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Abstract

We study designs for the regression model E[Y jx] = Pp�1
j=0 �jx

j+xp (x), where

 (x) is unknown but bounded in absolute value by a given function �(x). This

class of response functions models departures from an exact polynomial response.

We consider the construction of designs which are robust, with respect to various

criteria, as the true response varies over this class. The resulting designs are shown

to compare favourably with others in the literature.

1 Introduction

We consider the construction of designs for polynomial regression which are robust to

departures from the assumed response. Speci�cally, suppose that a researcher is to design an

experiment, the results of which will require a regression analysis with �tted model

ŷ(x) =
p�1X
j=0

�̂jx
j; p � 2; x 2 [a� b; a+ b] =: S: (1:1)

If the �tted response is exactly correct, and if, as is assumed in this paper, the errors are

additive and uncorrelated, with common variance �2, then the least squares estimates �̂j

are unbiased and possess well known optimality properties with respect to their variances,

especially when used in conjunction with a variance-minimizing design. Suppose however
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that the `true' response is in fact only approximately polynomial in that for x 2 S and some

unknown function  we have

E[Y jx] = �Tf (x) +
�
x� a

b

�p
 
�
x� a

b

�
; (1:2)

where � := (�0; : : : ; �p�1)T and f (x) := (1; x; x2; :::; xp�1)T . In �tting (1.1) the experimenter is

assuming, perhaps erroneously, that the second term in (1.2) may be ignored. This introduces

possible bias into the least squares estimates, hence into the �tted values (1.1). One might

hope to reduce this bias, and simultaneously achieve small variances through a judicious

choice of design points. It is the purpose of this paper to indicate ways of accomplishing these

aims.

We shall assume

A1) The function  (x) is continuous, and j (x)j � �(x) on [�1; 1] , where �(x) is
a continuous, even function which is positive when x 6= 0.

A2) The function l(z) := z�(
p
z) is convex for z 2 [0; 1], with l(0) = 0.

The continuity of  at 0 ensures that the parameter � in (1.2) is well-de�ned. Note that

A1) and A2) together require l(z) to be non-decreasing on [0; 1], so that then l(z) and �(z)

are bounded above by �(1).

Box and Draper (1959) made apparent the dangers of using regression designs which are

optimal only when the assumed model is correct. By analyzing the relative importance of

errors due to bias, and to variance, they found that very small departures from the model

can eliminate any supposed gains resulting from the use of a design which minimizes variance

alone. See Huber (1975, 1981) and Wiens (1990, 1992) for further work in this direction.

It is natural to quantify the loss through the mean squared error of �̂. The bias and

variance components of the mean squared error are most conveniently described in terms

of the design measure - the empirical distribution function of the design points x1; : : : ; xn.

Denote this measure by � and de�ne

B(�) = n�1
nX
i=1

f(xi)f
T (xi) =

Z
S

f (x)fT (x)d�(x);

b(�;  ) = n�1
nX
i=1

f(xi)
�
xi � a

b

�p
 
�
xi � a

b

�
=
Z
S

f (x)
�
x� a

b

�p
 
�
x� a

b

�
d�(x):

Then the bias vector and covariance matrix are

E[�̂ � �] = B�1(�)b(�;  )

COV [�̂] =
�2

n
B�1(�);
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so that the mean squared error matrix E[(�̂ � �)(�̂ � �)T ] has determinant

jMSE(�;  )j = (
�2

n
)p(1 +

n

�2
bT (�;  )B�1(�)b(�;  ))=jB(�)j: (1:3)

We will consider three separate criteria, each leading to the construction of optimally

robust designs:

C1) Bounded Bias: We seek to minimize the size - as measured by the determinant - of

the covariance matrix, subject to bounding the normalized bias. Equivalently,

Choose � to maximize jB(�)j, subject to sup b
T (�;  )B�1(�)b(�;  ) � k2;

for a given constant k2.

C2) Bounded Variance: We seek to minimize the maximum bias, subject to bounding the

variance. Equivalently,

Choose � to minimize sup b
T (�;  )B�1(�)b(�;  ); subject to jB(�)j � c2bp(p�1);

for a given constant c2.

