Linear

#model = 2: quadratic

#model = 3: MLR

#model = 1 or 2:

#X: nx2 matrix of vectors (1,x)

#model = 3:

#X: nx3 matrix of vectors (1,x1,x2)

#model = 4,5,6 are the same as 1,2,3 except with 3 missing true parameters in regression model

#n: sample size

#N: Number of iterations (for estimating Bhat)

#sigma2: Variance of ei’s

#model 1: k is true value of B2

#model 2: k is true value of B3

#model 3: k is true value of B12

#Outputs

#output: list containing biases, variances and determinants of interest

57



MSEdesign <- function(X,n,N,sigma2,k,model){

B0 <- 1

B1 <- 1

#####LINEAR MODEL

if (model == 1|model == 4){

BetaN <- matrix(0,N,2)

for (j in 1:N){

#Simulate residuals and y values

y <- vector(mode="double",length = n)

if (model == 1){

for (i in 1:n){

y[i] <- B0 + B1*X[i,2] + k*X[i,2]^2 + rnorm(1, mean = 0, sd = sqrt(sigma2))

}

}else if (model == 4){

for (i in 1:n){

y[i] <- B0 + B1*X[i,2] + k*(X[i,2]^2 + X[i,2]^3 + X[i,2]^4) +

rnorm(1, mean = 0, sd = sqrt(sigma2))

}

}

#Estimate Beta for each simulated dataset

BetaN[j,] <- solve(t(X)%*%X)%*%t(X)%*%y

}

#Compute MSE estimate

BiasB <- colMeans(BetaN) - c(1,1)

VarB <- c(var(BetaN[,1]),var(BetaN[,2]))

}

#####QUADRATIC AND MLR MODEL

if (model == 2|model == 3|model == 5|model == 6){

B2 <- 1

BetaN <- matrix(0,N,3)

if (model == 2|model == 5){

X <- cbind(X,X[,2]^2)

}

for (j in 1:N){

#Simulate residuals and y values

y <- vector(mode="double",length = n)

if (model == 2|model == 3){

for (i in 1:n){

#Note that this works for both quadratic model and MLR model

y[i] <- B0 + B1*X[i,2] + B2*X[i,3] + k*X[i,2]*X[i,3] +

rnorm(1, mean = 0, sd = sqrt(sigma2))

}
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}else if (model == 5){

for (i in 1:n){

y[i] <- 1 + X[i,2] + X[i,2]^2 + k*(X[i,2]^3 + X[i,2]^4 + X[i,2]^5) +

rnorm(1,mean=0,sd=sigma2)

}

}else if (model == 6){

for (i in 1:n){

y[i] <- 1 + X[i,2] + X[i,3] + k*(X[i,2]*X[i,3] + X[i,2]^2 + X[i,3]^2) +

rnorm(1,mean=0,sd=sigma2)

}

}

#Estimate Beta for each simulated dataset

BetaN[j,] <- solve(t(X)%*%X)%*%t(X)%*%y

}

#Compute bias and variances of beta

BiasB <- colMeans(BetaN) - c(1,1,1)

VarB <- c(var(BetaN[,1]),var(BetaN[,2]),var(BetaN[,3]))

}

####Compute Cov and MSE and determinants and output list of values

CovB <- sigma2*solve(t(X)%*%X)

#CovB <- cov(BetaN)

detCovB <- det(CovB)

MSEBhat <- CovB + BiasB%*%t(BiasB)

detMSEBhat <- det(MSEBhat)

output <- list(detMSEBhat,detCovB,BiasB,VarB)

return(output)

}

kL2.R

#Function kL2

#Function used to determine k values for model 4,5,6 (linear, quadratic, MLR where

#there are 3 missing true parameters)

kL2 <- function(n,sigma2vector,maxk,model){

kresults <- vector(mode="double",length = length(sigma2vector))

for (i in 1:length(sigma2vector)){

sigma2 <- sigma2vector[i]

print(sigma2)

#eta2 - boundary condition
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eta2 <- sigma2/n

if (model == 1|model == 4){

for (k in seq(maxk,0,by=-0.00001)){

Betahat <- vector(mode="double",length = 2)

Betahat[1] <- 1 + 2*k*(0.5^3/3 + 0.5^5/5)

Betahat[2] <- 1 + 3*k*0.5^2/5

#integrate until integral is less than eta2

integral <- integrate(function(x){

(1 + x + k*(x^2 + x^3 + x^4) - Betahat[1] - Betahat[2]*x)^2

},lower = -0.5,upper = 0.5)[[1]]

val <- (1 + 0.75 + k*(0.75^2 + 0.75^3 + 0.75^4) - Betahat[1] - Betahat[2]*0.75)^2

if (integral < eta2 && val < eta2){

break

}

}

}else if (model == 2|model == 5){

for (k in seq(maxk,0,by=-0.00001)){

Betahat <- vector(mode = "double",length = 3)

Betahat[1] <- -0.5^2/3*(1+k*0.5^2*(1/5 - 3/7)/(1/3 - 3/5)) + 1 + 0.5^2/3 + k*0.5^4/5

Betahat[2] <- 1 + 3*k*(0.5^2/5 + 0.5^4/7)

Betahat[3] <- 1 + k*0.5^2*(1/5 - 3/7)/(1/3 - 3/5)

#integrate until integral is less than eta2

integral <- integrate(function(x){

(1 + x + x^2 + k*(x^3 + x^4 + x^5) - Betahat[1] - Betahat[2]*x - Betahat[3]*x^2)^2

},lower = -0.5,upper = 0.5)[[1]]

if (integral < eta2){

break

}

}

}else if (model == 3|model == 6){

for (k in seq(maxk,0,by=-0.00001)){

Betahat <- vector(mode= "double",length = 3)

Betahat[1] <- 1 + 2*k*0.5^2/3

Betahat[2] <- 1

Betahat[3] <- 1

#integrate until integral is less than eta2

integral <- integrate(function(y) {

sapply(y,function(y){

integrate(function(x){

sapply(x,function(x){
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(1 + x + y + k*(x*y + x^2 + y^2) - Betahat[1] - Betahat[2]*x - Betahat[3]*y)^2

