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Abstract

We discuss optimal design problems for a popular method of series estimation in regression problems. Commonly used design
criteria are based on the generalized variance of the estimates of the coefficients in a truncated series expansion and do not take
possible bias into account. We present a general perspective of constructing robust and efficient designs for series estimators which
is based on the integrated mean squared error criterion. A minimax approach is used to derive designs which are robust with
respect to deviations caused by the bias and the possibility of heteroscedasticity. A special case results from the imposition of an
unbiasedness constraint; the resulting “unbiased designs” are particularly simple, and easily implemented. Our results are illustrated
by constructing robust designs for series estimation with spherical harmonic descriptors, Zernike polynomials and Chebyshev
polynomials.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Series estimators represent a popular technique for estimating the conditional mean E [Y |x] in regression problems
[see e.g. Efromovich (1999)]. They apply to such well-known regression functions as polynomial and trigonometric
series, wavelets, spherical harmonic descriptors and Zernike polynomials [see e.g. Härdle et al. (1998), Brechbühler
et al. (1995) or Pawlak and Liao (2002) among others]. In these models it is typically assumed that E [Y |x] is given
by a function ψ(x), defined on a bounded set S ⊂ Rq and satisfying ψ ∈ L2

µ(S), where µ denotes a density on the
set S and L2

µ(S) the corresponding space of square integrable, real-valued functions. If z1, z2, . . . defines a complete
orthonormal system on S with respect to the measure µ, then the function ψ admits a series expansion of the form

ψ(x) =

∞∑
j=1

c j z j (x) ,

where the functions z j (x) are orthonormal with respect to the weighting function µ, i.e.∫
S

z j (x)zk (x) µ(x)dx =

{
1, j = k,
0, j 6= k.

(1.1)
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Suppose that data Y1, . . . , Yn are observed, with conditional means E[Yi |xi ] and with additive error, at ‘locations’
{xi }

n
i=1 ⊂ S. If the experimenter is confident that E[Yi |xi ] = ψ (xi ) then he approximates the function ψ (x)

by a suitable truncation of the series, say
∑p

j=1 c j z j (x). He then fits a linear regression model with p regressors{
z j (x)

}p
j=1, estimates the regression coefficients θ =

(
θ1, . . . , θp

)T (which can be assumed to agree with the c j if
indeed E[Y |x] = ψ(x)) and predicts a response Y at an arbitrary location x ∈ S by

Ŷ (x) = zT(x)θ̂ . (1.2)

Here z(x) =
(
z1 (x) , . . . , z p(x)

)T denotes the vector of regression functions.
A commonly used method of estimation stems from the fact that the Fourier coefficients are given by

c j =

∫
S
ψ(x)z j (x) µ(x)dx, j = 1, 2, . . . .

Estimates may then be computed by discretizing these integrals, and replacing ψ(x) by (weighted means of) the
observations. This method is often preferred to least squares estimation because it does not involve the inversion of a
possibly very high dimensional matrix “XTX”, which in the intended applications can be numerically unstable. The
corresponding estimates will be described in the following section and will be called “direct estimates” throughout
this paper. These methods are often employed in shape and image analysis instead of least squares techniques — see,
e.g. Brechbühler et al. (1995) and Pawlak and Liao (2002).

Most of the literature on optimal designs in this context concentrates on optimality criteria minimizing the
generalized variance of the least squares estimator in the regression model ψ(x) = E[Y |x] = zT(x)θ [see e.g. Lau
and Studden (1985), Herzberg and Traves (1994) and Dette et al. (2005) among others]. Recently, Dette et al. (2007)
investigated optimal designs minimizing the generalized variance of the least squares and direct estimates of the
parameters in truncated Fourier expansions resulting from the system of Zernike polynomials. On the other hand – to
the knowledge of the authors – no results on optimal designs are available which address the problem of possible bias
obtained by model misspecification, for example by the truncation of the series.

The present paper is devoted to problems of constructing robust and efficient designs for series estimation, which
take a variety of possible model specification errors into account. These errors are caused on the one hand by
misspecification of the regression function – either because E[Y |x] can be only approximated by ψ(x), or through
the truncation of the series expansion of ψ (x) – and on the other hand by a misspecification of the stochastic error
structure.

In Section 2 we review some results on the method of direct estimation, and present two motivating examples
which arise from applications in shape and image analysis. A representation of the asymptotic integrated mean squared
error is derived, and a minimax criterion is proposed for the determination of optimal designs which are robust with
respect to the model assumptions, in particular with respect to the bias obtained from possible misspecification of the
regression response, and heteroscedasticity in the data. Sections 3 and 4 consider the problem of determining optimal
designs with respect to the new minimax criterion for the general series estimator. In Section 5 we discuss the problem
of constructing robust designs explicitly, if a series estimate with Zernike polynomials as basis functions is used to
recover a function on a circular domain [see Pawlak and Liao (2002)]. This exploits some of the special structure of
Zernike polynomials, and so in Section 6 we discuss the treatment of general series models lacking the structure of
these models for shape and image analysis. This treatment is implemented in the context of function approximation
with Chebyshev polynomials. Finally, some technical details are given in the Appendix.

2. Direct estimation and robust designs

In this section we formulate an optimal design problem for direct estimation. Let ‖ · ‖ denote the Euclidean norm.
We introduce a density k(x) on S and generate a partition of S into n disjoint sets Si such that, as n → ∞,

max
1≤i≤n

∣∣∣∣∫
Si

k (x) dx −
1
n

∣∣∣∣ = o
(

n−1
)
, (2.1a)

max
1≤i≤n

sup
x, y∈Si

‖x − y‖ = o (1) . (2.1b)



Author's personal copy

H. Dette, D.P. Wiens / Computational Statistics and Data Analysis 52 (2008) 4305–4324 4307

For example, if S = [a, b] is an interval and k a positive continuous density on [a, b] satisfying

1
n

=

∫ qi :n

qi−1:n

k(x)dx + o(n−1),

where a = q0:n < q1:n < · · · < qn:n = b [see Sacks and Ylvisaker (1970)], then (2.1a) is obviously satisfied with
Si = (qi−1:n, qi :n](i = 1, . . . , n). Moreover, (2.1b) holds as long as k is strictly positive on its support.

Similarly if S = {x ∈ R2
| ‖x‖ ≤ 1} is the unit disc, n = n1n2 is such that min{n1, n2} → ∞ and k1, k2 denote

positive continuous densities on [0, 1] and [0, 2π ], respectively, such that

1
n1

=

∫ ρi

ρi−1

k1(ρ)dρ + o(n−1
1 ),

1
n2

=

∫ φ j

φ j−1

k2(φ)dφ + o(n−1
2 ),

(where 0 = ρ0 < ρ1 < · · · < ρn1 = 1, 0 = φ0 < φ1 < · · · < φn2 = 2π ), then the density k(ρ, φ) = k1(ρ)k2(φ)

satisfies (2.1a) and (2.1b) with

Si, j = {(ρ cosφ, ρ sinφ) | ρi−1 ≤ ρ ≤ ρi , φ j−1 ≤ φ ≤ φ j }

(i = 1, . . . , n1, j = 1, . . . , n2).
It follows that if the function α(x) is uniformly continuous on S, and the points xi are arbitrarily chosen

representative elements of Si , then∫
S
α(x)k(x)dx =

1
n

n∑
i=1

α(xi )+ o (1) . (2.2)

This discretization of the integral will be used frequently in the following discussion. Throughout this paper we assume
that n independent observations from the model

Yi = Y (xi ) = E[Y |xi ] + ε(xi ) i = 1, . . . , n (2.3)

are available, where the errors ε(x1), . . . , ε(xn) are centred random variables with third absolute moments.
For non-negative weights {w (xi )} we propose the direct estimate

θ̂ =
1
n

n∑
i=1

z (xi )
Y (xi )w (xi ) µ(xi )

k (xi )
. (2.4)

This is motivated by the fact that for constant weightsw(xi ) ≡ 1, if E[Y |x] = ψ(x) then the estimate is asymptotically
unbiased for c =

(
c1, . . . , cp

)T:

E[θ̂ ] =
1
n

n∑
i=1

z(xi )E[Y |xi ]
µ(xi )

k(xi )
=

∫
S

z(x)ψ(x)µ(x)dx + o(1) = c + o(1).

