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ABSTRACT

We construct those distributions minimizing Fisher information for scale in Kol-
mogorov neighbourhoods K.(G) = {F|sup|F(z) — G(z)| < €} of dfs. G satis-
fying certain mild conditions. The theoryxis sufficiently general to include those cases
in which G is normal, Laplace, logistic, Student’s ¢, etc. As well, we consider

G(z)=1—-€e"% 2 >0, and correct some errors in the literature concerning this case.
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1. Introduction and Summary. In the theory of robust, minimax variance estimation
as developed by Huber (1964, 1981), a frequently occuring problem is that of determining
that member of a certain class of distributions, representing all “reasonable” departures
from a “target” distribution, which minimizes Fisher information for the quantity being

estimated. Such departures are often modelled by Kolmogorov neighbourhoods:
Ke(G)=1{F|_sup |F(2)-G(a)| < e}

in which ¢ and G are known and fixed.

Huber (1964) minimized information for location in Ke(®), € < .0303. Here,
® is the standard normal d.f. Sacks and Ylvisaker (1972) extended this to the range
0303 <& <.5. Wiens (1986) considered this problem for general, symmetric G. Collins
and Wiens (1989) extended these results to Lévy neighbourhoods of d.fss G satisfying
conditions similar to those imposed in Wiens (1986).

The problem of minimizing information for scale in Kolmogorov neighbourhoods has
hitherto not received a systematic treatment in the literature. Note that if o is a scale
parameter for a r.v. X, then log ¢ is a location parameter for log|X|. By this
device, certain results for location estimation may be transfered to the problem of scale
estimation. This approach was taken by Huber (1981) in minimizing information for scale

in the gross errors neighbourhood
Ge(®)={F=(1-¢)®+¢cH, H arbitrary}.

The log tranformation was useful here since, under it, the gross errors structure is main-
tained and there already existed a theory of minimum information for location for Ge(G),
with G  asymmetric.

In contrast, although the Kolmogorov neighbourhood structure is maintained under

the log tranformation, a common assumption in all of the aforementioned papers on mini-
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mizing information for location in K:(G) isthat G be symmetric. This symmetry is
typically destroyed by the taking of logs. Thus, the problem of minimizing information for
scale requires either a direct approach, or the derivation of a location estimation theory
which is valid in  K.(G) for asymmetric G.

We here adopt the former approach. We shall present a theory, valid for scale esti-
mationin K.(G), with G satisfying certain mild assumptions. The results are general
enough to include the cases G =&, G the Laplace d.f., and more generally G = G,,
with density proportional to exp(—|z|/€), 1 < £< 2. The logistic and Student’s ¢ dis-
tributions are covered as well. We also consider the case in which G(z)=1-e"%, 7z > 0;
in so doing we correct some errors made in Thall (1979).

The proof of Theorem 1 below is completely analogous to that of Theorem 4.4.2 of
Huber (1981), and so is omitted.

DEFINITION: Fisher information for scale of a distribution F on the real line is

(J25 2X/ (2)dF (2))?
S x*(2)dF(z)

I(F;1) = sup

where the sup is taken over all continuously differentiable functions X with compact

support, satisfying [ x*(z)dF(z) > 0.

THEOREM 1. The following two assertions are equivalent:
(1) I(F;1) < co.
(2) F has a density, absolutely continuous on IR\{0}, satisfying:
(i) zf(z) =0 as z — 0, £o0;

(i) JZ(=z £ (2) = 1)*f(z)dz < .

In either case, we have

I(F;1) = /(—.r f? () = 1)* f(2)dz < oo.

3



REMARK 1: Define F,(z) = F(Z) for o > 0. Then if I(F;0) is defined as
I(F,;1), we have that the value of this functional is % I(F;1).

REMARK 2: An M-estimate of scale is defined as S(F,), where F, isthe empirical
distribution function based on a sample X;,...,X, ~F, and the functional S(F) is

defined implicitly by

I-ZX(—S-(%)dF(m)=O. (1.1)

Under appropriate regularity conditions (see for example Boos and Serfling (1980) and
Serfling (1981))

ﬁ(i_((%)—l) = N(0,V(x, F)), (1.2)
where
00 2 T o
Vi F) = S X (56ry)dF (2)

e X' () sty dF (@)

