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1. INTRODUCTION

Let X,,..., X, be independent random variables with X; having distribution function
P
T — Z C;‘jgj'
P(X.-s:c)zF(—J—zl———),i=1,...,n, (1.1)
o

where the c;; are known constants, the §; are unknown parameters to be estimated from
the observed values z1,..., &, of Xi,...,Xn, and ¢ is an unknown scale parametor.

p
If we define U; = X; — Y cij85,i =1,...,n, we can write
=1

xn) =g LU \
where X(™ = (X;,...,X,) (' denotes transpose),

c = ((CE?))) = (cgn), ...,cd™) is an n x p design matrix
of known constants, 6= (61,...,0,) isa

vector of unknown regression parameters, and

U = (Uy,...,Uys) is a vector of independent and

identically distributed (i.i.d.) random errors with

distribution function F(u/o). )

When F is an unknown member of a class F of distributions, one method of estimating

6 in (1.2) is to solve a system of p equations of the form

n

Y civ(u) =0 (1.3)

1=1

or, to ensure that the estimator is scale equivariant,

n

Z civ(u; [3) =0 (1.4)

i=1
where 5 is a scale equivariant estimator of 0. (One could also consider simultaneous

estimation of  and o, as in Sheahan 1988).
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Examples of functions ¢ : R — R! commonly used in (1.3) are:
¥(y) = vy, in which case the solution of (1.3) is the least squares estimator, which is optimal
(-its components are efficient) if F' is normal, but is not robust if F" has heavy tails;
U(y) = —f'(y)/ f(y), if F has a known density f, giving the maximum likelihood estimator;
¥(y) = |y|, resulting in the least absolute deviation estimator whose asymptotic theoretical
properties have been examined by e.g. Koenker and Bassett (1978), and which was one of
the estimators whose finite-sample performance was investigated by simulation in Sheahan,
Lind and Mehra (1989);
and
¥(y) = —¢(—y) = max(—k, min(y, k)), for fixed k, leading to a “Huber” estimator (Huber
(1973); see also Huber (1964, 1981)).

In this article, we consider using a “re-descending” ¥-function of the form

Y, ly| < vo
¥(y) = { yitanh[iyi(ao —w — |y])]sgn(y), wo < |yl L ag —w (1.5)
0, lyl 2 ap —w

where yp,y1,w and ap are constants to be specified.

More generally, we investigate a 1 -function of the form

Y, lyl < vo
¥(y) = { vof(2=2=Wysgn(y), vo <yl < ag—w (1.6)
07 |y| S ag —w

where £ : [0,1] — [0,1] is any fixed continuously differentiable and strictly increasing

function. Note that if we wish 9 to be continuous, £ will satisfy £(0) = 0 and (1) = 1.

The ¢ of (1.5) was discovered independently by each of Collins, Hampel and Huber
(see Collins (1976), Hampel (1973) and Huber (1981, sec. 4.8)). Sec Collins and Wiens
(1985) for generalizations. Relying heavily on the results of Collins (1976) and Collins,
Sheahan and Zheng (1986), Sheahan, Lind and Mehra (1989) showed that, under regularity
conditions, (1.5) is, according to a certain asymptotic minimax criterion, the optimal -
function to use in (1.3), if in (1.2) o is known and F is known to helong to a class F of

distributions given below:



2. ESTIMATION OF g, IN (1.7).

In this section, we assume that in the linear model (1.2), F' is known to belong to
the class F of (1.7) and that € and o are known. Now if @y were also known, the optimal
M-estimator of § would be the solution of (1.3) with % given by (1.5), yo and y; given in
(1.8) and w as near zero as desired - see Sheahan, Lind and Mehra (1989). When ag i1s
unknown an asymptotically optimal procedure is as follows: Find a consistent estimator ay
of ag; then solve (1.3) with ap replacing the unknown ag in (1.5). The aim of this section
is to present some heuristic methods for estimating ag. The resulting estimators will each
lead to shift but not scale equivariant estimators of 6. For scale equivariance one can solve
(1.4) with the known o in place of &. (We remark that if ¢ is unknown one can obtain
scale equivariance either by solving (1.4) or by simultaneous estimation of # and 0. as in
Sheahan (1988)).