We have used (1.1) and (2.2) to establish the last two equalities. We allow for non-constant weights in anticipation
of possible heteroscedasticity, and also for a more precise tuning of the estimate. We will norm the weights to have a
unit average, viz.∫

S
w(x)µ(x)dx = 1,

which implies that the function

m(x) def
= w(x)µ(x) (2.5)

is a probability density on S. It will prove convenient to optimize over m (·) rather than over w (·).
In the following discussion we shall frequently use the identity∫

S
z(x)zT (x) µ (x) dx = Ip, (2.6)

which follows directly from (1.1).
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A practitioner will generally readily acknowledge that the truncated regression model may be only approximately
correct. For instance, perhaps because only finitely many of the z j (x) are being fitted, or because of more general
unease about the adequacy of the fitted model, the experimenter may feel that ψ(x) is only an approximation to
E [Y |x], which is in turn only approximately given by a linear combination of z1 (x) , . . . , z p (x). If so, measures are
needed which are robust against the ensuing prediction bias. As well, the meaning of the parameter θ becomes unclear
in this context. We shall thus define

θ = arg min
t

∫
S

(
E [Y |x] − zT (x) t

)2
µ (x) dx (2.7)

as the parameter corresponding to the best L2
µ-approximation of the regression function by elements of the space

spanned by the functions z1, . . . , z p, and define

f (x) = E [Y |x] − zT(x)θ (2.8)

as the deviation of this approximation from the true mean response. Furthermore, assumptions made by the
experimenter concerning the homoscedasticity of the measurement errors (or a particular, assumed heteroscedasticity
structure) may also be in doubt. An alternative description of the model (2.3) is then given by

Y (xi ) = zT(xi )θ + f (x)+ ε (xi ) , i = 1, . . . , n (2.9)

where:

1. The function f (x) accounts for inadequacies in the approximation E [Y |x] ≈ zT (x) θ obtained from model
misspecification.

2. The random variables ε(x) are additive measurement errors, pairwise independent, and with possibly heterogeneous
variances σ 2

ε g(x).

We impose bounds on the magnitudes of the approximation error f , and of the variance function g centred at the
experimenter’s best guess g0, that is∫

S
f 2(x)µ (x) dx ≤ η2

f , (2.10)

sup
x∈S

|g(x)− g0(x)| ≤ η2
g, (2.11)

where η2
f and η2

g are given non-negative constants. Note that Eqs. (2.7) and (2.8) give∫
S

z(x) f (x) µ(x)dx = 0. (2.12)

From (2.9) we see that if the specification E [Y |x] = ψ(x) is correct then θ = c and f (x) =
∑

∞

j=p+1 c j z j (x).
Let F and G be, respectively, the class of functions f constrained by (2.10) and (2.12), and the class of positive

functions g constrained by (2.11). We assume throughout this paper that f, g,m, (m/k) and z1, . . . , z p are uniformly
continuous, which will allow us to apply the approximation (2.2) whenever it is necessary.

The fitted model assumes f ≡ 0; if the experimenter believes that the error variances are homogeneous then he will
as well take g0 ≡ 1. Violations of these specifications will however increase the mean squared error of the predictions,
and in the following discussion we will determine designs which are robust with respect to such misspecifications of
the model. The design and estimation problem is to choose a density k (·) and weights w (·) = m (·) /µ (·) in order to
minimize the asymptotic integrated mean squared error of the predictions. Before we derive an explicit expression for
this mean squared error we shall illustrate the methodology of series estimation in two examples, which have found
considerable interest in applications.

Example 2.1. For describing three-dimensional shapes a common model employs spherical harmonic descriptors [see
for example Brechbühler et al. (1995) for some general discussion and Ding et al. (2000), who analyze the shapes of
Citrus species via spherical harmonics]. In this model the distance Y from the origin to the boundary of the shape is
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described in terms of two angles θ ∈ [0, π], φ ∈ (−π, π] and, with x = (θ, φ) and p = (d + 1)2 the regression
functions are arranged as

z(x) =

(
zT

0 (x) , zT
1 (x), . . . , zT

d (x)
)T
, where

zT
k (x) =

(
Z−k

k (x) , Z−k+1
k (x), . . . , Z k−1

k (x), Z k
k (x)

)
.

Here

Zm
k (x) =



√
2k + 1P0

k (cos θ) , m = 0, k ≥ 0,√
2 (2k + 1)

(k − m)!

(k + m)!
Pm

k (cos θ) cos (mφ) , m = 0, . . . , k, k > 0,√
2 (2k + 1)

(k + m)!

(k − m)!
P−m

k (cos θ) sin (mφ) , m = −k, . . . ,−1, k > 0,

and Pm
k is the mth associated Legendre function of degree k. The functions Zm

k are orthonormal over the design space
S = {θ ∈ [0, π], φ ∈ (−π, π]} with respect to the density function µ(x) = sin θ/4π , where x = (θ, φ). We note for
future reference that it is shown in Dette et al. (2005) that

‖z(x)‖ = d + 1. (2.13)

Example 2.2. Let S be the unit disc centred at the origin, and suppose we make noisy observations of a function in
L2(S) = { f : S → R |

∫
S f 2(x)dx < ∞}. As pointed out by Pawlak and Liao (2002) such a function admits an

expansion in terms of Zernike polynomials, and a truncated series with coefficients estimated from the data is used
to reconstruct the function f . To be precise, we consider a radius ρ ∈ [0, 1], an angle φ ∈ (0, 2π ] and a predictor
x = (ρ, φ). The regression model has p = (d + 1) (d + 2) /2 regression functions defined by

z(x) =

(
zT

0 (x) , zT
1 (x), . . . , zT

d (x)
)T
, where

zT
k (x) =

(
Z−k

k (x) , Z−k+2
k (x), . . . , Z k−2

k (x), Z k
k (x)

)
.

Here Zm
k (x) is a Zernike polynomial (Zernike, 1934) defined by:

Zm
k (x) =

√
k + 1R|m|

k (ρ) · am
k (φ),

am
k (φ) =

√
2

1 + I (m = 0)
·

{
sin (mφ) , m < 0,
cos (mφ) , m ≥ 0,

Rm
k (ρ) =


k−m

2∑
l=0

(−1)l (k − l)!

l!
( k+m

2 − l
)
!
( k−m

2 − l
)
!
ρk−2l , k − m even,

0, k − m odd.