C3) Minimax: We seek to minimize the maximum size of the MSE matrix, viz.,

Choose � to minimize sup jMSE(�;  )j.
Note that if �ab is a design measure on S, �01(x) = �ab(a+ bx) is the induced measure on

[�1; 1], and C is the triangular matrix of coe�cients de�ned by f (a+ bx) = Cf(x), then

b(�ab;  ) = Cb(�01;  ); B(�ab) = CB(�01)C
T ; jB(�ab)j = bp(p�1) jB(�01)j:

It follows that if �01 is an optimal design on [�1; 1] with respect to any of the above criteria,

then �ab is an optimal design on [a� b; a+ b] . Without loss of generality we shall henceforth

take a = 0; b = 1; �(1) = 1.

We adopt here the methods of approximate design theory. That is, we search for optimal

measures � in the class � of all probability measures on S. These turn out to be discrete,

and supported on p points, but with atoms which are typically not integer multiples of n�1.

Optimal rounding methods for implementing such designs are discussed in Pukelsheim (1993,

ch. 12).

Because the optimal designs are supported on only p points, they a�ord no opportunity

to assess the �t of the model. As a practical guide we suggest designing for a slightly higher

degree than is in fact anticipated, and then carrying out appropriate hypothesis tests.

Pesotchinsky (1982) obtained minimax designs under departures similar to those in (1.2),

but for the case f (x) = (1; x1; : : : ; xp)T , so that the �tted response surface is a hyperplane.

See Marcus and Sacks (1976), Sacks and Ylvisaker (1978), Li and Notz (1982), Li (1984) and

Liu (1994) for other instances of designs for departures as in (1.2). Comparisons with some

speci�c designs of Stigler (1971) and Pukelsheim and Rosenberger (1993) are presented in

Section 4 of this paper.
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2 General Theory

We �rst show that sup jMSE(�;  )j is attained at one of at most two possible functions

 . De�ne

bi(�) =
Z
S
f (x)xp(sign x)i�1�(x)d�(x); i = 1; 2;

Ti(�) =

(
bTi (�)B

�1(�)bi(�) if jB(�)j > 0,
1 if jB(�)j = 0.

T (�) =

(
maxi=1;2 Ti(�) if �(0) = 0,
T1(�) if �(0) > 0.

It follows from Lemma 2 of Wiens (1993) that T (�) is a convex functional of � 2 �.

Theorem 2.1 For any � 2 � with jB(�)j > 0,

max
 
bT (�;  )B�1(�)b(�;  ) = T (�):

Proof: Fix a � with jB(�)j > 0. Denote by 	 the set of functions  satisfying assump-

tion A1). Note that the functional A( ) := bT (�;  )B�1(�)b(�;  ) is quadratic, hence

convex, on the convex set 	. Thus if  2 	 is not an extremal, say  = (1 � �) 1 +

� 2 for � 2 (0; 1) and  1;  2 2 	; then A( ) � max(A( 1); A( 2)). It follows that to de-

termine supfA( )j 2 	g we need only consider extremals of 	. But these extremals have

j (x)j � �(x). In order that such an extremal be continuous, we must have  (x) � �(x)

or  (x) � ��(x) if �(0) > 0, while if �(0) = 0 we could also have  (x) � (sign x)�(x) or

 (x) � �(sign x)�(x). The result follows upon noting that A( ) = A(� ). 2

The Bounded Bias problem may now be phrased as

BB): Find �k := argmax�fjB(�)j : T (�) � k2g

and the Bounded Variance problem as

BV): Find �c := argmin�fT (�) : jB(�)j � c2g:

From C3) and (1.3) the Minimax problem is

M): Find �k�, where

k� := argmink(
�2

n
)p(1 +

n

�2
T (�k))=jB(�k)j: (2:1)
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The Minimax design may also be obtained from the optimal Bounded Variance design,

in a similar fashion. Throughout the remainder of this paper we shall largely concentrate on

BB). The analogous results for BV) and M) are given in Liu and Wiens (1994); some special

cases are detailed in Sections 3.1 and 3.2 below.

