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maximum being taken as the remainder in the wavelet expansion varies over an L
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when employed with weighted least squares and weights derived here, minimizes the
variance subject to a side condition of unbiasedness. For the Haar wavelet system we
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1. INTRODUCTION

The development of wavelet theory has in recent years spawned
applications in signal processing, in fast algorithms for integral trans-
forms in numerical analysis and in function representation methods
(Daubechies, 1992; Strang, 1989; Alpert, 1992). This last application has
stimulated interest in wavelet approximations of regression response
functions for the analysis of experimental data —see Antoniadis,
Gregoire and McKeague (1994) and Benedetto and Frazier (1994), and
in the construction of designs to facilitate such approximations — see
Herzberg and Traves (1994).

Traditionally, design theory has focused on the attainment of some
form of a minimum variance property, assuming the fitted model to be
exactly correct. This in particular was the approach of Herzberg and
Traves (1994). Beginning with the seminal work of Box and Draper
(1959), various authors — Huber (1975); Pesotchinsky (1982); Sacks
and Ylvisaker (1984); Wiens (1992, 1998, 1999); Wiens and Zhou (1997)
among others — have sought designs which are robust against various
forms of model misspecification. Wavelet approximations suggest such
an approach since, although one can in principle approximate any
(sufficiently well-behaved) function arbitrarily closely through a wave-
let expansion, in practice one would be willing to fit and estimate only
a relatively small number of the components of such an expansion.
The omitted terms then constitute a form of model misspecification,
resulting in biased estimates of the included coefficients and of the
regression response.

We start by considering a nonparametric regression model Y(x) =
n(x)+¢ with additive, homoscedastic, uncorrelated errors. The ex-
perimenter is to observe Y(x) at n, not necessarily distinct, values
of the design variable x, chosen from the design space S = [0, 1]. The
response 7(x) = E[Y|x] is assumed to be square integrable on S. This
integrability allows one to approximate 7(x) by finitely many terms
of its wavelet series; the theory relevant to this is outlined in Section
2 of this article. We consider in particular the Haar wavelets and the
multiwavelets of Alpert (1992). In Section 3 we quantify the bias re-
sulting from the least squares estimation of the coefficients in the ap-
proximating series. This bias depends on the magnitude f(x) of the
omitted terms and on the design, and forms a major component of the
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Mean Squared Error (MSE) matrix of the coefficient estimates. We
construct minimax robust designs, which minimize the maximum value
of a scalar-valued function of the MSE matrix, with the maximum
being evaluated as f(-) varies over an L’-neighbourhood of the zero
function. For the Haar wavelet approximation we establish a very
strong and general robustness property of the (continuous) uniform
design. For the multiwavelet system we find that the problem is much
more difficult. We give the details for one particular multiwavelet
approximation.

The difficulties associated with minimax designs for multiwavelet
approximations motivate our consideration of minimum variance
unbiased (mvu) designs in Section 4. When used with weighted least
squares and the optimal weights derived here, these designs minimize
functions of the covariance matrix of the coefficient estimates, subject
to a side condition of unbiasedness. We are able to obtain mvu designs
for multiwavelet approximations of any order.

In Section 5 we consider two data sets from the literature on non-
parametric regression, and use them to illustrate the construction of
the designs of Sections 3 and 4. Derivations are in the Appendix.

2. PRELIMINARIES

A wavelet system is a collection of dilated and translated versions of a
scaling function ¢(x) and a primary wavelet 1(x) defined for integers j
and k by ¢;x(x) = 2772¢(27x — k) and 1 4(x) = 2722 7x — k). The
construction of the functions ¢(x) and (x) is based on the concept
of multiresolution analysis of the space of square integrable func-
tions developed by Meyer (1986) and Mallat (1989) — see Chui (1992);
Antoniadis et al. (1994) and Hirdle et al. (1998) for details.