})

},-0.5,0.5)$value

})

},-0.5,0.5)$value

if (integral < eta2){

break

}

}

}

kresults[i] <- round(k,4)

}

return(kresults)

}

Extrapolation Codes

RunEP.R

#Source code to run Extrapolation.R for the different models and x0’s

#Values of n for each scenario:

#Model 1: x0 = 0.75 -> n = 30, x0 = 2.5 -> n = 30

#Model 2: x0 = 0.75 -> n = 28, x0 = 2.5 -> n = 49

library(xtable)

setwd(’C:/Users/dburm/Desktop/School/MATH 4F90/’)

source(’EPfunctions.R’)

n <- 30

N <- 50000

sigma2vector <- c(0.01,0.05,0.1,0.2,0.5)

#MODEL 1

model <- 1

x0 <- 0.75

source(’Extrapolation.R’,echo=T)

x0 <- 2.5

source(’Extrapolation.R’,echo=T)

#MODEL 2

model <- 2

n <- 28

x0 <- 0.75

source(’Extrapolation.R’,echo=T)
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n <- 49

x0 <- 2.5

source(’Extrapolation.R’,echo=T)

Extrapolation.R

#***For every function except kL2.R, for model 2 k3 and k4 still use variable names

k2 and k3 respectively

#(Or k3vector and k4vector have variable names k2vector and k3vector respectively) for

simplicity of code

#Determine k and optimal p

results <- matrix(NA,nrow = length(sigma2vector),ncol = 6+model)

if (model == 1){

colnames(results) <- c("sigma2","sigma2/n","beta0","beta1","k2","k3","p")

}else if (model == 2){

colnames(results) <- c("sigma2","sigma2/n","beta0","beta1","beta2","k3","k4","p")

}

results[,1] <- sigma2vector

results[,2] <- sigma2vector/n

if (model == 1){

results[,3:6] <- kL2(x0,model)

}else if (model == 2){

results[,3:7] <- kL2(x0,model)

}

results[,6+model] <- Optp(n,N=100,x0,sigma2vector,k2vector = results[,4+model],

k3vector = results[,5+model],model = model)

#results[,6+model] <- c(0.05,0.05,0.05,0.05,0.05)

#Classical (HL) design results table

X <- HLdesign(n,x0,model = model)

resultsHL <- resultstable(X,n,N,x0,kresults = results,Clust=F,model = model)

#WX design (Huber’s implemented)

X <- WXdesign(n,x0,m = n,model = model)

resultsWX <- resultstable(X,n,N,x0,kresults = results,Clust=F,model = model)

#Clustered design results table

resultsCl <- resultstable(X=F,n,N,x0,kresults = results,Clust=T,model = model)

#Uniform design results table

X <- cbind(rep(1,n),seq(-0.5,0.5,by=1/(n-1)))

if (model == 2){

X <- cbind(X,X[,2]^2)

}
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resultsU <- resultstable(X,n,N,x0,kresults = results,Clust=F,model = model)

#analysis table

comparisontable <- matrix(NA,nrow = length(sigma2vector)*5,ncol = 4)

colnames(comparisontable) <- c("Bias","Var","MSE","RE")

for (i in 1:length(sigma2vector)){

comparisontable[5*(i-1)+1, 1:4] <- c(results[i,c(1,4+model,5+model,6+model)]) #sigma,k2,k3,p

comparisontable[5*(i-1)+2, 1:4] <- c(resultsCl[i,c(4,5,6)],NA)

comparisontable[5*(i-1)+3, 1:4] <- c(resultsHL[i,c(4,5,6)],resultsHL[i,6]/resultsCl[i,6])

comparisontable[5*(i-1)+4, 1:4] <- c(resultsWX[i,c(4,5,6)],resultsWX[i,6]/resultsCl[i,6])

comparisontable[5*(i-1)+5, 1:4] <- c(resultsU[i,c(4,5,6)],resultsU[i,6]/resultsCl[i,6])

}

#Save rds file

EPresults <- list(results = results,

resultsHL = resultsHL,

resultsCl = resultsCl,

resultsWX = resultsWX,

resultsU = resultsU,

comparisontable = comparisontable)

saveRDS(EPresults,file = paste("model",model,"EPx0_",x0,"results.rds",sep=""))

EPfunctions.R

#All functions used in Extrapolation simulation

#####Calculate MSE’s and bias, variance for designs

MSEextrapolation <- function(n,N,X,x0,sigma2,k2,k3,model){

if (model == 1){

f <- function(x,k2,k3){1 + x + k2*x^2 + k3*x^3}

}else if (model == 2){

f <- function(x,k2,k3){1 + x + x^2 + k2*x^3 + k3*x^4}

}

#Vector for N extrapolations at x0

yhat <- vector(mode = "double",length = N)

if (model == 1){

betahat <- matrix(NA,ncol = N,nrow = 2)

}else if (model == 2){

betahat <- matrix(NA,ncol = N,nrow = 3)

}

for (j in 1:N){

#Sample data

y <- vector(mode="double",length = n)

for (i in 1:n){

y[i] <- f(X[i,2],k2,k3) + rnorm(1,0,sd = sigma2)
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}

#Estimate parameters

Beta <- solve(t(X)%*%X)%*%t(X)%*%y

#Estimate extrapolation

if (model == 1){

yhat[j] <- Beta[1] + Beta[2]*x0

}else if (model == 2){

yhat[j] <- Beta[1] + Beta[2]*x0 + Beta[3]*x0^2

}

betahat[,j] <- Beta

}

#Extrapolation Bias, Variance and MSE

if (model == 1){

#Asymptotic formulas

bias <- c(1,x0)%*%solve(t(X)%*%X)%*%t(X)%*%f(X[,2],k2,k3) - f(x0,k2,k3)

variance <- c(1,x0)%*%solve(t(X)%*%X)%*%c(1,x0)*sigma2

# #Simulated formulas

# bias <- mean(yhat) - f(x0,k2,k3)

# variance <- var(yhat)

}else if (model == 2){

#Asymptotic formulas

bias <- c(1,x0,x0^2)%*%solve(t(X)%*%X)%*%t(X)%*%f(X[,2],k2,k3) - f(x0,k2,k3)

variance <- c(1,x0,x0^2)%*%solve(t(X)%*%X)%*%c(1,x0,x0^2)*sigma2

# #Simulated formulas

# bias <- mean(yhat) - f(x0,k2,k3)

# variance <- var(yhat)

}

MSE <- variance + bias^2

betahat <- rowMeans(betahat)

return(c(bias,variance,MSE,betahat))

