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ABSTRACT

We consider the properties of the trimmed mean, as regards minimax-variance L-estimation of
a location parameter in a Kolmogorov neighbourhood X (®) of the normal distribution:

K (@) = { F|| F(x) — ®(x)] <€, —00 <x < 00; F symmetric}.

We first review some results on the search for an L-minimax estimator in this neighbourhood,
i.e. a linear combination of order statistics whose maximum variance in K .(®) is a minimum
in the class of L-estimators. The natural candidate — the L-estimate which is efficient for that
member of X (P) with minimum Fisher information — is known not to be a saddlepoint solution
to the minimax problem. We show here that it is not a solution at all. We do this by showing
that a smaller maximum variance is attained by an appropriately trimmed mean. We argue that
this trimmed mean, as well as being computationally simple — much simpler than the efficient
L-estimate referred to above, and simpler than the minimax M- and R-estimators — is at least
“nearly” minimax.

RESUME

Nous considérons les propriétés de la moyenne tronquée, en ce qui concerne I’estimation-L de
variance minimax d’un parametre de position dans un voisinage Kolmogorov K, (®) de la distri-
bution normale:

K (@) = { F|| F(x) — ®(x)] <€, —00 <x < 00; F symetrique}.

Nous passons premiérement en revue quelques résultats sur la recherche d’un estimateur L-minimax
dans ce voisinage, c’est a dire une combinaison linéaire de statistiques d’ordre dont la variance
maximale dans X (®) est un minimum dans la classe des estimateurs-L. Le candidat naturel —
I’estimation-L qui est efficace pour ce membre de X, (®) avec information Fisher minimale —
est reconnu comme n’étant pas une solution point-selle au probléme minimax. Nous montrons ici
que ce n’est pas du tout une solution. Nous faisons cela en montrant qu’une variance maximum
plus petite est atteinte par une moyenne tronquée de fagon appropriée. Nous soutenons que cette
moyenne tronquée, en plus d’étre facile a calculer — beaucoup plus simple que I’estimation-L
efficace a laquelle nous nous réferrons plus haut — et plus simple que les estimateurs minimax M
et R — est au moins presque minimax.
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and J.Z.) and by a Hong Kong UGC Direct Grant for Research (E.K.H.W.).
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1. INTRODUCTION AND SUMMARY

Let X;., < --- < X,,., be the order statistics from a location family, distributed as
F(x — 0) for a symmetric distribution function F. An L-estimate (for linear combination
of order statistics) of 0 is given by

()

for a weights-generating function m(t) with m(t) = m(1 —t) and fol m(t) dt = 1. One of
the simplest examples of an L-estimate is the a-trimmed mean, with weights-generating

function
lHa<t<1l—-a)

1 —-2a
The estimate corresponding to m(t) is the average of the inner order statistics after
omitting the [an] largest and [an] smallest observations.

Under appropriate regularity conditions on m and F [see Serfling (1980) and references
cited therein], 1/n(T, — 0) is asymptotically normally distributed with mean zero and
variance

m (1) = (1.1

1

V(im,F) =2 / h2(u; m) du,
1
2

where "
hp(u;m) = / m(t) dF (1) (12)
1
and F~'(¢) = inf{x| F(x) > t}.
Suppose that F has an absolutely continuous density f, that the score function

f/
Yr(x) = =7 ()
f
is absolutely continuous, and that Fisher information

I(F) = / YE(O)f(x) dx

is positive and finite. Put
Ye(F~ (1)
I(F)

Then V(mg,F) = I(F)7!, ie., the L-estimator generated by mg(-) is asymptotically
efficient.

If F is unknown, and is assumed only to belong to a certain class F of distributions in
which Fisher information is minimized by a member Fj, then it is a plausible conjecture
that my := mg, is L-minimax, i.e., that

mg(t) =

sup V(my, F) = mf sup V(m,F). (1.3)
FeF " Fef

The main results of this paper are that:
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(1) In the Kolmogorov neighbourhood of the normal distribution defined below, (1.3)
is false.