The Haar wavelet basis is the simplest example of a wavelet basis for
the space L?(S) of square integrable functions on S = [0,1]. The
scaling function is ¢(x) = Ijo,1;(x) and the primary wavelet is ¥(x) =
B3(2x) — ¢(2x — 1) = Iio,1/2(x) — Ij12,19(%), yielding

V(%) = 279D Mk aiar 129 (%) = Tpigaer (2 2041 () 1
<0, k>0.
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The multiwavelet system constructed by Alpert (1992) will also be
used in our study. The multiwavelet basis differs from other wavelet
bases in that instead of a single scaling function ¢(x) there are sever-
al such functions ¢y, ...,¢x_;. Each scaling function is a dilated,
translated and normalized Legendre polynomial on [0, 1) i.e., ¢;(x) =
V2i+1P;(2x — Dl 1y(x) (i = 1,...,N), where P;(x) is the ith degree
Legendre polynomial. In particular,

$o(x) =ITon(x), ¢1(x) = 2v3(x ~ 1/2) - Ijg.1) (),
$a(x) = 6V/5((x — 1/2)* — 1/12) - Ig1(x).

The multiwavelets coincide with the Haar wavelet basis if N = 1. In
this case we shall denote the primary wavelet by wy(x) = ¥(x). For
N=2 the primary wavelets are

awo(x) = V3(4lx — 1/2] = 1) - Ig 1) (),
awi(x) = 2(1 = 3|x — 1/2]) - (I 1/2)(x) — I1/2,1)(x)).

For N=3 they are

swo(x) = 2wi(x), swi(x) = —v3(30|x — 1/2* — 16]x — 1/2| + 3/2)
- Tip 1y (%),
wa(x) = —V5(24|x — 172 = 12x — 1/2| + 1)
(o172 (%) = Ty y2,1)(%))-

See Figure 1.

Let n(-) € L*(S). The multiresolution analysis of L?(S) leads to the
wavelet representations of 7(-) given by Alpert (1992) and Walter
(1995). For the Haar wavelet system we have

n(x) = dodo(x) + Y cutp—jx (%)

Jk=0

where dp= fol n(x)po(x)dx and cj= fol N(x)¢—jk(x)dx. Similarly, for
the multiwavelet system there exists a representation as a series in
{&1(x), hw; "5 (x)|j,k > 0,1 =0,...,N — 1}, where yw;7*(x) = 2//2yw,
(2/x—k).
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We shall denote by qN m(x) the N- 2™t x 1 vector cons1stmg of the
wavelets {¢;(x),yw;” k(x)j=0,...,mk=0,...,27 —1,1=0,. -1}
in some order. The elements of gy, form a basis for LZ(S). For the
ranges of j and k in q ,(x) we find it convenient to write

w7 (x) = 2V w ({27 xDI([27x] = k), (1)

where {x} = x —[x] denotes the fractional part of x.

THEOREM 2.1 The Euclidean norm of qy n(x) is given by

m—1

M ()2 = (v ({27 5} ({27 %)) ‘

1_1
Nz

= Sy ({27 xPen ({271 x)).

In particular, ||q) (x)||* = 2™, The asymptotic value satisfies

i 100 _ 27
m

N—-oo

{2'”“ - {2 T2 (2)

3. MINIMAX ROBUST DESIGNS

As in Daubechies (1993) we approximate the regression response by
finitely many dominant terms of its wavelet representation, with re-
mainder f(x), viz. E[Y|x] = qf,,(x)60 +f(x). Then f(-)€ L*S) and,
with q=qu,,, the model is

Y(x) = q"(x)60 + f(x) +&. 3)

We make frequent use of the relationships

1 1
0 ]0 q(x)f (x)dx =0, (i) /0 a7 (Mdx =1 (4)

We suppose that the experimenter is to take n observations (x,, )
from (3) and then estimate 0, by ordinary least squares. Then ¥(x) =
T(x)Go is a biased estimate of E[Y|x]. In order that errors due to bias
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not swamp those due to random variation we assume that

/ ' Pxdx < 7 s)

for some, presumably small, constant 7. The integral above is the sum
of squares of the coefficients of those wavelets not being fitted in the
model. Our results depend on 7 and on the error variance o® only
through the quantity v = ¢*/n7>. This quantity may be interpreted as
representing the relative importance to the experimenter of variance
versus bias: v = 0 corresponding to a ‘pure bias’ problem, v = co to a
‘pure variance’ problem.

