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Twenty nonlinear height—diameter functions were fitted and evaluated for major Alberta species based on a data set
consisting of 13 489 felled trees for 16 different species. All functions were fitted using weighted nonlinear least squares
regression (w; = 1/DBH;) because of the problem of unequal error variance. The examination and comparison of the weighted
mean squared errors, the asymptotic #-statistics for the parameters, and the plots of studentized residuals against the predicted
height show that many concave and sigmoidal functions can be used to describe the height-diameter relationships. The
sigmoidal functions such as the Weibull-type function, the modified logistic function, the Chapman—Richards function, and
the Schnute function generally gave the most satisfactory results.

HuaNG, S., Titus, S.J., et WiENs, D.P. 1992. Comparison of nonlinear height—diameter functions for major Alberta tree
species. Can. J. For. Res. 22 : 1297-1304.

Vingt modeéles non linéaires exprimant la hauteur en fonction du diamétre ont été ajustés et évalués pour les principales
espéces de I’ Alberta. La base de données utilisée consistait en 13 489 arbres abattus répartis en 16 différentes especes. Tous
les modeles de régression non linéaire ont été ajustés par la méthode des moindres carrés pondérés (w; = 1/DHP;) dii a la
présence d’hétéroscédasticité. L’examen et la comparaison des erreurs résiduelles pondérées, la statistique ¢ des coefficients
et le graphique des résidus standardisés en fonction de la hauteur estimée démontrent que plusieurs modeles concaves et
sigmoides peuvent décrire les relations hauteur—diametre. Les fonctions sigmoides telles que celles de Weibull, de Chapman—

1297

Richards et de Schnute présentent généralement les meilleurs résultats.

Introduction

Predicting total tree height based on observed diameter at
breast height outside bark is routinely required in practical
management and silvicultural research work (Meyer 1940).
The estimation of tree volume, as well as the description
of stands and their development over time, relies heavily
on accurate height—diameter functions (Curtis 1967). Many
growth and yield models also require height and diameter
as two basic input variables, with all or part of the tree
heights predicted from measured diameters (Burkhart et al.
1972; Curtis et al. 1981; Wykoff er al. 1982). In the cases
where the actual measurements of height growth are not avail-
able, height-diameter functions can also be used to indirectly
predict height growth (Larsen and Hann 1987).

Curtis (1967) summarized a large number of available
height—diameter functions and used Furnival’s index of fit
to compare the performance of 13 linear functions fitted
to second-growth Douglas-fir (Pseudotsuga menziesii (Mirb.)
Franco) data. Since then, many new height-diameter func-
tions have been developed. With the relative ease of fitting
nonlinear functions and the nonlinear nature of the height—
diameter relationships, nonlinear height—diameter functions
have now been widely used in height predictions (Schreuder
et al. 1979; Curtis et al. 1981; Wykoff et al. 1982; Wang and
Hann 1988; Farr et al. 1989; Arabatzis and Burkhart 1992).

For 16 Alberta tree species in 9 groups, this study com-
pared 11 published nonlinear height-diameter functions as
well as 9 nonlinear functions that apparently have not been
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applied to height—diameter relationships. The primary objec-
tives of the study are to evaluate the relative performance of
a variety of potential height-diameter functions on a large,
regional data set covering numerous species, and to identify
the most appropriate height—diameter functions for major
Alberta tree species.

The data

Alberta Forest Service provided felled-tree data for this
analysis. Collected over the last 2 decades, the 13 489 trees
were randomly selected throughout the inventory areas of the
province to provide representative information for a variety
of densities, heights, species compositions, stand structures,
ages, and site conditions. The data set was initially used for
developing individual tree volume equations and includes
many different variables for individual trees and qualitative
characteristics of their surrounding environment. A detailed
description of how the data are collected and recorded can be
found in Alberta Phase 3 Forest Inventory: Tree Sectioning
Manual (Alberta Forest Service 1988). Two variables avail-
able from the records, diameter at breast height (DBH) outside
bark and total tree height (H) for each tree, were selected to
be used in this analysis.

