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ABSTRACT

We consider the problem of the sequential choice of design points in an approximately linear
model. It is assumed that the fitted linear model is only approximately correct, in that the true
response function contains a nonrandom, unknown term orthogonal to the fitted response. We also
assume that the parameters are estimated by M -estimation. The goal is to choose the next design
point in such a way as to minimize the resulting integrated squared bias of the estimated response,
to order n~!. Explicit applications to analysis of variance and regression are given. In a simulation
study the sequential designs compare favourably with some fixed-sample-size designs which are
optimal for the true response to which the sequential designs must adapt.

RESUME

Cet article porte sur le construction séquentielle de plans d’expérience dans le cadre de mode¢les
approximativement linéaires. On part de 1’hypothése que le modéle linéaire dont les parameétres
ont été déterminés par M-estimation est imparfait parce qu’il néglige un élément déterministe
de la surface de réponse qui est orthogonal a la surface ajustée. On cherche alors a ajouter au
plan expérimental le point pour lequel la réponse estimée ait le plus petit biais quadratique intégré
possible, a I’ordre de 1/n. On montre comment cette stratégie peut étre mise en oeuvre en régression
et en analyse de la variance. On montre aussi, a I’aide de simulations, que les plans séquentiels
résultants soutiennent bien la comparaison avec certains plans a taille d’échantillon fixée, méme
quand ces derniers sont optimaux pour la courbe de réponse étudiée.

1. INTRODUCTION

In this paper we consider the problem of the sequential choice of design points in an
approximately linear model.

Sequential designs for linear models have been studied by, among others, Fedorov
(1972), Gebhardt and Heckendorff (1983) and Schwabe (1991). Schwabe (1990) estab-
lishes optimality properties of such designs in exactly linear models. The present work
represents a departure from previously published work in simultaneously addressing the
following points:

(1) It is assumed that the fitted linear model is only approximately correct. This
introduces a bias into the estimates, which, to first order in 77!, is minimized by the
designs presented here. In some cases, in addition, estimates are provided of the nature
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of the inadequacy of the fitted model, thus guiding the experimenter in his choice of a
more appropriate model.

(2) We assume that the parameters are estimated by (ordinary) M -estimation (see, e.g.,
Huber 1981). The combined design-estimation problem is thus robustified in two ways:
against a misspecified response function, and against outlying observations.

In the remainder of this section, we make precise our notion of an “appoximately
linear” model, and give some examples. In Section 2 our approach to the sequential
design problem is outlined in some generality. The case of M -estimated parameters is
considered in Section 3. The examples are revisited in Section 4, where we propose some
particular algorithms and demonstrate their properties.

We begin by supposing that the experimenter will take observations (x;,y;), where
X; : g X 1 is nonrandom but the y; are observed with additive, i.i.d., zero-mean errors ¢;:

yi == y(x:)) = E[y|x] +¢€, x; €S CRY.

The design space S may be a set over which x varies freely, as in typical regression
problems, or it may consist of a discrete set of coded levels, as in analysis-of-variance
problems. We combine these and other cases by requiring the possible values of x, and
their relative importance, to be determined by a probability measure A on S.

The experimenter chooses a vector of regressors z(x):p X 1 which, it is hoped, will
adequately describe E [y(x] in a linear manner, in that E [ y|x] &~ 6,z(x) for some 0,
defined by 0, = argming [({Z [y|x] — 07z(x)}* d\(x). Then with f(x) := E [y|x] —
0,7z(x) it follows that

y(x) = 0] z(x) + f(x) +¢, 1.1)
,/s f(®)z(x) d\Mx) = 0. 1.2)

Note that @, is uniquely defined by (1.1) and (1.2), as long as A := [{ z(x)z"(x) d\(x)
is nonsingular. This is assumed throughout.

Now suppose that n observations (x;,y;) have been taken from the model described
above. Define N = n + 1. We wish to determine a value Xy € S at which to make the
next observation on y. Our aim is to do this in such a way as to minimize, to order n~!,
the integrated (over S) squared bias (ISB) of the fitted values:

158 = [{E[500]~ £ [y} ahew

=E[by —0,"TAE [0y — 0,] + / FAx) d\(x).
S

Here, y(x) = é,;,r z(x). The estimate Oy (an M -estimate) is defined precisely in Section 3
below. In Section 2, we will show that the optimal choice of xy is that which minimizes
an inner product between the current vqlue of the conditional bias (A),,—G,. and an empirical
version of the influence function for @,, evaluated at x. These quantities are estimated
by functionals of the residual process. The next observation is then to be made at the
minimizer of the inner product of the estimates.