The Zernike polynomials are orthonormal on the set S = {(ρ, φ)|ρ ∈ [0, 1] , φ ∈ (0, 2π ]} with respect to the density
function

µ(x) = µ(1) (ρ) µ(2)(φ),

where µ(2)(φ) = (2π)−1 is the uniform density on the interval (0, 2π ] and µ(1) (ρ) = 2ρ is a density on the interval
[0, 1]. It will prove helpful to represent the vector of regression functions z(x) as

z(x) = R (ρ) a(φ),

where R (ρ) is the p × p diagonal matrix containing the terms
√

k + 1R|m|

k (ρ) on its diagonal and a(φ) is the p-
dimensional vector containing the terms am

k (φ), all ordered as they appear in the vector z(x). Then∫ 2π

0
a(φ)aT (φ) µ(2)(φ)dφ = Ip =

∫ 1

0
R2 (ρ) µ(1) (ρ) dρ (2.14)
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[see Szëgo (1975)] and the orthogonality relations in (2.6) follow from Fubini’s theorem. Another useful result is that
the function

‖z(x)‖2
= tr R2 (ρ)

def
= Θd(ρ), (2.15)

depends only on the parameter ρ alone, as shown in Dette et al. (2007, Theorem 4.1). Some applications and further
details can be found in Pawlak and Liao (2002). Common applications of this model are in optics (Wyant and Creath,
1993) and image analysis (Liao and Pawlak, 1996; Kim and Kim, 1999).

As specific examples we consider the cases d ≤ 4, for which the Zernike polynomials are the elements of the
vectors zk(x) (k = 0, . . . , d) with

zT
0 (x) = 1; zT

1 (x) =

(√
2ρ sinφ,

√
2ρ cosφ

)
;

zT
2 (x) =

(√
3ρ2 sin(2φ),

√
3
(

2ρ2
− 1

)
,
√

3ρ2 cos(2φ)
)

;

zT
3 (x) =

(√
4ρ3 sin(3φ),

√
4
(

3ρ3
− 2ρ

)
sinφ,

√
4
(

3ρ3
− 2ρ

)
cosφ,

√
4ρ3 cos(3φ)

)
;

zT
4 (x) =

(√
5ρ4 sin(4φ),

√
5
(

4ρ4
− 3ρ2

)
sin(2φ),

√
5
(

6ρ4
− 6ρ2

+ 1
)
,

√
5
(

4ρ4
− 3ρ2

)
cos(2φ),

√
5ρ4 cos(4φ)

)
.

In order to present an asymptotic representation of the integrated mean squared error we recall the notation (2.5),
and define

bn =
1
n

n∑
i=1

z (xi ) f (xi )
m (xi )

k(xi )
,

Bn =
1
n

n∑
i=1

z (xi )
m(xi )

k (xi )
zT(xi ),

Cn =
1
n

n∑
i=1

z (xi )
m2(xi )g (xi )

k2(xi )
zT (xi ) .

Theorem 1. Define, for x ∈ S, τ 3 (x) = E
[∣∣ε(x)/ (σε√g(x)

)∣∣3]. Assume that

(i) τ 3 (x) is bounded on S, and that

(ii) Cn is positive definite, and its minimum eigenvalue is bounded away from 0, for sufficiently large n.

Then the direct estimate (2.4) is asymptotically normally distributed:

θ̂ ∼ AN

(
Bnθ + bn,

σ 2
ε

n
Cn

)
. (2.16)

Remark 1. Assumption (i) of Theorem 1 is very mild; it is satisfied, for instance, if the errors are Gaussian since then
τ 3(x) is constant. Assumption (ii) is of course standard.

Now define

b f,m =

∫
S

z(x) f (x)m(x)dx, (2.17a)

Bm =

∫
S

z(x)zT(x)m(x)dx, (2.17b)

Cg,k,m =

∫
S

z(x)
m2(x)g(x)

k (x)
zT(x)dx. (2.17c)

Under the conditions leading to (2.2), these are the limits of bn , Bn and Cn respectively.
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The loss function for the problem is taken to be the asymptotic integrated mean squared error of the predictions,
defined as

IMSE (k,m; f, g) =

∫
S

E

[{
Ŷ (x)− E [Y (x)]

}2
]
µ(x)dx =

∫
S

{
VAR

[
Ŷ (x)

]
+ BIAS2

[
Ŷ (x)

]}
µ(x)dx,

where

BIAS
[
Ŷ (x)

]
= E

[
Ŷ (x)

]
−

[
zT(x)θ + f (x)

]
,

Ŷ (x) is defined by (1.2), and the variance and bias are given their asymptotic values derived from (2.16) and
(2.17). Straightforward calculations, utilizing (2.6) and (2.12), yield

IMSE (k,m; f, g) = tr
[
σ 2
ε

n
Cg,k,m

]
+
∥∥(Bm − Ip

)
θ + b f,m

∥∥2
+

∫
S

f 2(x)µ (x) dx.

Since IMSE depends on f and g we aim to solve the following minimax problem:

min
k,m

max
f ∈F ,g∈G

IMSE (k,m; f, g) .

The minimizing density is called a minimax design. In some cases Bm 6= Ip and then IMSE also depends on θ ; in
such cases we shall endow θ with a prior distribution π (θ) satisfying

Eπ [θ ] = 0, Eπ
[
θθT

]
= 6 ≤ η2

θ Ip, (2.18)

(the last inequality refers to the Loewner ordering) and consider instead

min
k,m

max
f ∈F ,g∈G

max
Σ

Eπ [IMSE (k,m; f, g)] . (2.19)

Priors π (·) with non-zero means can also be considered here, although the maximization problem then becomes more
complex.

3. Unbiased direct estimators

If constant weights w(xi ) = 1 (i = 1, . . . , n) are used in the direct estimate, it follows from Theorem 1 and
the orthonormality conditions (1.1) that this estimate is asymptotically unbiased. Note that in the presence of (2.12),
the condition b f,m = 0 is satisfied. On the other hand, if unbiasedness of Ŷ (x) for E [Y |x] is imposed, so that the
condition b f,m = 0 must hold for all f simultaneously with (2.12), then necessarily m (·) = µ (·); hence the weights
must satisfy w(x) ≡ 1. In such cases we have from the orthonormality relations (2.6) that Bm = Ip. Consequently,
we obtain

max
f,g

IMSE (k, µ; f, g) = max
g

tr
[
σ 2
ε

n
Cg,k,µ

]
+ max

f

∫
S

f 2(x)µ (x) dx

=
σ 2
ε

n

∫
S

‖z(x)‖2
µ2 (x)

[
g0(x)+ η2

g

]
k(x)

dx + η2
f .

With the notation

g∗(x)
def
= g0 (x)+ η2

g, (3.1)

an optimal design density k∗(x) will thus minimize∫
S

‖z(x)‖2 µ
2(x)g∗(x)

k(x)
dx,

subject to the normalizing condition
∫
S k (x) dx = 1. The solution to this problem is presented in the following

proposition. In order that we may refer to it again later, we state it for general weights.
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Proposition 1. The density k (·) minimizing the functional

Ψ1 (k; m)
def
=

∫
S

‖z(x)‖2 m2 (x) g∗(x)
k (x)

dx

for fixed m (·) is given by

k∗ (x; m) =
‖z (x)‖ m(x)

√
g∗(x)∫

S ‖z (x)‖ m(x)
√

g∗(x)dx
, (3.2)

with minimal value

Ψ1 (k∗; m) =

[∫
S

‖z(x)‖ m(x)
√

g∗(x)dx
]2

.