The 13 489 trees included 16 different species. To facili-
tate the analysis, species are classified into different species
groups according to their similarity, management objectives,
and number of observations (Table 1). Summary statistics
including the mean, minimum, maximum, and standard devi-
ation for total tree height and DBH by species group are
shown in Table 2. The variation in number of sample trees by
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TABLE 1. Species and species groups

Species group Species Scientific name
1 White spruce Picea glauca (Moench) Voss
2a Lodgepole pine Pinus contorta var. latifolia Engelm.

Whitebark pine
Limber pine

2b Jack pine

3 Aspen

4a White birch

4b Balsam poplar

5 Black spruce
Engelmann spruce

6a Balsam fir

6b Douglas-fir
Alpine fir
Alpine larch
Tamarack

Western larch

Pinus albicaulis Engelm.

Pinus flexilis James

Pinus banksiana Lamb.

Populus tremuloides Michx.
Betula papyrifera Marsh.
Populus balsamifera L.

Picea mariana (Mill.) B.S.P.
Picea engelmannii Parry

Abies balsamea (L.) Mill.
Pseudotsuga menziesii (Mirb.) Franco
Abies lasiocarpa (Hook.) Nutt,
Larix lyallii Parl.

Larix laricina (Du Roi) K. Koch
Larix occidentalis Nutt.

TABLE 2. Tree summary statistics based on species group

No. of DBH (cm) Total tree height (m)

Species sample

group trees Mean  Min. Max. SD Mean Min. Max. SD
1 3101 26.41 1.20 89.00 12.19 20.09 1.70 3840  6.98
2a 3199 22.10 1.10 66.60 8.59 18.11 1.72 37.60 5.18
2b 659 18.01 1.60  45.00 9.81 14.74 2.58 2820 6.38
3 3647 21.36 1.10 64.40 10.12 18.77 2.23 31.94 546
4a 102 12.11 1.60 32.00 5.87 11.88 3.18 21.50 4.13
4b 510 22.75 1.10 52.90 9.79 17.76 2.90 3195 4.88
5 1628 14.10 1.10 55.30 6.08 12.20 1.76 3063  4.26
6a 508 21.15 1.30 53.00 9.19 16.11 1.78 3140 5.50
6b 135 20.60 3.30 48.70 9.72 13.26 335 2233 498

Note: See Table 1 for species groups. DBH, diameter at breast height.

species group is an indication of relative importance. Lack of
consistent quantitative variables for all data prevented using
stand characteristics as additional independent variables.

Functions selected for comparison

The selection of the height—diameter functions was based
on the examination of the height-diameter relationship as
revealed by plotting total tree height against DBH for various
species groups. Two typical examples for white spruce (Picea
glauca (Moench) Voss) and aspen (Populus tremuloides
Michx.) are shown in Figs. 1 and 2. It is clear that the height-
diameter relationship for white spruce (Fig. 1) has a typical
sigmoidal shape, with an inflection point occurring in the
lower portion of the data points. On the other hand, the shape
of the height—-diameter relationship for aspen (Fig. 2) may be
regarded as either concave or sigmoidal, with no apparent
inflection point. The sigmoidal-concave shape reflects the
strong correlation between DBH and age. Both the typical
concave functions and the sigmoidal functions were selected
for evaluations. Additional nonlinear functions that are com-
mon in biological studies were also selected by considering
the plots of height versus DBH compared with the typical
graphs of the various functions. Table 3 provides a complete
list of the selected functions. Notice that some of the functions
(such as 1 and 6) often appear in transformed forms, and the

dependent variable may take the form of H — 1.3 (Curtis
1967). The quadratic height-diameter functions, first pre-
sented by Trorey (1932) and advocated by Ker and Smith
(1955) and previously used in the Pacific Northwest (Staebler
1954) and British Columbia (Watts 1983), were not consid-
ered because extrapolation of the functions often leads to
unrealistic height predictions.