By Theorem 2.3 below, we have that T (�) � E�[X2p] if jB(�)j > 0. Thus one can make

T (�) arbitrarily small while retaining a non-singular covariance matrix jB(�)j, for instance
by employing a p-point design with a su�cient amount of mass at 0. It follows that fjB(�)j :
T (�) � k2g 6= ; for every k > 0. Standard arguments now show that there exists a solution

�k to BB) for every k > 0, and then the convexity of �logjB(�)j and of T (�) may be used

to show that �k lies in the subclass �S of symmetric members of �, i.e. those � satisfying

�(x) = 1� �((�x)�) for all x 2 S.
The next result shows that the upper bound k2 is attained by T (�k), as long as k is small

enough that �k does not solve the unconstrained problem of maximizing jB(�)j uncondition-
ally. Let �D be the solution to this unconstrained problem - i.e. the D-optimal design - and

de�ne k2
D
= T (�D).

Lemma 2.2 If k2 < k2
D
, then T (�k) = k2.

Proof: Suppose for contradiction that T (�k) < k2 < k2
D
. Let

! = max
x2S f

T (x)B�1(�k)f (x);

and suppose that �� 2 � places all mass on those points at which fT (x)B�1(�k)f (x) = !.

Put �� = (1� �)�k + ���; 0 � � � 1. Then, as �! 0, we have ��
w!�k, T (��)! T (�k), and

jB(��)j ! jB(�k)j. Thus T (��) � k2 for su�ciently small � > 0. Put � (�) = �logjB(��)j.
Then � is di�erentiable, with

� 0(0) = �
Z
S
[fT (x)B�1(�k)f(x)]d(��(x)� �k(x))

=
Z
S
[fT (x)B�1(�k)f(x)� !]d�k(x)

< 0;

unless

�k(fx : fT (x)B�1(�k)f (x) = !g) = 1: (2:2)

But if (2.2) holds, then for any �� 2 � we have � 0(0) � 0, so that the convex functional

�logjB(�)j is minimized unconditionally by �k. Then �k solves the unconstrained problem,

whence jB(�k)j = jB(�D)j and k2 = k2
D
, a contradiction.
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Thus � 0(0) < 0, and so for su�ciently small � > 0, T (��) � k2 and jB(��)j > jB(�k)j,
contradicting the optimality of �k. 2

The following result gives a useful interpretation, in terms of the solution to an associated

least squares regression, of T (�). De�ne

m(x) = xp�(x); mi(x) = (sign x)i�1m(x);

�̂i(�) = argmin�E�[fmi(X) � �Tf(X)g2];
m̂i(x; �) = �̂

T

i (�)f (x):

Denote by �p the subset of �S whose members are supported on exactly p points.

Theorem 2.3 i) If jB(�)j > 0 then for i = 1; 2:

(E�[mi(X)])2 � Ti(�) = E�[m̂
2
i (X; �)] = E�[mi(X)m̂i(X; �)] � E�[m

2(X)]:

ii) If � 2 �p then jB(�)j > 0 and for i = 1; 2:

P�(m̂i(X; �) = mi(X)) = 1;

so that

T1(�) = T2(�) = T (�) = E�[m
2(X)]:

Proof: We calculate that �̂i(�) = B�1(�)bi(�), from which the �rst two equalities in i) fol-

low. The lower bound is then the Cauchy-Schwarz inequality together with the identity

E�[m̂i(X; �)] = E�[mi(X)]. The upper bound also follows from the Cauchy-Schwarz inequal-

ity:

T 2
i (�) � E�[m

2
i (X)]E�[m̂

2
i (X; �)] = E�[m

2(X)]Ti(�):

For ii) we use the fact that if � 2 �p has support points fxjgpj=1 then we have the rep-

resentation B(�) = F�F T , where F and � are non-singular, F has columns f (xj), and

� = diag(�(fx1g); : : : ; �(fxpg)). We then calculate that m̂i(xj; �) = mi(xj). 2

Corollary 2.4 k2
D
= E�D

[m2(X)].