To simplify the discussion we assume € = 0 and without loss of generality we assume
o = 1. Then the distribution of the ii.d. errors is standard normal in an unknown
interval (—ag,ao) and completely unknown outside (—ag,ao). We may assume that the
error distribution is non-normal in every interval containing (ag, ag), for otherwise we can
re-define ag by ag = sup{a}| the distribution is of standard normal form in (—ag.af)}.
Our aim is then to estimate the point ay where outside (—aq, ag) the distribution is not of

standard normal form.

2.1. One heuristic procedure for estimating ag is to make a normal probability plot of the

ordered residuals Uy, < ... < Uy, where

U, =X,—-¢c6, i=1,...,n (2.1)

1

and § is an initial consistent and shift equivariant estimator of 6. Such an estiinator can
be constructed as follows, in the case where F has a positive and continuous density f.
Let 6, be the least absolute deviation estimator, defined in the introduction. It was shown
by Koenker and Bassett (1978) - see also Bassett and Koenker (1978) and Ruppert and
Carroll (1980) - that



S(ao) = sup |Fn(u) — ®(u)|

ueA,
where A, = (—ap—0p, —ag+6n)U(ag—0n,a0+65), and 6, depends only on n and satisfies

6, — 0 as n — oo. An estimator of the true aq is then

a3 = max{ap| the observed value of S(ag) is not significant}.

2.5 At the cost of quite extensive analytical and computational inconvenience, we can
estimate ag using a likelihood ratio approach. (Recall that, for simplicity of presentation,
we are supposing that e = 0 in (1.7)). The density of U; in the model (1.2) can. from (1.7).
be written as

¢(u)I(Ju] < ao) + g(u)I(fu| > ao)

where g is a (assumed to exist) density of the unknown tail portion of F and I(A) denotes
the indicator function of a set A. The likelihood function of the sample 2 = (21....,2,)

i1s then

L(8,a0,9lz) = [[{¢(zi = ci8)I(|zi — ci6] < ao) + g(z: — i) (|2 = 6] > ay)}.
=1

In this, we propose replacing 6 by the estimate 6 of sec. 2.1. In order to use L to perform
a likelihood ratio test of the alternatives Hy : ap = ag, H1 : ap > aj, we have to contend
with the complication that ¢ is unknown. One possibility, which we have not explored
theoretically, is to replace g by a certain least favourable density go for the likelihood ratio
test of Hy versus H;. Specifically, if we define

MX;6,a5,9) =sup L(8,a0,9/X)/L(8,a5,9|X),

we let go minimize the power of the test based on A, of Hy versus H;, at some specified
alternative.

A rather complicated estimate of ag is then defined as
= max{a3|/\(:c;é,aa,g0) is not significant }.
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3. ESTIMATION OF PARAMETERS IN (1.5) AND (1.6) WHEN F IS ARBITRARY

In this section we relax the assumption that F' belongs to the class F of (1.7). and
consider again the problem of estimating 6 in (1.2) by solving an equation of the form
(1.3). If we wish to use a 1-function of the form (1.5) or (1.6), which as indicated carlier
is advisable if we anticipate gross errors in the data, we are led to the problem of choosing
suitable values for the parameters in (1.5) and (1.6). Note that if y; in (1.5) is known.
then (1.6) includes (1.5) as a special case, so we deal exclusively with the choices of 7,
and ag in (1.6). The numbers yo and aq are easily interpreted - 1 is linear in (—=y0,90) so
we are using a least squares prodecure on the residuals in that interval: outside (—ay. ay)
residuals have no influence on the solution of (1.3) , while residuals are down-weighted in
(—ao,—yo) and (yo,ao) by €. Clearly the points yg and ag must be chosen appropriately:
a poor choice of ag, for example, may lead to the dismissal of “good” observations, or the
retention of “poor” ones which may result in inconsistency of the estimator of 6 in (1.3).
The choice of the functional form of ¢ is not crucial; one should however ensure that the
resulting 1 does not descend too rapidly, in order that the asymptotic variance functional
(-see (3.2) below) does not become inflated.