Methods

A fundamental nonlinear least squares assumption is that
the error terms in all 20 height—diameter functions are inde-
pendent and identically distributed, with zero mean and con-
stant variance. However, in many forestry situations there is
a common pattern of increasing variation as values of the
dependent variable increase. This is clearly evident from the
scatterplots of height versus DBH in Figs. 1 and 2, where the
values of the error are more likely to be small for small DBH
and large for large DBH. When the problem of unequal error
variances occurs, weighted nonlinear least squares (WLS) is
applied, with the weights selected to be inversely proportional
to the variance of the error terms.

The WLS estimates of the parameters use an iterative
process with a starting value chosen and continually improved
until the weighted error sum of squares is minimized. It should
be noted that the use of the WLS changes the estimates of the
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TABLE 3. Nonlinear height—diameter functions selected for comparison

Function No. and formt

References

[1] H =13+ aD?

[2] H = 1.3 + ea+b/@+h

[31 H= 13+ aD/(b + D)

(4] =13+ a(l - e«bD)

[51 H =13+ D*/(a + bD)?

[6] H=13+a¢e?

[71 H =13+ 109D

(8] H= 13+ aD/(D + 1) + bD

Stoffels and van Soest 1953; Stage 1975; Schreuder e al. 1979
Wykoff et al. 1982

Bates and Watts 1980; Ratkowsky 1990

Meyer 1940; Farr et al. 1989; Moffat er al. 1991

Loetsch er al. 1973

Burkhart and Strub 1974; Burk and Burkhart 1984; Buford 1986
Larson 1986

Watts 1983
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[91 H =13+ a®/(1 + D)

[10] H = 1.3 + e’

[11] H= 13+ a/(l +b ew)

[121 H=13+ a(l _ e«bD)c

[13] H=13+ a(l _ e—bD‘)

[14] H=13+a et

[15] H= {yll’ + (c” - yl;)[l - e—a(D—DD):|
- [1 - e—a(DZ—Do):I}l/b

[16] H= 13+ D?/(a + bD + ch)

[17] H = 1.3 + aD?""

[18] H = 1.3 + a eb/?+9)

[19] H=13+ a/(l + b“D*)

[20] H=13+ a(l -b e—cD)d

Curtis 1967; Prodan 1968

Curtis et al. 1981; Larsen and Hann 1987; Wang and Hann 1988
Pearl and Reed 1920

Richards 1959

Yang et al. 1978

Winsor 1932

Schnute 1981

Curtis 1967; Prodan 1968
Sibbesen 1981
Ratkowsky 1990

Ratkowsky and Reedy 1986

Richards 1959

1H, total tree height (m); D, DBH (cm); g, b, ¢, d, parameters to be estimated; e, base of the natural logarithm (=2.718 28); 1.3 is a constant used to
account that DBH is measured at 1.3 m above the ground. For eq. 15: y, = 1.3, D, = 0.0, D, = 100.0.

parameters and the standard errors of the estimates relative to
the values obtained in the absence of weighting (Ratkowsky
1990). The interpretations of the weighted statistics are not
as straightforward as those in the cases of unweighted statis-
tics (Carroll and Ruppert 1988). However, comparison of the
fit statistics for various functions can be made if the same
weight is consistently used in all the function fittings and the
same nonlinear least squares iteration procedure is used.
The use of the WLS requires a known weight. In many
practical applications, however, this weight may not be
readily available, so an estimate based on the results of an
unweighted least squares fit is often necessary. Although there
are many different procedures that are available for approxi-
mating the weight or implementing the generalized nonlinear

least squares techniques (Gallant 1987; Judge et al. 1988),
a simpler procedure that is based on the analysis of the
studentized residuals can be equally efficient.