Corollary 2.5 De�ne �j = E�[X2j]. If jB(�)j > 0 then �p�21 l2(�1) � T (�) � �p�2:

Proof: Put Z = X2. Then m(Z) = Z
p
2
�1l(Z) and by Theorem 2.3

T (�) � E�[Z
p�2l2(Z)] � E�[Z

p�2] = �p�2:
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For the lower bound �rst assume that p � 4. Then

T (�) � (E�[m1(X)])2 =
�
E�[Z

p
2
�1l(Z)]

�2 � (E�[Z])
p�2l2(E�[Z]) = �p�21 l2(�1);

where we have applied Jensen's Inequality to the convex function z
p
2
�1l(z). For p = 3 a direct

calculation of T1(�) followed by Jensen's Inequality gives

T (�) � T1(�) =
E�[Zl(Z)])2

�1
� (�1l(�1))2

�1
= �1l

2(�1);

for p = 2 we have

T (�) � T1(�) = (E�[l(Z)])
2 � l2(�1):

2

The solution to the unconstrained design problem is known to belong to �p. It is natural

to conjecture that this is also the case for BB). The following theorem gives conditions under

which this is indeed the case. In the special cases of Section 3, we shall proceed by verifying

these conditions and then considering the resulting numerical problem (2.6). A referee has

conjectured that a bounded bias design necessarily belongs to �p; this conjecture remains

open.

Let �(�p�2) denote those members of �S with �xed even moments

E�[X
2j] = �j; j = 0; : : : ; p� 2; (�0 = 1) (2:3)

and denote by �(�p�2; k) those members with, as well, T (�) � k2: The tightness of �(�p�2; k)

ensures that sup�(�p�2; k)
E�[X2(p�1)] is attained. Similarly, the extrema of T (�) are attained

in �(�p�2).

We say that a vector �p�2 is admissible for BB) if

min
�(�p�2)

T (�) � k2 � max
�(�p�2)

T (�): (2:4)

Note that if k2 < min�(�p�2)
T (�) then �(�p�2; k) = ;, whereas (by Lemma 2.2) if k2 >

max�(�p�2)
T (�) then �k cannot belong to �(�p�2; k). Our search for the solution to BB)

can then be restricted to those sets �(�p�2; k) for which �p�2 is admissible.

Theorem 2.6 i) Let k2 < k2
D
. Suppose that, whenever �p�2 is admissible for BB), there is a

p-point design ��
p�2

;k 2 �(�p�2; k)
T
�p satisfying

E��
p�2

;k
[X2(p�1)] = max

�(�p�2; k)
E�[X

2(p�1)]: (2:5)
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Then the solution to the Bounded Bias problem is �k = ���

p�2;k
, where

��p�2 = argmaxfjB(��p�2;k
)j : �p�2 is admissible for BB)g: (2:6)

ii) If k2 < k2
D
and �(x) � 1 then there exists ��

p�2
;k 2 �(�p�2; k)

T
�p satisfying (2.5).

iii) If k2 � k2
D
then the optimal Bounded Bias design is �D.

Proof: Only the case k2 < k2
D
requires a proof. i) Suppose that �p�2 is admissible. Note that

(2.3) �xes all of the elements of B(�) except that element - E�[X2(p�1)] - in its lower right

hand corner. Subject to (2.3), jB(�)j is then an increasing function of E�[X2(p�1)] and so by

(2.5) is maximized by ��p�2;k
. Thus ��p�2;k

is the optimal distribution in �(�p�2; k) and it

remains only to maximize jB(��p�2;k
)j over admissible vectors �p�2.

We prove ii) by �rst showing that if �p�2 is admissible then there exists ��p�2;k
2

�(�p�2)
T
�p with

T1(��p�2;k
) = k2: (2:7)

By Theorem 2.3ii) we have that ��p�2;k
2 �(�p�2; k)

T
�p; we then show that ��p�2;k

satis�es

(2.5).

Put Z = X2. When �(x) � 1 and � 2 �(�p�2), T1(�) depends on � only through E�[Z
p�1];

all other moments are �xed. As E�[Zp�1] varies over

I :=

2
4 min
�(�p�2)

E�[Z
p�1]; max

�(�p�2)
E�[Z

p�1]

3
5 ;

T1(�) varies over an interval containing that given by (2.4). To establish (2.7) it then su�ces

to show that E�[Zp�1] varies over I as � varies over �(�p�2)
T
�p.