Denote by £ the design measure, i.e., the empirical distribution
function of {x;};_,. Define

1

1
B=B(¢) = /0 q(x)q" (x)dé(x), b=b(f,€) = /0 q(x)f (x)d¢(x)-

In terms of the model matrix Q, with rows q”(x;), this is B = n~'Q7Q.
The least squares estimate is 6 = B~ fol q(x)y(x)dé(x), with bias B~'b
and covariance matrix (c>/n)B~'. The Mean Squared Error matrix
M(J, &) of G is

M(f,€) = B~!bb"B! +%2-B‘1.

Antoniadis et al. (1994) have obtained bounds on the rate of con-
vergence of the mse of ¥, as the sample size and number of fitted wave-
lets increase.

We adopt a minimax approach to the design problem, and seek a
design measure &, such that min; maxser £(f,€) = maxrer L(f, &),
for some scalar-valued loss function L£(f,£) depending of f and ¢
through M( f; ). Here F is the class of functions f satisfying (4(i)) and
(5). The loss functions we shall consider are

1. Integrated mean squared error: Ly(f,€) = fol E[(Y(x) — E[Y|x])]
dx = ttM(f, &) + folfz(x)dx =b"B7?b + (¢?/n)trB! + folfz(x)dx.

2. Trace: La(f,€) = trtM(f,€) =b "B 2b + (¢*/n)trB~!.

3. Determinant: Lp(f,€)=|M(f,&)|=(c?/n)*"" {(14(n/c?))b"B"'b/

IBl}.
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We call a design Q-variance optimal if it minimizes Lo(0r, &), where
0x is the zero function in F; this coincides with the classical optimal-
ity criterion of variance minimization, assuming the fitted model to
be exactly correct. We call a design Q-minimax robust if it minimizes
maxser Lo(f,€). Notions of 4- and D-variance optimality and mini-
max robustness are defined in an entirely analogous manner.

We adopt the viewpoint of approximate design theory, allowing as a
design any distribution function on S. We shall assume that £({1}) = 0
for every design £. This is because all of the wavelet approximations
considered here vanish off of [0, 1). Lemma 1 of Wiens (1992) then ap-
plies, and states that a necessary condition for supr L(f, £) to be finite
is the absolute continuity of £. We implement such a design by placing
the design points at the quantiles — see the examples of Section 5.

Denote the density £'(x) by m (x). The maximum of £(f, £) may then
be obtained in a manner similar to that in Theorem 1 of Wiens (1992);
see Oyet (1997) for details. In terms of C = fol q(x)q” (x)m?(x)dx and
G = C — B? we find (denoting the largest characteristic root by ch;) that

max Lo(f, &) =7 (v- trl_s-‘ +chiGB2 + 1), (6)
max La(f,€) = 7*(v-uB~! +ch;GB™?), (7)
2\ (v + ch;GB™!

Note from (6) and (7) that Q- and A-minimax robust designs are
necessarily identical, as are Q- and A-variance optimal designs. This is
a consequence of the orthogonality property (4(ii)); it does not hold
for non-orthogonal bases.

3.1. Minimax Designs for Haar Wavelet Approximations

The following lemma provides a condition under which a design &, will
be Q- and A4-variance optimal for the Haar wavelet approximation. It
turns out that any design having the property prescribed by this
theorem is also D- and G-variance optimal.
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LEMMA 3.1 For the Haar wavelet model with regressors q(x) =
41 m(x), any design & with B(&) = Ly minimizes trB~'(¢). In par-
ticular, any design &, which places mass 2=+ in each of the 2™*!
intervals {[27" Dk, 2= (k + 1)} o gmi_y has B(&) = bma,
hence is Q- and A-variance optimal.