Studentized residuals are the scaled version of residuals
that are obtained by dividing each residual by its standard
error. They are designed to take into account that unstandard-
ized residuals have intrinsically unequal variances even
though the theoretical error term is assumed to have constant
variance (Draper and Smith 1981; Rawlings 1988; Neter ez al.
1990). For a correctly identified function, when the assump-
tions of the regression analysis are met, the studentized resid-
uals have zero mean and constant variance, and the plot of
studentized residuals against the predicted values of the
dependent variable will show a homogeneous band.
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TABLE 4. Parameter estimations for two-parameter height—diameter functions

Estimates for various species groupst

Functiont  Parameter 1 2a 2b 3 4a 4b 5 6a 6b
[1] a 1.7313 2.0196 1.3150 2.8211 1.9024 2.6947 1.2137 1.2469 1.1000
b 0.7353 0.6899 0.8126 0.6056 0.6986 0.5871 0.8344 0.8163 0.7954
[2] a 3.6042 3.4766 3.3789 3.3910 3.0097 3.3238 3.2087 34184 3.2256
b -16.1901 -13.8574 —12.6489 -10.1272 -7.5330 -10.9470 -11.3747 -14.3731 -14.1907
[3] a 62.9784 51.4152 65.6462 39.9983  33.4618 37.0257 59.4777 58.3695 51.2611
b 58.0915 43.2873 65.5679 247274 24.2608 26.0386 60.7484 59.0756 64.0364
[4] a 38.8548 32.4692 37.9810 27.1294  21.3657 25.3302 34.1127 34.1281 29.9225
b 0.0270 0.0349 0.0260 0.0549 0.0614 0.0512 0.0283 0.0285 0.0263
[5] a 1.8737 1.6413 1.6840 1.1800 1.0601 1.3209 1.5986 1.8069 2.0261
b 0.1519 0.1639 0.1666 0.1753 0.2089 0.1813 0.1814 0.1663 0.1805
[6] a 35.2854 30.8991 27.5419 28.2674  18.3182 26.6049 22.7872 29.3762 23.8673
b —14.4531 -12.1948 -10.7183 -8.5907 -5.6927 ~9.4854 —-9.3829 128412 -12.3567
[7] a 0.2388 0.3048 0.1189 0.4509 0.2793 0.4305 0.0838 0.0953 0.0413*
b 0.7350 0.6903 0.8126 0.6053 0.6986 0.5871 0.8347 0.8167 0.7955
(8] a 3.8180 4.9317 2.0670 6.4194 3.2636 6.5487 1.5058 1.3123 1.8794
b 0.5738 0.5487 0.6401 0.5349 0.6306 0.4507 0.6746 0.6418 0.4951
[9] a 35.9867 31.6026 28.3882 28.9552 19.2299 27.1752 23.6995 29.9060 244681
b 15.2897 13.0009 11.6357 9.3290 6.5500 10.1979 10.3221 13.5674 13.2207

Norte: *, The asymptotic t-statistic for the parameter is not significant at the 0.05 o level.

1See Table 3 for the form of the function.
1See Table 1 for species groups.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
DBH (CM)

FiG. 1. Plot of total tree height against DBH for white spruce
(Picea glauca). The curve was produced by H = 1.3 + 39.3710/
[1+ 1/(0.0130DBH!-4%)].

Figure 3 shows an example of the plot of studentized resid-
uals against the predicted height for the modified logistic
function [19] (Table 3) fitted to aspen data with unweighted
nonlinear least squares. The plot reveals an obvious unequal
error variance problem and suggests that a weighting factor
in the form of w;= 1/DBHf should achieve the desired
equality of error variance. This function was then fitted with
WLS using six alternative values for k (k = 0.5, 1.0, 1.5, 2.0,
2.5, 3.0). Among these alternative weights, the most homo-
geneous band of studentized residuals occurred with k£ = 1.0
(Fig. 4). In similar comparisons, w; = 1/DBH; was also found
to be most appropriate for all other species. Accordingly, this
weighting factor was used in all remaining analyses. This

weight also agrees with the weight chosen by Larsen and
Hann (1987), Wang and Hann (1988), and Farr et al. (1989)
based on different procedures.

The fitting of the height—diameter functions for various
species groups was accomplished using the PROC NLIN proce-
dure on SAS software (SAS Institute Inc. 1985). The Gauss—
Newton method as described in Gallant (1987) was applied,
and multiple starting values for parameters were provided to
ensure that the least squares solution was the global rather
than the local solution.