}

#####Creates design matrix according to HL design

HLdesign <- function(n,x0,model){

if (model == 1){

x02 <- 2*x0

w <- c((x02-1)/(2*x02),(x02+1)/(2*x02))

xi <- c(rep(-0.5,n*w[1]),rep(0.5,n*w[2]))

}else if (model == 2){

x02 <- 2*x0

w <- c(x02*(x02-1)/(2*(2*x02^2 - 1)),

(x02-1)*(x02+1)/(2*x02^2 - 1),

x02*(x02+1)/(2*(2*x02^2 - 1)))

xi <- c(rep(-0.5,n*w[1]),rep(0,n*w[2]),rep(0.5,n*w[3]))

}

if (model == 1){
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X <- cbind(rep(1,n),xi)

}else if (model == 2){

X <- cbind(rep(1,n),xi,xi^2)

}

return(X)

}

#####Creates design matrix according to WX design

WXdesign <- function(n,x0,m,model){

if (model == 1){

if (x0 == 0.75){

a1 <- 14.06

a2 <- 3.18

a3 <- 11.23

a4 <- 1

a5 <- -16.52

a6 <- 0.0032

}else if (x0 == 2.5){

a1 <- 148.64

a2 <- 9.73

a3 <- 80.38

a4 <- 1

a5 <- -525.93

a6 <- 0.000122

}

f <- function(x){

pmax(((a1*x*2 + a2)*(a3*x*2 + a4) + a5),0)/((a3*x*2 + a4)^2 + a6*(a3*x*2 + a4)^4)

}

totint <- integrate(f,-0.5,0.5)$value

f <- function(x){

(pmax(((a1*x*2 + a2)*(a3*x*2 + a4) + a5),0)/((a3*x*2 + a4)^2 + a6*(a3*x*2 + a4)^4))/totint

}

}else if (model == 2){

if (x0 == 0.75){

b0 <- 1.23

b1 <- -0.858

b2 <- -4.10

a0 <- 1

a1 <- -0.0710

a2 <- -2.17

c <- -0.396

d <- 0.627

}else if (x0 == 2.5){

b0 <- 1.69

b1 <- -0.255

b2 <- -5.01

a0 <- 1

a1 <- -0.0079

a2 <- -2.11
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c <- -0.482

d <- 0.949

}

f <- function(x){

pmax((a0 + a1*x*2 + a2*x^2*4)*(b0 + b1*x*2 + b2*x^2*4) + c,0)/

((a0 + a1*x*2 + a2*x^2*4)^2 + d*(a0 + a1*x*2 + a2*x^2*4)^4)

}

totint <- integrate(f,-0.5,0.5)$value

f <- function(x){

pmax((a0 + a1*x*2 + a2*x^2*4)*(b0 + b1*x*2 + b2*x^2*4) + c,0)/

((a0 + a1*x*2 + a2*x^2*4)^2 + d*(a0 + a1*x*2 + a2*x^2*4)^4)/totint

}

}

#integrate until Huber’s equation is satisfied

h <- 0.0001

xj <- vector(mode="double",length = m)

for(j in 1:m){

i <- -0.5

val <- 0

while(val < (j - 0.5)/m){

val <- integrate(f,-0.5,i)$value

i <- i + h

}

xj[j] <- i

}

if (model == 1){

X <- cbind(rep(1,n),xj)

}else if (model == 2){

X <- cbind(rep(1,n),xj,xj^2)

}

return(X)

}

#####Clustered Design for extrapolation

Cldesign <- function(n,x0,p,model){

if (model == 1){

x02 <- 2*x0

w <- c((x02-1)/(2*x02),(x02+1)/(2*x02))

xi <- c(seq(-0.5,-0.5+p/2,by = (p/2)/(n*w[1] - 1)),

seq(0.5-p/2,0.5, by = (p/2)/(n*w[2] - 1)))

}else if (model == 2){

x02 <- 2*x0

w <- c(x02*(x02-1)/(2*(2*x02^2 - 1)),

(x02-1)*(x02+1)/(2*x02^2 - 1),

x02*(x02+1)/(2*(2*x02^2 - 1)))

xi <- c(seq(-0.5,-0.5+p/3,by = (p/3)/(n*w[1] - 1)),

seq(-p/6,p/6,by = (p/3)/(n*w[2] - 1)),
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seq(0.5-p/3,0.5,by = (p/3)/(n*w[3] - 1)))

}

if (model == 1){

X <- cbind(rep(1,n),xi)

}else if (model == 2){

X <- cbind(rep(1,n),xi,xi^2)

}

return(X)

}

#####Find optimal p for extrapolation

Optp <- function(n,N,x0,sigma2vector,k2vector,k3vector,model){

prange <- seq(0.05,0.95,by=0.01)

opt <- vector(mode="double",length = length(sigma2vector))

#Matrix for storing estimated MSE for each p for each sigma^2

pMSE <- matrix(0,nrow = length(prange), ncol = length(sigma2vector))

colnames(pMSE) <- c("0.01","0.05","0.1","0.2","0.5")

for (joe in 1:10){

print(joe)

for (j in 1:length(prange)){

p <- prange[j]

X <- Cldesign(n,x0,p,model)

#Estimate det(MSE) for each sigma^2 for this p

for (i in 1:length(sigma2vector)){

pMSE[j,i] <- pMSE[j,i] + MSEextrapolation(n,N,X,x0,sigma2vector[i],k2vector[i],

k3vector[i],model = model)[[3]]

#pMSE[j,i] <- pMSE[j,i] + MSEextrapolation(n,N,X,x0,sigma2vector[i],k2vector[i],

k3vector[i],model = model)[[1]]