With w(x) ≡ 1 we have m = µ in Proposition 1 and we obtain that the minimax design for the direct estimate,
under the requirement of unbiasedness, is given by

k∗ (x;µ) =
‖z (x)‖µ(x)

√
g∗(x)∫

S ‖z (x)‖µ(x)
√

g∗(x)dx
, (3.3)

and

min
k

max
f,g

IMSE (k, µ; f, g) =
σ 2
ε

n

[∫
S

‖z (x)‖µ(x)
√

g∗ (x)dx
]2

+ η2
f .

We illustrate these results in the two examples considered before.

Example 3.1 (Example 2.1 Continued). By virtue of (2.13), the minimax unbiased design for series estimation with
direct estimates and spherical harmonic regressors is obtained from (2.1a) with density k (θ, φ) ∝ sin θ

√
g∗ (θ, φ). If

a homoscedastic model is fitted, so that g∗ is constant, then the optimal density satisfies k (θ, φ) ∝ sin θ and
k (·, ·) generates a product design. One factor has density (sin θ) /2 on the interval [0, π] and the other is a uniform
distribution on the interval (−π, π]. The design can be easily implemented by taking observations at(

θi , φ j
)

=

(
arccos

(
1 −

2 (i − 1)
n1 − 1

)
,−π +

2 j

n2

)
for i = 1, . . . , n1 and j = 1, . . . , n2 with n = n1n2. This design was also found to possess further favourable
robustness properties when used with the least squares estimator in this model — see Dette and Wiens (in press).

Example 3.2 (Example 2.2 Continued). Consider the problem of series estimation with Zernike polynomials using
direct estimates with equal weights. By virtue of (2.15), the minimax unbiased design for observations on the unit
disc is obtained from (2.1a) with k (ρ, φ) ∝ ρ

√
Θd (ρ) g∗ (ρ, φ). A natural assumption here is that the error variances

depend on the regressors only through the distance ρ from the origin, so that g∗ (ρ, φ) = g∗ (ρ). In this case the
minimax design is again a product design, with one factor having density ρ

√
Θd (ρ) g∗ (ρ)/

∫ 1
0 ρ

√
Θd (ρ) g∗ (ρ)dρ

for ρ ∈ [0, 1] and the other being a uniform distribution on the interval (0, 2π ]. For a constant function g∗ (ρ) this
design was also shown to be A-optimal by Dette et al. (2007). See Figs. 1–3 for some comparative examples. In each
of these figures plot (c) pertains to this example; plots (a) and (b) pertain to Example 5.1, which continues this Zernike
polynomial application without the requirement of unbiasedness.

4. Minimax designs and weights — general theory

For general weights, the IMSE of the direct estimate (2.4) also depends on the parameter θ , and we invoke the prior
distribution defined in (2.18). In this case we have

Eπ
[∥∥(Bm − Ip

)
θ + b f,m

∥∥2
]

= tr
[(

Bm − Ip
)
Σ
(
Bm − Ip

)T]
+
∥∥b f,m

∥∥2
,
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Fig. 1. (a) Marginal design density k(1)∗ (ρ) and (b) weights w∗ (ρ) for d = 1, s = .7, t = .05; I∗
= {1}. Plot (c) is the marginal of the unbiased

design density (3.3).

Fig. 2. (a) Marginal design density k(1)∗ (ρ) and (b) weights w∗ (ρ) for d = 2, s = .1, t = .4; i∗ = 1. Plot (c) is the marginal of the unbiased
design density (3.3).

which yields

max
Σ

Eπ [IMSE (k,m; f, g)] = tr
[
σ 2
ε

n
Cg,k,m

]
+ η2

θ tr
[(

Bm − Ip
)2]

+
∥∥b f,m

∥∥2
+

∫
S

f 2 (x) µ (x) dx.

For the determination of the optimal value in (2.19) we first maximize with respect to f ∈ F , then with respect to
g ∈ G. Note that only two terms in the above expression depend on the function f . Consequently, the maximum over
f is given in the following result. The proof is very similar to that of Theorem 1 in Wiens (1992) and is therefore
omitted.

Proposition 2. For fixed m the maximum of the function

Ψ2 ( f ; m)
def
=
∥∥b f,m

∥∥2
+

∫
S

f 2(x)µ(x)dx
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Fig. 3. (a) Marginal design density k(1)∗ (ρ) and (b) weights w∗ (ρ) for d = 4, s = .2, t = .8; i∗ = 5. Plot (c) is the marginal of the unbiased
design density (3.3).

over the class of functions f satisfying (2.10) and (2.12) is given by

η2
f ·

(
chmax

[
Km − B2

m

]
+ 1

)
,

where chmax [A] denotes the maximum eigenvalue of the matrix A and the matrix Km is given by

Km
def
=

∫
S

z (x) zT(x)
m2 (x)
µ(x)

dx.

Moreover, the matrix Km − B2
m is non-negative definite; in particular, we have for any vector α ∈ Rp

αT
(

Km − B2
m

)
α =

∫
S

{
αT
[

m(x)
µ(x)

Ip − Bm

]
z(x)

}2

µ(x)dx ≥ 0. (4.1)

The maximum value is attained by any function f∗ of the form

f∗(x) = η f α
T
m

[
m(x)
µ(x)

Ip − Bm

]
z(x),

where αm is any solution to the equation
(
Km − B2

m

)1/2
αm = βm and βm is any eigenvector of the matrix Km − B2

m ,
corresponding to the maximum eigenvalue, normalized such that

∥∥βm

∥∥ = 1.

The maximization with respect to the function g ∈ G, and the minimization with respect to the density k, are
straightforward. Recalling the definition of g∗ (·) in (3.1) we have, using Proposition 1,

max
g

tr Cg,k,m =

∫
S

‖z(x)‖2 m2 (x)
k(x)

g∗(x)dx,

min
k

max
g

tr Cg,k,m = max
g

tr Cg,k∗,m =

[∫
S

‖z(x)‖ m(x)
√

g∗ (x)dx
]2

,

where the minimum is attained for the density k∗ (x; m) given by (3.2). Combining these observations, we obtain

Φ (m) def
= min

k
max

f ∈F ,g∈G
max
Σ

Eπ [IMSE (k,m; f, g)]

= η2
f ·

(
chmax

[
Km − B2

m

]
+ 1

)
+
σ 2
ε

n

[∫
S

‖z(x)‖ m(x)
√

g∗(x)dx
]2

+ η2
θ tr

[(
Bm − Ip

)2]
,
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and for the solution of the optimization problem (2.19) it remains to determine the optimal weights w∗ (·) =

m∗ (·) /µ (·) with

m∗ = arg min
m

Φ (m) .

Suppose now that the experimenter anticipates homoscedasticity, but seeks protection against violations of these
assumptions. In this case we set g0 (·) ≡ 1 and obtain

Φ (m) = η2
f ·

(
chmax

[
Km − B2

m

]
+ 1

)
+
σ 2
ε

n

(
1 + η2

g

) [∫
S

‖z (x)‖ m(x)dx
]2

+ η2
θ tr

[(
Bm − Ip

)2]
.