By a result due to Harris (1959) (see also Section 4.5 of Rustagi (1976)) both endpoints of I

are attained at, perhaps degenerate, members of �(�p�2)
T
�p: A distribution in �(�p�2)

T
�p

is described by p variables, of which p � 1 are �xed by the requirement of membership in

�(�p�2). There are q = [p+12 ] points of support 0 � z1 < z2 < : : : < zq � 1 (z1 = 0 if and

only if p is odd) and q corresponding probabilities �i = P�(Z = zi). These p variables satisfy

the p � 1 equations

(E�[Z
j] =)

qX
i=1

�iz
j
i = �j ; j = 0; : : : ; p � 2: (2:8)

The distributions in �(�p�2)
T
�p may then be parameterized by the remaining variable, of

which E�[Zp�1] is a continuous function with range I.

To see that (2.5) holds, let � 2 �(�p�2; k) be arbitrary and let � = E��p�2;k
[X2(p�1)] �

E�[X2(p�1)]. We can represent T1(��p�2;k
) � T1(�) as a function of � in the following way.

De�ne ep�1 = (0; : : : ; 0; 1; 0)T , Dp�p = diag(0; : : : ; 0; 1). Then

T1(�) =
�
b1(��

p�2
;k)� �e

�T �
B(��

p�2
;k)� �D

��1 �
b1(��

p�2
;k) � �e

�
:
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Some algebra gives

T1(��p�2;k
)� T1(�) = 2��̂p�1(��p�2;k

)� �2
�
B�1(��p�2;k

)
�
p�1;p�1

� ��̂
2

p(��p�2;k
)

1� �
�
B�1(��

p�2
;k)
�
p;p

: (2.9)

With F and fxjgpj=1 as in the proof of Theorem 2.3 and m := (xp1; : : : ; x
p
p)
T we have

�̂(��p�2;k
) = B�1(��p�2;k

)b1(��p�2;k
) = F�Tm. De�ne

P (x) =

 
F f (x)
mT xp

!
=

0
BBBBBB@

1 1 � � � 1 1
x1 x2 � � � xp x

� � � � � � � � �
xp�11 xp�12 � � � xp�1p xp�1

xp1 xp2 � � � xpp xp

1
CCCCCCA
:

Then jP (x)j
jF j = xp � �̂(��p�2;k

)f(x): (2:10)

The left side of (2.10) is evaluated by applying a well known formula for the determinant of

Vandermonde's matrix. This yields
pY
j=1

(x� xj) = xp �
pX
j=1

�̂j(��p�2;k
)xj�1

as an identity in x, whence

�̂p(��p�2;k
) =

pX
j=1

xj = 0; �̂p�1(��p�2;k
) =

1

2

pX
j=1

x2j :

Substituting this into (2.9) and using (2.7) gives

0 � T1(��p�2;k
)� T1(�) = �

pX
j=1

x2j � �2
�
B�1(��p�2;k

)
�
p�1;p�1

;

so that � � 0, as required. 2

3 Special cases

We consider the special cases p = 2 and p = 3. For p � 4 the designs for constant �(x)

may be obtained directly from Theorem 2.6; see Liu and Wiens (1994) for details.

We �rst rephrase Theorem 2.6 in a form more amenable to numerical work. When the

conditions of part a) of Theorem 2.6 hold, the optimal Bounded Bias design for �xed �p�2
may be characterized by equations (2.8) with � = ��p�2;k

, together with

(E��p�2;k
[m2(X)] =)

qX
i=1

�iz
p�2
i l2(zi) = k2: (3:1)
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These equations de�ne jB(��p�2;k
)j as a function of �p�2; this function is then to be maximized

over all �p�2 for which equations (2.8) and (3.1) have solutions.

3.1 p = 2.