ExampLE 1.1. In the one-way layout, the fitted response is y = Z;;] éjxj, where x; is the
indicator of the event that the “treatment” is set at level j. The design space S may be
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identified with the columns z; = z(x;) of the p x p identity matrix. Take A{z;} = p™!
for each j. Then (1.2) requires that f be identically zero on S, i.e., the fitted model is
necessarily correct. However, the ISB arising from the M -estimation may still be reduced,
relative to a fixed design, by a sequential allocation of treatments. A simple algorithm
for determining such an allocation is given in Section 4.

ExampLE 1.2. Consider a 22 factorial experiment, with factors A and B each set at one
of two levels, coded as *1. The fitted response is y(x) = éo +01x; + ézxz, with x; and
x, denoting the levels of A and B respectively.

If the levels are quantitative, experimenters often add a centre point (0,0) to check
for curvature. Then S = {(1,1),(1,—1),(—1,1),(—1,—1),(0,0)}. Let A be uniform on
S. Then (1.2) is equivalent to

fG,)=f-1,-)=a, 4, -)=f(-1,1)=8, f(0, 0) = =2(a + B),
where a and P are arbitrary constants. This implies that on S,
fx1, x2) = 93(x12 + x22 — 1.6) + 04x1x,, 0, 04 arbitrary,

in which case
E [y]X] = 0} + 81x1 + 0222 + 03(x7 +x7) + 04x1x, 1.3)

where 6 = 8p — 1.603. The enlarged model (1.3) is commonly fitted, when centre-point
observations are available, in order to test the linearity of the response. See Montgomery
(1984, Example 15.1).

ExampLE 1.3. If x varies continuously over a design space S with positive Lebesgue
measure, then (1.1) and (1.2) describe an approximately linear regression model. In
Section 4 we will consider in particular the case of straight-line regression, for which
g =1 and z(x) = (1,x)". We take S = [—1, 1] and A = Lebesgue measure. The model
is then

1 1
y=0p+01x +f(x) +¢, /if(x)dx:/z] xf(x) dx = 0. (1.4)
2 2
One fits a straight line to the data, but wishes the design to be robust against violations
of linearity as represented by (1.4).

In this situation Huber (1975) obtained nonsequential designs, minimax with respect
to squared error loss. Huber found the function f which maximized the risk [subject to an
upper bound on [ f?(x) dx] for a fixed design, and then the design which minimized this
maximum risk. Wiens (1992) extended this approach to other fitted response functions
and other loss functions. In both of these papers, the estimates were obtained by the
method of least squares. Fixed designs combined with M -estimation are considered in
Wiens (1994).

A feature of the approach we currently adopt is that, rather than maximizing the loss
over f, we adaptively estimate f. A nonparametric estimate of the response function is
computed from the first n observations. This allows for the estimation of the ISB; the Nth
observation is then made at a point xy chosen to maximize the decrease in the estimated
ISB, to order n~!. In the simulation study detailed in Section 4 the sequential designs
compare favourably with some fixed-sample-size designs which are optimal for the true
response to which the sequential designs must adapt.
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2. SEQUENTIAL DESIGNS

Suppose that one has taken n observations (x;, y;) from the model described in Section
1. Put U, = {(x;,y:)|li = 1,2,...,n}, and compute an estimate 8, = 0 (U,) of 0,. Put
Pn(X) =é,,T z(x). Now consider a sequence of such situations, and define, for m > n,

ISB(m]n) = fs {E [9n®) — E [yIX]|UM]}? dA(x),

the integrated squared bias, given U,.