With the notation η2
T

def
= η2

f +
σ 2
ε

n

(
1 + η2

g

)
+ η2

θ and

s =
η2

f

η2
T

, t =

σ 2
ε

n

(
1 + η2

g

)
η2

T

,

we have that Φ (m) is proportional (up to the constant η2
T ) to the function

Φ0(m; s, t)
def
= s ·

(
chmax

[
Km − B2

m

]
+ 1

)
+ t ·

[∫
S

‖z(x)‖m(x)dx
]2

+ (1 − s − t) · tr
[(

Bm − Ip
)2]

. (4.2)

The parameters s, t ∈ [0, 1] (with s + t ≤ 1) may be chosen by the experimenter according to his assessment of the
relative importance of the various sources of IMSE from which he seeks protection.

Example 4.1 (Example 2.1 Continued). For spherical harmonic regression, note from (2.13) that ‖z(x)‖ is constant.
Consequently the density m (x) = µ(x) is minimax optimal. This follows from the fact that this choice yields
Km = Bm = Ip, so that the first and third term on the right side of (4.2) are simultaneously minimized, while the
second is independent of m (·). The corresponding minimax design for spherical harmonic regression is as described
in Example 3.1.

It is worthwhile to mention that this conclusion is always possible, provided that ‖z (x)‖ is constant. Popular
examples satisfying this property are the Haar wavelet model [see Herzberg and Traves (1994) and Oyet and Wiens
(2000)] and the trigonometric regression model [see Karlin and Studden (1966)].

If ‖z(x)‖ is not constant, then the problem of determining the minimum of the function (4.2) for arbitrary
s, t ∈ [0, 1] is more complicated and will be investigated in the remaining part of this section. We begin with the
discussion of several limiting values of the parameters s, t , for which the solution of the optimization problem

m∗ = arg min
m

Φ0 (m; s, t)

is easy to obtain. For this purpose we will distinguish three cases.
Case 1: s = 1. In this case we have η2

f = η2
T and all loss is due to f . Here the function

Φ0 (m; 1, 0) = chmax

[
Km − B2

m

]
+ 1

is minimized by m1,0 (·) = µ (·), hence the constant weightsw (x) ≡ 1 are optimal, while the minimax optimal design
density k(x) is proportional to ‖z(x)‖µ(x). The minimum value is Φ0 (µ; 1, 0) = 1.
Case 2: t = 1. In this case we have η2

f = η2
θ = 0 and all loss is due to possible heteroscedasticity. Here

Φ0 (m; 0, 1) =

[∫
S

‖z(x)‖ m(x)dx
]2

is minimized in a limiting sense by the Dirac function m0,1 (·) = δxmin , placing all mass at those points xmin at which
‖z(x)‖ is minimized.
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Case 3: 1 − s − t = 1. In this case all loss is due to misspecification of the parameter θ , more precisely to the matrix
Σπ . Here

Φ0 (m; 0, 0) = tr
[(

Bm − Ip
)2]

is again minimized, with minimum value 0, by m0,0 (·) = µ (·).
For general s, t ∈ [0, 1] we propose to minimize the function Φ0 (m; s, t) by representing the minimizer – whose

existence can be established using the methods of Theorom 2 of Heo et al. (2001) – as the solution to an auxiliary
minimax problem. For vectors α ∈ Rp of unit norm, and fixed s and t , define the function

L (m; α) = s ·

(
αT
[
Km − B2

m

]
α + 1

)
+ t ·

[∫
S

‖z(x)‖ m(x)dx
]2

+ (1 − s − t) · tr
[(

Bm − Ip
)2]

.

Then Φ0 (m; s, t) = max‖α‖=1 L (m; α) and the design problem is equivalent to the minimax problem

min
m

max
‖α‖=1

L (m; α) . (4.3)

Theorem 2. If s > 0 then the density m∗ which solves problem (4.3) is of the form

m∗(x) =

{
λ+ zT(x)Γ z(x)− β ‖z(x)‖

}+(
αT

∗z (x)
)2 µ(x), (4.4)

(here q+ denotes the positive part of a function q) for a symmetric matrix 0, scalars β and λ and a vector α∗ of unit
norm. These parameters are determined by

0 =
1
2

(
Bm∗

α∗α
T
∗ + α∗α

T
∗Bm∗

)
−

1 − s − t

s

(
Bm∗

− Ip
)
, (4.5a)

β =
t

s

∫
S

‖z (x)‖ m∗(x)dx, (4.5b)

1 =

∫
S

m∗(x)dx, (4.5c)

αT
∗

[
Km∗

− B2
m∗

]
α∗ = chmax

[
Km∗

− B2
m∗

]
. (4.5d)

If s = 0 the solution is somewhat different, since in the absence of any bias the minimax design need no longer be
absolutely continuous. This case is however of little interest from a robustness point of view.

Remark 2. See (4.4). In some models there may be points x at which αT
∗z(x) = 0. It is evident from the proof of

Theorem 2 that at such points it is required either that the numerator of m∗(x) vanish, in which case we set m∗(x) = 0,
or that the numerator be positive and m∗(x) = ∞. The latter eventuality does not occur in any of the examples at
which we have looked.

Remark 3. We shall discuss two possibilities for implementing Theorem 2. The first, implemented in Section 5 below,
is to obtain m∗(x) from Theorem 2 by solving Eq. (4.5). The second, deferred to Section 6, is to substitute (4.4) into
Φ0 (m; s, t) at (4.2), and minimize the resulting expression over the parameters, subject to the constraints (4.5c) and
‖α‖ = 1.

In the next section we continue with Example 2.2, and utilize the special structure of Zernike polynomials to
simplify the requirements of Theorem 2.

5. Minimax designs and weights — Zernike polynomials

In this section we obtain minimax designs and weights for Zernike polynomial regression. First we write the
bivariate density m (x) in the form m (x) = m(1) (ρ)m(2) (φ|ρ). We will show, in Theorem 3, that under condition
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(5.11) given there (and in (ii) of Lemma 1) we may restrict attention to the case in which the conditional density of φ,
given ρ, is of the form

m(2) (φ|ρ) = µ(2) (φ) = (2π)−1 . (5.1)

When (5.1) holds, only the univariate density m(1)
∗ (ρ) need be determined numerically.

Note that, by virtue of (2.15), the objective function to be minimized is

Φ0(m; s, t) = s ·

(
chmax

[
Km − B2

m

]
+ 1

)
+ t ·

[∫ 1

0

√
Θd(ρ)m

(1) (ρ) dρ

]2

+ (1 − s − t) · tr
[(

Bm − Ip
)2]
,

in which only the first and third terms depend on m(2) (φ|ρ). We are not yet asserting that (5.1) holds, but when it does
we will write

m0(x) = m(1) (ρ)m(2)
0 (φ|ρ) = m(1) (ρ) µ(2) (φ) (5.2)

as a product measure and obtain (upon applying Fubini’s Theorem)

Bm0 =

∫
S

z(x)zT(x)m(1) (ρ)m(2) (φ|ρ) dx =

∫ 1

0
R2 (ρ)m(1) (ρ) dρ

def
= H; (5.3)

here we have used the first identity in (2.14). Note that the matrix H is diagonal, with diagonal elements

hi =

∫ 1

0
R2

i i (ρ)m(1) (ρ) dρ =

∫ 1

0
w (ρ) R2

i i (ρ) µ
(1) (ρ) dρ. (5.4)

It will prove useful to interpret these diagonal elements as the expectations of the weights w (ρ) = m(1) (ρ) /µ(1) (ρ)

when ρ has the density R2
i i (ρ) µ

(1) (ρ) [note that
∫ 1

0 R2
i i (ρ) µ

(1) (ρ) dρ = 1 by (2.14)].
Calculations very similar to those leading to (2.15) give the useful identity

zT(x)Hz(x) = tr R (ρ)HR (ρ) . (5.5)

As well, the matrix Km0 − B2
m0

in the representation (4.1) becomes

Km0 − B2
m0

=

∫
S

[
m(1) (ρ)

µ(1) (ρ)
Ip − H

]
z (x) zT(x)

[
m(1) (ρ)

µ(1) (ρ)
Ip − H

]
µ(1) (ρ) µ(2)(φ)dφdρ

=

∫ 1

0

[
w (ρ) Ip − H

]
R2 (ρ)

[
w (ρ) Ip − H

]
µ(1) (ρ) dρ

def
= D,

which is a diagonal matrix with diagonal elements

di =

∫ 1

0
(w (ρ)− hi )

2 R2
i i (ρ) µ

(1) (ρ) dρ. (5.6)

As at (5.4), di can be interpreted as the variance of the weights w (ρ) when ρ has the density R2
i i (ρ) µ

(1) (ρ).
The minimax solution for Zernike polynomial regression is motivated by the following result.