When p = 2 (straight line regression) we have �D = ��1 (mass of 1
2 at each of �1), so

that k2
D
= 1. By Corollary 2.5, (2.4) implies that 0 � k2 � 1. It is easy to verify, by using

Jensen's Inequality, that (2.5) is satis�ed by ��
0
;k = ��r, where r is the solution to l(r2) = k.

Thus the optimal Bounded Bias design is

�k = ��r; where l(r
2) = min(k; 1):

Similarly the optimal Bounded Variance design is �c = ��c; 0 < c � 1. The Minimax design

is �k� = ��r�, where

r� = argmin[0;1]
1 + n

�2
l2(r2)

r2
:

3.2 p = 3.

When p = 3 (quadratic regression) condition (2.3) �xes E�[Z] = �1. The D-optimal

design �D places mass 1
3
at each of 0; 1 and �1 so that k2

D
= 2

3
. We will require the following

result.

Lemma 3.1 If Z is a non-negative random variable with �nite second moment, and l(�) is
convex on the range of Z, then

l(
E[Z2]

E[Z]
) � E[Zl(Z)]

E[Z]
:

Proof: Let Z � G and de�ne a distribution function G� by dG�(z) = zdG(z)=EG[Z]: Denote

expectation with respect to G� by E�. Then by Jensen's Inequality,

l(
E[Z2]

E[Z]
) = l(E�[Z]) � E�[l(Z)] =

E[Zl(Z)]

E[Z]
:

2

Equations (2.8) and (3.1) suggest that

��
1
;k = (1� �)�0 + ��

�

p
�1
�

; (3:2)

where � 2 [�1; 1] satis�es

�1l
2
�
�1
�

�
= k2: (3:3)
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Corollary 2.5 guarantees a solution to this equation. To see that ��
1
;k satis�es (2.5) note that

if � 2 �(�1; k) then by Lemma 3.1 and (3.3) we have

l

 
E�[Z2]

�1

!
� E�[Zl(Z)]

�1
=

s
T1(�)

�1
� kp

�1
= l

�
�1
�

�
= l

0
@E��1

;k
[Z2]

�1

1
A :

The monotonicity of l(�) then gives

E�[Z
2] � E��

1
;k
[Z2];

as required. Maximizing jB(��
1
;k)j = �31

�
1
�
� 1

�
then yields, for k2 < 2

3
, the optimal Bounded

Bias design �k = ���

1
;k, where

��1 = argmax�1

�
�31

�
1

�
� 1

�
: �1l

2
�
�1
�

�
= k2; �1 � � � 1

�
:

The optimal Bounded Variance design is, for 0 � c2 � 4
27
= jB(�D)j, given by �c = ����

1
;c,

where � = �(�1) =
�3
1

�3
1
+c2

and

���1 = argmin�1

�
�1l

2
�
�1
�

�
: 0 � �1 � �(�1)

�
:

The Minimax design is �k� = (1� ��)�0 + ���
�

q
��
1

��

; where

(��; ��1) = argmin(�;�1)

(
�(1 + n

�2
�1l

2(�1
�
))

�31(1 � �)
: 0 � �1 � � � 1

)
:

4 Comparisons

4.1 Linear/quadratic discrimination.

Stigler (1971) (see Studden 1982 for extensions) considered (1.2) in the case p = 2,

 (x) � 1, and obtained designs to minimize the determinant of the covariance matrix of the

estimates of the constant and linear regression coe�cients, subject to a bound of C�
2

n
(C � 4)

on the variance of the estimate of the quadratic coe�cient were a quadratic model to be

�tted. We compare the resulting designs

�
(C)
S (�1) = 1

4
+
1

2

s
1

4
� 1

C
; �

(C)
S (0) =

1

2
�
s
1

4
� 1

C

for C = 5 and C = 10, with the designs of Section 3.2 with �(x) � 1. As measures of

performance we use
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1. The D�e�ciencies as de�ned in Pukelsheim and Rosenberger (1993). These are stan-

dardized e�ciencies relative to the design which is optimal in a given situation. Thus

for example the D�e�ciency D(�;�(A)) for �(A) = (�0; �1)T , assuming the true response

to be exactly linear, is the ratio, raised to the power 1
2
, of the determinant of the inverse

of the 2 � 2 covariance matrix of �̂(A), using the design �, to that using the optimal

design �0 = ��1. We consider D(�;�(A)) as well as D(�;�(B)) (�(B) = (�0; �1; �2)T ) for

which the optimal design is �1 =
1
3
�0 +

2
3
��1, and D(�; �2) for which the optimal design

is �2 =
1
2
�0+

1
2
��1. In the case of D(�; �2) it is assumed that the full quadratic model is

�rst �tted and the variance of �̂2 obtained from the covariance matrix for �̂(B).