}

}

}

pMSE <- pMSE/10

#Plots

for(i in 1:length(sigma2vector)){

#Code for printing plots

if (model == 1){

plot(prange,pMSE[,i],xlab = "p",ylab = "MSE(yhat(x0))", pch = 19,col = "gray45",

main = paste("Model ",model,". sigma^2 =",sigma2vector[i],"\nk2 =",k2vector[i],

", k3 =",k3vector[i],sep = ""))

}else if (model == 2){

plot(prange,pMSE[,i],xlab = "p",ylab = "MSE(yhat(x0))", pch = 19,col = "gray45",

main = paste("Model ",model,". sigma^2 =",sigma2vector[i],"\nk3 =",k2vector[i],

", k4 =",k3vector[i],sep = ""))

}
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fhat <- ksmooth(prange,pMSE[,i],kernel = "normal", bandwidth = 0.15,

range.x = range(prange),n.points = 100, x.points = prange)

#Code for saving plots

lines(fhat)

dev.copy(png,paste("model",model,"s",sigma2vector[i],"x0_",x0,"EP.png",sep=""))

dev.off()

opt[i] <- fhat$x[which.min(fhat$y)]

}

return(opt)

}

#####Results tables function

resultstable <- function(X,n,N,x0,kresults,Clust,model){

sigma2vector <- kresults[,1]

k2vector <- kresults[,4+model]

k3vector <- kresults[,5+model]

pvector <- kresults[,6+model]

results <- matrix(NA,nrow = length(sigma2vector),ncol = 6)

if (model == 1){

colnames(results) <- c("Sigma^2","k2","k3","EBias","EVariance","EMSE")

}else if (model == 2){

colnames(results) <- c("Sigma^2","k3","k4","EBias","EVariance","EMSE")

}

results[,1] <- sigma2vector

results[,2] <- k2vector

results[,3] <- k3vector

for (i in 1:length(sigma2vector)){

if (Clust == T){

p <- pvector[i]

X <- Cldesign(n,x0,p,model)

}

design <- MSEextrapolation(n,N,X,x0,sigma2 = sigma2vector[i],k2 = k2vector[i],

k3 = k3vector[i],model = model)

results[i,4] <- design[[1]] #EBias

results[i,5] <- design[[2]] #EVariance

results[i,6] <- design[[3]] #EMSE

}

if (Clust == T){

results <- cbind(results,pvector)

colnames(results)[7] <- "p"

}

return(results)

}

#####The following results were obtained in Maple
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kL2 <- function(x0,model,sigma2vector,n,maxk){

values <- matrix(NA,nrow = 5,ncol = 3+model)

if (model == 1){

if (x0 == 0.75){ #Second extrapolation bias condition

values[,1] <- c(1.0198,1.0443,1.0626,1.0885,1.1399) #beta0

values[,2] <- c(0.9645,0.9206,0.8877,0.8412,0.7489) #beta1

values[,3] <- c(0.2375,0.5310,0.7510,1.0621,1.6793) #k2

values[,4] <- c(-0.2367,-0.5293,-0.7485,-1.0586,-1.6738) #k3

}else if (x0 == 2.5){

values[,1] <- c(1.0021,1.0040,1.0066,1.0093,1.0140) #beta0

values[,2] <- c(0.9982,0.9963,0.9943,0.9924,0.9874) #beta1

values[,3] <- c(0.025,0.048,0.079,0.111,0.168) #k2

values[,4] <- c(-0.012,-0.025,-0.038,-0.051,-0.084) #k3

}

}else if (model == 2){

if (x0 == 0.75){ #Second extrapolation bias condition

values[,1] <- c(0.9901,0.9778,0.9686,0.9556,0.9298) #beta0

values[,2] <- c(0.8674,0.7034,0.5806,0.4069,0.0622) #beta1

values[,3] <- c(1.3972,1.8883,2.2562,2.7765,3.8089) #beta2

values[,4] <- c(-0.8842,-1.9771,-2.7961,-3.9543,-6.2522) #k3

values[,5] <- c(1.8538,4.1452,5.8622,8.2904,13.1083) #k4

}else if (x0 == 2.5){

values[,1] <- c(1.0000,1.0000,1.0001,1.0001,1.0002) #beta0

values[,2] <- c(1.0005,1.0033,1.0053,1.0080,1.0122) #beta1

values[,3] <- c(0.9996,0.9981,0.9964,0.9951,0.9916) #beta2

values[,4] <- c(0.003,0.022,0.035,0.053,0.081) #k3

values[,5] <- c(-0.002,-0.009,-0.017,-0.023,-0.039) #k4

}

}

return(values)

}

2.5kvalsmodel1.R

rm(list=ls())

cat(’\f’)

sigma2vector <- c(0.01,0.05,0.1,0.2,0.5)

x0 <- 2.5

n <- 30

kresults <- matrix(NA,nrow = 8,ncol = 5)

colnames(kresults) <- c("0.01","0.05","0.1","0.2","0.5")

rownames(kresults) <- c("beta0","beta1","k2","k3","er1","er2","er1+er2","sigma2/n")
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kmin <- 0.001

kmax <- 2

kby <- kmin

######er1 only

for (j in 1:length(sigma2vector)){

sigma <- sqrt(sigma2vector[j])

print(sigma2vector[j])

#table for error results for each k2,k3

table <- matrix(NA,nrow = length(seq(-kmax,kmax,by = kby)),ncol = 5)

colnames(table) <- c("k2","k3","er1=eta2-intS","er2=eta2-intExtrap","er1+er2")

table[,2] <- sort(seq(-kmax,kmax,by = kby))

for (i in 1:nrow(table)){

#Ignore cases with imaginary solutions

if (is.na( (5.353955978*10^(-10)*(-3.845*10^9*table[i,2]*n +

sqrt(-4.291584153*10^17*table[i,2]^2*n^2 + 1.867777778*10^17*n*sigma^2)))/n) == T){

table[i,1] <- NA

table[i,3] <- NA

table[i,4] <- NA

table[i,5] <- NA

}else{

#k2 values

table[i,1] <- (5.353955978*10^(-10)*(-3.845*10^9*table[i,2]*n +

sqrt(-4.291584153*10^17*table[i,2]^2*n^2 + 1.867777778*10^17*n*sigma^2)))/n

#define function given k2,k3

beta0 <- 1 + table[i,1]/12

beta1 <- 1 + 3*table[i,2]/20

f <- function(x){(1 + x + table[i,1]*x^2 + table[i,2]*x^3 - beta0 - beta1*x)^2}

#compute errors and sum of errors

table[i,3] <- sigma^2/n - integrate(f,-0.5,0.5)$value

table[i,4] <- sigma^2/n - integrate(f,0.5,x0)$value

table[i,5] <- table[i,3] + table[i,4]