We commence our analysis by making the following assumptions about C") iy (1.2).

Al)There exists a positive definite matrix Cj such that

C(")rC(")/n — Cpasn— oo

A2)sup{|ct(.;)||z' =1,...,n;7=1,...,p;n > 1} < K for some constant I\’

We assume further that an “initial” shift equivariant and consistent estimator 8 of 8 exists:

that is

A3)There exists § = (™) such that (X 4 ctg) = B(X™) 4+t for all + € R? and

6 =% 6. Note that, without some conditions on F, one cannot guarantee the existence
of such a 6. However, if for example F' can be assumed to have a positive and continuous
density and F~!(1/2) = 0 then, as pointed out in Sec. 2.1, §; is consistent. It is in

addition scale equivariant, i.e. 8, (A X (™) = l)\|éL(X(")), A#0.Evenif F~1(1/2) # 0. the
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estimator 6 of sec. 2.1 is, under certain conditions, consistent, in particular if the central
part of F' is assumed symmetric and strongly unimodal. For other candidates for 8. such as

trimmed least squares estimators, see the simulation results in Sheahan, Lind and Mehra

(1989) and Lind (1988).

For any given (fixed) yo and @ in (1.6), and with w = 107°% say, define a “fi-
nal”estimator aya,ao — é},ﬁ?ao of 6 as follows:

6* , if the equation (1.3) solved by Newton’s method with
initial value @ has an unique solution 6* (3.1}
if the Newton iterates do not converge.

vo.ao — § _
9,
The following theorem gives the asymptotic behaviour of gyo.av We omit the proof, since
it is similar to the proofs of Lemma 3.1 and Theorem 3.1 of Collins, Sheahan and Zheng

(1986).
Theorem 3.1.

Under assumptions Al), A2) and A3) and the conditions on £ given in sec. 1. the esti-
mator gyo,ao 1s for each fixed yp and ag a consistent estimator of 6. Further, 77“’15(@\”0‘,,“ -0)
converges in distribution to the multivariate normal distribution with mean 0 and covari-
ance matrix C'O—IV(LbyD,aD,F) where ¥, 4, is the 9 of (1.6) with its dependence on y, and
ao emphasized, and

gt Proao (W)AF (1)

1% 'lf) o,ﬂosp = ;oa_?:u
Waeer £ fi ! ag(WdF (w))?

—ag+w T Y0,20

An estimator of V(% 4., F) by the method of moments is

2, 00 (Xi — cif)
- : (3.3)
Yhosao i — ¢;0)])?

s

1
n

i

V(yo,a0, F) =

3=
.M;s

Il
-

[

It is tacitly assumed that F is such that the denominator of (3.2) does not vanish. so
that with high probability for large n, (3.3) is well-defined.

Now if F were known, a natural choice for the pair of numbers (1, ap)" would be that

12
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which minimizes (3.2). We propose choosing (yo,a0)’ to be the vector minimizing (3.3).
This procedure will then be asymptotically efficient if the minimizer of (3.3) is a consistent
estimator of the minimizer of (3.2), and this we shall show under certain conditions. We
shall agree that whatever choice we make for (yo,a0)’, yo should not be less than yyo and
ap should not exceed ajo, where y§ and ag, (yg < ag) are fixed numbers determined from
experience: the experimenter will know not to expect “aberrant” errors close to zero, so
wants to use least squares on residuals in some internal (—y,o,yy0). but also knows that
he can expect gross errors outside (—ago, ago).

We now add the following assumption:

A4) There exists 7 = (™ such that & is shift equivariant, scale invariant and satisfics

o — 0.