Given U,, we seek to minimize the ISB resulting from one further observation, at a
point Xy € S, with random error ey. (Recall that N = n + 1.) That is, we wish to make
the next observation at xy = argminy A(x|U,), where

A(x|U,) = ISB(n + 1|n) — ISB(n|n). 2.1)

Note that the unconditional change in ISB is Ey, [A(x|U,)].
Writing ||x||3 for x"Ax, we find

JAE B0~ E DI 00 = IE18]0,] - 0.J5 + [roaw. e
In particular, since é,, given U, is nonrandom,
ISB(n|n) = ||, — 0,3 + /S FA(x) dMx). (23)

Let H, be the empirical distribution function of U,, and consider estimators of the
form 0, = O (H,). Let 8¢ x denote the distribution function with all mass at (x, y(x)) =
(x, E [y|x] + €). Then with nj := N~!, we have Hy = (1 — n)H, + nd x for some (g, x),
with x to be determined. Define a function b(n;x) by

b(m; x) = [|E [8((1 — n)H,, + B, x)|Un] — 0*”%\'
By (2.1)~2.3),
AK{U,) = bn; x) — b(0; X). @4)

In order to apply Taylor’s theorem to (2.4), we assume that b is twice differentiable on
[0,1/n] with respect to m, and that b'(n; x) may be obtained by differentiating under the
integral sign.

With

d
d.(g, x; M) = an 0 ((1 —m)H,, +1d¢,x)
and d,(e, x) := d,(g, x; 0), we calculate
b'(m; x) = 2{E [8((1 — MH, +nd¢ x)|Us] — 0, }TAE [du(e, x; m)|Us],
and hence .
b'(0; x) = 2(8, — 0,)TAE [d,(c, x)|U,].
Define

YO x) _ 2(0, — 0.)TAE [d,(c, x)|U,]

Ax{u,) =
U = =5 =

(2.5)
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By (2.4), )
A(X|U,) = Ax|U,) + O,(N2).

Given an estimate A,(x) of A(x|U,), we define

%y = argmin A,(x).
X

Our prescription is then to take the next observation on y at x = Xy.

ReMARK 2.1. The term E [d,(g, x)|U,] may be viewed as a finite sample version of the

influence function IF(x) of @,, and 0, — @, as the conditional value of the bias. In this
sense, the point Xy minimizes the inner product, with respect to the norm || - ||a, between
IF(x) and the bias.

3. M-ESTIMATED PARAMETERS

Let (¢) and (¢) be respectively odd and even, bounded, absolutely continuous func-
tions, weakly increasing for ¢ > 0. Corresponding to Proposal 2 of Huber (1961, p. 96),
we define 0,, and an auxiliary estimate &, of scale, to be roots of the p + 1 equations

=_E¢( _0_2("_')), G.1)

n

where 0
z(x
o= ("507°):
Then 0 (Hy) = 8(n) and O(HN) = o(n) become functions of n via
2'(x)0
/ ¢ < 0((:]; (n)) d{(1 = M)H, +nde x}. (32)

In this notation, d,(g, x) = 0’(0). We shall require as well s,(g, X) := o’(0).
Differentiating (3.2) implicitly, we find

(d,.(e, X)) =M;'d(x, ra(e, X)),

sn(€, X)

1 /T
Mn=7"( -;-l un))
On \V, w,

n

where

T, = % ; Yrzx)z (),  u. = % ; roy' (ri)a(x:),
Vv, = %ZX’(’:)Z(&'), Wn = %Z’ X (),
P i=1
g = B2 @8,
&,
(e, x) = HI® = (6, —0.)"2(x) _ yn(x) —6,72(x)

G, O
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Thus
d,(g, x) = P,z(x)y(rn (¢, X)) — quX(rn (¢, X)), (33)
where
P, = &,(w,T, — “nVD_IWn, g, = 6,(WaT, — “nvI)—]“n'

We will repeatedly use the fact that € in ry(g, x) is independent of U,.
Define

o, = /s E [6arn (g, X)|Un)z(x) dMx). (34
A crucial observation is that then
8, = —A(, - 0.).
From (2.5),
28] [d(e, %)|Un]

N

We propose to substitute the (possibly smoothed) empirical residual process into
the right-hand sides of (3.3) and (3.4), in order to construct estimates d,(x) and &,
of E[d,(g,x)] and 8,. We then take the next observation at

Ax|U,) = (3.5)

&y = argmax 8, d,(x). (3.6)
X

4. APPLICATIONS, EXAMPLES, MONTE CARLO

In this section we obtain explicit predictors B, an(x) in several cases, and continue
the examples of Section 1. We begin with the case of a finite design space.
4.1. Analysis of Variance.

Let the design space consist of M points {Xi,...,Xy }, and suppose that observations
yi» i = 1,...,n;, have been taken at x;. Define

nj

T
yvi —2' (X;)0 .
ri= Yi —2 ()8, F= ri/m,

On i=1
5= v/, mp=> xr)/n, @.1)
i=1 i=1
R M
n=6n 9 Mx;}2()F;, (42
j=1
d,(x;) = P,z(x))}; —0,m;. (4.3)

The choice of the estimators in (4.2) and (4.3) is motivated in Remark 4.2 below.