(2) (1.3) is nearly — to within bounds of negligible practical importance — attained if
my is replaced by m; of (1.1), with a chosen to minimize the resulting left-hand member
of (1.3). That is, the corresponding a-trimmed mean is “nearly” minimax.

We first give a brief history of the search for solutions to the problems represented
by (1.3). When (1.3) holds, it is generally established by showing that (my, Fy) is a
saddlepoint:

V(mo, F) < V(mo, Fo) = I(Fo)™' < V(m, Fy) Ym,VF € F . (1.4)

The saddlepoint condition (1.4) is sufficient but not necessary for (1.3). Jaeckel (1971)
established (1.4) for the gross-errors neighbourhood of the normal distribution:

G (®) = {F|F(x) = (1 — )®(x) + eH(x); H symmetric}.

The corresponding L-minimax estimator is an a-trimmed mean. Sacks and Ylvisaker
(1972) showed that (1.4) fails in Kolmogorov neighbourhoods of the normal distribution:

K (D) = {FH F(x) — ®(x)| <€, —00 < x < 00; F symmetric},

for ¢ > 0.07 approximately. They did this by exhibiting an F € K (®) with V(mg, F) >
I(Fy)~!. Collins and Wiens (1989) extended these results to all € € (0,0.5), by employing
a completely different method of proof (see Lemma 2.2 below). Their results apply as
well in Lévy neighbourhoods

L .5(G)={F|Gx —8) — e <F(x) < G(x +8) +¢}

under conditions on G which imply the existence of a strongly unimodal density. (Note
that X, = L.p.) Wiens (1990) showed that in fact the saddlepoint property must fail
in all neighbourhoods X (G) and L 5(G) if G is strictly increasing, with a sufficiently
smooth score function and finite Fisher information.

None of these results for Kolmogorov and Lévy neighbourhoods answer the questions:

(1) Does the weights-generating function which is efficient for the minimum informa-
tion distribution furnish an L-minimax estimator?

(2) If the answer to the previous question is negative, is there another L-estimate which
is minimax, or at least approximately so?

We answer the first question above in the negative, for X (®) and ¢ € [0.029, 0.481].
We do this by exhibiting distributions Fi, F; € K (P), such that with m; given by (1.1)
and a chosen to minimize V(m;, F|) we have

sup  V(my, F) = V(my, F\) < V(mo,F2) < sup V(my,F). (1.5)
FEX(®) FEX (D)

Thus the maximum variance of the a-trimmed mean is less than that of the L-estimate
corresponding to my. We find that this a-trimmed mean furnishes an answer to the
second question above, in that supreg, @) V(m;, F) in (1.5) is only slightly larger than
I(Fy)~'. The difference is in fact so small as to indicate that the search for an L-
minimax estimator for & (®), although mathematically interesting, is now unlikely to
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TABLE 1: Comparative variances: V(mo, Fo) = I( Fy)~!, maximum variance
V(my, F)) of a,-trimmed mean and V(mg, F>).

¢ . 1(Fo)™! V(m, Fy) VO(mg, Fy)
0.025 0.0851 1.3163 1.3361 1.3310
0.029 0.0926 1.3663 1.3906 1.3910
0.03 0.0943 1.3790 1.4045 1.4068
0.04 0.1101 1.5115 1.5493 1.5641
0.05 0.1235 1.6556 1.7066 1.7393
0.1 0.1741 26134 2.7538 2.9530
0.15 0.2155 4.1997 4.4852 49910
0.2 0.2547 6.9812 7.5041 8.5101
0.25 0.2936 12.241 13.164 14.610
0.30 0.3329 23.329 24.969 26.717
0.40 0.4137 144.22 150.84 153.63
0.45 0.4558 766.83 787.27 790.89
0.48 0.4819 6237.5 6313.7 6314.7
0.481 0.4828 6997.3 7079.0 7079.5
0.49 0.4908 29048 29239 29228

yield significant gains of any statistical importance. Some representative values of «,
I(Fy)~! and Suprex, @) V(my, F), for various choices of ¢, are given in Table 1.