Now let F be a given convex class of distributions, and suppose that EFy  mini-
mizes I(F;1) in F. Define Xo(z) = -z %:’- (z)—1, corresponding to maximum like-
lihood estimation of o if X1,...,Xn ~ Fy 5. Define So(F) by (1.1), with X = Xo-
Then So(Fy)=1. We have |

V(xo, F) < V(xo, Fy) =

I(Fi;l) < V(x, Fo) (1.3)

forall FeF ={Fe¢ F|So(F) = 1} and all y such that (1.1) holds for F ¢
F1. The second inequality in (1.3) is essentially the Cramér-Rao Inequality; the first is

established by variational arguments, as in Huber (1964, 1981). It follows from (1.3) that

sup V(xo, F') = inf sup V(x, F),
F1 X R

4



so that yp yields a minimax variance estimate of scale for F ¢ Fi.

The question of whether or not the saddlepoint property (1.3) extends to all of F
will be considered, for F = K(G) and F = Ge(G), in a forthcoming paper. We
note that this question has been answered, in the affirmative, by Huber (1981) in the class

Ge(®), € < .04.

2. General Theory. Define Ki(G) ={F e Ke(G)I(F;1) < oo} and assume that
G € K{(G). Then as at Vandelinde (1979), K.(G) is weakly dense in Ke(G). The
methods of Huber (1964, 1981) may now be employed to show the existence of an in-
formation minimizing F, € Ke(G). By Lemma 4.4.4 of Huber (1981), I(F;1) isa
convex functional of F € KL(G). It follows that I(Fp;1) = min I(F;1) iff, for all
Fy € KL(G)
0< O—; I((1 = t)Fy + tFy; L
= [ tsle £ o) 4 1107 - s )
- (8@ ~ 114 - fo)(@)}e.

This condition becomes more useful if an integration by parts is possible, F irst, define
ff
Xo(z) = —z =2 (2) —1,
fo

and define an operator J on the class of absolutely continuous functions on IR by

J(x)(z) = 2zx'(z) — x*(2).

Extend J by left continuity where X' is discontinuous.

LEMMA 2. If F, issuch that Xo 1s absolutely continuous and bounded, then in order

that Fy minimize I(F;1) in K.(G) it is necessary and sufficient that
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(1) Fy € K(G);
(2) 0< [22, J(xo)(2)d(Fy — Fo)(z), forall F,c KL(G).

PROOF: Integrate by parts in (2.1), using condition 2(i) of Theorem 1.

a

REMARK 3: As at Section 5.6 of Huber (1981), if for each F ¢ K.(G) we have also
F € KL(G), where F(z)=1-F(—z), then F = : (F+F)eKL(G) and I(F;1)<
I(F;1). We need then consider only symmetric distributions. This condition on Ke(G)
is satisfied if G is symmetric.

Motivated by the above considerations, we make the following assumptions on G :

Gl) G is symmetric and strictly increasing on (—o0,00), with G(es) = 1.
G2) 0<I(G;1) < .

G3)  The denisty g of G, absolutely continuous by G2), is strictly decreasing on

(0, o).
G4) &(z):= -z fgL' (r) =1 is absolutely continuous on (—00,00), with an absolutely
continuous derivative ¢'(z); £(0)=—1 and lir%zﬁ”(:z) = (3,

In Section 3 below we exhibit the minimum information members Fy of K.(G)
for a variety of distributions @ satisfying G1)-G4). In each case, that these F, do

minimize I(F;1) follows from the following theorem.

THEOREM 3. If Fy possesses the following properties, then it is the unique member of
Ki(G) minimizing I(F;1) over Ke(G) :

51) Fy € K.(G), Fy, symmetric, Fafco)=1.

52) xo is absolutely continuous and bounded.

S3)  There exists a sequence 0 < by < a3 < by <.+ < g, < Dt S Wy Eid

constants Ay,...,\,, such that:



A1, 0« il

Ai, gL rshby i=0...
An <0, an <z

J(€)(z), bi <z <aiqq.

(i)  With By, := {z|Fy(z) = G(z)—¢} and By := {z|Fo(z) = G(z) + €},

(1) J(xo)(z) =

n—1 n—1
By U By = {i.—LZJ1 (bi, aiy1]} U {i_L__Jl [—ai_1,—b;]}.

(fﬁ) If a; € BL[BU] then J(xo)(a?) == Ay o [ZJJ(XO)(G;_) If b€ BL[BU]
then J(xo0)(b7 )= \; > [ﬁ]J(XO)(b?)-
(iv) If (bi,ait1) is non-empty and contained in Br[By] then J(&) is weakly

decreasing [increasing] there.