Lemma 1. For the Zernike polynomial regression model, let m(1) (ρ) be a fixed but arbitrary marginal density of ρ.
Then:

1. The quantity tr [(Bm − Ip)
2
] is minimized by m(2) (φ|ρ) = µ(2)(φ).

2. Define I ∗
= {1, 5, 13, . . .} to be the set of indices, in the ordering of the elements of z (x), corresponding to terms

Rm
k with m = 0 and hence a(φ) ≡ 1. If m(1) (ρ) is such that the maximum diagonal element di∗ of the matrix D

satisfies i∗ ∈ I ∗, then chmax
[
Km − B2

m

]
is also minimized by m(2) (φ|ρ) = µ(2)(φ).
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Let h = H1 be the p-vector with elements hi given by (5.4) and define

r (ρ) = R2 (ρ) 1 =

(
R2

11 (ρ) , . . . , R2
pp (ρ)

)T
,

so that h =
∫ 1

0 r (ρ)m(1) (ρ) dρ. By virtue of Lemma 1, if m0(x) defined by (5.2) is such that the associated weights
w (ρ) minimize

Φ0 (m0; s, t) = s ·

(
max

i
di + 1

)
+ t ·

[∫ 1

0

√
Θd (ρ)m

(1) (ρ) dρ

]2

+ (1 − s − t) · ‖h − 1‖
2 , (5.7)

with maxi di = di∗ for some i∗ ∈ I ∗, then to prove that m0(x) is the desired minimax density one need only check
that it is of the form specified by Theorem 2. In some cases this procedure can be accomplished by minimizing

s · (di∗ + 1)+ t ·

[∫ 1

0

√
Θd (ρ)m

(1) (ρ) dρ

]2

+ (1 − s − t) · ‖h − 1‖
2 (5.8)

for a particular i∗ ∈ I ∗. The next result gives the details.

Theorem 3. For s > 0 and for each i∗ ∈ I ∗, define a weight function wi∗ (ρ), and densities m(1)
i∗ (ρ) and mi∗ (x), by

wi∗ (ρ) =

{
ri∗ (ρ)+ λi∗ +

[
ei∗ri∗ (ρ)−

1−s−t
s r (ρ)

]T (
h(i

∗) − 1
)

− βi∗
√

Θd (ρ)

}+

ri∗ (ρ)
, (5.9a)

m(1)
i∗ (ρ) = wi∗ (ρ) µ

(1) (ρ) , (5.9b)

mi∗(x) = m(1)
i∗ (ρ) µ

(2)(φ). (5.9c)

Here ei∗ is the unit vector in Rp with a 1 in position i∗ and zeros elsewhere and the p-dimensional vector h(i
∗) and

scalars βi∗ and λi∗ are to be determined from

h(i
∗) =

∫ 1

0
r (ρ)m(1)

i∗ (ρ) dρ, (5.10a)

βi∗ =
t

s

∫ 1

0

√
Θd (ρ)m

(1)
i∗ (ρ) dρ, (5.10b)

1 =

∫ 1

0
m(1)

i∗ (ρ) dρ. (5.10c)

If

i∗ = arg max
1≤i≤p

∫ 1

0

(
wi∗ (ρ)− h(

i∗)
i∗

)2
R2

i i (ρ) µ
(1) (ρ) dρ, (5.11)

then the solution to the minimax problem (4.3) is given by (m,α) = (m∗, ei∗). The minimax design density is then
given by Proposition 1, i.e.

k∗ (ρ, φ) = k(1)∗ (ρ) µ(2)(φ),

where

k(1)∗ (ρ) =
t
√

Θd (ρ)wi∗ (ρ) µ
(1) (ρ)

sβi∗
,

and the design points may be obtained from∫ ρi

0
k(1)∗ (ρ) dρ =

i

n1
, φ j =

2π j

n2
,

for i = 1, . . . , n1 and j = 1, . . . , n2, with n = n1n2.
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Example 5.1 (Example 2.2 Continued). We present the results of applying Theorem 3 in three cases. The constants
are determined by using the Matlab function fsolve to simultaneously solve Eq. (5.10). All integrals are evaluated
by Simpson’s Rule, over a grid of 101 equally spaced points in the interval [0, 1]. Our method is to compute wi∗ (·),
for each i∗ ∈ I ∗. We then check that one such function satisfies (5.11); if so then it is the desired minimax weighting
function w∗ (·). For the values d = 1 (hence i∗ = 1), s = .7, t = .05 we obtain output as illustrated in Fig. 1, with
β = .12, λ = .19. In this and the other two cases we also plot the marginal, unbiased design density (3.3).

For d = 2, s = .1, t = .4 this procedure gives the design and weights displayed in Fig. 2, with i∗ = 1, β = 8.40,
λ = 13.22. For d = 4, s = .2, t = .8 the results are shown in Fig. 3 (β = 11.40, λ = 35.35, i∗ = 5). In this case
the design is only supported in the interval [0, .6], approximately; recall Remark 2 and note that r5 (ρ) = 0 only for
ρ = 1/

√
2 > .6. For some other values of d, s and t condition (5.11) is not satisfied; when this is the case the more

involved minimization of (5.7) – with the maximization being over i ∈ I ∗ – rather than the simpler (5.8), appears
necessary.

6. Minimax designs and weights — general models

In this section we illustrate the second method of applying Theorem 2, as discussed in Remark 3. The method
applies in general regression models, and is implemented here in the context of function approximation via orthogonal
polynomials.

Consider approximating a function on S = [−1, 1] using Chebyshev polynomials. To satisfy (2.6) we take

µ (x) =
1

π
√

1 − x2
, and

z (x) =

(
T0(x),

√
2T1(x),

√
2T2(x), . . . ,

√
2Td(x)

)T
,

where T j (x) is the j th Chebyshev polynomial of the first kind, given by T j (x) = cos ( j arccos x). Some particular
values are

T0(x) = 1, T1(x) = x, T2(x) = 2x2
− 1, T3(x) = 4x3

− 3x .

The optimization described in Remark 3 is carried out using Matlab’s fminimax routine. First define γ = vecs (Γ )
to be the vector, of dimension p (p + 1) /2, formed from the lower triangle of the matrix Γ . The problem is then

min
v

max
[F1,...,Fp]

{Fi (v)}

where v =
(
αT, β, γ T, λ

)T
and, with ch(i) [·] denoting the i th largest eigenvalue,

Fi (v) = s ·

(
ch(i)

[
Km − B2

m

]
+ 1

)
+ t ·

[∫ 1

−1
‖z (x)‖ m (x) dx

]2

+ (1 − s − t) · tr
[(

Bm − Ip
)2]

with

m (x) =

{
λ+ zT (x)Γ z (x)− β ‖z (x)‖

}+(
αTz (x)

)2 µ (x) .