As with 6, the existence of such a scale estimator cannot be guaranteed without
imposing further conditions on F. We remark however that if F' happened to belong to
F and if the rows of C(™ contained repetitions, such a & can be obtained - sce Sheahan
(1988). Other estimators of ¢ are possible, depending on what functional of F one seleers
to define the scale parameter. While consistency of @ is required for the optimality theory
we are presenting to be valid, in practice one may be required to use the median absolute
deviation or other such robust scale estimate.

We now define the following subsets of R?:
S ={(yo,a0)'| = yo0 < yo < ap < ayo} and
S = {(y0,a0)'| — o0 < yo < a0 < a7 }.
Finally, let (yg,a5) satisfy
V(thyg a5, £) = nf{V(¢yo,00, F)(y0, a0) € S} (3.4)
and define an estimator (yg,as)’ of (yg5,as) by letting (75, dg) satisfy

‘7(%;,’&;’ F) =inf{V(¥yo.00, F)|(y0, a0)eS) (3.5)

We now have the following theorem, the proof of which will be given in the appendix.
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Theorem 3.2.

Assume that (yg,ag)’

is the unique minimizer in S of V(+y; q,, F). Then under as-
sumptions Al), A2), A3) and A4), and the conditions on § given in scc. 1, the statistic
(7g,ag) satisfies
@.35) —, (55.45)"

We remark that uniqueness of (yg, aj) is assumed only to simplify the proof of Theorem
3.2. If (yg,ag) is not unique then, with positive probability, 17(¢yo,ao’F) will have more
than one solution even for large n. In such a case, care must be taken in practise to
identify an appropriate minimizer of 17(1&_,,0,%, F) by a specified algorithm. to cnsure that
this minimizer is a consistent estimate of a minimizer of V(¢ a,, F'). (Compare with the
problem of solving (1.3) in practice - it has infinitely many solutions because 1 vanishes
outside an interval, and hence we chose a solution (3.1) which is a consistent estimator of

6, stated in Theorem 3.1.)

From Theorems (3.1) and (3.2) we immediately have:
Theorem 3.3.

o . ] 0 5
Under the same asssumptions as in Theorem 3.2, ni(G;, ~, — @) converges in dis-
4070
tribution to the multivariate normal distribution with mean 0 and covariance matrix

GV (¥yg.05, F)

We remark that if one wishes to use Theorem 3.3 in practice to obtain confidence
regions for, or to perform hypothesis tests about, 6, one can estimatc V(ys.a3.F) by
T:}(w;s an F), whose value will not depend on F.

We remark further that if in practice one knows nothing about F. one may, at least
for slight analytical convenience in the computation of (73, a})" from (3.5), consider using

a linear {. The y-function used in solving (1.3) would then be (with w = 107°)

v lyl < s
P(y) = m(’a‘a —107° —|y]), 5 <yl <@ —107°
0, lyl 2 a5 —107°.

14



In any case, whatever the choice of £, subject to its properties given in sec.1, the resulting
estimator @y} o is asymptotically normal, and optimal in the sense that it has mimmum
asymptotic variance among all solutions of (1.3) that are based on ¥-functions of the form
(1.6).

In conclusion, we remark that an alternative procedure to the one of this section is to
replace 6 in (3.3) by the unknown 6 and then choose a value for (yg,ap) that minimizes

(3.3) subject to (1.3) holding. We have not examined the theoretical propertics of this

procedure, which is an analogue of Huber’s “proposal 3” (Huber 196G4).
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APPENDIX

To prove Theorem 3.2 we first prove the following lemma.

Lemmea.
Define B = {(yo,a0)'|yy < yo < ag < a}}.

Under assumptions A2) and A3), and the conditions on € given in sec. 1, we have

UV (Yyo.a01 F) = V(Yo 00F)| (10, 20) € B} — 0.