Remarks

1. It follows from Lemma 3.1 together with Theorem 2.11.1 of
Fedorov (1972) (since B™'(£,) = B~%(¢,)) that £, is D-variance
optimal as well as A-variance optimal. It then follows from the
Equivalence Theorem (Theorem 2.2.1 of Fedorov, 1972) that £, is
G-variance optimal as well, in that it minimizes max,¢s var[¥(x)].

2. The D-variance optimality of £, was also established by Herzberg
and Traves (1994) using a completely different method of proof.

We can extend the variance optimality of the continuous version
of £, to a particularly strong form of minimax robustness. For this, let
L be any of Ly, L4, Lp. Denote by £y the continuous uniform de-
sign, with density m(x)=1. Then for any design £ and any f€ F we
have

E(f3€U) = E(ofaEU) S E(ofaé) S E(fvs)

The equality above is (4(i)). The first inequality is the variance opti-
mality of £, and the second inequality follows from the definitions of
the loss functions. (When £ = £, one should add fol f?(x)dx to each
occurrence of £(0,-).) Thus we have:

THEOREM 3.2 For the Haar wavelet approximation with regressors
q1,m(x), the continuous uniform design £y minimizes La(f,£), Lo(f,€)
and Lp(f,€), among all designs £ and for any f € F. In particular £y is
the minimax robust design for these loss functions.

3.2. Minimax Designs for Multiwavelet Approximations

For the multiwavelet approximation our design results are less
complete than those for the Haar wavelets. To illustrate some of the
issues involved we exhibit minimax robust designs for (3) with

q(x) = q2,0(x).
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We shall consider only designs with densities in
Ms={m()|m(x)=m(1—x)=m(1/2-x)=m(1/2+x), 0<x<1/2}.

Such densities are symmetric within each of [0, 1], [0, 1/2] and [1/2, 1],
hence are periodic with period 1/2. They can also be characterized as
symmetric functions of x € [0, 1] which depend on x only through {2x}.
Our motivation for the restriction to Mj rests on the observations
that ||q(x)||, the minimax designs of Section 3.1 and the mvu densit-
ies of Section 4 are of this form, and that for m € Mg the matrices B
and C are nearly diagonal, leading to easily determined eigenvalues
with tractable structure.

THEOREM 3.3 For the multiwavelet approximation with regressors
2,0(x) = (Bo(%), $1(x), 2w0(x), 2w1(x))” the Q-, A- and D-minimax ro-
bust designs in Ms have densities

s

mo(x;s)=mo(1—x;s)=r<(%—— )Z—E)Jr, 0<x<1/2, (9)

where r = 48/{1 =35+ (2s*2I(s>0))} is a normalizing constant and
s = s(v) € [—o0, 1] is chosen to minimize the maximum loss for fixed v.
The parameters v = vg 4 for Q- and A-minimax robustness, and v = vy
for D-minimax robustness, satisfy

( 2
&.S_S)_S, SSO,
) 25(1 - 3s)
voa = 3/2 2
9(25°/% + 45 + 6+/5 + 3)
3 7 0<s<1;
| 2501+ 25)°(1 - V&)
(10)
¢ 1 <0
(1-3s)’ ¥=5
Up = 9 3/2
1+207 e
L (1+2V5)(1 - V)

Some values of the constants are given in Tables I and II. The
limiting values s = — o0, 1 correspond to v = 0, co. The correspond-
ing limiting designs are the uniform (v = 0) and the discrete design
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TABLEI Some (-, A-optimal parameter values for designs (9) for multiwavelet
approximations

Maximum

v r s loss'

100 663.7 .698 281.6

10 99.92 .263 31.04
5 62.21 .096 16.26
3.24 48.00 0.00 10.88
1.00 24.31 -.325 3.63
.50 15.26 -.715 1.88
10 4.19 —3.48 .39
.01 473 —33.53 .04

! See exhibit (A.4).