2. The maximal bias T (�) = bT1 (�)B
�1(�)b1(�), where b1(�) = (E�[X3]; E�[X4]; E�[X5])T .

3. The standardized determinant of theMSE matrix for D(�;�(B)) as at (1.3), i.e. mse =
�2

n
((1 + T (�)

�2=n
)=(jB(�)j))1=3; with �2

n
= :01 and �2

n
= 1 .

The performance measures are given in Table 1 for the designs described above and for the

Bounded Bias designs �(5=12)bb = 7
12
�0+

5
12
��1, for which k2 =

5
12
, and �(1=4)bb = 1

2
�0+

1
2
��(1=2)1=6,

for which k2 = 1
4
. We note that �1 and �2 are also Bounded Bias designs for k2 = 2

3
and

k2 = 1
2 respectively, and are the Minimax designs as �2

n
tends to 1 and 0 respectively. They

are also special cases of Bounded Variance designs.

Table 1. Designs for Linear and Quadratic Model Discrimination

E�ciencies mse

Design �2 �(B) �(A) max. bias �2

n = :01 �2

n
= 1

�0 0 0 1 1 1 1
�1 .89 1 .82 .67 .077 2.24
�2 1 .94 .71 .50 .074 2.29

�
(5)
S .80 .99 .85 .72 .080 2.28

�
(10)
S .40 .84 .94 .89 .100 2.77

�
(5=12)
bb .97 .88 .65 .42 .075 2.41

�
(1=4)
bb .63 .75 .63 .25 .075 2.71

4.2 Quadratic/cubic discrimination.

Pukelsheim and Rosenberger (1993) reviewed and extended the literature on designs

intended to give e�cient estimates in a quadratic model, yet guard against a cubic response.

Table 2 gives some comparative measures. The relative e�ciencies are those for estimation

of the cubic coe�cient �3, for the full 4 � 1 parameter vector �(B) and for the vector �(A) of

parameters in the quadratic model. The ten designs in Pukelsheim and Rosenberger (1993)

are referred to by the relevant section number, e.g. \PR x2.1". These are compared with

the Bounded Bias design �bb(�1) = :1495, �bb(�:444) = :3505 for which k2 = :3, with the

12



Bounded Variance design �bv(�1) = :1290, �bv(�:443) = :3710 for which c2 = :003, and with

the design �m(�1) = :1703, �m(�:445) = :3297 which is minimax when �2 = :01n. Note

the similarity in the performances of these three designs and those of PR x2.1, optimal for

estimation of �3, and PR x4.3, which minimizes a mixture of the loss measures for �3 and

�(A).

Table 2. Designs for Quadratic and Cubic Model Discrimination

E�ciencies mse

Design �3 �(B) �(A) max. bias �2

n = :01 �2

n
= 1

PR x2.1 1 .93 .75 .34 .097 4.30
PR x2.2 .85 1 .87 .50 .100 4.14
PR x2.3 0 0 1 1 1 1
PR x3.1 .72 .94 .84 .40 .101 4.34
PR x3.2 .42 .89 .94 .59 .117 4.72
PR x4.1 .66 .98 .91 .57 .105 4.28
PR x4.2 .64 .96 .90 .55 .107 4.35
PR x4.3 1.00 .94 .75 .34 .097 4.29
PR x5.1 .50 .93 .94 .60 .112 4.51
PR x5.2 .50 .92 .93 .58 .112 4.55
�bb .97 .92 .74 .30 .096 4.36
�bv .96 .87 .70 .26 .097 4.53
�m .97 .95 .77 .34 .096 4.25
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