Results and discussion

Three different criteria were selected for judging the per-
formance of the height—-diameter functions: (i) the asymptotic
t-statistics of the parameters, (i) the weighted mean squared
error (MSE) of the model, and (iii) the plot of studentized
residuals against the predicted height. For any appropriate
height-diameter function, the asymptotic z-statistic for each
coefficient should be significant, and the model MSE should
be small. The studentized residual plot should show approx-
imately homogeneous variance over the full range of pre-
dicted values. Any other pattern may indicate bias, unequal
variation, or other problems such as outliers or poor model
specification.

Tables 4, 5, and 6 show the least squares estimates of the
parameters. The associated asymptotic z-statistics for testing
the null hypothesis that each parameter is zero (or in some
models, one) are calculated, and the insignificant parameters
are marked. The weighted MSE are summarized in Table 7.
Although not reported here, coefficient of determination (R?)
values for the fitted functions on weighted observations
ranged from 0.70 to 0.92, with the average being about 0.85.

Results in Table 4 show that for the two-parameter func-
tions, [1] to [9], with the exception of parameter a in func-
tion [7] for species group 6b, all the r-statistics for the
parameters of the functions are significant at the 0.05 o level.
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TABLE 5. Parameter estimations for three-parameter height-diameter functions

Estimates for various species groups¥

Function{  Parameter 1 2a 2b 4a 4p 5 6a 6h
[10] a 4.3207 42512 6.1440 3.8984 6.1541 4.3133 4.6202 4.0034 44488
b —6.5426  -5.7514  —6.6024 —4.7580 —5.8482 -4.5425 -5.6452  —6.4430 —6.0225
c —0.4872  —0.4588 —0.2204 -0.5182 —0.1778%* -0.3614 -0.3577  -0.5375 -0.3793
[11] a 26.0850  23.7434 21.8863 22.5297 16.9311 21.5241 17.0593 19.2315 17.3308
b 8.5482 5.9593 8.5656 5.9461 5.7035 5.0012 8.5954 15.9742 9.7975
c 0.1339 0.1311 0.1612 0.1704 0.1996 0.1404 0.2063 0.2204 0.1703
[12] a 32.0363 29.4214 31.7252 25.7461 25.3245 26.0462 25.0216 23.6894 22.3239
b 0.0456 0.0457 0.0376 0.0669 0.0409* 0.0464 0.0518 0.0724 0.0522
¢ 1.2974 1.1381 1.1150 1.1308 0.8779 0.9465 1.2004 1.6232 1.3270
[13] a 31.0481 29.0401 29.8908 25.4088 26.2522 26.1321 24.5127 22.4771 20.8982
b 0.0209 0.0318 0.0269 0.0486 0.0579 0.0535 0.0308 0.0179 0.0219
c 1.1973 1.0902 1.1061 1.0892 0.9017 0.9659 1.1361 1.3905 1.2490
[14] a 27.8725 25.2831 24.1320 23.5467 18.4726 22.6368 18.8367 20.9530 19.0959
b 2.8490 2.4343 2.7151 2.3800 2.2367 2.1570 2.8446 3.6061 2.9034
c 0.0848 0.0873 0.0943 0.1152 0.1235 0.0951 0.1247 0.1259 0.0988
[15] a 0.0494 0.0466 0.0450 0.0696 0.0382* 0.0464 0.0536 0.0929 0.0685
b 0.6387 0.8289 0.7717 0.8151 1.2179 1.0716 0.7411 0.2072 0.4335%
c 32.4840  30.3314 30.5534 26.8357 26.5976 27.0745 26.1924  23.8101 21.9696
[16] a 2.6944 1.4431 0.3504* 0.8408 —0.2324* 0.0038* 1.2706 44024 2.4627%
b 0.6514 0.6806 0.9442 0.4951 0.7813 0.7027 0.8044 0.4670 0.9370
c 0.0214 0.0233 0.0168 0.0284 0.0273 0.0270 0.0246 0.0311 0.0273
[17] a 36.8921 28.4645 39.5300 26.1702 22.7752 22.9433 20.8584  27.8154 35.2386
b -13.0405 -16.5206 -8.3474  —-13.1935 -74274  -209985 -14.1796 -15.7403 —8.1497
c 1.3051 1.5168 1.1040 1.5795 1.3156 1.7680 1.5780 1.4637 1.0545
[18] a 43,4552 38.6721 43.7438 33.6553 31.0846 332971 31.7946 34,2258 33.0533
b -24.1871 -21.4197 -28.1548  -14.5592 -18.4473 —18.4014  -18.5302 -18.7186 -25.2112
¢ 5.0167 5.0827 7.3227 3.5766 5.8302 5.5088 4.0490 3.1265 5.8787
[19] a 39.3710 37.5445 46.1750 31.3194 41.9635* 34.4682 32.8728 27.6307 28.4451
b 0.0130 0.0203 0.0174 0.0328 0.0365 0.0369 0.0204 0.0109 0.0146
c 1.3408 1.2169 1.1253 1.2487 0.9155 1.0589 1.2307 1.5829 1.3299