TABLE II Some D-optimal parameter values for designs (9) for multiwavelet
approximations

Maximum

v r K loss'

100 1930 821 14.27
10 269.5 534 2.24
5 158.8 403 1.40
1.00 48.00 0.00 .56
5 24.00 —.333 36
.1 4.80 —3.00 .09
.01 480 —-33.0 .01

!'See exhibit (A.5).

<
~
<
<
- ™
o
S )
00 02 04 06 08 1.0 00 02 04 06 08 1.0

(a) b

FIGURE2 Q- and A-minimax robust (solid line) and D-minimax robust (broken line)

densities mg(x) for multiwavelet approximations with regressors g, o(x): (a) v = .5;
(b)v=75.

(1/4)60+ (1/2)61 2+ (1/4)6; (v = 00). See Figure 2 of plots of the Q-
and D-minimax robust design densities for v = .5and v = 5.

Note that mg(x; s) can be written as p({2x} — 1/2;5), where p(z; s) =
r(2/4) — (s/16))" is a symmetric density on [ — 1/2,1/2]. Motivated by
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the structure revealed in the proof of Theorem 3.3, and by a com-
parison with the mvu designs, we make the following conjecture. With-
in the class of densities which are symmetric functions of ¢ =
{2™*x} — 1/2, the minimax density for regressors Q@.(x) is p(t;5),
with s given by (10). Calculations carried out by computer algebra
have given strong support to this conjecture.

4. MINIMUM VARIANCE UNBIASED DESIGNS

In this section we suppose that the coefficient vector 6, is to be
estimated by weighted least squares, and seek designs and weights
which minimize £, hence L,, subject to a condition of unbiasedness.
For a non-negative weighting function v(x) define the vectors and
matrices

1
b=b@J@w3£quwuvuw«w,
1
B=Bmo=AqMJuMﬂaw,

D=DwQ=Aqumﬂ®%M-

In a more familiar regression notation these are B = n~'Q” VQ and
D = n~'Q7V2Q, where the model matrix Q is as in Section 3 and V
is the n x n diagonal matrix with diagonal elements v(x;). Then the
weighted least squares estimate fwis = (Q”VQ)™'Q’VY has bias
vector and covariance matrix B~'b and (¢?/n)B~'DB™! respectively.
Let k(x) = £(x) be the design density and set m = kv. Assume, without
loss of generality, that the average weight is fol v(x)d¢(x) = 1, so that
m is a density on §. We say that a design/weights pair is minimum
variance unbiased (mvu) if it minimizes £y and £, subject to the un-
biasedness condition

b(v, f, &) = /lq(x)f(x)m(x)dx =0 forallfeF. (11)
0

By virtue of (4(i)), condition (11) holds if m is the uniform density of
S. This uniformity has been shown to be necessary as well — see
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Theorem 2b in Wiens (1998). It in turn implies that B = I and then,
apart from an additive constant fol F(x)dx,

2
Lo=ti=Tun=2 /0 () [2v(x)dx.

An mvu design then has

1 1
Vo = argmin{/o ||q(x)||2v(x)dx|/0 v(x) dx = 1}.

Standard variational arguments give:

THEOREM 4.1 The minimum variance unbiased design has density
ko(x) =vo(x)~", where the mvu weights are ( proportional to)

Jo la(x)ldx

vo(x) =

g3

4.1. MVU Designs for Haar Wavelet Approximations

By Theorem 3.2 the uniform design, with constant weights, is unbiased
as well as minimax robust, hence is mvu for the Haar wavelet ap-
proximation. This also follows from Theorem 4.1 since, by Theorem
2.1, ||q1 m(x)]} is constant.

4.2. MVU Designs for Multiwavelet (V> 2) Approximations

We consider the multiwavelet approximation with regressors g(x) =
qn,m(x). The mvu design densities are periodic functions, with peri-
od 27*D_ The following theorem is an immediate consequence of
Theorems 4.1 and 2.1.