This is solved subject to the constraints(∫ 1

−1
m (x) dx − 1, ‖α‖ − 1

)
= 0T.

Some representative designs and weighting functions are given in Fig. 4 (d = 3, s = t = .3) and Fig. 5
(d = 5, s = .2, t = .4). In this (and the other) examples there is considerable numerical instability; in particular
the constants obtained here do not quite satisfy the equations of Theorem 2. However, the designs themselves change
very little under changes of the constants; we attribute this to the response surface over which we are optimizing being
quite flat.



Author's personal copy

4320 H. Dette, D.P. Wiens / Computational Statistics and Data Analysis 52 (2008) 4305–4324

Fig. 4. (a) Design density, (b) weights and (c) unbiased design density for Chebyshev polynomial approximation; d = 3, s = t = .3.

Fig. 5. (a) Design density, (b) weights and (c) unbiased design density for Chebyshev polynomial approximation; d = 5, s = .2, t = .4.

7. Summary

We have exhibited robust designs and weighting functions, appropriate for the “direct” series estimation technique
often favoured by practitioners. These are solutions to two minimax problems, one of which is constrained by a
requirement that the estimates be unbiased throughout a neighbourhood of contaminated response functions. In this
case the results are particularly appealing — the optimal weights are constant, and the minimax optimal design
density (3.3) is proportional to ‖z(x)‖µ (x) under the assumption of homoscedasticity, where z(x) denotes the vector
of functions used in the series expansion. Given the numerical complexity of the minimax designs without this
requirement of unbiasedness, and recognizing the dominant contribution, asymptotically, of bias over variance to
mean squared error, it is our opinion that designs for unbiased estimation are to be preferred.
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Appendix. Derivations

Proof of Theorem 1. From (2.4) and (2.9) we obtain
√

n
(
θ̂ − {Bnθ + bn}

)
=

√
nM,

where

M =
1
n

n∑
i=1

z(xi )
m(xi )

k(xi )
ε(xi ).

We must show that
√

nM is AN
(
0, σ 2

ε Cn
)
. For this we invoke the Cramér–Wold device (Serfling, 1982, p. 18) and

define, for an arbitrary vector t,

X i = tTz(xi )
m (xi )

k(xi )
ε (xi ) ,

with mean 0, variance

σ 2
i = σ 2

ε

(
tTz (xi )

)2
(

m (xi )

k(xi )

)2

g (xi )

and (with τ 3
i = τ 3(xi )) third absolute moment

E
[∣∣∣X3

i

∣∣∣] = σ 3
ε τ

3
i

∣∣∣tTz (xi )

∣∣∣3 (m(xi )

k(xi )

)3

g3/2 (xi ) .

By Liapounov’s Central Limit Theorem (Serfling, 1982, p. 30), as long as

√
n

n∑
i=1

E
[∣∣X3

i

∣∣]
(

n∑
i=1

σ 2
i

)3/2 =

1
n

n∑
i=1

τ 3
i

∣∣tTz (xi )
∣∣3 (m(xi )

k(xi )

)3
g3/2 (xi )(

1
n

n∑
i=1

(
tTz(xi )

)2 (m(xi )
k(xi )

)2
g(xi )

)3/2 = o(
√

n) (A.1)

we have that

1
n

n∑
i=1

X i ∼ AN

(
0,

1

n2

n∑
i=1

σ 2
i

)
.

Equivalently,

tTM√
tT Cn

n t

d
→ N (0, 1),

as required. To assess (A.1), we apply elementary upper and lower bounds on the numerator and denominator, yielding

sup
‖t‖=1

1
n

n∑
i=1

τ 3
i

∣∣tTz(xi )
∣∣3 (m(xi )

k(xi )

)3
g3/2(xi )(

1
n

n∑
i=1

(
tTz (xi )

)2 (m(xi )
k(xi )

)2
g (xi )

)3/2 ≤

1
n

n∑
i=1

τ 3
i ‖z(xi )‖

3
(

m(xi )
k(xi )

)3
g3/2(xi )

(chminCn)
3/2 < ∞

by assumptions (i), (ii) and our previous assumptions that z, g and m/k be uniformly continuous, hence bounded on
the bounded set S; (A.1) follows. �
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Proof of Proposition 1. For densities k0(x) and k1 (x) and t ∈ [0, 1] define the convex combination kt (x) =

(1 − t) k0 (x)+ tk1(x). In order that k0 (·) minimize the function Ψ1 (k; m) subject to the constraint that it integrate to
1 it is sufficient that the function

φ (t; λ) = Ψ1 (kt ; m)+ λ2
∫
S

kt (x)dx

be minimal at the point t = 0 for any k1 (·), and that the density k0 (·) satisfy the constraint. For this, since φ (t; λ) is
a convex function of t , the first order condition is necessary and sufficient, which means that the inequality

φ′ (0; λ) =

∫
S

[k1 (x)− k0(x)]

[
λ2

− ‖z(x)‖2 m2(x)

k2
0 (x)

g∗(x)

]
dx ≥ 0

holds for all k1 (·). This condition is satisfied if

k0(x) =
‖z (x)‖ m(x)

√
g∗(x)

λ
,

and it remains only to determine λ to satisfy the constraint. �

Proof of Theorem 2. We will show that the pair (α∗,m∗) in the statement of the theorem furnishes a saddlepoint
solution to (4.3); viz. its members satisfy

max
‖α‖=1

L (m∗; α) = L (m∗; α∗) = min
m
L(m; α∗). (A.2)

Note that the first equality in (A.2) is equivalent to (4.5d). To handle the second equality we introduce the convex
combination

mt = (1 − t)m∗ + tm1

of the minimizing m∗ and an arbitrary competing density m1. We are to determine a non-negative function m∗ (·) for
which the normalizing condition

∫
S m∗ (x) dx = 1 is satisfied and such that L (mt ; α∗) is minimized at t = 0 for

all m1. It follows from (4.1) and Lemma 4.4 of Huber (1981) that the objective function is a convex function of the
parameter t . Thus, with

Ψ (t)
def
= L (mt ; α∗)− 2λ

∫
S

mt (x) dx,

the first order condition “Ψ ′ (0) ≥ 0 for all densities m1” is necessary and sufficient for the density m∗ to be the
optimum. A straightforward calculation shows that

Ψ ′ (0) = 2
∫
S
(m1 − m∗) (x) · {p(x)m∗(x)− q(x)} dx,

where the functions p and q are defined by

p(x) =
s
(
αT

∗z(x)
)2

µ (x)
≥ 0,

q(x) = λ+ zT (x)
[
sBm∗

α∗α
T
∗ − (1 − s − t)

(
Bm∗

− Ip
)]

z (x)− t ‖z(x)‖
∫
S

‖z (y)‖ m∗ (y) dy.