A related consequence of this work, of some interest to the statistical practitioner, is as
follows. Note that if the saddlepoint property holds for a class M of location estimators
with generic member m and in a class F of distributions, then

inf sup V(m,F) = I(Fy)™', (1.6)
MoF

with the lower bound being attained by the my which is efficient for F;y. Huber (1964)
established (1.6) for the class of M-estimators and any vaguely compact, convex class
F . Collins (1983) showed that (1.6) holds for R-estimation in K, (®); this was extended
to L, 5(G), under certain conditions on G admitting the normal distribution, by Collins
and Wiens (1989). In contrast, the current results imply that for L-estimation in & (D),

I(Fo)™' <inf sup V(m,F) < V(my,F)). (1.7)
M KA(P)

It may be asked if this means that one should not bother with L-estimation in K (D),
opting instead for the minimax M- or R-estimator. However, as pointed out above, the
difference between the first and last members of (1.7) is so slight as to be negligible for
practical purposes. Furthermore, the minimax M- and R-estimators, and the L-estimator
generated by my, are much more computationally intensive — none has an explicit closed-
form expression or simple description — and much less intuitively pleasing than the
trimmed mean. Thus, there is much to be gained and little to be lost by using the
trimmed mean, now known to be at least “nearly” minimax in & (D).

The construction of F; and F; is carried out in Section 2. We are motivated by two
considerations:

(1) The trimmed mean is L-minimax in G (®) C K (P). It might then also be expected
to perform well in K (®). It is an easy matter to maximize the variance of the trimmed
mean in X (P); this yields F).
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(2) As shown in Lemma 2.2, there is a subclass of K (®) in which V(my, F) is
minimized by Fy. A search of this class yielded F, satisfying (1.5).

We believe that there exist distributions satisfying (1.5) for all values of ¢ € (0,0.5),
but such examples will evidently be rather more complicated than the F, exhibited here.

We do not know if the trimmed mean is L-minimax in X (®). We do know that
(my, Fy) is not a saddlepoint, since V(m, F) is not minimized by m;. In fact, we have
found that V(my, F|) < V(my, F) at all of those values of ¢ at which these quantities
were compared.

2. CONSTRUCTION OF F; AND F,
For fixed ¢ € (0,0.5) and for a € (¢,0.5) define a distribution function in X (P) by

0.5, —a<x<a:=dYe+0.5),
_ <x<ph=>d -
Fx:a) = dx) — e, a<x<b:=d (1 —a+e),
D(x) +e, —

b
Hx,o0)=1—H(—x;q), x>

where H(x;a) is arbitrary, subject only to the requirement that F(x;a) be continuous
and remain within the bounds ®(x) &+ ¢. See Figure 1.

Define m(t; a) as in (1.1), so that the L-estimator with weights generated by m(-; ) is
an a-trimmed mean.

THEOREM 2.1. The asymptotic variance of the a-trimmed mean is maximized in K (®) by
F(-; o), with

1 — 20+ 2af(a) + 2b{ab — ¢(b)}

Vim(;0),F(;)) = Q.1

(1 —2a)?
Proof. From (1.2) the a-trimmed mean has
1 F~(u) lcu<l—a
he(u;m( @) = ——— - { ' 2 ’
d 1—2a |Fll-a) l—a<u<l.

For F € K (®) we then have

O lu+e), t<u<l—aoa,

1
hre(u;m(-; ) < {
d ) 1 -2a b, l—a<u<l.

= h]:(.;a)(u; m(-; @)).

Thus
Vim(;a), F) < V(m(;a), F(; ),
and we easily calculate (2.1). O
We now define
a, = argmin V(m(; o), F(:; @),
(6,3)
Fi(x) = F(x; a.),

my(t) = m(t; a).
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Ficure 1: Fy, F) and F,; ¢ = 0.1.