THEOREM 4.2 For the multiwavelet qy ,-approximation the mvu de-
sign density is

knm(x) = 6 - [pn-1 ({27 X)) gy ({27 x})
= Gy ({2 x}) g ({25 /2,
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where the normalizing constant is

1 -1
KN = (/0 [en-1(x)8n(x) — ¢§V‘1(x)¢N(x)](l/2)dx) ‘

The mvu weights are vy ,(x) < ky m(x)~". The limiting density is

lim Koy (x) = {2m+1x}—1/4(1 — {2m+1x})~1/4

N—oo B8((3/4), (3/4))

It can be shown that the local maxima of ky,,(x) are the zeros of the
function {27+!x}(1 — {2"+1x})¢)y_,({2"*1x}). Recall that the design
&p which is D-variance optimal for (N — 1)th degree polynomial re-
gression places mass N ~' at each of the zeros of x(1 — x)¢,_,(x). The
mvu design can be viewed as a smoothed, translated and dilated ver-
sion of ¢p. The design £p has a limiting beta(1/2, 1/2) density.

Some particular cases are:

N2 10
Ky m() = 2.5099 - [({2'"+'x}_5> +EJ ,

N2 1\2 | 1@
) = 80024 | (2719 -3 ) =55 ) 5]

See Figure 3 for plots in the cases m = 0 and m = 2.

5. EXAMPLES

5.1. Example 1: Motorcycle Impact Data

The motorcycle impact data are discussed in Hardle (1990) and
elsewhere in the nonparametric regression literature. In particular,
Antoniadis et al. (1994) fit a wavelet version of a kernel estimate to
these data. The response variable Y is a measure of the head accel-
eration of a post mortem human test object, at time x after a simu-
lated motorcycle impact.
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We have obtained three designs for the range of these data:

. The minimax design of Section 3.1, for Haar wavelets q; 4(x). The

64 design points are equally spaced over the range [2.4, 57.7) of the
original data.

. The mvu design of Section 4.2 for q,3(x), with n = 64. The first

four design points, in [0,1/16), are the k/64-quantiles of k, 3(x)
of Theorem 4.2 (k = 0, 1, 2, 3). Explicitly, x; = 0, x, = .013, x3 =
031, x4 = .050. These are extended by periodicity to the remainder
of [0,1) and then linearly transformed to span the range of the
original data. The regression weights v(x) = 1/k; 3(x), normalized
to have an average of one, are v(x;) = .692, v(x;) = .962, v(x;) =
1.384, v(x4) = .962; periodic thereafter.

. The mvu design of Section 4.2 for q3 »(x), with n = 48. The first six

design points, in [0, 1/8), are x; = 0, x, = .015, x3 = .038, x4 =
062, xs = .087, x¢ = .110; these are extended periodically and trans-
formed linearly as above. The corresponding regression weights
are v(x;) = .563, v(xp) = .906, v(x3) = 1.249, v(x,) = 1.126, v(xs) =
1.249, v(xs) = 0.906.

We simulated data at these design points in the following way. First,
a loess smoother was fitted to the original data, using S-PLUS soft-
ware with a span of .1. Predicted values 5:,@ of the smoother were then
obtained at each design point, and a random error ¢; added to these
values. The random errors were independently and normally dis-
tributed, with a standard deviation equal to that of the estimated
standard deviation of 5.

The first two fits employ 32 regressors each; the third employs

24,

-100

The data and fits are shown in Figure 4. As remarked by
ey M o {\F s e | -
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

(a) (b) (c)

FIGURE 4 Designs and fitted response curves for the motorcycle impact data:

(@

Haar wavelets g, 4(x); (b) multiwavelets g, 3(x); (c) multiwavelets g3 »(x).
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Antoniadis et al. (1994), one purpose of the analysis is the estimation
of the extremes of the response. Both mvu fits seems to be quite suit-
able for this. The Haar wavelet fit resembles Tukey’s (1961) regres-
sogram. Multiwavelet fits using g, 4(x) and q;3(x) were obtained as
well but seemed too oscillatory, especially in the range x > 30. Mini-
max designs for q, o(x), as in Section 3.2, can be constructed by placing
design points at the quantiles of my(x). These are not shown since this
approximation is not appropriate for these data.