Proor: Conditions S1) and S2) allow one to apply Lemma 2, and to satisfy condition (1)
of the Lemma. Condition S3) guarantees that condition (2) of Lemma 2 is satisfied. To
see this, split the range of integration up into intervals, and then integrate by parts over
those non-empty intervals (biyaiy1), using G4). The integral can then be re-arranged

as a sum of non-negative terms, using (iii) and (iv) of S3).

The uniqueness of F, now follows from Proposition 4.4.5 of Huber (1981), if

(i) fo(z)>0, ze€ (—o0,0);

(i) 0 <I(Fp;1) = [ x3(z)dFy(z).

These follow from G3), and the observation that no solutions to the equation J(xo) =

constant can remain bounded as fy(z) = 0 — see Remark 4 below.
g

REMARK 4: The possible solutions to the equation J(xo)(z) = constant are given by:
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(1) J(xo)z)=A%, A>0:

xo(z) = )\tan(g log z + ¢);

2 Al
fo(z) = -+ (zmog $+C)§ ceR, ¢ >0.

(2) J(xo)(z)=-A%, A>0:

/\(1 + Cg.’L"\) )

1

XO('“") =A =, or 1—coz?

correspondingly

: 1 = AN2
fg($)=C3.’L'_-(A+1), caz® 1 or (1 - ez’ :

) a1 2 €R, c3,¢4>0.

3. Some Classes of Solutions. In this section we present the minimum information
members Fy € K.(G) for those @G satisfying assumptions G1) - G4) of Section 2, and

for which the following additional assumptions are satisfied:

) JEO)=~1; & J(€)(@)s=0 > 0.
J2)  There exists k € [1,00] for which

J()(z) = -k as z — +oo.

J3) J(€)(z) has exactly one local maximum (m, J(€)(m)) for m € (0,00), and
J(&)(m) > 0.

J4)  J(&)(z) is strictly increasing on  (0,m), strictly decreasing on  (m, oo).

REMARK 5: Assumptions G1) - G4), J1) - J4), henceforth referred to as G) and J), hold

for the logistic distribution, all Student’s ¢ distributions, and those Gy defined in
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Section 1, for 1 < £< 2. Note that G, is the normal d.f., G, the Laplace. For

G1, see Remark 6 below.

LEMMA 4. If G and J(£) satisfy assumptions G) and J), then &(z) s strictly

increasing on [0,00), with £(0) = -1, £(c0) > 0.
PROOF: The proof is lengthy and rather technical, and so the reader is referred to the
Ph.D. thesis of Wu (1990) for details.

O

REMARK 6: The remaining results of this section are stated under the assumptions G) and
J). In all of them, J) may be replaced by “J2), J3), J4) and the conclusions of Lemma, "

In particular, the solutions below then apply to the Laplace distribution G;.

THEOREM 5. (Small ¢) If G) and J) hold, then there exists €0(G) such that for

0 <e<eo(G), Fisher information for scale is minimized in Ke(G) by that F, with:

[ﬂ@, 0<z<g
&(z), a<z<b
xo(z) = xo(—2z)=¢ § tan(g log =z + w) b<z <
£(z), = g <d;
L §(d), d < z;

( 9(a)(a/z)! e,

<& = ai
9(=), a<z < b
bg(b) cosz(% log = + w)
folz) = fo(=2) = , cosz(g log b+ w) & Shit b
9(z), c<z<d
L g(d)(d/z)!+¢(@), d<z.
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The constants é and w are given by

_ bg(B)E*(b) = cg(c)€*(c)y1/2
il s
= (fss—b)) = g log b.

The remaining constants are determined by

(1) £&(c) =6 tan( log ¢+ w), (2) Fo(a)=G(a) +e¢,

(3.1)
(3) F[)(C) = G(C) — £, (4) Fg(oo) = 1,

Then
By n[0,c0) =[a,b], BrN[0,00) = [c,d]. (3.2)

Minimum information is

I(Fii 1) = 2-€*(@)(G(a) ~ 5 +¢) + 8(G(c) - G(5) — 2¢)

~E@DA-CD++ [ I(E)(@)6(@)

[a,b]U]e,d]

ProoF: The functions xo,fo are defined in such a way that, as long as (3.1.1) holds,
Xo and fy are continuous. Clearly, xo is then absolutely continuous and bounded.