NortE: *, The asymptotic t-statistic for the parameter is not significant at the 0.05 o level.

+See Table 3 for the form of the function.
iSee Table 1 for species groups.

The weighted MSE results of the two-parameter functions
shown in Table 7 indicate that functions [3], [4], and [5] have
lower MSE values compared with the others, with func-
tion [4] generally giving the most satisfactory results. Func-
tion [8] has very poor performance and large MSE values.
Examination of the plots of studentized residuals for func-
tion [8] shows biased height estimates for all species groups
when DBH is small. The performance of the remaining two-
parameter functions is roughly the same and can be regarded
as intermediate.

Judged from the plots of studentized residuals and the
weighted MSE values, the three-parameter functions, [10] to
{19], generally perform better than the two-parameter func-
tions. Parameter a in function [16] shows several insignifi-
cant r-statistics (Table 5). The parameter estimates for the
remaining functions are generally satisfactory, with a few
exceptions of insignificant z-statistics in functions [10], [12],
[15], and [19] for species group 4a and parameter b in
function [15] for species group 6b. Insignificant z-statistics
were generally associated with small data sets. In terms of
the weighted MSE values for three-parameter functions
(Table 7), functions [12], [13], [15], [18], and [19] generally
give lower values. Functions [10] and [14] give rather similar
results and can also be regarded as satisfactory. Function [17]
has large MSE values, and the plots of studentized residuals

show biased estimates when DBH is small. Occasionally,
function [11] fits the data well, but in general it performs
poorly.

Although the four-parameter function, [20], fits the data
well when the sample size is large (such as for species
groups 1 and 3), the function fails to converge for species
groups 2b and 6b, and in fitting for species group 4a, has
resulted in insignificant z-statistics for parameters b, ¢, and
d (Table 6). Several additional four-parameter functions
(included Bailey’s 1980 function) that were fitted, but not
reported here, also suggested that they might perform well for
large samples; however, insignificant #-statistics occurred fre-
quently, and in many cases, failed to coverage or converged
at the local rather than the global minimum when the sample
size was small. The gain of using the four-parameter function
may not be substantial. Depending on the choice of the initial
values of the parameters and the size of the samples, the
fittings of the four-parameter functions may also be rather
time-consuming.

In terms of the fit of the functions for each species group,
several functions may give similar results and perform nearly
equally well. However, judging from the weighted MSE
values, the asymptotic t-statistics of the parameters, and the
principle of parsimony, the following functions are most
appropriate for each species group taken independently of the
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TABLE 6. Parameter estimations for the four-parameter height—diameter function

Estimates for various species groupst

4a 4p 5 6a 6b

Functiont Parameter 1 2a 2b
[20] a
b 1.0200 1.0413 0.2528%**
c 0.0428 0.0383 0.0878+**
d 1.2034 0.9570 9.4899**

32.5525 30.8722  24.4874** 254676  20.7813 252716 31.3035 23.3678  17.8206%**
0.9687 0.8247* 0.9574 1.0334 0.9716 0.0314**
0.0709 0.0767* 0.0530 0.0298 0.0766 0.1069**
1.2419 1.5810%* 1.1025 0.8964 17781  90.9244%*

Note: *, The asymptotic ¢-statistic for the parameter is not significant at the 0.05 o level; **, covergence is not obtained.
tSee Table 3 for the form of the function.
fSee Table 1 for species groups.