}

}

table2 <- table[is.na(table[,1])==F,]

table2 <- table2[table2[,3]>=0,]

if (nrow(table2) == 0){

print(paste("sigma2 = ",sigma^2," - no valid solutions"))

}else{

kresults[3,j] <- table2[which.min(table2[,3]),1]

kresults[4,j] <- table2[which.min(table2[,3]),2]

kresults[1,j] <- 1 + kresults[3,j]/12

kresults[2,j] <- 1 + 3*kresults[4,j]/20

#Errors
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f <- function(x){(1 + x + kresults[3,j]*x^2 + kresults[4,j]*x^3 - kresults[1,j] -

kresults[2,j]*x)^2}

kresults[5,j] <- sigma^2/n - integrate(f,-0.5,0.5)$value

kresults[6,j] <- sigma^2/n - integrate(f,0.5,x0)$value

kresults[7,j] <- kresults[5,j] + kresults[6,j]

kresults[8,j] <- sigma^2/n

}

}

######er2 only

for (j in 1:length(sigma2vector)){

sigma <- sqrt(sigma2vector[j])

print(sigma2vector[j])

#table for error results for each k2,k3

table <- matrix(NA,nrow = length(seq(-kmax,kmax,by = kby)),ncol = 5)

colnames(table) <- c("k2","k3","er1=eta2-intS","er2=eta2-intExtrap","er1+er2")

table[,2] <- sort(seq(-kmax,kmax,by = kby))

for (i in 1:nrow(table)){

#Ignore cases with imaginary solutions

if (is.na(3*sqrt(-35*n*(n*table[i,2]^2 - 2800*sigma^2))/(70*n)) == T){

table[i,1] <- NA

table[i,3] <- NA

table[i,4] <- NA

table[i,5] <- NA

}else{

#k2 values

table[i,1] <- 3*sqrt(-35*n*(n*table[i,2]^2 - 2800*sigma^2))/(70*n)

#define function given k2,k3

beta0 <- 1 + table[i,1]/12

beta1 <- 1 + 3*table[i,2]/20

f <- function(x){(1 + x + table[i,1]*x^2 + table[i,2]*x^3 - beta0 - beta1*x)^2}

#compute errors and sum of errors

table[i,3] <- sigma^2/n - integrate(f,-0.5,0.5)$value

table[i,4] <- sigma^2/n - integrate(f,0.5,x0)$value

table[i,5] <- table[i,3] + table[i,4]

}

}

table2 <- table[is.na(table[,1])==F,]

table2 <- table2[table2[,4]>=0,]

if (nrow(table2) == 0){

print(paste("sigma2 = ",sigma^2," - no valid solutions"))

}else{
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kresults[3,j] <- table2[which.min(table2[,4]),1]

kresults[4,j] <- table2[which.min(table2[,4]),2]

kresults[1,j] <- 1 + kresults[3,j]/12

kresults[2,j] <- 1 + 3*kresults[4,j]/20

#Errors

f <- function(x){(1 + x + kresults[3,j]*x^2 + kresults[4,j]*x^3 - kresults[1,j] -

kresults[2,j]*x)^2}

kresults[5,j] <- sigma^2/n - integrate(f,-0.5,0.5)$value

kresults[6,j] <- sigma^2/n - integrate(f,0.5,x0)$value

kresults[7,j] <- kresults[5,j] + kresults[6,j]

kresults[8,j] <- sigma^2/n

}

}

######er1 + er2

for (j in 1:length(sigma2vector)){

ktot <- length(seq(kmin,kmax,by = kby))

sigma <- sqrt(sigma2vector[j])

print(sigma2vector[j])

#table for error results for each k2,k3

table <- matrix(NA,nrow = ktot^2,ncol = 5)

colnames(table) <- c("k2","k3","er1=eta2-intS","er2=eta2-intExtrap","er1+er2")

table[,1:2] <- cbind(sort(rep(seq(kmin,kmax,by = kby),ktot)),

rep(seq(-kmin,-kmax,by = -kby),ktot))

#compute errors for each combination of k2,k3

for (i in 1:nrow(table)){

#define function given k2,k3

beta0 <- 1 + table[i,1]/12

beta1 <- 1 + 3*table[i,2]/20

f <- function(x){(1 + x + table[i,1]*x^2 + table[i,2]*x^3 - beta0 - beta1*x)^2}

#compute errors and sum of errors

table[i,3] <- sigma^2/n - integrate(f,-0.5,0.5)$value

table[i,4] <- sigma^2/n - integrate(f,0.5,x0)$value

table[i,5] <- table[i,3] + table[i,4]

}

#remove negative errors

table2 <- table[table[,3]>=0,]

table2 <- table2[table2[,4]>=0,]

#record results for sigma

kresults[3,j] <- table2[which.min(table2[,5]),1]

kresults[4,j] <- table2[which.min(table2[,5]),2]

kresults[1,j] <- 1 + kresults[3,j]/12
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kresults[2,j] <- 1 + 3*kresults[4,j]/20

#Errors

f <- function(x){(1 + x + kresults[3,j]*x^2 + kresults[4,j]*x^3 - kresults[1,j] -

kresults[2,j]*x)^2}

kresults[5,j] <- sigma^2/n - integrate(f,-0.5,0.5)$value

kresults[6,j] <- sigma^2/n - integrate(f,0.5,x0)$value

kresults[7,j] <- kresults[5,j] + kresults[6,j]

kresults[8,j] <- sigma^2/n

}

kresults <- round(kresults,digits = 6)