In the notation of S3) of Theorem 3, we have
(’\1 ) AZ} A3? bl » @2, b21 (13) = (“62(‘1); 62: _62((1)1 a, b: c, d)
To verify S1) and (3.2), it then suffices if

fo(z) 2 g(z), z€(0,a)U(d,00); fo(z)< g(z), z€(de). (3.3)
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The remaining parts (iii), (iv), of S3) will follow if
6" 2 max(J(€)(3), J(E)(e)) b<m<e (34)

Note that —£%(d) < J(¢)(d) and ~&%(a) < J(¢)(a) are also necessary to satisfy S3)
(ii), since a3 =d € B; and by = a € By, but that these inequalities are immediate
from Lemma 4.

For the details of the proof that, for sufficiently small €, there exist a,b,¢,d

determined by (3.1), and that (3.3), (3.4) are then satisfied as well, see Wu (1990).

a
It is now a fairly straightforward matter to infer the form of the solution for & >
£0(G). For the “medium ¢’ and ‘large €” formsof F, given below, the conditions
of Theorem 3 are easily verified, given the existence of the constants. See Wiy (1990) for

details.

Medium ¢ : Under G) and J), and for a range 0(G) < & < €1(G), the minimum
information Fy € K.(G) assumes one of the two following forms. Both forms occur —

see Examples 1 and 2 below:.

Form 1:
{(a), s s
§(2), a<z<b
Xo(2) = Xo(—2) = ) ta,n(g log z + w), b &= d;
§ tan($ log d + w), d <5
[ 9(a)($)1+E), 0<z<gq
9(z), a<z<b
fo(2) = fo(—z) = 4 bg(b) cosf(flog atw)
5 ’ ST =4
cos?(3 log b+ w) T
L g(d)(3)? tenth log dvw), d<z.
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I

]

2

B

1

The constants a,b,d,6,w are determined by

(1) &(b) =6 tan($ log b+ w),

@) bg(b) _ cos?($ log b+ w)
dg(d) cosg(g log d+w)’
(3) Fo(a) =G(a)+e¢, (4) Fo(d)=G(d) -, (6) Fp(oo) =1.

Then By N[0,00) =[a,b], ByN[0,00)={d}. Minimum information is

I(Fy;1) = 2[ — €%(a)(Gla) — % + &) + §*(G(d) — G(b) — 2¢)

6 b
_52mﬁ%§bgd+wmb4ﬂﬁ+sy+f‘KOQMG&ﬂ

Form 2:

6 tan($ log a + w), 0<z<agq;

é‘ .
Xo(z) = xo(—2z) = 6 tan(3 log z +w), as <

&), c<zr<d;
f(d)? dS Z;
( g(a)(%)é tan(§ log a+w)+1’ b < G
ag(a) cos?(£ log z + w) -
. -
fo(z) = fo(-z) = J cosg(% log a + w) T » =T ¢
9(z), el o d
[ gla)(2)+e@, F

The constants a,c,d,§,w are determined by

(1) &le)=4¢ tan(% log ¢+ w),
2) cg(c) & cos?($ log ¢ + w)
ag(a) cosz(g log a + w)’
(3) Fo(a)=Gla)+e, (4) Fo(d)=G(c)—¢, (5) Foloo)=1.
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Table III. Numerical constants for K.(G),G = Exponential.

10~*
1073
.003
.005
.006
.0065
.00683
.008

.0141
.0440
0754
.0966
.1054
.1096
1122
1210
1345
.1860
2807
2976
2213
.1330
.0751
.0312
.0136
.0021

1.3910
1.1000
9111
8207
L7875
1725
7635
7331
.6868
5279
3116
.2920

2.729
3.216
3.570
3.775
3.856
3.893

7.360
5.421
4.544
4.151
4.013
3.953
3.916
3.852
3.763
3.504
3.252
3.237
3.220
3.535
4.123
5.145
6.127
8.269

19

1.690
1.629
1.577
1.545
1.532
1.525
1.522
1.509
1.486
1.389
1.191
1.168
9742
.6648
4315
2341
1374
.0456

w

—.052
—-.015
017
037
.045
.049
051
.059
072
116
170
174
8T
175
.150
114
.088
.046

I(Fy)

.9940
.9631
9227
.8896
8746
.8662
.8635
.8323
7983
.7301
5131
.4893
.3092
.1090
.03091
.0046

8 x 10~*
1.9 x 1075