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70
DBH (CM)

FIG. 2. Plot of total tree height against DBH for aspen (Popu-
lus tremuloides). The curve was produced by H = 1.3 + 31.3194/
[1 + 1/0.0328DBH!2487)].

others: (i) the Chapman—Richards function [12] for species
group 1; (ii) the fractional function [16] for species group 2a;
(iii) the Gompertz function [14] for species groups 2b and 6b;
(iv) the Weibull function [13] and the modified Schnute func-
tion [15] for species group 3; (v) the two-parameter
Michaelis—Menten function [3] for species group 4a; (vi) the
Mitscherlich function [4] for species group 4b; (vii) the mod-
ified exponential function [10] for species group 5; (viii) the
modified logistic-type function [19] for species group 6a.

Conclusions and recommendations

This comparison of nonlinear height—diameter functions
show that depending on the sample sizes and the species
groups, many functions perform well in describing the height—
diameter relationships for major Alberta tree species. The
choice of a particular function may depend on the relative
ease of achieving convergence to a solution, the function’s
mathematical properties, and its biological interpretation.
Although any function may be considered superior or inferior
in a particular situation, in general, the functions discussed
below are recommended for use since they often give rela-
tively lower MSE values, significant asymptotic z-statistics,
and satisfactory plots of studentized residuals against the pre-
dicted values of the dependent variable. Any one of these
functions could be used when the same model form is desir-

STUDENTIZED RESIDUALS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
PREDICTED HEIGHT (M)

FIG. 3. The plot of studentized residuals against the predicted height
for aspen (Populus tremuloides). The studentized residuals were
obtained by fitting function [19] without weighting.

able for several species. The recommended functions also
have the flexibility to assume various shapes with different
parameter values and produce satisfactory curves under most
circumstances. All the curves assume biologically reasonable
shapes that prevent the unrealistic height predictions in the
cases of extrapolating the functions beyond the range of the
original data.

Function [12]: H = 1.3 + a(l - e"bD)c

This three-parameter Chapman—Richards function has been
used extensively in describing the height—age relationships.
The results shown in this analysis indicate that the function
is also well suited for modelling height-diameter relation-
ships. One limiting form of the function, function [14], also
gives satisfactory fits, especially when the sample size is
relatively small, such as the fits for species groups 2b, 44,
and 6b. However, function [14] may not fit as well as either
the Weibull-type function or the Chapman-Richards function
when the sample size is large. A cautionary note for the
Chapman—Richards function is that it approaches the asymp-
tote too quickly when the dependent variable is only weakly
related to the independent variable.

Function [13]: H = 1.3 + a(l — &)

This Weibull-type function is consistently among the best
height-diameter functions. It is interesting to see that in fitting
species group 4a data, the three- or four-parameter Chapman—
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TaBLE 7. Comparison of nonlinear height—diameter functions: weighted mean squared errors