In other words: the condition Ψ ′ (0) ≥ 0 is satisfied for all m1 if and only if

m∗(x) =
q(x)+

p(x)
=

{
λ+ zT (x)Γ z(x)− β ‖z(x)‖

}+(
αT

∗z(x)
)2 µ(x),

where the parameters Γ , β and λ are determined by (4.5a)–(4.5c). �

Proof of Lemma 1. Define mt (x) = (1 − t)m0 (x) + tm1(x), where m0(x) is as at (5.2) and m1(x) =

m(1) (ρ)m(2)
1 (φ|ρ), for an arbitrary conditional density m(2)

1 (φ|ρ).
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To establish (i), we show that β (t) = tr [(Bmt − Ip)
2
] is minimized at t = 0, for any m(2)

1 (φ|ρ). Since β (t)
is convex, a necessary and sufficient condition for this is “β ′ (0) ≥ 0 for all m1 (·)”. We will show that, in fact,
β ′ (0) ≡ 0. For this we calculate, using (5.3), that

β ′ (0) = 2tr
[(

H − Ip
) (

Bm1 − H
)]
.

Using (2.15) and (5.5), we obtain

tr
((

H − Ip
)

Bm1

)
=

∫
S

zT(x)
(
H − Ip

)
z(x)m1(x)dx

=

∫
S

tr
[
R (ρ)

(
H − Ip

)
R (ρ)

]
m1(x)dx

= tr
[(

H − Ip
) ∫

S
R2 (ρ)m(1) (ρ) dρ

]
= tr

[(
H − Ip

)
H
]
,

so that β ′ (0) = 0, as required.
To establish (ii) it is sufficient to show that, for any m1 (x) as above, if i∗ ∈ I ∗ then

chmax

[
Km1 − B2

m1

]
≥

(
Km1 − B2

m1

)
i∗i∗

≥ di∗ = chmax

[
Km0 − B2

m0

]
. (A.3)

Only the second inequality in (A.3) requires a proof — the first is true universally, and the equality is the definition
of i∗.

A direct calculation, using (4.1), gives(
Km1 − B2

m1

)
i∗i∗

=

∫ 1

0

[∫ 2π

0
l2
m1
(φ; ρ)µ(2)(φ)dφ

]
R2

i∗i∗ (ρ) µ
(1) (ρ) dρ,

where

lm1 (φ; ρ) =
m(1) (ρ)m(2)

1 (φ|ρ)

µ(1) (ρ) µ(2)(φ)
ai∗ (φ)−

bT
m1,i∗

R (ρ) a(φ)

Ri∗i∗ (ρ)

and bT
m1,i∗

=
∫
S zi∗(x)zT (x)m1(x)dx is the i th row of the matrix Bm1 . Note that

lm0 (φ; ρ) = ai∗(φ)

(
m(1) (ρ)

µ(1) (ρ)
− hi∗i∗

)
, (A.4)

and define

γ (t) =

∫ 1

0

[∫ 2π

0
l2
mt
(φ; ρ)µ(2)(φ)dφ

]
R2

i∗i∗ (ρ) µ
(1) (ρ) dρ,

with mt as above. Using (A.4) and then (5.6) to evaluate γ (0), we see that the required inequality in (A.3) is
expressible as “γ (1) ≥ γ (0)”. By convexity (the integrand in γ (t) is the square of a linear function of t) the
condition “γ ′ (0) ≥ 0 for every m(2)

1 (φ|ρ)” is again necessary and sufficient for this. Since

γ ′ (0) = 2
∫ 1

0

[∫ 2π

0
lm0 (φ; ρ)

(
lm1 (φ; ρ)− lm0 (φ; ρ)

)
µ(2) (φ) dφ

]
R2

i∗i∗ (ρ) µ
(1) (ρ) dρ,

we are equivalently to show that

L i∗ (m1)
def
=

∫ 1

0

[∫ 2π

0
lm0 (φ; ρ) lm1 (φ; ρ)µ(2)(φ)dφ

]
R2

i∗i∗ (ρ) µ
(1) (ρ) dρ (A.5)

does not exceed L i∗ (m0) = di∗ . We will in fact show that L i∗ (m1) is constant, if i∗ ∈ I ∗.



Author's personal copy

4324 H. Dette, D.P. Wiens / Computational Statistics and Data Analysis 52 (2008) 4305–4324

In terms of

Ai (ρ; m) =

∫ 2π

0
a2

i (φ)m
(2) (φ|ρ) dφ

we calculate that (A.5) is

L i∗ (m1) = COV

[
m(1) (ρ)

µ(1) (ρ)
,

m(1) (ρ)

µ(1) (ρ)
Ai∗ (ρ; m1)

]
,

where the covariance is calculated with respect to the density R2
i∗i∗ (ρ) µ

(1) (ρ).
To now we have not used the assumption that i∗ ∈ I ∗. Under this condition a2

i∗(φ) ≡ 1 and so Ai∗ (ρ; m1) = 1
for all m1; thus L i∗ (m1) does not depend upon m1 and is constantly equal to VAR

[
m(1) (ρ) /µ(1) (ρ)

]
= di∗ =

L i∗ (m0). �

Proof of Theorem 3. Substituting (5.9b) and (5.9c) and α = ei∗ into the expressions of Theorem 2, and using (A.5),
gives

wi∗ (ρ) =

{
λ+ zT (x)Γ z(x)− β ‖z(x)‖

}+(
αT

∗z(x)
)2 =

{
λi∗ + zT (x)Γ z(x)− βi∗

√
Θd (ρ)

}+
ri∗ (ρ)

. (A.6)

Eqs. (4.5b) and (4.5c) of Theorem 2 become (5.10b) and (5.10c) respectively, and (4.5a) yields

zT(x)Γ z (x) = ri∗ (ρ)+

[
ei∗ri∗ (ρ)−

1 − s − t

s
r (ρ)

]T (
h(i

∗) − 1
)

with h(i
∗) given by (5.10a). Substituting this last identity into (A.6) yields (5.9a). Thus mi∗(x) satisfies the conditions

of Theorem 2 and so is the desired minimax density. �
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Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A., 1998. Wavelets, Approximation and Statistical Applications. In: Lecture Notes in

Statistics. Springer, NY.
Heo, G., Schmuland, B., Wiens, D.P., 2001. Restricted minimax robust designs for misspecified regression models. The Canadian Journal of

Statistics 29, 117–128.
Herzberg, A.M., Traves, W.N., 1994. An optimal experimental design for the Haar regression model. Canadian Journal of Statistics 22, 357–364.
Huber, P.J., 1981. Robust Statistics. Wiley, New York.
Karlin, S., Studden, W.J., 1966. Tchebycheff Systems: With Applications in Analysis and Statistics. Interscience Publishers, New York.
Kim, W.J., Kim, J.S., 1999. Robust rotation angle estimator. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 768–773.
Lau, T.S., Studden, W.J., 1985. Optimal designs for trigonometric and polynomial regression. Annals of Statistics 13, 383–394.
Liao, S., Pawlak, M., 1996. On image analysis by moments. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 254–266.
Oyet, A.J., Wiens, D.P., 2000. Robust designs for wavelet approximations of regression models. Journal of Nonparametric Statistics 12, 837–859.
Pawlak, M., Liao, S., 2002. On the recovery of a function on a circular domain. IEEE Transactions on Information Theory 10, 2736–2753.
Sacks, J., Ylvisaker, D., 1970. Statistical design and integral approximation. In: Pyke, R. (Ed.), Proc. 12th Bienn. Semin. Can. Math. Congr. Can.

Math. Soc., Montreal, pp. 115–136.
Serfling, R.J., 1982. Approximation Theorems of Mathematical Statistics. Wiley, New York.
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