ReMARK 4.1. The estimate /; at (4.1) is unsatisfactory if M = p (as in the one-way
layout), since then the definition of the M-estimator is precisely that each /; vanishes.
Also, from (1.2), P,(f = 0) = 1. In this case, we note that

U,.] +E [‘P/(E,e:) Un]w@%u.

n on

E [Wirw(e x))\U] =E [w (oi)



1996 ROBUST SEQUENTIAL DESIGNS 73

The first term on the right vanishes asymptotically, and so we replace /; by

I =

; Fis “4.4)

X ™

where 2 = 320 570 ' (ry).
ExampLE 1.1. (Continued). We have assumed v and ¥ to be bounded, so that the special

case of least-squares estimation [(x) = x,¥(x) = x> — 1] is excluded. However, for the
one-way layout, a formal evaluation of (3.5) for least squares gives

< —2n&? 0,—0,)°
Bl = |2 5)
]

so that we should aim to assign the next observation to that treatment for which the
current value of (8, — 0.);|/,/n; is a maximum. Schwabe (1990) derives this result for
least squares under the condition N = 1 (mod p). He proposes replacing 8, by an initial
guess, to apply the result.

A Monte Carlo study has indicated that for the M -estimators used, a direct application
of (4.2) and (4.3) with the modification (4.4) leads to unsatisfactory designs. The algo-
rithm tends to make very long strings of allocations to the same treatment group. The
problem is that the dominant terms in A, arise from the last of the equations (3.1), and
become nearly constant quite quickly as &, approaches its limiting value. If we ignore
this equation, and treat the scale as fixed for the purpose of deriving d,(&, x), then (4.3)
and (4.4) give

~A =

d,(x) = 6,T; 'zl = =
n;
where 7ij = Y, y/(r;). Thus
2n0% | F
Au(xj) = —20, -+~
PN | /;

directly analagous to (4.5). One should then assign the next observation to treatment j*,
where

j* = argmax t’_—l- (4.6)
1Sisp VA
(This is, of course, not applicable to least squares, since then each 7; = 0.)
Figure 1 shows a simulated sequence of designs determined by (4.6). There were p = 3

groups, with means 0; = j and errors distributed according to a normal Student mixture:

g7 ~ 0.8N(0, 1) + 0.2t,.

We used Huber’s y(x) = max(—k, min(x, k)) with [following a suggestion in Belsley,
Kuh and Welsch (1980)] k = 2\/1_)7;1_, and x%(x) = Y*(x) — Eo[y*(X)]. Note that then
f; is the number of residuals with |r,,| < k. The initial design had n; = n, = n3 = 5
observations in each group.

Figure 1(a) gives the sequence of points chosen via (4.6), 1(b) the current cumulative
totals, and 1(c) the sequence of estimates, with horizontal lines at the target values 6;,
together with the values of {3°(f; — 6;)?/3}1.
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Ficure 1: One-way layout.
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ExampLE 1.2. (Continued). Figure 2 shows a typical sequence of simulated 22 factorial
designs with centre points. We applied (4.2) and (4.3) directly, with z(x;) = z; given by

n=(1,1,-1), Z=@1,11, 2zI=(,0,0),
n=(1,-1,1), zI=(@,-1,-1);

with initially ny = ny; = ny = ns = 2, n3 = 8; and with k{xj} = 0.2. The true response
is given by (1.3), with

0: = (90, ely 62) = (17 27 3)7 93 = 64 = %'

In Figure 2(c) the horizontal lines are at 6o, 8, 6, and at || f|| = ([, f 2d\): = 0.5, the
minimum attainable value of (ISB)z. The sample root-ISB is {|| f||* + (8, — 0,)TA(®, —
0,)}%, where A = diag(1, 0.8, 0.8). The choices of vy, % and of the error distribution were
as in Example 1.1.

The data give ample evidence of the inadequacy of the fitted model. We performed
Wald’s test of the hypothesis that 6; = 84 = 0 after choosing 0, 5 and 25 new points,
obtaining p-values of 0.04, 0.0003 and 0.00008 respectively.