2.5kvalsmodel2.R

rm(list=ls())

cat(’\f’)

sigma2vector <- c(0.01,0.05,0.1,0.2,0.5)

x0 <- 2.5

n <- 49

kresults <- matrix(NA,nrow = 9,ncol = 5)

colnames(kresults) <- c("0.01","0.05","0.1","0.2","0.5")

rownames(kresults) <- c("beta0","beta1","beta2","k3","k4","er1","er2","er1+er2","sigma2/n")

kmin <- 0.001

kmax <- 3

kby <- kmin

######er1 only

for (j in 1:length(sigma2vector)){

sigma <- sqrt(sigma2vector[j])

print(sigma2vector[j])

#table for error results for each k2,k3

table <- matrix(NA,nrow = length(seq(-kmax,kmax,by = kby)),ncol = 5)

colnames(table) <- c("k3","k4","er1=eta2-intS","er2=eta2-intExtrap","er1+er2")

table[,2] <- sort(seq(-kmax,kmax,by = kby))

for (i in 1:nrow(table)){

#Ignore cases with imaginary solutions

if (is.na( (1.227736317*10^(-10)*(-1.762757143*10^10*table[i,2]*n +

sqrt(-4.956216559*10^18*table[i,2]^2*n^2 + 8.145071429*10^17*n*sigma^2)))/n) == T){

table[i,1] <- NA

table[i,3] <- NA

table[i,4] <- NA
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table[i,5] <- NA

}else{

#k3 values

table[i,1] <- (1.227736317*10^(-10)*(-1.762757143*10^10*table[i,2]*n +

sqrt(-4.956216559*10^18*table[i,2]^2*n^2 + 8.145071429*10^17*n*sigma^2)))/n

#define function given k3,k4

beta2 <- 1 + 3*table[i,2]/14

beta0 <- 13/12 + table[i,2]/80 - beta2/12

beta1 <- 1 + 3*table[i,1]/20

f <- function(x){(1 + x + x^2 + table[i,1]*x^3 + table[i,2]*x^4 - beta0 - beta1*x -

beta2*x^2)^2}

#compute errors and sum of errors

table[i,3] <- sigma^2/n - integrate(f,-0.5,0.5)$value

table[i,4] <- sigma^2/n - integrate(f,0.5,x0)$value

table[i,5] <- table[i,3] + table[i,4]

}

}

table2 <- table[is.na(table[,1])==F,]

table2 <- table2[table2[,3]>=0,]

if (nrow(table2) == 0){

print(paste("sigma2 = ",sigma^2," - no valid solutions"))

}else{

kresults[4,j] <- table2[which.min(table2[,3]),1] #k3

kresults[5,j] <- table2[which.min(table2[,3]),2] #k4

kresults[3,j] <- 1 + 3*kresults[5,j]/14 #beta2

kresults[1,j] <- 13/12 + kresults[5,j]/80 - kresults[3,j]/12 #beta0

kresults[2,j] <- 1 + 3*kresults[4,j]/20 #beta1

#Errors

f <- function(x){(1 + x + x^2 + kresults[4,j]*x^3 + kresults[5,j]*x^4 - kresults[1,j] -

kresults[2,j]*x - kresults[3,j]*x^2)^2}

kresults[6,j] <- sigma^2/n - integrate(f,-0.5,0.5)$value

kresults[7,j] <- sigma^2/n - integrate(f,0.5,x0)$value

kresults[8,j] <- kresults[6,j] + kresults[7,j]

kresults[9,j] <- sigma^2/n

}

}

######er2 only

for (j in 1:length(sigma2vector)){

sigma <- sqrt(sigma2vector[j])

print(sigma2vector[j])

#table for error results for each k2,k3

table <- matrix(NA,nrow = length(seq(-kmax,kmax,by = kby)),ncol = 5)
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colnames(table) <- c("k3","k4","er1=eta2-intS","er2=eta2-intExtrap","er1+er2")

table[,2] <- sort(seq(-kmax,kmax,by = kby))

for (i in 1:nrow(table)){

#Ignore cases with imaginary solutions

if (is.na( 2*sqrt(-7*n*(table[i,2]^2*n - 44100*sigma^2))/(21*n)) == T){

table[i,1] <- NA

table[i,3] <- NA

table[i,4] <- NA

table[i,5] <- NA

}else{

#k3 values

table[i,1] <- 2*sqrt(-7*n*(table[i,2]^2*n - 44100*sigma^2))/(21*n)

#define function given k3,k4

beta2 <- 1 + 3*table[i,2]/14

beta0 <- 13/12 + table[i,2]/80 - beta2/12

beta1 <- 1 + 3*table[i,1]/20

f <- function(x){(1 + x + x^2 + table[i,1]*x^3 + table[i,2]*x^4 - beta0 - beta1*x -

beta2*x^2)^2}

#compute errors and sum of errors

table[i,3] <- sigma^2/n - integrate(f,-0.5,0.5)$value

table[i,4] <- sigma^2/n - integrate(f,0.5,x0)$value

table[i,5] <- table[i,3] + table[i,4]

}

}

table2 <- table[is.na(table[,1])==F,]

table2 <- table2[table2[,4]>=0,]

if (nrow(table2) == 0){

print(paste("sigma2 = ",sigma^2," - no valid solutions"))

}else{

kresults[4,j] <- table2[which.min(table2[,4]),1] #k3

kresults[5,j] <- table2[which.min(table2[,4]),2] #k4

kresults[3,j] <- 1 + 3*kresults[5,j]/14 #beta2

kresults[1,j] <- 13/12 + kresults[5,j]/80 - kresults[3,j]/12 #beta0

kresults[2,j] <- 1 + 3*kresults[4,j]/20 #beta1

#Errors

f <- function(x){(1 + x + x^2 + kresults[4,j]*x^3 + kresults[5,j]*x^4 - kresults[1,j] -

kresults[2,j]*x - kresults[3,j]*x^2)^2}

kresults[6,j] <- sigma^2/n - integrate(f,-0.5,0.5)$value

kresults[7,j] <- sigma^2/n - integrate(f,0.5,x0)$value

kresults[8,j] <- kresults[6,j] + kresults[7,j]

kresults[9,j] <- sigma^2/n

}

}

75



######er1 + er2

for (j in 1:length(sigma2vector)){

ktot <- length(seq(kmin,kmax,by = kby))

sigma <- sqrt(sigma2vector[j])

print(sigma2vector[j])