5.2. Example 2: Sawtooth Data

McDonald and Owen (1986) discuss smoothing techniques for curves
with steps, abruptly changing derivatives, or cusps. One example given
is that of a sawtooth function on [0, 1], for which simulated data are
shown in Figure 5. The mean response is E[Y]x] = {2x} and the ad-
ditive random errors are independently and normally distributed, with
a standard deviation equal to one-half that of the values of the mean
response, as in McDonald and Owen (1986). Two designs for regres-
sors s o(x) —an mvu design as at Section 4.2, and a minimax de-
sign as at Section 3.2 with s = 0, were constructed. Each has 20 sites.
The mvu design points in [0,1/4) are x; =0, x; = .036, x3 = .078,
x4 = .126, x5 = .183. These are extended to [1/4,1/2) by symmetry
about 1/4, then to [1/2, 1) by periodicity. The minimax design points in
[0, 1/4) are x; = 0, x5 = .018, x3 = .039, x4 = .066, x5 = .104 and are
extended in the same manner.

1.0

00 0.6

0.2 04

00 02 04 06 08 10 00 02 04 06 08 1.0
(a) (b)

FIGURE 5 Multiwavelet fit to simulated sawtooth data at 20 sites. Regressors are
q2,0(x). (a) mvu design; (b) minimax design. Broken line is the mean response E[Y|x] =
{2x}.
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6. SUMMARY

We have illustrated the construction of robust designs for wavelet
approximations of regression functions. These designs are efficient in
the presence of random variation, and robust against bias incurred by
inadequacies in the wavelet approximation. A uniform design has been
seen to be optimal for Haar wavelet approximations. For multiwavelet
approximations we have given minimum variance unbiased designs
and regression weights, for models of any order. Further work remains
to be done on the construction of minimax designs for multiwavelet
approximations.
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APPENDIX: DERIVATIONS

Proof of Theorem 2.1 Define vectors ¢(x) = (¢o(%), ..., dn_1(x)7
and w(x) = (ywo(x), . .., wa_1(x))". Using (1) we derive

g (ON* = ()| + i2’I1W({2’x})Ilz- (A1)
=0

Now define vectors s(x) = (¢(x)7, w(x)")T and

t(x) = (o(x)7, —p({2x})" - (To,1/2)(x) — 1[1/2,1)(x)))T-

The algorithm of Alpert (1992, p. 198) for the construction of multi-
wavelets presents the orthonormal vector s(x) as a particular linear
transformation s(x) = Mt(x), where M is non-singular. The elements
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of t(x) are a basis for the space of functions that are polynomials
of degree less than N on [0, 1/2) and on {1/2, 1). This space has as
an orthonormal basis the elements of x(x) = (\/_2-¢({2x})TI[0,1 /2(x),
\/§¢({2x})71[1 /2’,)(x))T. Thus s(x) = Px(x) for some square matrix
P. Since s(x) and x(x) are orthonormal, P is necessarily orthogonal
and so

G + W = lIs()I = Ix()IF = 2ll¢({2x )%,

whence

W) I* = 2llg({2x))11” = g1

Upon substituting this relationship into (A.1) the sum collapses to
yield

lawm (7 = 27 lg(£27 D).

This may be evaluated with the aid of formula 8.915.1 of Gradshteyn
and Ryzhik (1980) to give the expression in the statement of the theo-
rem. A standard asymptotic expansion for Legendre polynomials —
formula 8.965 of Gradshteyn and Ryzhik (1980) — yields (2). [ |

Proof of Lemma 3.1 Consider the convex combination ¢, =
(1—-9& +16(1€[0,1]) for any design & on S, and define p(?) =
trB~'(¢,). The function p(7) is convex and so is minimized at ¢ = 0 if
and only if p’ (0) >0 for all £;,. We calculate that