Proof of the Lemma:
From the definitions of f}(%byo,aan) and V(%y, 40, F) in (3.3) and (3.2) respectively,
it is sufficient to show that

ag—w

1 g "
SUP{;Zwio,ao(Xi -—c:ﬂ)——/;

i=1

¢§D,ao(u)dF(u)l(yo,au)EB} —+71()} (4.1).

ap+w

and that

(P x
sup {; D Wb ao(Xi — i) — f
=1

%o,an(u)df‘“(wl(yo,ao)eB} — 0 (42).

—ag+w

To prove (4.1) it is clearly sufficient, by the triangle inequality, to show that

P . )
sup {-ﬁ D R (Xi = clf) = 92, 4 (X = ci6)]|(yo, a0) € B} — 0 (43
=1

and that

1 n Ag—w
sup {E D Y2 ao(Xi — cl6) —/ . vo,a0 (W)AF(W)||(yo, ap) € B} —. 0 (44).
=1 -4

iy
We first prove (4.4). Let € > 0.
For any fixed (y3,a}) € B, the Weak Law of Large Numbers implies that

apg—w

1 n
= ZT’L’;S,“E (X; — c:a) -—)p z,bg;,aa(u)dF(u) (4.5).
i=1

—ag+w
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By compactness of B, and noting that Vy,,a0(2 — ¢;#) vanishes outside (—ay + w, ag — W),
there exist neighbourhoods B; = B;[(yl,al)] of a finite number m of points (y!,al),j =

1,...,m, in B such that @1 B; = B and

(v0,a0) € Bj = sup |2 , (z —cif) — “’ig.ag(" —cib)||z — cif € (—ag +w.ay — w} e

Hence
sup {I— Z%o agh ci6) — j:oo:: yo,a0(WdF(1)|(yo, a0) € B}
= (vor00)€B,; { ;w“ ool i = ei6) = (Xi - CZH)I}JF
A B {/_:0: (s i (u )-d’,,foao(u)ldF(u)}+
jnax {]—Z«p aé(Xi—c:.e)m/::% ; (w)dF(u |}
< e+t et max {|— ;;b%,a, — i) — [;2 gb?é‘aé(u)dF(u)‘} (4.6).

(4.4) now follows immediately from (4.5) and (4.6).
To prove (4.3), first note that

i=1,.

P
| max (cif —cif)| < max 3 |ci;|d; - 6] — 0
i s

by A2) and A3).
It thus suffices to show (-see also Billingsley 1968, theorem 8.2) that given e > 0 and 5 > 0.

there exist § > 0 and an integer no such that

P( sup Iy e x, )—1/)50,&0(.X'z-—f9)1>e)5n (4.7)

(yo,a0)€EB jjtl—t2||<6 L=

Using again (uniform) continuity of Yyo,a0(T —1) and compactness of B, we can find § > 0

such that

sup sup D [$)0,00(z —11) =2, (2 —ta)| < ¢
{nidu ER It:— < || :::ER‘ Yo,ap Yo,a0

Ly



and hence it follows that (4.7) holds with, in fact, = 0 and ng = 1. The proof of (4.2) is
identical with that of (4.1) on replacing 2 by 1'. The proof of the lemma is thus complete,

Proof of Theorem 3.1

Fix € > 0. Since (yg,ag)" is the unique minimizer of V(yg,aq, F) in S, continuity of

V(yo,ao, F') shows that there exists § > 0 such that the events

~% ~x%

1155, 33)’ — (v3,a3)'1l > € and (33,35’ € S
imply the event (4.8)
V(@:,85,F) > V(y3,a3, F) +6.
Since SN S = S with probability tending to one as n — oo by A4), it follows from (4.8)

and the Lemma that with probability tending to one as n — oo, the event
(@5, 33)' — (5, a3l > ¢ implies the event V(§5, a5, F) > V(y3. 3. F) + 6.

Since this last event has probability tending to zero as n — oo, we have P(ll(gg.a5) —

(¥5.a3)'l| > €) — 0 as n — oo, completing the proof.
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