#table for error results for each k2,k3

table <- matrix(NA,nrow = ktot^2,ncol = 5)

colnames(table) <- c("k3","k4","er1=eta2-intS","er2=eta2-intExtrap","er1+er2")

table[,1:2] <- cbind(sort(rep(seq(kmin,kmax,by = kby),ktot)),

rep(seq(-kmin,-kmax,by = -kby),ktot))

for (i in 1:nrow(table)){

#define function given k3,k4

beta2 <- 1 + 3*table[i,2]/14

beta0 <- 13/12 + table[i,2]/80 - beta2/12

beta1 <- 1 + 3*table[i,1]/20

f <- function(x){(1 + x + x^2 + table[i,1]*x^3 + table[i,2]*x^4 - beta0 - beta1*x -

beta2*x^2)^2}

#compute errors and sum of errors

table[i,3] <- sigma^2/n - integrate(f,-0.5,0.5)$value

table[i,4] <- sigma^2/n - integrate(f,0.5,x0)$value

table[i,5] <- table[i,3] + table[i,4]

}

#remove negative errors

table2 <- table[table[,3]>=0,]

table2 <- table2[table2[,4]>=0,]

kresults[4,j] <- table2[which.min(table2[,5]),1] #k3

kresults[5,j] <- table2[which.min(table2[,5]),2] #k4

kresults[3,j] <- 1 + 3*kresults[5,j]/14 #beta2

kresults[1,j] <- 13/12 + kresults[5,j]/80 - kresults[3,j]/12 #beta0

kresults[2,j] <- 1 + 3*kresults[4,j]/20 #beta1

#Errors

f <- function(x){(1 + x + x^2 + kresults[4,j]*x^3 + kresults[5,j]*x^4 - kresults[1,j] -

kresults[2,j]*x - kresults[3,j]*x^2)^2}

kresults[6,j] <- sigma^2/n - integrate(f,-0.5,0.5)$value

kresults[7,j] <- sigma^2/n - integrate(f,0.5,x0)$value

kresults[8,j] <- kresults[6,j] + kresults[7,j]

kresults[9,j] <- sigma^2/n

}
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kresults <- round(kresults,digits = 6)

CIrun.R

#Source code for running CIcomparison.R for all models and x0’s

library(xtable)

setwd(’C:/Users/dburm/Desktop/School/MATH 4F90/’)

source(’EPfunctions.R’)

source(’CIfunction.R’)

N <- 50000

sigma2vector <- c(0.01,0.05,0.1,0.2,0.5)

model <- 1

n <- 30

x0 <- 0.75

rdsfile <- readRDS(’rds files/model1EPx0_0.75results.rds’)

results <- rdsfile$results

source(’CIcomparison.R’,echo=T)

x0 <- 2.5

rdsfile <- readRDS(’rds files/model1EPx0_2.5results.rds’)

results <- rdsfile$results

source(’CIcomparison.R’,echo=T)

model <- 2

n <- 28

x0 <- 0.75

rdsfile <- readRDS(’rds files/model2EPx0_0.75results.rds’)

results <- rdsfile$results

source(’CIcomparison.R’,echo=T)

n <- 49

x0 <- 2.5

rdsfile <- readRDS(’rds files/model2EPx0_2.5results.rds’)

results <- rdsfile$results

source(’CIcomparison.R’,echo=T)

CIcomparison.R

#Code for Relative Bias, Coverage Percentage and avg length of each conf. interval

#Computes all above values of interest and exports results into a latex table

comptable <- matrix(NA,nrow = 5*length(sigma2vector),ncol = 7)
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colnames(comptable) <- c("rel bias (%)","ECI CP","ACI CP","PI CP","ECI avg length",

"ACI avg length","PI avg length")

rownames(comptable) <- rep(c("","HL","WX","Cl","U"),length(sigma2vector))

comptable2 <- matrix(NA,nrow = 5*length(sigma2vector),ncol = 4)

colnames(comptable2) <- c("True y(x0)","ybar(x0)","SE","ASD")

rownames(comptable2) <- rep(c("","HL","WX","Cl","U"),length(sigma2vector))

for (i in 1:length(sigma2vector)){

comptable[5*(i-1)+1,1:4] <- c(results[i,c(1,4+model,5+model,6+model)])

comptable2[5*(i-1)+1,1:4] <- c(results[i,c(1,4+model,5+model,6+model)])

}

#HL design

X <- HLdesign(n,x0,model = model)

for (i in 1:length(sigma2vector)){

values <- CIfunction(n,N,X,x0,sigma2vector[i],results[i,4+model],results[i,5+model],

model = model)

comptable[5*(i-1)+2,] <- values[1:7]

comptable2[5*(i-1)+2,] <- values[8:11]

}

#WX design

X <- WXdesign(n,x0,m = n,model = model)

for (i in 1:length(sigma2vector)){

values <- CIfunction(n,N,X,x0,sigma2vector[i],results[i,4+model],results[i,5+model],

model = model)

comptable[5*(i-1)+3,] <- values[1:7]

comptable2[5*(i-1)+3,] <- values[8:11]

}

#Clustered Design

for (i in 1:length(sigma2vector)){

X <- Cldesign(n,x0,results[i,6+model],model=model)

values <- CIfunction(n,N,X,x0,sigma2vector[i],results[i,4+model],results[i,5+model],

model = model)

comptable[5*(i-1)+4,] <- values[1:7]

comptable2[5*(i-1)+4,] <- values[8:11]

}

#Uniform Design

X <- cbind(rep(1,n),seq(-0.5,0.5,by=1/(n-1)))

if (model == 2){

X <- cbind(X,X[,2]^2)