4.2. Regression.
Let y,(x) be a nonparametric estimate of E [ y(x)], computed from U,. Define

9a(x) —0T2(x)

Fa(x) =
(%) 5

I(x) = ;11- D Wi — Fa(xi) + Fu(x)),
i=1

M) = = S (s = ) + Fa)),
i=1

~

5, =6, / Fa)2(x) dMX),  du(%) = Pz(x)I(x) — 0,m(x).
N

As before, define Xy by (3.5) and (3.6).

ReMARK 4.2. The choice of the estimators is motivated as follows. Let D,(x) = ya(x) —
‘E [y(x)]. Then

8, —90,= /S D,(x)z(x) d\(x)
and

1) = E [w(ra (e, x))|U,]
= %; {w (5— +E [ (e, x)]) ~E [w (5 +E (e x)])] } +R,,

with a similar expression for m(x), where the remainder R, may be bounded by a
multiple of sups|D,(x)|. Thus, if the smooth $,(x) is consistent and the asymptotic

dependencies among the €; are not too great, then 3,,, ! and m will be consistent for
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8., E [Y(rn (e, X))|U,] and E [x(rn (e, X))|U,] respectively. Similar considerations apply
to (4.1)4.3).

ExampLE 1.3. (Continued). We have simulated sequences of designs for the model given
by (1.4) with 8p = 6; = 1. The initial design consisted of 25 points: 6 each at +3, 3
each at :i:%, 2 each at :i:%, and 1 each at :l:% and 0. The choices of v, x and of the error
distribution were as in the previous examples. We took f(x) proportional to x? — 1271,
normed so that || f|| = 0.25. An estimate of f which is orthogonal to the regressors is
given by

F) = 9a0) — 27 (0)A™ f 2(x)ne) dx.
S

We used a Gaussian kernel smoother y,(x), computed on s-pLUs, with a bandwidth varying
from 0.5 to 0.3 as n increased. See Hirdle (1990).

Figure 3(a) shows a plot of f, f and the true and estimated regression lines after a
further 60 observations have been taken. Figure 3(b) gives the sequence of design points.
Figure 3(c) indicates that one should not expect to make substantial gains by taking more
observations.

In Figure 3(d)«(f) the intercept estimates, slope estimates and sample root-ISBs [as in
Example 1.2, with A = diag(l, %)] are plotted for the sequential designs as well as
for several fixed-sample-size designs. In these plots the horizontal lines are at Op
[Figure 3(d)], at 0, [Figure 3(e)] and at || f]|, the minimum attainable value of (ISB)?
[Figure 3(f)].

For each N from 26 to 85, each of the fixed-sample-size designs was constructed. Re-
sponses y; were calculated using the same true mean response and the same random errors
as for the sequential designs. M -estimates of the intercept, slope and scale parameters
were then computed using the same 1 and y as above.

The fixed-sample-size designs considered were:

(1) Minimax. This design was derived by Huber (1975). It minimizes the maximum
integrated mean squared error of the fitted values, with the maximum taken over all f
satisfying (1.4). The design has a density of the form my(x) = a(1 + bx?)*, with a and
b depending on o? and || f||. We used the true values 0® = 1.2, || f|| = 0.25, and then
computed design points x; = My'(i +0.5/N), i =1,...N.

(2) Maxpower. For normal errors this design, with % of the points at 0 and ]—1 at each
of :l:%, is most powerful for distinguishing a quadratic response from a straight line. See
Huber (1975, p. 294).

(3) Minbias. This design minimizes the ISB of the fitted values when a straight line
is fitted to a quadratic mean response. It places % of the observations at 0, and % at each
of 3.

(4) Classical. This is the optimal design if the mean response is exactly linear. There
are [N /2] points at each of +1, with 1 point at 0 if N is odd.

As expected, the classical designs performed very poorly with respect to estimation of
the intercept. Because of the symmetry of the contamination, the slope was accurately
estimated. The sequential designs outperformed the maxpower designs, and performed
as well overall as the minimax and minbias designs, despite being required to adapt to
the form of the alternative response (or the parameters, in the minimax case) for which
these other designs are optimal.

Our general conclusion is that a sequential strategy as adopted here can produce
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3d. Intercept ﬁﬁmatuvas. (N-25) for various sequences of designs
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Ficure 3: Straight-line regression (true response is quadratic), N = 85.

significant gains in the presence of unspecified contamination of the response function
and/or error distribution.
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