Then the pair (m;, F) satisfies the equality in (1.5). See Figure 1 for a plot of F|.

The minimum-information distribution Fy € X (®P) was obtained by Huber (1964) for
e < ¢y = 0.03033, and by Sacks and Ylvisaker (1972) for ¢g < € < % For ¢ < ¢ the
score function and density are given by

Yo(x) = {7\1 tan %ﬁ,x, A= bo} ,

cos?(Mx/2)

=7 —hx—bo)
COSz(}\.]aQ/Z)’ q)(x)’ ¢(b0)e }

Jolx) = {¢(ao)
on intervals [0,aq], [ao, bo), [bg,00) respectively. The constants ay < by and A, are
determined in terms of € by

(i) Folap) = P(ag) — ¢,

(ii) Fp(o0) = 1,

(iii) Yo(ap — 0) = ap.
Thus Fy(x) = ®(x) —e€ on [ag, bp], and | Fy(x) — D(x)| < € elsewhere in [0, 00). For € > ¢
the solution has ap = by, A = A tan (May/2) and the constants ag, A are determined
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by (i) and (ii) above. See Figure 1 and Huber (1981, p. 90) for numerical values of the
constants.

Our search for a distribution function F, satisfying (1.5) was motivated by the following
result. Its proof is contained in that of Theorem 4 of Collins and Wiens (1989).

Lemma 2.2. Let K, '(®) be the subclass of K (®) defined by
K '(®) = { F € K(®)| F(x) = Fo(x) for |x| > ao}.
Then V(my, F) is non-constant on K,'(®), and
V(my, Fy) = Feng%‘i}lb) V(my, F).

For values 6 and a, as specified below, define
1 Folap) —3 —d

2 . 0<x<a,
2 ap
ap —x
F>(x;8) = { Folap) — 0 , ay < x < ay,
apg— a
F()(x), X 2 ap,
1 — F(—x;9), x <0.
The value of & is intended to be “small” — we will be letting 6 — 0. If 2¢ <

®(ag) — 3, we choose & € (0,P(ap) — 3 — 2¢) and put @, = d~'(Folap) — & — e),
so that Fy(ay;d) = P(ay) + €. [This is the case for F5(-;0.05) in Figure 1, for which
¢ = 0.1 and V(myg, F2(-;0.05)) = 2.8255 > 2.7538 = V(m,,F)).] If 2¢ > ®(ay) — %, we
set a = 8. We have F, € K (D) as long as F(x;8) — ®(x) < ¢ and > —e on each of
[0,a>] and [as, ap]. Three of these four conditions can be shown to hold for all ¢ and
sufficiently small 9; the requirement F,(x; 8) — ®(x) < € on [a5, ay] turns out to hold for
€ > 0.015, if § is sufficiently small.

We require & > 0 so that F; ' is uniquely defined at ay, where mj is discontinuous —
see Huber (1981, p. 61). It is however sufficient for our purposes to show that

VO(my, Fp) = {l,if(l) V(myg, F2(:;0)) > V(my, Fy). (22)

We find that

VO(my. Fy) = 2 {< cad )z
CTE T IR | \ M(Folan) — 1)

3
x (2ao¢<ao) +a(an)dlan) + <52 — 2{ Fo(ao) - ;})
+ (1 + ) {D(by) — Dlao)} — 2c2{d(bo) — d(ao)}

— {bod(bo) — aod(ap)} + (c2 + M*{1 — Fy(by)} }

where
o = (A /2)d(ao)
! cos?(hap/2)’
0 0
_ _Caa ci(ap — a3)
7 Fan 1 T @)

ay = lim a; = {@7!(®(a) — 20)}".
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We have verified (2.2), thus completing the verification of (1.5), for ¢ € [0.029, 0.481].

See Table 1 for the numerical values.
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