}

for (i in 1:length(sigma2vector)){

values <- CIfunction(n,N,X,x0,sigma2vector[i],results[i,4+model],results[i,5+model],

model = model)

comptable[5*i,] <- values[1:7]

comptable2[5*i,] <- values[8:11]
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}

#Save results as RDS

saveitems <- list(comptable,comptable2)

saveRDS(saveitems,file = paste("model",model,"EPx0_",x0,"CI.rds",sep=""))

CIfunction.R

#Computes all measurements of interest for extrapolation

#Including: relative bias, ECI, ACI, PI, interval lengths, simulated SE, average ASD

CIfunction <- function(n,N,X,x0,sigma2,k2,k3,model){

if (model == 1){

f <- function(x,k2,k3){1 + x + k2*x^2 + k3*x^3}

z <- c(1,x0)

}else if (model == 2){

f <- function(x,k2,k3){1 + x + x^2 + k2*x^3 + k3*x^4}

z <- c(1,x0,x0^2)

}

#Vector for N extrapolations at x0

yhat <- vector(mode = "double", length = N)

betahat <- matrix(NA,nrow = model + 1,ncol = N)

sigma2hat <- vector(mode = "double", length = N)

for (j in 1:N){

#Sample data

y <- vector(mode="double",length = n)

for (i in 1:n){

y[i] <- f(X[i,2],k2,k3) + rnorm(1,0,sd = sigma2)

}

#Estimate parameters

Beta <- solve(t(X)%*%X)%*%t(X)%*%y

#Estimate extrapolation

if (model == 1){

yhat[j] <- Beta[1] + Beta[2]*x0

}else if (model == 2){

yhat[j] <- Beta[1] + Beta[2]*x0 + Beta[3]*x0^2

}

betahat[,j] <- Beta

sigma2hat[j] <- sum((y - yhat[j])^2)/(n - (model + 1))

}

output <- matrix(NA,nrow = 1,ncol = 11)

colnames(output) <- c("rel bias (%)","ECI CP","ACI CP","PI CP","ECI avg length",

"ACI avg length","PI avg length",

"True y(x_0)","ybar(x_0)","sim SE","ASD")

y_x0 <- f(x0,k2,k3)
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###Relative Bias

output[1] <- (mean(yhat) - y_x0)/y_x0*100

###Coverage Percentage and CI lengths

###Empirical CI (ECI)

ECIs <- matrix(NA,nrow = 2,ncol = N)

ECIs[1,] <- yhat + qt(0.05/2, df = n-(model+1),lower.tail = F)*sd(yhat)

ECIs[2,] <- yhat - qt(0.05/2, df = n-(model+1),lower.tail = F)*sd(yhat)

count <- 0

for (j in 1:N){

if (y_x0 >= ECIs[2,j] && y_x0 <= ECIs[1,j]){

count <- count + 1

}

}

output[2] <- count/N*100

output[5] <- mean(ECIs[1,] - ECIs[2,])

###Asymptotic CI (ACI)

ACIs <- matrix(NA,nrow = 2,ncol = N)

ACIs[1,] <- yhat + qt(0.05/2, df = n-(model+1),lower.tail = F)*sqrt(sigma2hat)*

c(sqrt(z%*%solve(t(X)%*%X)%*%z))

ACIs[2,] <- yhat - qt(0.05/2, df = n-(model+1),lower.tail = F)*sqrt(sigma2hat)*

c(sqrt(z%*%solve(t(X)%*%X)%*%z))

count <- 0

for (j in 1:N){

if (y_x0 >= ACIs[2,j] && y_x0 <= ACIs[1,j]){

count <- count + 1

}

}

output[3] <- count/N*100

output[6] <- mean(ACIs[1,] - ACIs[2,])

###Prediction Interval (PI)

PIs <- matrix(NA,nrow = 2,ncol = N)

PIs[1,] <- yhat + qt(0.05/2, df = n-(model+1),lower.tail = F)*sqrt(sigma2hat)*

c(sqrt(z%*%solve(t(X)%*%X)%*%z + 1))

PIs[2,] <- yhat - qt(0.05/2, df = n-(model+1),lower.tail = F)*sqrt(sigma2hat)*

c(sqrt(z%*%solve(t(X)%*%X)%*%z + 1))

count <- 0

for (j in 1:N){

if (y_x0 >= PIs[2,j] && y_x0 <= PIs[1,j]){

count <- count + 1

}

}

output[4] <- count/N*100

output[7] <- mean(PIs[1,] - PIs[2,])

output[8] <- y_x0 #True y(x0)

output[9] <- mean(yhat) #ybar(x0)

output[10] <- sd(yhat) #simulated SE

80



output[11] <- mean(sqrt(sigma2hat))*c(sqrt(z%*%solve(t(X)%*%X)%*%z))

#average Asymptotic Stand. Dev. (ASD)

return(output)

}

81


	Introduction
	Problem of Interest
	Designs of Study and Notations
	Efficiency

	Determination of Robustness Factors
	Determination of k
	Determination of p

	Comparison
	Simple-Linear Regression: bold0mu mumu zzzzzzT(x) = (1, x)T
	Quadratic Regression: bold0mu mumu zzzzzzT(x) = (1, x, x2)T
	Multiple-Linear Regression with two factors: bold0mu mumu zzzzzzT(bold0mu mumu xxxxxx) = (1, x1, x2)T
	Discussion

	More Complex Contamination Functions
	Simple-Linear Regression: bold0mu mumu zzzzzzT(x) = (1, x)T
	Quadratic Regression: bold0mu mumu zzzzzzT(x) = (1, x, x2)T
	Multiple-Linear Regression with two factors: bold0mu mumu zzzzzzT(bold0mu mumu xxxxxx) = (1, x1, x2)T
	Discussion

	Application in Extrapolation
	Efficiency
	Designs used for comparison
	Model 1: bold0mu mumu zzzzzzT(x) = (1, x)T
	Model 2: bold0mu mumu zzzzzzT(x) = (1, x, x2)T
	Discussion
	Set-up of clustered design for extrapolation

	Conclusions
	References
	Appendices
	Appendix I: Notations
	Appendix II: R Code