1
J(0) = —tr{B*(&) [ atn wace ) - §o(x))B_l(€:)}-
The trB™'(&) is a minimum if B(&) = I»n and if as well
1 1
_ 2
tr /0 q(0)q” (x)dE(x) = /0 la(x)l%de(x)

is maximized by £,. This latter condition follows trivially since, by
Theorem 2.1, ||q(x)||* is constant on [0, 1).
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Thus & is optimal. To establish the optimality of &, we note that,
since q(x) is constant in each interval [2="* Dk, 2-™+D(k 4 1)), we have

2m+1 -1 (k+1/2"’+,)
Be) = Y [ @i (e
k=0 (k/2m+|)
2m+l_1 (k+1/2’"+’)
=3 [ AW s
k=0 (k/2m+1)

1
= / q(x)q" (x)dx = Ipma.
0 n

Proof of Theorem 3.3  First note that m € My iff m = m, where the
‘doubly symmetrized’ version / of m is defined by

m(x) +m(1 —x) +m(1/2 — x) + m(1/2 + x)

m(x) =m(l — x) = 7 ,
0<x<1/2
When m € Mg we then have the identity
1 1/4_
/0 o(x)m(x)dx = 4 A d(x)m(x)dx, (A.2)

valid for any ¢(-) for which the integrals exist. We find that ¢;(x) =

2Wo(x) = 2Wi(x) = 2w 2w1(X) = @1 2wo(x) = 0, and that for x €[0, 1/2],
— 1\’ — 1\? 1
QWO(X)=48 x—'z 5 2W1(X)=36 x—Z +Z’

Foo=12(x-1) +3, arme = vi(i(x-1) 1),

Order the elements of q(x) as'q(x) = (dg(x), 2wo(x), $1(x), 2w1(x))T and
define

Bo =4 /01/4 (x - %)zm(x)dx, "

1/4 1\2 1/4
Y = 4/ (x - Z) m*(x)dx, y=4 m?(x)dx.
0 0
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Using (A.2) we obtain B = diag(1, 485, B,) and C = diag(1, 48~,, C»),
where

V3(128) — 1/4) 3660+ 1/4
C, = (1250 + (3/4)y V3(1260 - (1/4)7))

B, (12ﬂ0+3/4 V3(126 — 1/4))’

V3(1260 — (1/4)7) 3680 + (1/4)y

We find that the characteristic roots of GB™? are y—1 and
(70/4882) — 1, each appearing with multiplicity two; those of GB™'
also appear in pairs and are v — 1 and (vo/3p) — 4803,. Thus from (6)—
(8), ignoring some multiplicative and additive constants independent
of m(:),

max Lo(f,€) = maxL:A(f,g) = 2,/(1 +48ﬂ0)

o . (A.4)
+ max (7"1’K0ﬁg_1)’
v 1 1
T o0 = Gaa T asa (g - ). (A3)

In each case the maximum characteristic root, evaluated at my, is
v — 1; this is easily verified once my is determined.

We minimize the loss first for fixed 8,. For all three loss functions this
requires the minimization of 4 = ~(m), subject to the constraint on 3,
and the requirement that m(-) be a density. It suffices that m minimize

/01/4 {m2(x) —2,( _%)2m(x) +%m(x)}dx (A.6)

for Lagrange multipliers r and s, and satisfy the side conditions. The
multipliers have been arranged in such a way that the integrand of
(A.6) is minimized pointwise by (9). Since my(x; s) is already symmet-
ric within [0, 1/2], membership in Mj is ensured by the requirement
mo(x; 5) = mo(1 — x; ).
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In the case s <0 we calculate that

3—5s 3(15-425+352%)  3(3—10s+15s%)

50:80(1—3s)’ =T Se0(1 35 5(1-3s)%

for 5 > 0 these become

2532 445+ 6/5+3
T80 12vs)
_ 3(852 + 24532 + 485 + 45\/5 + 15)
P T S0l 4 2v5) (1= vE)
_ 3(8s+9v5+3)
T2/ VR
In each case the loss may now be written in the form £ = g(s)v + h(s)

for appropriate functions g and 4. The minimizing value of s satisfies
v = —h'(s)/g'(s), resulting in (10). [ |