Weighted MSE for various species groupsi

Functiont 1 2a 2b 3 4a 4b 5 6a 6b
[11 0.5082 0.3886 0.2938 0.3863 0.3326 0.3677 0.2685 0.3366 0.3359
[2] 0.4675 0.3800 0.3564 0.3370 0.3781 0.3687 0.2702 0.2577 0.3373
[3] 0.4596 0.3702 0.2770 0.3265 0.3257(1) 0.3465 0.2571 0.2865 0.3171
41 0.4539 0.3686 0.2748 0.3189(5) 0.3261(2) 0.3454(1) 0.2566 0.2813 0.3147
[5] 0.4443 0.3685 0.2976 0.3218 0.3557 0.3542 0.2547 0.2466 0.3124
[6] 0.4832 0.3891 0.4049 0.3599 0.4268 0.3828 0.2876 0.2701 0.3584
[71 0.5082 0.3886 0.2938 0.3863 0.3326 0.3677 0.2685 0.3366 0.3359%
[8] 0.5841 0.4210 0.3170 04778 0.3539 04112 0.2843 0.3894 0.3588
[9] 0.4751 0.3842 0.3801 0.3477 0.4009 0.3756 0.2784 0.2642 0.3474
[10] 0.4459 0.3668(2) 0.2804 0.3234 0.3295% 0.3500 0.2502(1) 0.2516 0.3158
[11] 0.4935 0.3877 0.2701(2) 0.3400 0.3314 0.3598 0.2915 0.2865 0.3035(2)
[12] 0.4424(2) 0.3674(4) 0.2729 0.3166(2) 0.3268%* 0.3458(2) 0.2534(5) 0.2449(2) 0.3089(4)
[13] 0.4426(3) 0.3675(5) 0.2723(5) 0.3165(1) 0.3271(4) 0.3459(3) 0.2539 0.2458(5) 0.3080(3)
[14] 0.4597 0.3761 0.2648(1) 0.3236 0.3267(3) 0.3504 0.2694 0.2533 0.3024(1)
[15] 0.4430(5) 0.3676 0.2717(4) 0.3165(1) 0.3272* 0.3459(3) 0.2544 0.2463 0.3069*
[16] 0.4435 0.3667(1) 0.2767* 0.3200 0.3275% 0.3472% 0.2510(3) 0.2460 0.3131*
[17] 0.4658 0.4033 0.2857 0.3795 0.3596 0.4192 0.3014 0.2568 0.3089(4)
[18] 0.4433 0.3677 0.2708(3) 0.3181(4) 0.3273(5) 0.3463(5) 0.2540 0.2455(4) 0.3090(5)
[19] 0.4427(4) 0.3671(3) 0.2747 0.3180(3) 0.3279* 0.3469 0.2525(4) 0.2445(1) 0.3100
[20] 0.4423(1) 0.3668(2) 0.2662* 0.3165(1) 0.3288* 0.3462(4) 0.2507(2) 0.2453(3) 0.3100*

Norte: *, The MSE values are not compared because of insignificant r-statistic(s) or the failure of convergence.

1See Table 3 for the form of the function.

$The smallest five MSE values for each species group, with ranks 1 (smallest) to 5 in parentheses.

STUDENTIZED RESIDUALS
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FIG. 4. The plot of studentized residuals against the predicted height
for aspen (Populus tremuloides). The studentized residuals were
obtained by fitting function [19] with weight w; = 1/DBH..

Richards function fails to produce a significant #-statistic for
parameter b. However, the Weibull function performs better
and gives all significant #-statistics for the parameters.

Function [19]: H = 1.3 + a/(1 + b"'D™)

Although termed as the modified logistic-type function, the
function is quite different from the commonly used logistic
function (such as function [11]). It accommodates many

shapes that are commonly described by other sigmoidal func-
tions. The function fits the height—diameter relationship well
and is consistently among the best height—diameter functions.
As examples, the fits of the function for white spruce and
aspen are shown in Figs. |1 and 2. The plot of studentized
residuals against the predicted height for aspen is shown in
Fig. 4. It is clear that the function appropriately fits the data.

Function [18]: H = 1.3 + a "/ ©®+9

This exponential-type function is particularly well suited for
deciduous species. However, it might slightly overestimate
height for large-diameter trees.

Function [15]:

H= {y‘} + (cb - y‘}j[] - e—a(D—Dg):I/[l _ e—a(Dz_Da):I}Ub

This modified Schnute function (with origin set at D = 0,
H = 1.3) was shown to fit the height-diameter relationships
reasonably well. With the versatility of this function and its
abilities to describe various biological shapes, and the rela-
tively easy parameter estimations and interpretations, further
application and evaluation of the function should prove useful.

It should be straightforward to extend the functions ana-
lyzed in this study to model other forestry relationships such
as volume-age, height-age, and basal area — age functions. The
parameter estimates in Tables 4, 5, and 6, if appropriately scaled,
might be useful as the initial values in new applications.
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